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Abstract This work is based on pilgrim dark energy con-

jecture which states that phantom-like dark energy possesses

the enough resistive force to preclude the formation of black

hole. The non-flat geometry is considered which contains

the interacting generalized ghost pilgrim dark energy with

cold dark matter. Some well-known cosmological parame-

ters (evolution parameter (ω�) and squared speed of sound)

and planes (ω�–ω′
� and statefinder) are constructed in this

scenario. The discussion of these parameters is totally done

through pilgrim dark energy parameter (u) and interacting

parameter (d2). It is interesting to mention here that the anal-

ysis of evolution parameter supports the conjecture of pil-

grim dark energy. Also, this model remains stable against

small perturbation in most of the cases of u and d2. Further,

the cosmological planes correspond to �CDM limit as well

as different well-known dark energy models.

1 Introduction

The accelerated expansion of the universe is one of the active

topic in cosmology since its prediction [1]. It is suggested

through different cosmological and astrological data arisen

from well-known observational schemes [2–6] that this rapid

expansion is due to an unknown force termed as dark energy

(DE). Despite of many efforts from different observational

and theoretical ways, the problem of DE is still not well set-

tled due to its unknown nature. In order to justify the source

of accelerating expansion (i.e., the nature of DE) of the uni-

verse, two different approaches have been adopted. One way

is to modify the geometric part of Einstein-Hilbert action

(termed as modified theories of gravity) for the discussion

of expansion phenomenon [7–11]. The second approach is

to propose the different forms of DE called dynamical DE

models.
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Upto now, different dynamical DE models have been pro-

posed in two different contexts such as quantum gravity and

general relativity. Holographic DE (HDE) model has been

proposed in the framework of quantum gravity on the basis

of holographic principle [12]. The density of HDE model has

the following form [13]

ρ� = 3m2m2
p L−2,

where m is a specific constant, m p = (8πG)−
1
2 termed as

reduced Planck mass and L represent the infrared (IR) cut-

off described the size of the universe. This density has been

derived on the basis of idea of Cohen et al. [14] limit which

is stated as the vacuum energy (or the quantum zero-point

energy) of a system with size L should always remain less

than the mass of a black hole (BH) with the same size due

to the formation of BH in quantum field theory. This idea is

reconsidered by Wei [15] with the proposal of pilgrim dark

energy (PDE).

According to Wei, the formation of BH can be avoided

through appropriate resistive force which is capable to pre-

vent the matter collapse. In this phenomenon, phantom-like

DE can play important role which possesses strong repulsive

force as compare to quintessence DE. The effective role of

phantom-like DE onto the mass of the BH in the universe

has also been observed in many different ways. The accre-

tion phenomenon is one of them which favor the possibility

of avoidance of BH formation due to presence of phantom-

like DE in the universe. It has been suggested that accretion

of phantom DE (which is attained through family of Chap-

lygin gas models [16–21]) reduces the mass of BH. On the

other hand, there also exists a possibility of increasing of BH

mass due to phantom energy accretion process which leads

to the violation of cosmic censorship hypothesis [22]. Hence,

this phenomenon is still unresolved.

It is strongly believed that the presence of phantom DE

in the universe will force it towards big rip singularity. This

represents that the phantom-like universe possesses ability
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to prevent the BH formation. The proposal of PDE model

[15] also works on this phenomenon which states that phan-

tom DE contains enough repulsive force which can resist

against the BH formation. Wei [15] developed cosmological

parameters for PDE model with Hubble horizon and pro-

vided different possibilities for avoiding the BH formation

through PDE parameter. He adopted different possible theo-

retical and observational ways to make the BH free phantom

universe. Also, PDE via reconstruction scheme is discussed

in modified theory of gravity such as f (T ) gravity [23]. The

behavior of cosmological parameters along with validity of

generalized second law of thermodynamics are explored as

well.

In addition, we worked on PDE models interacting with

cold dark matter (CDM) and pointed different ways in order

to meet the PDE phenomenon [24–26]. In this work, the

generalized ghost version of PDE model so called GGPDE

interacting with CDM is considered in non-flat universe. In

this context, different cosmological parameters (EoS param-

eter and squared speed of sound) and planes (ω�–ω′
� and

statefinder) are developed. The format of the paper is as fol-

lows. Section 2 contains the basic cosmological scenario,

whereas Sect. 3 explores above mentioned cosmological

parameters and planes. The concluding remarks of the results

are given in the last section.

