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Abstract

Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in
mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic
studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of
gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available
circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide
range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat,
rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4–5 hours in rat
compared to mouse and 8–12 hours in macaque and human compared to mouse. A systematic gene regulatory network for
the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or
mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with
the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which
light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the
control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure,
design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm.
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Introduction

Circadian rhythm is a daily time-keeping mechanism funda-

mental to a wide range of species. The basic molecular mechanism

of circadian rhythm has been studied extensively. It has been

shown that the negative transcriptional–translational feedback

loops formed by a set of key circadian genes are responsible for

giving rise to the circadian physiology. In mammals, the master

clock resides in the suprachiasmatic nucleus (SCN) and the SCN

orchestrates the circadian clocks in peripheral tissues by directing

the secretion of hormones such as glucocorticoids. Through many

years of molecular and genetic studies, at least 19 key circadian

genes—Per family (Per1/Per2/Per3), Cry family (Cry1/Cry2), Bmal1

(Arntl), Clock, Npas2, Dec1/Dec2 (Bhlhb2/Bhlhb3), Rev-erba/b (Nr1d1/

Nr1d2), Rora/Rorb/Rorc, Dbp/Tef/Hlf, and E4bp4 (Nfil3)—have

been identified in mammals [1]. As is now commonly accepted,

Arntl and Clock proteins form a complex that positively regulates

the transcription of Per and Cry family genes through activating the

cis-regulatory element E-box in their promoters. Per and Cry

family proteins form a complex that inhibits Arntl/Clock

transcriptional activity, thus completing the negative feedback

loop. Other key circadian genes such as Dbp and Nfil3 controlling

the D-box element and Rora/Rorb/Rorc and Nr1d1/Nr1d2 control-

ling the RRE (Rev-erb/Ror element) have also been shown to be

important to the mammalian circadian rhythm.

Since 2002, there have been a series of microarray experiments

aimed at identifying circadian oscillating genes at the genome-

wide level in various tissues of mammalian species, including

mouse, rat, rhesus macaque, and human (Table S1). These

experiments usually identified hundreds of circadian oscillating

genes, suggesting that the circadian rhythm drives a genomewide

circadian oscillation of gene expression. However, microarray data

are intrinsically noisy, and further, these microarray experiments

differed in the animals that they used, experimental conditions,

and sampling times, etc. Indeed, these microarray experiments

have so far not been compared or integrated. In a few cases where

two tissues were studied in a single experiment, the overlap of

circadian oscillating genes between tissues was very limited [2,3].

Assuming that a set of common circadian genes exists in most

tissues and cell types, integration of different circadian microarray

datasets in multiple tissues could potentially identify such a

common set of circadian genes [4]. Comparison of circadian

oscillating genes and their oscillating patterns across different

tissues can help us understand the tissue-specific functions of

circadian rhythm. Comparison across different mammalian

species can also shed light on the molecular mechanisms that

lead to their different physiologies and behaviors.

Because many known key circadian genes such as Arntl/Clock,

Nr1d1/Nr1d2, and Dbp/Nfil3 are transcription factors, transcrip-

tional regulation must have played an important role in the

genome-wide circadian oscillation of gene expression. Ueda et al.

constructed a small-scale gene regulatory network consisting of 16

genes and 3 cis-regulatory elements based on in vitro luciferase

reporter assays [5]. However, the construction of a circadian gene
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regulatory network at the system level based on promoter analysis

alone has been almost impossible due to the difficulties in

transcription factor binding site prediction [6]. The existence of

other cis-regulatory elements associated with circadian oscillation

has remained elusive. On the other hand, there are a large body of

microarray experiments from transcription factor knockout or

mutant animals currently available at public databases. Incorpo-

rating the knockout or mutant microarray experiment results with

the promoter sequence analysis can greatly facilitate the

identification of functional transcription factor binding sites. In

general, construction and analysis of gene regulatory networks

involved in the mammalian circadian rhythm will improve our

understanding on how key circadian genes are driving circadian-

controlled genes, and will pave the way for more detailed

quantitative modeling of the mammalian circadian rhythm.

Results

Identification of a Common Set of Circadian Genes in
Mouse

We searched for circadian oscillating genes in 21 circadian time

series microarray data covering 14 tissues in mouse (Table S1) by

fitting them to cosine functions with different phases, and

extracted circadian phase information for circadian oscillating

genes. We identified 9,995 known genes showing circadian

oscillations in at least one tissue (Table S2). The number of genes

showing circadian oscillation in multiple tissues decreases rapidly

as the number of tissues increases, whereas the consistency of their

circadian phases across tissues as measured in p-values of circular

range tests improves rapidly (Figure 1). We identified 41 common

circadian genes, defined as the genes showing circadian oscillation

in at least 8 out of 14 tissues in mouse (Table 1). 13 out of 19

previously known key circadian genes were among the common

circadian genes that we identified in this study. Other known key

circadian genes: Rorb, Cry2, Rora, Npas2, and Hlf were found to be

circadian oscillating in one, three, three, four, and five tissues,

respectively. Bhlhb3 was not found to be circadian oscillating in any

tissue. 39 of these common circadian genes showed significant

consistency (p,1/3 in circular range test) of their circadian phases

across all tissues.

Comparison between Tissues
We surveyed tissue-specific gene expression profiles in a mouse

tissue gene expression atlas [7] for the circadian oscillating genes in

different tissues. To cross-validate the circadian phase data with

the tissue gene expression data, we created a binary matrix of 1 or

0 to denote the presence or absence of circadian oscillations in 14

tissues in circadian phase data and compared it to the gene

expression matrix in 61 tissues from the tissue gene expression

atlas. For each pair of tissues from the two matrices, we calculated

a correlation coefficient. The circadian data in liver, kidney,

skeletal muscle, adrenal gland, and white adipose tissue correctly

correlated best with their corresponding tissues in the tissue gene

expression atlas, whereas SCN correlated equally well with

preoptic and hypothalamus, and brown adipose tissue correlated

equally well with adipose tissue and brown fat. These results

reflected the fact that sufficiently high gene expression levels are

the prerequisite to be detected as circadian oscillating in our

collection of microarray datasets.

To investigate if the differences in the circadian phases of

circadian oscillating genes across tissues are caused by the

differences in their gene expression levels, we calculated the

variances of circadian phases and the variances of gene expression

for circadian oscillating genes across the seven tissues common to

our circadian datasets and the tissue gene expression atlas. There

is no significant correlation (r = 0.01, p = 0.71) between these two

variances. For example, the gene expression level of Per2 is 27

times higher in adrenal gland than in skeletal muscle, but this has

no effect on the consistency of circadian phases of Per2 between the

two tissues. In fact, the common circadian genes have significantly

higher variances of gene expression across the 61 tissues than those

from the same number of randomly selected genes. We observed

that the correlation coefficients rij between the tissue gene

expression data of the common circadian gene pairs (i,j) negatively

correlated with their circadian phase differences (r = 20.22,

p,1028). The gene pairs positively correlated in their tissue gene

expression patterns had a significantly lower circadian phase

difference than expected by random, whereas the gene pairs

negatively correlated in their tissue gene expression patterns had a

significantly larger circadian phase difference than expected by

random (Figure S1). Therefore, the common circadian genes with

similar gene expression patterns across tissues also tend to have

similar circadian phases. The circadian gene regulation may share

a similar mechanism that gives rise to tissue-specific gene

expression.

We clustered the 21 circadian phase datasets using hierarchical

clustering. The datasets from the same tissue or biologically closely

related tissues were clustered together, suggesting that the

differences in circadian phases between tissues resulted from their

biological differences (Figure 2). To ensure that these differences

between tissues were also reproducible between experiments, we

used circular ANOVA to identify the circadian oscillating genes

shared between two tissues but associated with significantly

different circadian phases between these tissues. There were 12

circadian oscillating genes shared between two SCN datasets and

at least two liver datasets. Among them, Per1, Per2, Nr1d2, and

Avpr1a showed a significant (p,0.01) advance of about 6 hours in

their circadian phases in SCN datasets compared to liver datasets,

whereas Dnajb1, Hmgb3, Hsp110, and Pdcd4 showed no significant

differences in their circadian phases between SCN and liver

(Figure 3). To test if such differences also exist between SCN and

Author Summary

Circadian rhythm is universally present from unicellular
organisms to complex organisms and plays an important
role in physiological processes such as the sleep–wake
cycle in mammals. The mammalian circadian rhythm
presents an excellent system for studying gene regulatory
networks as a large number of genes are undergoing
circadian oscillation in their expression levels. By integrat-
ing all available microarray experiments on circadian
rhythm in different tissues and species in mammals, we
identified a set of common circadian genes lying in the
center of the circadian clock. Significant differences in the
circadian oscillation of gene expression among mouse, rat,
macaque, and human have been observed that underlie
their physiological and behavioral differences. We con-
structed a gene regulatory network for the mouse
circadian rhythm using knockout or mutant microarray
data that have previously received little attention. Further
analysis revealed not only additional feedback loops in the
network contributing to the robustness of the circadian
clock but also how environmental factors such as light,
food, and heat can entrain the circadian rhythm. Our study
provides the first gene regulatory network of the
mammalian circadian rhythm at the system level. It is also
the first attempt to compare gene regulatory networks of
circadian rhythm in different mammalian species.

Mammalian Circadian Gene Regulatory Networks
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whole brain tissues, we also compared SCN with 3 whole brain

datasets. There were 12 circadian oscillating genes shared between

two SCN datasets and at least two whole brain datasets. Per2,

Nr1d2, and Tuba8 again showed a significant advance of about

6 hours in their circadian phases in SCN datasets compared to

whole brain datasets, whereas Hmgb3, Hsp110, Sgk, and Fabp7

showed no significant differences in their circadian phases between

SCN and whole brain. Further examination validated that the

known key circadian genes including Per1, Per2, Cry1, Arntl, Nr1d1,

and Nr1d2 all showed around 6 hour advances in circadian phases

between SCN and non-SCN tissues in general, whereas heat shock

proteins showed consistent circadian phases across all tissues.

There were 15 circadian oscillating genes shared between 3 heart

datasets including whole heart, atria, and ventricle and at least 3

liver datasets. Comparing the heart datasets with the liver datasets,

Bhlhb2 (p,0.001) and Tspan4 (p = 0.006) had circadian phase 5–

6 hours earlier in heart than liver whereas Dscr1 (p = 0.002) had

circadian phase 8 hours later in heart than liver. Other known key

circadian genes such as Per1/Per2, Arntl, and Nr1d1/Nr1d2 showed

consistent circadian phases between heart and liver. Comparing

the whole brain datasets with the liver datasets, Tfrc, St3gal5, and

Tspan4 had circadian phases more than 4 hours earlier in whole

brain than liver, whereas Hist1h1c, Tsc22d1, Myo1b, Litaf, and

BC004004 had circadian phases more than 4 hours later in whole

brain than liver.

Comparison between Mammalian Species
Among the 1,269 rat genes identified as circadian oscillating

genes in rat liver, 1,137 of them had homologues in mouse. 232 of

them overlapped with 944 mouse liver circadian oscillating genes

in at least 2 mouse liver datasets. We used the circular ANOVA

test to identify the circadian oscillating genes shared in both mouse

and rat livers but with significantly different circadian phases. 10

genes had significantly (p,0.01) different circadian phases between

mouse and rat livers. The circadian phases of BC006779, Cdkn1a,

Svil, Uox, Ak2, Nr1d1, Mtss1, Nudt16l1, and Gss were 4–6 hours

later in rat liver than mouse liver, whereas Hsd17b2 was in anti-

phase between mouse and rat livers (Figure S2).

Among 803 rat skeletal muscle (SKM) circadian oscillating

genes, 703 of them had homologues in mouse and 64 of them

overlapped with 440 mouse SKM circadian oscillating genes.

Among the overlapping genes, 34 of them did not show circadian

phase differences larger than 4 hours between mouse and rat

SKM. 22 of them had circadian phases more than 4 hours later in

rat SKM than mouse SKM. Cpt1a, Pdk4, and Ucp3, involved in

lipid metabolism, showed a 5–8 hour delay in their circadian

Figure 1. Tissue distribution of circadian oscillating genes. (A) Distribution of the number of circadian oscillating genes identified in different
numbers of mouse tissues. (B) Distribution of p-values in circular range tests for circadian phases of circadian oscillating genes identified in different
numbers of mouse tissues.
doi:10.1371/journal.pcbi.1000193.g001
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phases in rat SKM compared to mouse SKM. 8 genes had

circadian phases more than 4 hours earlier in rat SKM than in

mouse SKM. Among them, Fkbp5 and Sgk, which are controlled

by the glucocorticoid receptor element (GRE), had about 6 hour

advance in their circadian phases in rat SKM compared to mouse

SKM. There were 11 circadian oscillating genes common to

mouse liver and SKM, and rat liver and SKM. The 4–5 hour

delay in circadian phases in rat compared to mouse was observed

in both liver and SKM for all 11 circadian genes except Dynll1.

Among 603 rhesus macaque adrenal gland circadian oscillating

genes, 560 had homologues in mouse and 170 overlapped with

4,162 mouse adrenal gland circadian oscillating genes. We found

significant differences in circadian phases also between these two

species. Among the overlapping genes, 47 did not show circadian

phase differences larger than 4 hours between mouse and

macaque, whereas 66 had circadian phases more than 4 hours

later in the macaque adrenal than in the mouse adrenal. Known

key circadian genes, Arntl, Dbp, Nr1d1, and Bhlhb2, showed about

8 hour delay in their circadian phases in the macaque adrenal

compared to the mouse adrenal. Although Per2 did not satisfy our

criteria (p,0.01) to be a circadian oscillating gene in macaque

adrenal, this gene has a circadian phase at CT21 (p = 0.03), which

is also about 8 hours later than that in mouse. Similarly, heat

shock proteins, Hsp110, Hspa8, Dnaja1, and Dnajb6, had circadian

phases around CT16 in the mouse adrenal but around CT0 in the

macaque adrenal. Cold inducible protein (Cirbp) had a circadian

phase around CT7 in the mouse adrenal but around CT16 in the

macaque adrenal, in anti-phase with heat shock proteins in both

mouse and macaque. On the other hand, there were also 57 genes

showing circadian phases more than 4 hours early in the macaque

adrenal than in the mouse adrenal.