2 Non-flat FRW universe and basic equations

In this section, we provide the basic scenario of non-flat

geometry of the universe as well as interacting scenario of

GGPDE and CDM. The basic purpose of this work to visu-

alize the effects of spatial curvature on PDE conjecture. It is

found that different observational analysis favor the flat uni-

verse. However, there are arguments through observational

schemes about the presence of small fraction of spatial frac-

tional density in the total fractional energy contents of the

universe. In non-flat FRW universe, the first Friedmann equa-

tion becomes

H2 +
k

a2
=

1

3m2
pl

(ρm + ρ�), (1)

where ρm and ρ� appear as CDM and GGPDE densities.

Also, k = −1, 0, 1 describe open, flat and closed universes,

respectively. In cosmological context, the total amount of

energy density is calculated in terms of fractional energy

density. Thus, Eq. (1) can be written in terms of fractional

form as

1 + �k = �m + ��, �k =
k

a2 H2
, �m =

ρm

3m2
pl H2

,

�� =
ρ�

3m2
pl H2

. (2)

It is well-known that dynamical DE models play an important

role in describing the accelerated expansion of the universe.

The Veneziano ghost DE is one of the dynamical DE model

which is defined as follows [27–31]

ρ� = αH,

where α is a constant with dimension [energy]3. This model is

proposed on the basis of Veneziano ghost of chromodynam-

ics (QCD) which helps in solving the U (1) problem in QCD.

The Veneziano ghost (being unphysical in quantum field the-

ory formulation in the Minkowski spacetime) provides non-

trivial physical effects in FRW universe [32,33]. Although,

QCD ghost possesses small contribution in describing vac-

uum energy density which is proportional to �3
QCD H (here

�QCD ∼ 100 MeV is the smallest QCD scale), but this contri-

bution plays important role in the discussion of evolutionary

universe. It is also investigated that this model also helps in

alleviating two major problems of DE called fine tuning and

cosmic coincidence problem [27–31,34]. Many authors have

investigated/tested this model through different cosmological

parameters theoretically [35–39] and different observational

schemes [40].

It is observed that the Veneziano ghost field in QCD of the

form H + O(H2) has ability in producing enough vacuum

energy to explain the accelerated expansion of the universe

[41], but only leading term (i.e., H ) involved in ordinary

ghost DE model. It is suggested [42] that the contribution

of the term H2 in the ordinary ghost DE may be useful in

describing the early evolution of the universe which is defined

as follows

ρ� = αH + βH2,

here β involves as a constant containing dimension [energy]2

and corresponding energy density is called generalized ghost

DE. Upto now, this model was investigated by different cos-

mological parameters such as EoS parameter, deceleration,

ω�−ω′
�, statefinder and squared speed of sound etc. [26,43–

46]. Its generalized version in terms of PDE is defined as

follows [26]

ρ� = (αH + βH2)u, (3)

known as GGPDE.

We take interaction between GGPDE and CDM which

follows the equations of continuity as

ρ̇m + 3Hρm = Ŵ, ρ̇� + 3H(ρ� + p�) = −Ŵ, (4)

where Ŵ is known as interaction term between CDM

and GGPDE possessing dynamical behavior. The unknown

nature of DE as well as CDM leads to the basic problem for

the choice of interaction term. It is difficult to describe inter-

action via first principle. However, the continuity equation

provides a clue about the form of interaction, i.e., it must be

a function of the product of energy density and a term with
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units of time (such as Hubble parameter). With this idea, dif-

ferent forms for interaction have been proposed. We take the

following form of this interaction term

Ŵ = 3d2 Hρm, (5)

with d2 serves as interaction parameter which exchanges

the energy between CDM and DE components. This form

of interaction term has been explored for energy transfer

through different cosmological constraints. The sign of cou-

pling constant decides the decay of energies either DE decays

into CDM (when the interacting parameter is positive) or

CDM decays into DE (when the interacting parameter is neg-

ative). The present analysis from different aspects imply that

the phenomenon of DE decays into CDM which is more

acceptable and favors the observational data.

3 Cosmological parameters

Here, we discuss the evolution of the Hubble parameter, the

universe and stability of the interacting model GGPDE. For

this purpose, we extract EoS parameter and squared speed of

sound.

3.1 Hubble parameter

By using Eqs. (1)–(5), we obtain the differential equation in

term of Hubble parameter as follows

Ḣ(a) = �m0 H2
0 (−3(1 − d2)H(a)a−3(1−d2))

+(2H(a))a−2(2H(a)

−
u

3
(αH(a) + βH(a)2)u−1(α + βH(a)))−1. (6)

We solve it numerically for H(a) and plot it against cosmic

scale factor a for three different values of u = 0.5, −0.5, 1

as shown in Figs. 1, 2 and 3. We chose initial condi-

tion H(1) = 74 and other constant parameters are d2 =

0.02, 0.03, 0.04 and �m0 = 0.27, H0 = 74, α =

−1.05, β = 2.25. It can be observed through all plots for all

values of interacting parameter d2 that H(a) shows increas-

ing behavior which is consistent with the present day obser-

vations about the expanding of the universe. Also, it can be

observed that the trajectories of H(a) remains in the range

[74, 75] which is consistent with the recent planck data as

obtained by Ade et al. [47].