In the human circadian SKM microarray study, there were only

two circadian time point measurements: CT1 and CT13. Hence

we can only roughly estimate the circadian phases to be either

CT1 or CT13 in human SKM. Among the common circadian

genes, Per1, Per2, Nr1d2, and Dbp had circadian phases around

CT1, whereas Arntl and Cry1 had circadian phases around CT13

in human SKM. Our estimates of circadian phases for Per1 and

Per2 in human SKM were in good agreement with the study in

human peripheral blood mononuclear cells where a 2 hour

sampling time was used throughout 72 hours [8]. The heat shock

proteins, Dnaja1, Dnajb4, and Hspa4, had circadian phases around

CT13, consistent with the peak of common body temperature at

CT10 in human [8].

Next, we made a three-species comparison of circadian phases

in the SKMs of mouse, rat, and human. We found 12 circadian

oscillating genes common to SKM in all three species (Table 2).

After we rounded the circadian phases in mouse and rat to their

closest time points, CT1 or CT13, we observed that Per2, Arntl,

Dbp, Ppp1r3c, and Ablim1 had conserved circadian phases between

mouse and rat, but were 12 hours away from those of human.

Epm2aip1, G0S2, and Maf had conserved circadian phases between

mouse and human but 12 hours away from those of rat. Finally,

D19Wsu162e, Myod1, Pfn2, and Ucp3 had conserved circadian

phases among all three species.

Biological Functions of the Circadian Rhythm
We searched for the Gene Ontology (GO) categories signifi-

cantly over-represented in circadian oscillating genes in each

mouse tissue using GOminer program [9]. We further tested the

associations of GO categories with any specific circadian phase

intervals using Fisher’s test with a rotating window method. The

list of significant biological processes associated with circadian

phases in different tissues is shown in Table S3. The most common
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of these biological processes were steroid biosynthesis, heat shock

response, and protein folding. Steroid biosynthesis was associated

with CT22 in liver, kidney, adrenal, brown adipose tissue (BAT),

and white adipose tissue (WAT). Heat shock response or protein

folding were associated with CT16 in SCN, liver, kidney, adrenal,

aorta, BAT, WAT, calvarial bone, and whole brain, due to a large

number of heat shock proteins consistently showing circadian

phases near CT16 in most tissues. In liver, carbohydrate and

amino acid metabolism were associated with CT17 and CT15

respectively, consistent with the rise of activities after light off in

mouse. In BAT, WAT, and adrenal, lipid metabolism was

associated with CT22. Negative regulation of protein kinase

activities was associated with CT17 in prefrontal cortex and CT21

in whole brain. There were also notable differences in the

circadian phases of some biological processes between tissues. For

example, protein translation was associated with CT20 in SCN

but CT9 in WAT. Organ development was associated with CT22

in heart and BAT but CT10 in adrenal.

Promoter Analysis
To test the association of transcription factor (TF) regulation

with the circadian oscillation of gene expression, we predicted the

Figure 3. Comparison of circadian phases between SCN and liver. p-values from the circular ANOVA test are indicated in the parenthesis. The
solid line represents y = x. The dashed lines represent y = x66 respectively.
doi:10.1371/journal.pcbi.1000193.g003

Figure 2. Hierarchical clustering of 21 circadian microarray datasets based on global circadian phase dissimilarities. Datasets are
denoted by first author names and tissue types.
doi:10.1371/journal.pcbi.1000193.g002

Table 2. Circadian oscillating genes common to the SKMs of
mouse, rat, and human.

Gene Symbol Mouse SKM Rat SKM Human SKM

Ablim1 19.00 0.83 13

Arntl 23.00 2.33 13

D19Wsu162e 21.17 23.00 1

Dbp 10.00 12.33 1

Epm2aip1 13.33 19.67 13

G0s2 16.33 21.83 13

Maf 14.67 5.17 13

Myod1 16.67 18.83 13

Per2 13.33 16.00 1

Pfn2 14.50 18.08 13

Ppp1r3c 21.50 23.33 13

Ucp3 0.17 5.50 1

doi:10.1371/journal.pcbi.1000193.t002
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TF binding sites on the mouse promoters of circadian oscillating

genes in each tissue using positional weight matrix (PWM) based

methods. We first tested whether there was a significant over-

representation of TF PWM binding sites on the promoters of

circadian oscillating genes using the Fisher’s exact test. Among the

significant TF PWMs, we again tested their associations with any

specific phase intervals using the Fisher’s test with a rotating

window method. To remove the redundancy in TF PWMs, we

grouped the TF PWMs into TF families and averaged the

associated circadian phases of significant TF PWMs within the

same TF families. The results are shown in Table S4. EBOX, AP-

2, CRE, SP1, and EGR were the top 5 TF families associated the

circadian phase in most tissues. However, unlike the consistent

circadian phases of the common circadian genes across tissues, the

associated circadian phases of the significant TF families varied

considerably among different tissues. EBOX was associated with

CT12 in the majority of tissues including SCN, liver, aorta,

adrenal, WAT, brain, atria, ventricle, and prefrontal cortex, but it

was associated with CT0 in skeletal muscle, BAT, and calvarial

bone. CRE was consistently associated with CT11 in SCN, liver,

aorta, heart, adrenal, calvarial bone, prefrontal cortex, and

ventricle, but with CT20 in atria. Two other known TF families

related to circadian rhythm, RRE and DBOX, were detected to

be associated with circadian phase only in two tissues. RRE was

associated with CT0 in liver and WAT. DBOX was associated

with CT16 in aorta and adrenal.

Identification of Gene Regulatory Interactions
We obtained microarray data from TF knockout or mutants for

Clock, Arntl, Npas2, Nr1d1, Rora/Rorc, Egr1/Egr3, Dbp/Hlf/Tef, and

Ppara in various mouse tissues, together with Cebpa/Cebpb/Cebpd/

Cebpe transfection microarray data in NIH3T3 cells. To study the

systematic effects of glucocorticoids, cAMP, and temperature on the

circadian rhythm, we included microarray data from Nr3c1

(glucocorticoid receptor), Pka, and Hsf1 knockouts or mutants in

response to DEX (glucocorticoid agonist), cAMP, and heat

stimulation, respectively, compared with wild type mouse. We also

included microarray data from a light response mouse model in

order to identify light sensitive genes in mouse SCN [10]. The

complete list of knockout or mutant microarray experiments used in

this study is shown in Table S5. We assumed that the target genes of

TFs will be significantly down-regulated in the knockout or mutant

compared with the wild type mouse in the case of activators, and up-

regulated in the case of repressors, such as Nr1d1. To identify the

direct targets of TFs in knockout or mutant experiments, we

required that the significantly affected genes in the knockout or

mutant must have at least one putative binding site of their

corresponding TFs in the promoter regions. Under these criteria,

we identified 320 EBOX, 295 RRE, 43 DBOX, 492 EGRE, 455

CRE, 326 GRE, 122 HSE, 607 CEBP, and 516 PPRE controlled

genes respectively (Table S6). For these genes, we extracted their

mean circadian phases if they have consistent circadian phases

across multiple tissues (p,1/3, circular range test). We observed

that EBOX was significantly associated with CT12 (p,1026,

Fisher’s exact test), RRE with CT1 (p,1026), DBOX with CT15

(p,1025), HSE with CT17 (p,1026) (Figure S3).