3.2 The equation of state parameter

In this scenario, EoS parameter takes the form

ω� = −1 − d2((�m)(��)−1

−(u(α + 2β(H(a))))(3(H(a)))−1�m0
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Fig. 1 Plot of H versus a for GGPDE in non-flat universe with u = 0.5
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Fig. 2 Plot of H versus a for GGPDE in non-flat universe with u =

−0.5
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Fig. 3 Plot of H versus a in non-flat universe with u = 1

×H2
0 (−3(1 − d2)H(a)a−3(1−d2))

+(2(H(a)))a−2)(2(H(a))

−
u

3
(αH(a) + βH(a)2)u−1(α + βH(a)))−1. (7)

We analyze the behavior of EoS parameter corresponding

to three different values of PDE parameter u, i.e., u =

0.5, − 0.5, 1 and keeping the same values of other constant

parameters as shown in Figs. 4, 5 and 6. In order to observe
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Fig. 4 Plot of ω� versus a for GGPDE in non-flat universe with u =
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Fig. 5 Plot of ω� versus a for GGPDE in non-flat universe with u =

−0.5
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Fig. 6 Plot of ω� versus a in non-flat universe with u = 1

the effects of interaction parameter on PDE phenomenon, we

take its three different values such as d2 = 0.02, 0.03, 0.04.

In Fig. 4 (u = 0.5), it can be observed that the EoS param-

eter starts from phantom region (with comparatively large

negative value) and goes towards lower negative value of

phantom region for all cases of interacting parameter. For

u = −0.5 (Fig. 5), it starts from quintessence phase and

turns towards phantom region by crossing vacuum domi-

nated era of the universe for the cases (d2 = 0.02, 0.03).

However, it remains in the phantom region for d2 = 0.04.

Also, Fig. 6 provided that EoS parameter starts compara-

tively high value of phantom region and always remains in

that region for all values of interacting parameter. It can also

be observed that EoS parameter attains high phantom region

with the increase of interacting parameter. The above discus-

sion shows that all the models provides fully support the PDE

phenomenon.

3.3 Stability analysis

Now, we use squared speed of sound for the stability analysis

of the present interacting model. It is given by

υ2
s =

ṗ

ρ̇
=

p′

ρ′
, (8)

By following [26], we obtain the following expression

υ2
s = −1 + b − (3d2(H(a)(α + H(a)))−u(1 + a2 H(a)2))a−2

+(u H(a)(α + 2β H(a))(2a + 3a3d2

(−1 + d2)H2
0 �m0))

×(a3(−6H(a)2 + u(H(a)(α + β H(a)))u))−1 + ((2H(a)

−(u(H(a)(α + β H(a)))u(3H(a))−1)((3ad2 H(a)2

×(α(−2 + u) + 2(−1 + u)H(a))(2a + 3a3d2

(−1 + d2)

×H2
0 �m0))((α + H(a))(6H(a)2−u(H(a)(α+β H(a)))u))−1

+(6d2 × H(a)2 × (H(a)(α + H [a]))−u(−3 + a2(−3H(a)2

+(H(a) × (α + H(a)))u))(2a + 3a(3d2)(−1 + d2)H2
0 �m0))

×(6aH(a)2 − au(H(a)(α + β H(a)))u)−1 + (3d2u H(a)3

×(H(a)(α + H(a)))−1−u × (α + 2H(a))(−3 + a2(−3H(a)2

+(H(a)(α + H(a)))u)) × (2a + 3a(3d2)(−1 + d2)H2
0 �m0))

×(−6aH(a)2 + au(H(a) × (α + β H(a)))u)−1 − (6βu H(a)4

×(2a + 3a3d2

(−1 + d2) × H2
0 �m0)

2)(−6aH(a)2 + au(H(a)

×(α + β H(a)))u)−2 + (3u H(a)3 × (α + 2β H(a))(2a + 3a3d2

×(−1 + d2)H2
0 �m0)

2)(−6aH(a)2 + au(H(a)

×(α + β H(a)))u)−2 + (3u H(a)3(α + 2β H(a)) × (−6H(a)2

×(α + β H(a)) + u(H(a)(α + β H(a)))u(α(−1 + u)

+β(−1 + 2u)H(a)))(2a + 3a(3d2)(−1 + d2)H2
0 �m0)