Circadian Gene Regulatory Network
Based on these regulatory interactions, we constructed the gene

regulatory network for the circadian oscillating genes in mouse. In

Figure 4, we show a network consisting of the circadian oscillating

genes identified in at least 7 mouse tissues. Among the 81 circadian

oscillating genes identified in at least 7 tissues, 53 of them can be

included through 88 regulatory interactions with 9 cis-regulatory

elements in our network. Their circadian phases were represented

by different colors in the color wheel. We were able to identify

almost all known transcription regulatory interactions for common

circadian genes in the literature, except EBOX R Per1, EBOX R
Nr1d1, EBOX R Ppara, RRE R Nr1d1, and RRE R Cry1. To

further complete our network, we supplemented these missing

gene regulatory interactions with known protein interaction

information (Per/Cry Arntl/Clock and Fkbp:Hsp90

Nr3c1) and protein phosphorylation information (Csnk1d R
Per/Cry and Gsk3b R Nr1d1) from the literature. These

relationships are shown in red color in Figure 4.

Two well-known negative feedback loops can be reconstructed

from this analysis: Arntl/Clock R EBOX R Per1/Per2 Arntl/

Clock and Nr1d1/Nr1d2 RRE R Arntl/Clock R EBOX R
Nr1d1/Nr1d2. Two feedforward loops are attached to the

negative feedback loops through Arntl/Clock R EBOX R Dbp

R DBOX R Per1/Per2 acting as an alternative route of Arntl/

Clock R EBOX R Per1/Per2 and Nr1d1/Nr1d2 RRE R
Nfil3 DBOX R Per1/Per2 Arntl/Clock acting as an

alternative route of Nr1d1/Nr1d2 RRE R Arntl/Clock.

Bhlhb2 inhibiting EBOX is also regulated by EBOX and Nr1d1

inhibiting RRE is also regulated by RRE, therefore forming two

auto-regulatory loops.

The effects of food and light act on common circadian genes

directly through GRE and CRE respectively. GRE controls Per1

and Per2, while CRE controls Per1, Rora, Nr1d2, and Nfil3. As

shown in Figure 4B, the effect of temperature acts on common

circadian genes rather indirectly through the route HSE R
Hsp90aa1 R Fkbp/Hsp90 Nr3c1 R GRE R Per1/Per2.

Nr3c1 and the Fkbp/Hsp90 complex are also components of

another negative feedback loop, Nr3c1 R GRE R Fkbp5 R
Fkbp/Hsp90 Nr3c1, which may play an important role in

glucocorticoid stimulation. Nr3c1 is also under the control of CRE

and therefore may be responsive to light stimulation. Nr3c1 and

the Fkbp/Hsp90 complex feed into EBOX by regulating Per1/

Per2 through GRE. In turn, EBOX controls both components of

the Fkbp/Hsp90 complex, i.e., Fkbp5 directly and Hsp90aa1

indirectly through EBOX R Ppara R PPRE R Hsp90aa1.

Therefore, Nr3c1 and Fkbp/Hsp90 play central role of integrating

the regulatory inputs from diverse environmental signals into

circadian genes in our network (Figure 4B).

Discussion

By combining all available circadian microarray data in mouse,

we identified a set of common circadian genes showing circadian

oscillations with consistent circadian phases in a wide range of

tissues. However, the majority of circadian oscillating genes were

restricted to a small number of tissues, with large variations in their

circadian oscillation phases, suggesting that they are likely

circadian-controlled genes that are driven by common circadian

genes under their different tissue environments. The 6 hour phase

delay of known key circadian genes such as Per1, Per2, and Nr1d1

in non-SCN tissues compared to SCN has been noted by others

previously and has been explained by the time-lapse needed to

transmit the regulatory signals from SCN to peripheral tissues.

However, we also observe genes such as heat shock proteins

showing consistent phases in all tissues including SCN, which

coincide with the phase of circadian oscillation of body

temperature in mouse. The circadian oscillation of body

temperature may hence be the driving force that synchronizes

the circadian oscillation of heat shock proteins throughout the

body, which may be independent of the regulation of circadian

rhythm in peripheral tissues by SCN.

Mammalian Circadian Gene Regulatory Networks
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Figure 4. Circadian gene regulatory network in mouse. (A) Gene regulatory network consisting of the circadian oscillating genes identified in
at least 7 mouse tissues. (B) The subset of network highlighting NR3C1 and FKBP/HSP90’s role of integrating the regulatory inputs from diverse
environmental signals into circadian genes. Blue arrows represent the gene regulatory interactions obtained in this study. Red arrows represent the
known gene regulatory or protein interactions extracted from the literature. P stands for phosphorylation. White boxes represent cis-regulatory
elements. Colored circles represent the genes with circadian phase information, where circadian phases are represented by the different colors in the
color wheel. White circles represent protein complexes or genes without circadian phase information.
doi:10.1371/journal.pcbi.1000193.g004
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After integrating tissue gene expression data with circadian

rhythm data, we were surprised to find that the common circadian

genes show a high degree of variation in gene expression across

tissues in spite of the universal presence of circadian rhythms in

different tissues. This indicates that the circadian rhythm gene

regulatory network is robust against the variations in gene

expression levels of its key components in different tissues.

Interestingly, we observed that the common circadian genes

with similar gene expression patterns across tissues also tended to

have similar circadian phases. Thus, the gene regulatory network

responsible for generating ‘‘spatial’’ expression variation across

tissues may be also responsible for generating the ‘‘temporal’’

expression variation.

We applied promoter analysis on the circadian oscillating genes

in different mouse tissues and identified a suite of transcription

factors that potentially play important roles in circadian rhythm.

Bozek et al. used a similar promoter analysis approach on several

mouse circadian microarray datasets and identified TFs including

Sp1, AP2, STAT1, HIF-1, and E2F to be associated with

circadian oscillating genes [6]. However, they considered neither

tissue differences nor the association of TFs with specific circadian

phases. Furthermore, using sequence based promoter analysis

alone to identify significant TFs that regulate circadian oscillating

genes is problematic. First, it is almost impossible to distinguish the

multiple TFs binding to identical or similar DNA motifs. For

example, in addition to Arntl/Clock, a number of other TFs such as

Usf and c-myc also bind the EBOX motif. Second, it is difficult to

separate the direct and indirect regulatory interactions. For

example, although we identified the association of TFs such as

SP1, E2F, and A2P with circadian oscillating genes, it is more

likely that these TFs are associated with other key circadian TFs

such as Arntl/Clock, and act as parts of the transcription

machinery. To overcome these problems, we utilized a number

of mouse TF knockout or mutant microarray experiments to

construct a systematic gene regulatory network for circadian

rhythm in mouse. We compared our network with a small-scale

gene regulatory network constructed by Ueda et al. using a

reporter assay for 16 common circadian genes in mouse [5].

Among the nine E/E’BOX controlled genes identified by Ueda et

al., Per1, Per2, Bhlhb2, Bhlhb3, Cry1, Dbp, Nr1d1, Nr1d2, and Rorc,

we identified five, Per2, Per3, Bhlhb2, Dbp, Nr1d2, and also Rora

instead of Rorc. Among the seven DBOX controlled genes

identified by Ueda et al., Nr1d1, Nr1d2, Rora, Rorb, Per1, Per2,

and Per3, we only identified Per3. Among the six RRE controlled

genes identified by Ueda et al., Clock, Npas2, Arntl, Nfil3, Rorc, and

Cry1, we identified four, with Rorc and Cry1 being the exceptions.