2)

(a2(α + β H(a))(−6H(a)2 + u(H(a)(α + β H(a)))u)3)−1

+6ad2(H(a) × (α + H(a)))−u(H(a) + (3H(a)2

×(2a + 3a3d2

(−1 + d2)H2
0 �m0)) × (a2(6H(a)2

−u(H(a)(α + β H(a)))u))) − (u H(a)2(α + 2β H(a))

×(a2u(H(a)(α + β H(a)))u(4a − 9a3d2

(−1 + d2)2

×H2
0 �m0) + 3H(a)((2a + 3a(3d2)(−1 + d2)H2

0 �m0)
2

+2a2 H(a)(−4a + 9a3d2

(−1 + d2)2 H2
0 �m0))))

×(−6aH(a)2 + au(H(a) × (α + β H(a)))u)2))

×(au H(a)(2a + 3a3d2

(−1 + d2)H2
0 �m0)).

In order to analyze the behavior of squared speed of sound,

we plot the υ2
s versus a for its three different values, i.e.,

u = 0.5, − 0.5, 1 as shown in Figs. 7, 8 and 9. In Fig. 7, it
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s versus a for GGPDE in non-flat universe with u = 0.5
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Fig. 9 Plot of υ2
s versus a in non-flat universe with u = 1

is observed that GGPDE remains stable against small pertur-

bation at the present epoch as well as recent present epoch.

It can be viewed from Fig. 8 (u = −0.5) that the GGPDE

model exhibits stability for all values of interacting parame-

ter in this scenario due to positive behavior of squared speed

of sound. In case of u = 1 (Fig. 9), the squared speed

of sound also exhibits stability of the model for all cases

of d2.

3.4 ω�−ω′
� analysis

The ω�−ω′
� plane is used to discuss the dynamical prop-

erty of DE models, where ω′
� is the evolutionary form of ω�

(prime represents derivative with respect to ln a). Caldwell

and Linder [48] firstly proposed this method for analyzing the

behavior of quintessence scalar field DE model. They pointed

out that ω�−ω′
� plane for quintessence model with scalar

field potential asymptotically approaching to zero, can be

divided into two categories of thawing and freezing regions.

In thawing region, EoS parameter begins nearly from −1

and increases with time while its evolution remains posi-

tive. In freezing region, EoS parameter remains negative and

decreases with time while its evolution also remains negative.

In other words, the thawing region is described as ω′
� > 0

for ω� < 0 while freezing region as ω′
� < 0 for ω� < 0.

Later, this study was extended for examining the dynamical

nature of various DE models such as more general form of

quintessence [49], quintom [50], phantom [51], holographic

[52], polytropic DE [53] and PDE [24–26] models. Differen-

tiating �k and �� with respect to x and after some manipu-

lations, we get

�′
k = −2�k(1 + ((�k − (1 + �k − ��)

+3d2(�� − (1 + �k − ��)))(α

+βH))(2(α + βH) − u��(α + 2βH))−1), (9)

�′
k = ��(((�k − (1 + �k − ��)

+3d2(�� − (1 + �k − ��)))(u(α + βH)

−α − βH))(2(α + βH) − u��(α + 2βH))−1)

(10)

By taking the derivative of Eq. (7) and using the above expres-

sion, we get the evolutionary form of ω� as follows

ω′
� =

1

a5 H(a)
((3ad2 H(a)2(α(−2 + u)+2(−1+u)H(a))

×(2a + 3a3d2

(−1 + d2)H2
0 �m0))((α + H(a))

×(6H(a)2 − u(H(a) × (α + β H(a)))u))−1

+(6d2 H(a)2(H(a)(α+H(a)))−u(−3+a2(−3H(a)2

+(H(a)(α + H(a)))u))(2a + 3a3d2

(−1 + d2)

×H2
0 �m0))/(6aH(a)2 − au(H(a)(α + β H(a)))u)

+(3d2u × H(a)3(H(a)(α+H(a)))−1−u(α+2H(a))

×(−3 + a2 × (−3H(a)2 + (H(a)(α+H(a)))u))

×(2a+3a3d2

(−1 + d2) × H2
0 �m0))(−6aH(a)2

+au(H(a)(α + β H(a)))u)−1 − (6β × u H(a)4

×(2a + 3a3d2

(−1 + d2)H2
0 �m0)

2)(−6aH(a)2 + au

×(H(a)(α + β H(a)))u)−2+(3u H(a)3(α+2β H(a))

×(2a + 3a3d2

(−1 + d2)H2
0 �m0)

2)(−6aH(a)2 + au

×(H(a)(α + β H(a)))u)−2 + (3u H(a)3(α + 2β H(a))

×(−6H(a)2(α + β H(a)) + u(H(a)(α + β H(a)))u
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×(α(−1 + u) + β(−1 + 2u)H(a)))(2a + 3a3d2

×(−1 + d2) × H2
0 �m0)

2)(a2(α + β H(a))(−6H(a)2

+u(H(a)(α + β H(a)))u)3)−1 + 6ad2(H(a)

×(α + H(a)))−u(H(a) + (3H(a)2(2a + 3a3d2

×(−1 + d2) × H2
0 �m0))(a

2(6H(a)2 − u(H(a)

×(α + β H(a)))u))−1) − (u H(a)2 × (α + 2β H(a))

×(a2u(H(a)(α + β H(a)))u(4a − 9a3d2

(−1 + d2)2

×H2
0 �m0) + 3H(a)((2a + 3a3d2

(−1 + d2)H2
0 �m0)

2

+2a2 H(a) × (−4a + 9a3d2

(−1 + d2)2 H2
0 �m0))))

×(−6aH(a)2 + au(H(a) × (α + β H(a)))u)−2).

Theω�−ω′
� plane for the current DE model is constructed

by plotting the ω′
� versus ω� for three different values of

u as shown in Figs. 10, 11 and 12. The specific values of

other constant are the same as above plots. Figures 10 and

12 provide thawing region while Fig. 11 exhibits freezing

region. The �CDM limit, i.e., (ω�, ω′
�) = (−1, 0) only

achieved for u = 0.5 with (d2 = 0) as shown in Fig. 10.

Hence, ω�−ω′
� plane provides consistent behavior with the

present day observations in all cases of u.
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Fig. 10 Plot of ω�−ω′
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3.5 Statefinder parameters

The statefinder parameters depend upon two well-known

basic geometric parameters such as Hubble and decelera-

tion which measure expansion history of the universe. The

deceleration parameter is defined as

q = −
ä

aH2
= −

(

1 +
Ḣ

H2

)

. (11)

Notice that ȧ > 0 represents the expansion of the universe

which yields H > 0 while ä > 0 exhibits accelerated expan-

sion of the universe which provides negative deceleration

parameter (q < 0). Thus the negative value of deceleration

parameter demonstrates accelerated expansion of the uni-

verse, its positive value shows decelerated phase of the uni-

verse while its zero value shows uniform expansion of the

universe.

A large number of DE models have been proposed for

elaborating the phenomenon of DE in the accelerated expan-

sion of the universe. It is necessary to differentiate these mod-

els so that one can decide which one provides better expla-

nation for the current status of the universe. Since various

DE models exhibit the same present value of the decelera-

tion and Hubble parameter, so these parameters could not be

able to discriminate the DE models. For this purpose, Sahni

et al. [54] introduced two new dimensionless parameters by

combining the Hubble and deceleration parameters which

are expressed as

r =

...
a

aH3
, s =

r − 1

3(q − 1
2
)
. (12)

These parameters have geometrical diagnostic due to their

total dependence on the expansion factor. The statefinders

are useful in the sense that we can find the distance of a

given DE model from �CDM limit. The well-known regions

described by these cosmological parameters are as follows:

(r, s) = (1, 0) indicates �CDM limit, (r, s) = (1, 1) shows

CDM limit, while s > 0 and r < 1 represent the region of
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phantom and quintessence DE eras. For non-flat universe,

the above parameters turn out to be

r =

...
a

aH3
, s =

r − �tot

3(q − �tot
2

)
. (13)

Moreover, r can be expressed in terms of Hubble parameter

as

r =
Ḧ

H3
− 3q − 2. (14)

With the help of Eqs. (11) and (14), one can write

r = 2q2 + q −
q̇

H
. (15)

By following the procedure of [25], we can get statefinders

as

r = 1 + (a2 H(a)2)−1 + 3(2H(a)2)−1(αH(a) + H(a)2)u

×(−1 − 3d2 H(a)2 × (αH(a) + H(a)2)−u

×(1 + (a2 H(a)2)−1 − (αH(a) + H(a)2)u

×(3H(a)2)−1) − (u(α + 2βH(a))((2H(a))a−2

−3a−3(1−d2)(1 − d2) × H2
0 H(a)�m0))(3H(a)(2H(a)

−3−1u(α + βH(a))(αH(a) + β × H(a)2)−1+u))−1)

×(−3d2 H(a)2(αH(a) + H(a)2)−u(1 + (a2 H(a)2)−1

−(αH(a) + H(a)2)u(3H(a)2)−1) + d2(1 − 3H(a)2

×(αH(a) + H(a)2)−u(1 + (a2 H(a)2)−1 − (αH(a)