In fact, Cry1 was significantly up-regulated in the Nr1d1 knockout

experiment, but we did not identify any canonical RRE binding

site in its promoter, suggesting our criterion for putative RRE may

be too stringent. Ueda et al. showed that the transcriptional

activities of EBOX, RRE, and DBOX reach their maximums at

CT7.5–CT11.5, CT21.0–CT23.0, and CT11.0, respectively. The

circadian phases associated with EBOX and RRE in our network

were consistent with Ueda et al.’s results whereas the circadian

phase associated with DBOX was around CT15–CT16 in our

network.

An important question in circadian physiology is how

environmental factors such as food, light, and temperature affect

the circadian clock. Upon food intake, adrenal gland secretes

glucocorticoids that activate the glucocorticoid receptor (Nr3c1). It

was known that the activated Nr3c1 positively regulates Per1

through a glucocorticoid responsive element (GRE) in the Per1

promoter. Here we show that the direct targets of Nr3c1 also

include other common circadian genes such as Per2 and Fkbp5.

Upon cAMP stimulation, PKA phosphorylates CREB1, which

in turn up-regulates downstream genes through the cAMP

responsive element (CRE). One component of PKA, Prkar1a,

was among the common circadian genes that we identified with a

phase at CT2.5. Other components of PKA were also found to be

oscillating with phases around CT0. The rhythmic oscillation of

the mRNA levels of PKA components may suggest that the cAMP

signaling pathway is circadian oscillating even in the absence of

light stimulation, as many microarray experiments were conducted

in 12 h dark:12 h dark (DD) condition. It is known that the Per1

promoter contains a functional CRE responsive to cAMP

stimulation. Our analysis of PKA mutant microarray data

identified additional CRE controlled common circadian genes

such as Nr1d2, Nfil3, and Rora. In addition, CRE also controls two

kinases, Csnk1d and Gsk3b, playing important roles in post-

transcriptional regulation of common circadian genes. Csnk1d is

a key kinase that phosphorylates PER1 proteins in the cytoplasm,

which leads to their degradation. Thus, cAMP stimulation not

only elevates the mRNA levels of Per1, but also the phosphory-

lation state of PER1 proteins in the cytoplasm. Gsk3b has been

shown to phosphorylate and stabilize Nr1d1 protein. The

inhibition of Gsk3b activities by lithium has also been implicated

in the treatment of bipolar and circadian disorders [11]. In mouse,

the response to light has long been suggested to be acting through

the cAMP signaling pathway. We identified 28 light sensitive genes

in mouse SCN from the light response microarray experiment.

Seven of them are PKA controlled genes that we identified from

PKA knockout experiments. There are only two genes, Egr1 and

Pim3, among the common circadian genes. They were not among

the CRE controlled genes identified from PKA knockout

experiments. But a closer examination showed that both genes

have conserved CREs between human and mouse in their

promoters, therefore strongly suggesting that they too were

controlled by CRE.

As a key TF in heat response, Hsf1 mainly controls heat shock

proteins, whose circadian phases are significantly enriched around

CT16, coinciding with the phase of daily body temperature

oscillation in mouse. Hsp90aa1 is a direct target of Hsf1. Fkbp5 and

Hsp90 form a complex inactive glucocorticoid receptor and

transmit the impact of heat stimulation indirectly on Per1/Per2.

Kornmann et al. suggested that temperature might entrain the

circadian rhythm through the direct regulation of Hsf1/Hsf2 on

Per2 [12]. However, we found no evidence of such direct

regulation either from the Hsf1 knockout experiment or from

the Per2 promoter analysis. Instead, our result suggests an indirect

regulation of Hsf1 on Per2 through the glucocorticoid receptor.

Similar crosstalk between glucocorticoid stimulation and cAMP

stimulation may also exist, as our results showed that the promoter

of glucocorticoid receptor Nr3c1 also contained CRE and was

responsive to cAMP signaling. Cebp family proteins have a

significant number of inputs to common circadian rhythm genes

such as Per2, Dbp, and Nfil3. Cebpa showed circadian phase at CT7

in four tissues, Cebpb at CT11 in six tissues, and Cebpd at CT14 in

two tissues. Their circadian phases suggest that they may be driven

by Arntl/Clock through EBOX, thereby forming additional

feedback loops. Npas2 has been considered to be a substitute for

Clock in forming a hetero-dimer with Arntl. We only obtained 47

Npas2 regulated genes from Npas2 knockout experiment and only

one gene, Cirbp, was among the common circadian gene.

Therefore, Arntl/Npas2 may have only played a minor role in

circadian rhythm comparing to Arntl/Clock.

Metabolism and cell cycle are among the many important

biological processes controlled by the circadian rhythm. Pfkp, a key

enzyme which controls glycolysis and shows circadian phase

Mammalian Circadian Gene Regulatory Networks
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around CT23 in 7 tissues, is regulated by RRE. Ces3, a key

enzyme in fatty acid metabolism showing circadian phase around

CT17 in 6 tissues, is controlled by DBOX. Ppara, a key TF

regulating fatty acid metabolism showing circadian phase around

CT7 in three tissues, is controlled by EBOX and may drive the

circadian oscillation of other downstream metabolic genes. The

circadian oscillations in the cAMP signaling pathway as discussed

earlier will also undoubtedly affect the metabolism. In liver, the

main metabolic organ, carbohydrate and amino acid metabolism,

were associated with CT17 and CT15 respectively. In adipose

tissues such as BAT and WAT, lipid metabolism was associated

with CT22. We also observed the association of CT0 with steroid

biosynthesis in a wide range of tissues. These results are consistent

with the observation that the metabolic activities rise after light off

(dusk) in mouse.

Cdkn1a or p21, a cyclin dependent kinase inhibitor controlling

the progression of cell cycle at G1 phase has the circadian phase at

CT22 in 10 tissues and is controlled by RRE. Another kinase,

Wee1, controlling the progression of cell cycle into M phase, has

circadian phase at CT14 in 5 tissues and is controlled by DBOX.

Cdkn1a and Wee1 are two valves controlling the G2/M and G1/S

checkpoints in cell cycle progression, respectively. They have

almost opposite circadian phases and receive inputs from the

negative limb Nr1d1 and the positive limb Dbp in the circadian

rhythm, respectively, which leads to the orchestrated progression

of the cell cycle by circadian clock.

The mouse has been the most extensively studied mammalian

model organism for circadian rhythm. The scarcity of microarray

experiments with circadian and TF knockouts or mutants in non-

mouse mammals makes it difficult to construct systematic gene

regulatory networks for non-mouse mammals. But the comparison

between the microarray experiments in mouse and a few

microarray experiments in other mammals including rat, ma-

caque, and human, have revealed significant differences between

species both in terms of circadian oscillating genes and their

circadian phases. The known key circadian genes showed a 4–

5 hour phase delay in rat compared to mouse and 8–12 hours

phase delay in macaque and human compared to mouse, which

probably reflects the fact that mouse and rat are nocturnal animals

whereas macaque and human are diurnal. Interestingly, the

circadian phases of heat shock proteins are well aligned with the

peaks of body temperature in mouse, rat, and human. The anti-

phase relationship between EBOX controlled genes and RRE

controlled genes is preserved among mouse, rat, macaque, and

human. Therefore, the negative feedback loops in the center of the

mammalian circadian rhythm, consisting of Per1/Per2, Cry1, Arntl,

Clock, and Nr1d1/Nr1d2, must have been well conserved among

mammalian species. Meanwhile, the diversity in the circadian

oscillating genes and their phases among these four species

suggests that a significant amount of gene regulatory interactions

in the circadian gene regulatory network have been rewired during

evolution. Future comprehensive studies on the structure and

dynamics of circadian gene regulatory networks in different

mammalian species will advance our understanding of the

molecular basis of their physiological and behavioral differences.