+H(a)2)u(3H(a)2)−1)) − (u(α + 2βH(a))

×((2H(a))a−2 − 3a−3(1−d2)(1 − d2)H2
0 H(a)�m0))

×(3H(a)(2H(a) − 3−1u(α + βH(a))(αH(a)

+βH(a)2)−1+u))−1) − (2a4 H(a)3)−1(αH(a)

+H(a)2)u((3ad2 H(a)2(α(−2+u)+2(−1+u)H(a))

×(2a + 3a3d2

(−1 + d2)H2
0 �m0))((α + H(a))(6H(a)2

−u(H(a)(α + βH(a)))u))−1 + (6d2 H(a)2(H(a)

×(α + H(a)))−u × (−3 + a2(−3H(a)2 + (H(a)

×(α + H(a)))u))(2a + 3a3d2

(−1 + d2) × H2
0 �m0))

×(6aH(a)2−au(H(a)(α+βH(a)))u)−1+(3d2u H(a)3

×(H(a)(α + H(a)))−1−u(α + 2H(a))

×(−3 + a2(−3H(a)2 + (H(a) × (α + H(a)))u))

×(2a + 3a3d2

(−1 + d2)H2
0 �m0))(−6aH(a)2 + au

×(H(a)(α + βH(a)))u) − (6βu H(a)4(2a + 3a(3d2)

×(−1 + d2)H2
0 × �m0)

2)(−6aH(a)2 + au(H(a)

×(α + βH(a)))u)−2 + (3u H(a)3 × (α + 2βH(a))

×(2a + 3a3d2

(−1 + d2)H2
0 �m0)

2)(−6aH(a)2

+au(H(a)(α+βH(a)))u)−2+(3u H(a)3(α+2βH(a))

×(−6H(a)2 × (α + βH(a)) + u(H(a)(α + βH(a)))u

×(α(−1 + u) + β(−1 + 2u) × H(a)))(2a + 3a3d2

×(−1 + d2)H2
0 �m0)

2)(a2(α + βH(a))(−6H(a)2

+u(H(a)(α + βH(a)))u)3)−1 + 6ad2(H(a)

×(α + H(a)))−u(H(a) + (3H(a)2(2a + 3a3d2

×(−1 + d2)H2
0 �m0))(a

2(6H(a)2 − u(H(a)

×(α + βH(a)))u))−1) − (u H(a)2(α + 2βH(a))

×(a2u(H(a)(α + βH(a)))u × (4a − 9a(3d2)

×(−1+d2)2 H2
0 �m0) + 3H(a)((2a + 3a3d2

(−1 + d2)

×H2
0 �m0)

2 + 2a2 H(a)(−4a + 9a3d2

(−1 + d2)2

×H2
0 �m0))))(−6aH(a)2+au(H(a)(α+βH(a)))u)−2),

s = −3d2 H(a)2(αH(a) + H(a)2)−u(1 + 1(a2 H(a)2)−1

−(αH(a) + H(a)2)u × (3H(a)2)) + d2(1 − 3H(a)2

×(αH(a) + H(a)2)−u(1 + 1(a2 H(a)2)−1 − (αH(a)

+H(a)2)u(3H(a)2)−1)) − (u(α + 2βH(a))

×((2H(a))a−2 − 3a−3(1−d2)(1 − d2)H2
0 H(a)�m0))

×(3H(a)(2H(a) − 3−1u(α + βH(a)) × (αH(a)

+βH(a)2)(−1 + u)))−1 − ((3ad2 H(a)2(α(−2 + u)

+2 × (−1 + u)H(a))(2a + 3a(3d2)(−1 + d2)

H2
0 �m0))((α + H(a))(6H(a)2 − u(H(a)

×(α+βH(a)))u))−1+(6d2 H(a)2(H(a)(α+H(a)))−u

×(−3 + a2(−3H(a)2 + (H(a)(α + H(a)))u))

×(2a + 3a3d2

(−1 + d2)H2
0 �m0)) × (6aH(a)2

−au(H(a)(α + βH(a)))u)−1 + (3d2u H(a)3(H(a)

×(α + H(a)))−1−u(α + 2H(a))(−3 + a2(−3H(a)2

+(H(a)(α + H(a)))u))(2a + 3a3d2

(−1 + d2)

×H2
0 �m0))(−6aH(a)2 + au(H(a)(α + βH(a)))u)−1

−(6βu H(a)4(2a + 3a3d2

(−1 + d2)H2
0 �m0)

2)

×(−6aH(a)2 + au(H(a)(α + βH(a)))u)−2

+(3u H(a)3(α + 2βH(a))(2a + 3a3d2

(−1 + d2)

×H2
0 �m0)

2)(−6aH(a)2+au(H(a)(α+βH(a)))u)−2

+(3u H(a)3 × (α + 2βH(a))(−6H(a)2(α + βH(a))

+u(H(a)(α+βH(a)))u(α(−1+u+β(−1+2u)H(a)))

×(2a + 3a3d2

(−1 + d2)H2
0 �m0)

2)(a2(α + β × H(a))

×(−6H(a)2 + u(H(a)(α + βH(a)))u)3)−1 + 6ad2

×(H(a)(α + H(a)))−u(H(a) + (3H(a)2(2a + 3a3d2

×(−1 + d2)H2
0 �m0))(a

2(6H(a)2 − u(H(a)

×(α + βH(a)))u))−1) − (u H(a)2(α + 2βH(a))

×(a2u(H(a)(α + βH(a)))u(4a − 9a3d2

(−1 + d2)2

×H2
0 �m0) + 3H(a)((2a + 3a3d2

(−1 + d2) × H2
0 �m0)

2

+2a2 H(a)(−4a + 9a3d2

(−1 + d2)2 H2
0 �m0))))

×(−6aH(a)2 + au(H(a)(α+βH(a)))u)−2)(3a4 H(a)

×(−1 − 3d2 H(a)2(αH(a) + H(a)2)−u

×(1 + 1(a2 H [a]2)−1−(αH(a)+H(a)2)u(3H(a)2)−1)
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−(u(α + 2βH(a))((2H(a))a−2 − 3a−3(1−d2)

×(1 − d2)H2
0 H(a)�m0))(3H(a) × (2H(a) − 3−1u

×(α + βH(a))(αH(a) + βH(a)2)−1+u))−1))−1.

The r−s plane corresponding to this scenario is shown

in Figs. 13, 14 and 15. It is observed that the trajectories of

r−s plane for all cases of interacting parameter corresponds

to �CDM model for u = 0.5 as shown in Fig. 13. However,
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10

5

0
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s

Fig. 13 Plot of r−s for GGPDE in non-flat universe with u = 0.5
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Fig. 14 r−s for GGPDE in non-flat universe with u = −0.5
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Fig. 15 r−s in non-flat universe with u = 1

the trajectories of r−s meet �CDM limit for only d2 = 0

(in case of u = −0.5) and d2 = 0.02, 0.03 (in case of

u = −0.5) as shown in Figs. 14 and 15, respectively. Also,

the trajectories coincide with the Chaplygin gas model in all

cases of u.

4 Results and discussions

It is well-known that total energy density of the universe

contains contribution of its different constituents in ratio of

�k < �m < �� (the cosmic curvature density �k is found

to be fractional). The early inflation era indicates that the

universe is non-flat if the number of e-folding are small. It

is predicted through many inflationary models that the order

of spatial curvature (|�k |) in the universe should be less than

10−5 (but there are also exist some models which allow larger

curvature) [55,56]. Also, the bound on EoS parameter of

different DE models was established in the non-flat scenario

of the universe by using observations of SNe Ia, BAO and

CMBR [57]. The range (−0.2851, 0.0099) of �k at 95 %

confidence level was obtained with the help of WMAP 5 year

data [56] which was improved upto (−0.0181, 0.0071) by

using the data of BAO and SNe Ia. The range −0.0133 <

�k < 0.0084 was obtained by using latest WMAP 7-years

[58].

An independent analysis of non-flat models based on time-

delay measurements of two strong gravitational lens sys-

tems, combined with 7-year WMAP data, give consistent

and nearly competitive constraints of �k = 0.003+0.005
−0.006 [59].

Recently, Ade et al. [47] (Planck data) found following con-

straints on �k

100�k = −4.2+4.3
−4.8 (Planck+WP+highL),

100�k = −0.10+4.8
−0.65, (Planck+lensing+WP+highL)

These constraints are improved substantially by the addition

of BAO data which are

100�k = −0.05+0.65
−0.66 (Planck+WP+highL+BAO),

100�k = −1.0+1.8
−1.9, (Planck+lensing+WP+highL+BAO)

These limits are consistent with (and slightly tighter than)

the results reported by Hinshaw et al. [60] from combining

the 9-year WMAP data with high resolution CMB measure-

ments and BAO data. Also, details about the curvature in the

universe is given in the recent Planck data [47].