Materials and Methods

Circadian Microarray Data
We collected all available circadian microarray data from

different laboratories for mouse, rat, rhesus macaque (Macaca

mulatta), and human. The total mouse data consisted of 21 datasets

covering 14 tissues including two datasets in SCN, five datasets in

liver, three datasets in whole brain, one dataset in kidney, aorta,

heart, skeletal muscle (SKM), adrenal gland, brown adipose tissue

(BAT), white adipose tissue (WAT), calvarial bone, prefrontal

cortex, atria, and ventricle. The three datasets in whole brain were

from three different mouse strains: C57BL/6J, AKR/J, and DBA/

2J. The rat data consisted of one dataset in liver and one dataset in

skeletal muscle. The macaque data consisted of one dataset in

adrenal gland. The human data consisted of one dataset in skeletal

muscle. The complete list of all circadian microarray datasets used

in this study is shown in Table S1. Most circadian microarray

experiments were conducted in a time series of every 4 hours. The

human microarray experiment was only conducted at CT1 and

CT13. For simplicity, we did not distinguish the light conditions,

i.e., 12 h light:12 h dark (LD) or 12 h dark:12 h dark (DD), under

which the animals were kept during the experiments. In order to

have a more complete and consistent analysis of the data from

different experiments, we decided to re-analyze all the datasets by

our own method rather than simply taking the gene lists from the

original publications. For the datasets where the CEL files were

available, we normalized the data by RMA method in ‘‘affy’’

package. For the datasets where only normalized data were

available, the normalization step was skipped.

We used the method similar to that described in [2] to analyze

all microarray data. Namely, cosine functions Aij(t) = cos(2pt/

Ti2Qj) where Ti = 20+i, Qj = 2pj/60, 0 # i #8, and 0 # j #59

were used as the reference time series of circadian oscillation. The

gene expression time series of each probe set on the microarray

were fitted to each cosine function time series Aij(t) and the cosine

function with highest correlation coefficient was chosen. A p-value

,0.01 in the regression for the best cosine function was used as the

criterion for circadian oscillation, and we estimated a false positive

rate of about 10% for this cutoff using a random permutation test.

When the experimental replicas at each time point were available,

we further carried out a one-way ANOVA test on the time series

using time points as factor and p-value ,0.05 as an additional

criterion. For the probe sets satisfying the criteria for circadian

oscillation, the gene expression time series were again fitted to the

cosine functions with fixed 24 hrs period but changing phases,

Bj(t) = cos(2pt/T2Qj), where T = 24, Qj = 2pj/144, and 0# j # 143.

The circadian phase was calculated from the best fitted Bj(t) as

Qj*24/2p. We were unable to obtain the microarray data in [2] so

we only extracted circadian gene lists with their circadian phase

information. In the human SKM study, vastus lateralis muscles

were taken from exercised and non-exercised legs of 4 patients at

CT1 (8AM) and CT13 (8PM). We used circadian time and

exercise state as two factors in two-way ANOVA. A p-value ,0.05

in the circadian time comparison was used as the criterion for

circadian oscillation. We estimated the circadian phase to be either

CT1 or CT13, depending on when the average expression value

was the highest in human SKM.

The R package ‘‘Circular’’ was used to analyze the circadian

phases obtained from circadian microarray datasets. For each

circadian microarray dataset, the probe sets were annotated by R

package ‘‘annaffy’’ and only the probe sets corresponding to

known genes were used in the analysis. The probe sets that passed

circadian oscillation criteria and that corresponded to the same

genes were merged by the following procedure. First, a circular

range test was used to assess the consistency of phases estimated

from the different probe sets for the same genes, where p,1/3 was

used as the criterion to take into account the 4 hour intrinsic errors

in phase estimation as the animals were sampled every 4 hours in

most experiments. Then, a circular mean function was used to

calculate the mean circadian phases from the consistent probe sets.

The same procedure was used to combine the different datasets for

the same tissue, i.e., five datasets for liver, two datasets for SCN,
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three datasets for whole brain. In liver and whole brain, we only

selected the genes identified as circadian oscillating in at least two

out of five liver datasets or two out of three whole brain datasets,

respectively. In SCN, we selected the genes identified as circadian

oscillating in one out of two SCN datasets considering the small

number of circadian oscillating genes in Ueda et al.’s SCN dataset

[2]. We identified 9,955 circadian oscillating genes in at least one

out of 14 tissues (Table S2). The number of circadian oscillating

genes in different number of tissues was plotted using the

‘‘barplot’’ function in R and is shown in Figure 1A. The circular

range test was also used to describe the consistency of phases of

circadian oscillating genes across tissues. The distribution of p-

values of circular range tests in different number of tissues was

plotted using the boxplot function in R and is shown in Figure 1B.

We defined the 41 circadian oscillating genes identified in at least 8

out of 14 tissues as common circadian genes, and these are shown

in Table 1.

Tissue-Specific Gene Expression of Circadian Oscillating
Genes

The microarray data of 61 mouse tissues after gcrma

normalization were downloaded from the mouse tissue gene

expression atlas website: http://symatlas.gnf.org [7]. We selected

the probe set with the highest average expression value across

tissues to represent the genes with multiple probe sets. To remove

the non-detected probe sets, we filtered out the probe sets with

gene expression values lower than 100 in all 61 tissues. We

obtained the expression profiles for 19,168 genes across 61 tissues.

For 9,955 circadian oscillating genes identified in at least one

tissue, we created a matrix of 1 or 0 to denote the presence or

absence of circadian oscillation in 14 tissues. For 8,029 genes

having both circadian data and tissue expression data, we

calculated the correlations between the circadian 1 or 0 matrix

with the matrix of log2(gene expression) in 61 tissues in tissue gene

expression atlas. We searched for the tissues in tissue data having

the highest correlation coefficient with the tissues in circadian

data. Liver (r = 0.29, p,10215), kidney (r = 0.23, p,10215), skeletal

muscle (r = 0.10, p,10215), adrenal gland (r = 0.06, p = 1027), and

white adipose tissue (r = 0.18, p,10215) in circadian data have the

highest correlations with their corresponding tissues in the tissue

data, whereas SCN in circadian data correlates equally well with

preoptic and hypothalamus (r = 0.22, p,10215) in tissue data and

BAT correlates equally well with adipose tissue and brown fat

(r = 0.19, p,10215). For the seven tissues having both circadian

data and tissue data: liver, heart, BAT, WAT, kidney, adrenal

gland, and SKM, we calculated the variances of circadian phases

in circadian data using the ‘‘circular var’’ function for the

circadian oscillating genes identified in at least two tissues, and the

variances of log2(gene expression) in tissue data across the tissues

where the circadian oscillations have been identified in circadian

data. The correlation coefficient of these two variances is 0.01

(p = 0.71). For the 37 common circadian genes identified in at least

8 tissues having tissue data, the median of variances of log2(gene

expression) across 61 tissues was 2.28. In comparison, the expected

median of variances of log2(gene expression) for the same number

of randomly selected genes was 0.54 based on 106 random

simulations. The correlation coefficients rij between the tissue gene

expression profiles of the common circadian gene pairs (i,j) were

negatively correlated with their circadian phase differences dij

(r = 20.22, p,1028). To further demonstrate the relationship

between rij and dij, we defined two functions y+(x) = median(dij(rij

.x)) and y2(x) = median(dij(rij,x)) for 21 # x # 1. We plotted y+(x)

and y2(x) in Figure S1. y+(x) for x.0 is significantly lower than the

median of dij for all gene pairs (5.84) and reaches the minimum

3.068 at x = 0.64, whereas y2(x) for x,0 is significantly higher and

reaches the maximum 9.939 at x = 20.26. These results indicated

that the common circadian genes with positive correlations in their

tissue gene expression profiles tended to have closer circadian

phases, whereas those with negative correlations in tissue gene

expression profiles tended to have larger differences in their

circadian phases.

Comparison between Tissues and Species
We used the median of phase differences of circadian oscillating

genes shared by two tissues as the distance measure of global phase

dissimilarity between two tissues. We use these distances to cluster

the phases of circadian oscillating genes in all 21 datasets using

hierarchical clustering with complete linkage (Figure 2). For the

mouse tissues where multiple datasets were available, i.e., liver,

SCN, whole brain, and heart (whole heart, atria, and ventricle), we

conducted pair-wise comparisons of the phases across tissues, using

the ‘‘circular ANOVA’’ function for the genes identified as

circadian oscillating in at least two datasets in each tissue under

comparison. The same method was used to compare mouse liver

data with rat liver data. To compare the circadian oscillating genes

across species, rat, macaque, and human gene symbols were

converted to mouse orthologs using the HomoloGene database of

NCBI (build 56, http://www.ncbi.nlm.nih.gov/HomoloGene).

Gene Ontology Analysis
Gene symbols of circadian oscillating genes identified in each

tissue in mouse, rat, macaque, and human were uploaded to

Gominer [9] for Gene Ontology (GO) annotation and enrichment

analysis. We selected the biological processes significantly over-

represented in circadian oscillating genes in each tissue using False

Discovery Rate (FDR) less than 0.05 as the criterion. For the

circadian oscillating genes in each enriched biological process, we

further tested their associations with any specific phase intervals

using the Fisher’s exact test with a rotating window method. In

each 1,000 equally spaced phase intervals of size 4 hours between

CT0 and CT24, the Fisher’s test was applied to test the association

between the biological process and the phase interval. The smallest

p-value among Fisher’s tests in all intervals was obtained to

represent the significance of the association. The significant

biological processes (p,0.005) in each tissue were colored using

a color circle to represent their associated circadian phases. We

visualized the significant biological processes as GO maps created

by Cytoscape program (version 2.5). The significant biological

processes were represented by the nodes and their hierarchical

GO relationship was represented by the directed edges between

them so that close-related biological processes were clustered

together. All GO maps in different tissues can be found in our

website (http://www.picb.ac.cn/circadian/). We manually select-

ed the most representative biological processes for each GO cluster

and summarized the result in Table S3.

Promoter Analysis
Transcriptional start sites (TSSs) information of mouse and

human were integrated from three databases: DataBase of

Transcriptional Start Site (DBTSS) [13,14], the CAGE (Cap-

Analysis Gene Expression) database of Fantom3 (Functional

annotation of mouse) project [15], and the NCBI RefSeq database

[16]. The criteria to select the TSSs were as follow: for DBTSS

TSSs, the proportion of confident cDNA clones (non-exonic start

clones, i.e., the clones mapped to the non-exonic regions of the

genome) was not less than 0.75; for CAGE TSSs, the total number

of corresponding CAGE tags was not less than 2 and can be

mapped around the 59 end of a known mRNA. If no TSS can be
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found for the gene from either DBTSS or CAGE under the above

criteria, the 59 end of the mRNA in RefSeq (human build 36.1,

mouse build 36) was used as the TSS of the gene. Human (hg18 or

NCBI build36.1) and mouse (mm8 or NCBI build 36) genome

sequences were downloaded from UCSC. The 3000bp flanking

sequences of each TSS were extracted from the genome as the

promoter regions. As the CAGE database was based upon the

older versions of human and mouse genome, i.e., hg17 and mm5,

we mapped the CAGE TSSs to the new version of genomes using

liftOver program in UCSC. In addition, orthologous promoter

regions of mouse (mm8) vs. human (hg18) genome alignment

results were also downloaded from UCSC.

Three positional weight matrix (PWM) based motif searching

programs, match [17], motifscan [18], and profilestas [19], were

used to identify the putative transcriptional factor binding sites

(TFBS) on the extracted promoter regions. All vertebrate PWMs

in TRANSFAC 11.2 were used as inputs in these programs. For

the match program, we used the cut-off profile that minimizes the

false positive rate, i.e., minFP profile in TRANSFC 11.2. For the

motifscan program, we used a third-order background model by

the CreateBackgroundModel program [20] to distinguish between

the motifs that occurred frequently throughout the genome and

the ones that were specific to the promoter regions. For the

profilestas program, we first used the profilestas package to

generate the scoring matrix and scoring threshold that minimized

the false positive rate for each PWM. Then we used the patser

program [21] to scan the promoter sequences and select the

TFBSs above the scoring thresholds. The putative TFBSs

predicted from all three programs have been compared and

yielded very similar results. For simplicity, all the promoter

analysis results presented in this paper were based on the match

program.

We first tested the significant over-representation of putative

TFBSs among a total of 568 PWMs on the promoters of circadian

oscillating genes using the Fisher’s exact test (p,1024), using the

promoters of all known genes as the background. Among the

significant PWMs, we again tested their associations with any

specific circadian phase interval in each tissue using the Fisher’s

exact test with a rotating window method as described above in

the GO analysis (p,0.005). To remove the redundancy in PWMs,

we grouped the PWMs into TF families according to their

classifications in the TRANSFAC database and we averaged the

associated circadian phases of significant TF PWMs in the same

TF families using the ‘‘mean’’ function in the R ‘‘circular’’

package. The results are summarized in Table S4. The detailed

information about TF enrichment and their associations with any

specific circadian phase intervals can be found in our website

(http://www.picb.ac.cn/circadian/).

Knockout or Mutant Mouse Microarray Data
We collected microarray data in different tissues or cell types

from knockout or mutant mice, including liver and skeletal muscle

in a Clock mutant, atrium and ventricle in a cardiomyocyte-specific

Clock mutant, liver in a liver-specific conditional Nr1d1 mutant,

aorta in Arntl and Npas2 knockout or mutant, liver in a Rora/Rorc

knockout, liver and kidney in a Dbp/Hlf/Tef knockout, liver in a

Ppara-null mice on Sv129 background treated by the Ppara agonist

Wy14643, NIH 3T3 cells under Cebpa/b/d/e transfection, S49

cells in a Pka knockout under cAMP stimulation, cortex and

thymus in a Egr1/Egr3 knockout, liver and primary chrodrocytes

in a Nr3c1 (glucocorticoid receptor) knockout treated by the

glucocorticoid agonist deamethasone (DEX), and embryonic

fibroblast in a Hsf1 knockout under heat shock (Table S5). We

also included the microarray experiment in the SCN of mouse

exposed to 30 minute light pulse at 1 hour after the light off period

compared to a dark pulse [10]. For the knockout or mutant mice

microarray data where time series were available, we applied a

two-way ANOVA using genotypes and time series as factors. The

p-values and fold changes in the genotype comparison were used.