The above discussion motivate us to explore PDE phe-

nomenon with generalized ghost DE model in non-flat FRW

universe. For this purpose, two versatile cosmological param-

eters have been extracted such as EoS parameter and squared

speed of sound for analyzing the behavior of evolution of the

universe and stability of the model. Also, two cosmologi-

cal planes have been constructed for providing the compar-
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ison of this model with other well-known DE models. The

discussion of the developed parameters are summarized as

follows:

• Two recent analysis have greatly improved the precision

of the cosmic distance scale. Riess et al. [61] use HST

observations of Cepheid variables in the host galaxies

of eight SNe Ia to calibrate the supernova magnitude-

redshift relation. Their “best estimate” of the Hubble con-

stant, from fitting the calibrated SNe magnitude-redshift

relation, is

H0 = 73.8 ± 2.4 km s−1 Mpc−1 (Cepheids+SNe Ia),

where the error is 1σ level and includes known sources

of systematic errors. Freedman et al. [62], as part of

the Carnegie Hubble Program, use Spitzer Space Tele-

scope mid-infrared observations to recalibrate secondary

distance methods used in the HST Key Project. These

authors find

H0 = [74.3 ± 1.5 (statistical) ± 2.1 (systematic)] km s−1

Mpc−1 (Carnegie HP),

It can be observed through all plots (Figs. 1, 2, 3) for

all values of interacting parameter d2 that H(a) shows

increasing behavior which is consistent with the above

observations.

• In Fig. 4 (u = 0.5), it can be observed that the EoS param-

eter starts from phantom region (with comparatively large

negative value) and goes towards lower negative value of

phantom region for all cases of interacting parameter. For

u = −0.5 (Fig. 5), it starts from quintessence phase and

turns towards phantom region by crossing vacuum domi-

nated era of the universe for the cases (d2 = 0.02, 0.03).

However, it remains in the phantom region for d2 = 0.04.

Also, Fig. 6 provided that EoS parameter starts com-

paratively high value of phantom region and always

remains in that region for all values of interacting param-

eter. It can also be observed that EoS parameter attains

high phantom region with the increase of interacting

parameter.

Moreover, Ade et al. [47] (Planck data) have put the fol-

lowing constraints on the EoS parameter

ω� = −1.13+0.24
−0.25 (Planck+WP+BAO),

ω� = −1.09 ± 0.17, (Planck+WP+Union 2.1)

ω� = −1.13+0.13
−0.14, (Planck+WP+SNLS),

ω� = −1.24+0.18
−0.19, (Planck+WP + H0).

by implying different combination of observational

schemes at 95 % confidence level. It can be seen from

Figs. 4, 5 and 6 that the EoS parameter also meets

the above mentioned values for all cases of interacting

parameter which shows consistency of our results. The

above discussion shows that all the models provides fully

support the PDE phenomenon.

• In Fig. 7, it is observed that GGPDE remains sta-

ble against small perturbation at the present epoch as

well as recent present epoch. It can be viewed from

Fig. 8 (u = −0.5) that the GGPDE model exhibits

stability for all values of interacting parameter in this

scenario due to positive behavior of squared speed of

sound. In case of u = 1 (Fig. 9), the squared speed of

sound also exhibits stability of the model for all cases

of d2.

• The ω�−ω′
� plane for the current DE model is con-

structed by plotting the ω′
� versus ω� for three differ-

ent values of u as shown in Figs. 10, 11 and 12. The

specific values of other constant are the same as above

plots. Figures 10 and 12 provide thawing region while

Fig. 11 exhibits freezing region. The �CDM limit, i.e.,

(ω�, ω′
�) = (−1, 0) only achieved for u = 0.5 with

(d2 = 0) as shown in Fig. 10. Also, Ade et al. [47] have

obtained the following constraints on w� and w′
�:

ω� = −1.13+0.24
−0.25 (Planck+WP+BAO),

ω′
� < 1.32, (Planck+WP+BAO)

at 95 % confidence level. Also, other data with dif-

ferent combinations of observational schemes such as

(Planck+WP+Union 2.1) and (Planck+WP+SNLS) favor

the above constraints. In the present case, the trajec-

tories of ω′
� against ω� also meet the above men-

tioned values for all cases of interacting parameter which

shows consistency of our results as shown in Figs. 10,

11 and 12. Hence, ω�−ω′
� plane provides consistent

behavior with the present day observations in all cases

of u.

• The r − s plane corresponding to this scenario is shown

in Figs. 13, 14 and 15. It is observed that the trajectories

of r −s plane for all cases of interacting parameter corre-

sponds to �CDM model for u = 0.5 as shown in Fig. 13.

However, the trajectories of r − s meet �CDM limit for

only d2 = 0 (in case of u = −0.5) and d2 = 0.02, 0.03

(in case of u = −0.5) as shown in Figs. 14 and 15, respec-

tively. Also, the trajectories coincide with the Chaplygin

gas model in all cases of u.
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