For the knockout or mutant mice microarray data where external

treatments such as Wy14643, cAMP, DEX, and heat were

available, we applied a two-way ANOVA using genotypes and

treatments as factors. Here the p-values and fold changes in cross-

interactions between two factors were used. For Dbp/Hlf/Tef and

Egr1/Egr3 knockout or mutant and Cebpa/b/d/e transfection

experiments, we applied one-way ANOVA using genotypes as

factor. For Rora/Rorc, Arntl, and Npas2 knockout or mutant

experiments, we applied the LIMMA program using genotypes as

the factor. In the Rora/Rorc knockout or mutant experiment, Rora

knockout, Rorc knockout, Rora/Rorc double knockout were treated

as the same genotype. In Pka knockout or mutant experiment, only

the data at 0 hr and 2 hr of cAMP stimulation were used to

include the directly affected genes in the cAMP signaling cascade.

In Dbp/Hlf/Tef knockout or mutant experiments, the averages of

log2(p-value) and log2(fold change) in three experiments: triple

knockout vs. wild type in liver, triple knockout vs. triple

heterozygotes in liver, and triple knockout vs. wild type in kidney

were used as the overall log2(p-value) and log2(fold change). Ppara

knockout data were obtained from the third and fourth study in

[22]. To combine the results in third and fourth studies, we

extracted the probe sets with consistent log fold changes of Ppara

knockout effect of both studies. The maximum of p-values of both

studies and mean of log fold changes were used. For Egr1/Egr3

knockout in cortex and thymus and Nr3c1 knockout in liver and

primary chrodrocytes, the significantly affected gene lists were

simply merged in two tissues or cell types. In all knockout or

mutant data, a p-value less than 0.01 and a |log2(fold

change)|.0.5 were used to identify the significantly up- or

down-regulated genes in the knockout or mutant.

To reliably identify Arntl/Clock and Nr1d1/Rora/Rorc controlled

genes, we combined the evidences from multiple datasets. Arntl/

Clock controlled genes were identified as those satisfying two out of

the five conditions: down-regulated in the Clock knockout in liver,

down-regulated in the Clock knockout in skeletal muscle, down-

regulated in the cardiomyocyte-specific Clock knockout in atria,

down-regulated in the cardiomyocyte-specific Clock knockout in

ventricle, and down-regulated in the Arntl knockout in aorta. As

Nr1d1, a repressor, was significantly down-regulated in the Arntl or

Clock knockout or mutant, the significant up-regulation in the Arntl

or Clock knockout or mutant was also considered to be the evidence

for Nr1d1 controlled genes. Thus, Nr1d1/Rora/Rorc controlled

genes were identified as those satisfying one out of the seven

conditions: up-regulated in the Clock knockout in liver, up-

regulated in the Clock knockout in skeletal muscle, up-regulated

in the cardiomyocyte-specific Clock knockout in atria, up-regulated

in the cardiomyocyte-specific Clock knockout ventricle, up-

regulated in the Arntl knockout in aorta, up-regulated in the

Nr1d1 conditional knockout, and down-regulated in the Rora/Rorc

knockout. Dbp/Hlf/Tef, Ppara, Egr1/Egr3, Pka, Nr3c1, and Hsf1

controlled genes were identified as those that were significantly

down-regulated in a knockout or mutant mouse compared to the

wild type mouse. CEBP controlled genes were identified as those

that were significantly up-regulated in Cebpa/b/d/e transfected

cells compared to the control cells.

We identified 380 Arntl/Clock, 1,166 Nr1d1/Rora/Rorc, 53 Npas2,

53 Dbp/Hlf/Tef, 627 Cebp, 536 Ppara, 710 Egr1/Egr3, 464 Pka, 341

Nr3c1, and 425 Hsf1 controlled genes from the knockout or mutant

experiments. To identify the direct target genes of transcription
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factors in knockout or mutant experiments, we required that the

significantly affected genes in a knockout or mutant must have at

least one putative binding site of their respective transcription

factors in the promoter regions. We identified 320 EBOX, 295

RRE (Rev-erb/Ror element), 47 Npas2-regulated element, 43

DBOX, 607 CEBP, 516 PPRE (peroxisome proliferator respon-

sive element), 492 EGRE (Egr element), 455 CRE (cAMP

response element), 326 GRE (Glucocorticoid response element),

and 122 HSE (Heat shock element) directly controlled genes after

combining with the promoter analysis (Table S6).

Supporting Information

Figure S1 Two functions y+(x) = median(dij(rij.x)) and y2(x) =

median(dij(rij,x)) are plotted for 21#x#1, where rij is the

correlation coefficient between the tissue gene expression profiles

and dij is the circadian phase differences of the core circadian gene

pairs (i,j).

Found at: doi:10.1371/journal.pcbi.1000193.s001 (0.22 MB TIF)

Figure S2 Comparison of circadian phases among the overlap-

ping circadian genes between mouse liver and rat liver. The genes

with p,0.01 from the circular ANOVA test are colored in red.

The solid line represents y = x. The dashed lines represent y = x64,

respectively.

Found at: doi:10.1371/journal.pcbi.1000193.s002 (0.03 MB PDF)

Figure S3 Circadian phase distributions of circadian oscillating

genes controlled by 9 cis-regulatory elements. The circadian

oscillating genes here have consistent circadian phases across

multiple tissues (p,1/3 in circular range test). (A) EBOX

(ARNTL/CLOCK); (B) RRE (NR1D1/NR1D2/RORA/

RORC); (C) DBOX (DBP/TEF/NFIL3); (D) CEBP (CEBPA/

B/D/E); (E) CRE (PKA); (F) EGRE (EGR1/EGR3); (G) GRE

(NR3C1); (H) HSF (HSF1); (I) PPRE (PPARA).

Found at: doi:10.1371/journal.pcbi.1000193.s003 (0.43 MB TIF)

Table S1 Circadian microarray datasets used in this study.

Found at: doi:10.1371/journal.pcbi.1000193.s004 (0.13 MB

DOC)

Table S2 Complete list of circadian oscillating genes in 14

mouse tissues.

Found at: doi:10.1371/journal.pcbi.1000193.s005 (2.92 MB XLS)

Table S3 List of significant biological processes associated with

circadian phases in different tissues.

Found at: doi:10.1371/journal.pcbi.1000193.s006 (0.11 MB

DOC)

Table S4 List of significant TF families associated with circadian

phases in different tissues.

Found at: doi:10.1371/journal.pcbi.1000193.s007 (0.04 MB XLS)

Table S5 Summary of TF knockout or mutant mouse micro-

array experiments.

Found at: doi:10.1371/journal.pcbi.1000193.s008 (0.10 MB

DOC)

Table S6 List of gene regulatory interactions identified from TF

knockout or mutant microarray experiments and promoter

analysis.

Found at: doi:10.1371/journal.pcbi.1000193.s009 (0.08 MB

TXT)
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