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ABSTRACT sive analysis of genetic diversity in numerous crops,
including major field crops such as wheat (Triticum aesti-Knowledge about germplasm diversity and genetic relationships
vum L.), rice (Oryza sativa L.), maize (Zea mays L.),among breeding materials could be an invaluable aid in crop improve-

ment strategies. A number of methods are currently available for barley (Hordeum vulgare L.), and soybean [Glycine max
analysis of genetic diversity in germplasm accessions, breeding lines, (L.) Merr.].
and populations. These methods have relied on pedigree data, mor- Study of genetic diversity is the process by which
phological data, agronomic performance data, biochemical data, and variation among individuals or groups of individuals
more recently molecular (DNA-based) data. For reasonably accurate or populations is analyzed by a specific method or a
and unbiased estimates of genetic diversity, adequate attention has combination of methods. The data often involve numer-
to be devoted to (i) sampling strategies; (ii) utilization of various data

ical measurements and in many cases, combinations ofsets on the basis of the understanding of their strengths and constraints;
different types of variables. Diverse data sets have been(iii) choice of genetic distance measure(s), clustering procedures, and
used by researchers to analyze genetic diversity in cropother multivariate methods in analyses of data; and (iv) objective
plants; most important among such data sets are pedi-determination of genetic relationships. Judicious combination and

utilization of statistical tools and techniques, such as bootstrapping, gree data (Bernardo, 1993; Messmer et al., 1993; van
is vital for addressing complex issues related to data analysis and Hintum and Haalman, 1994), passport data–morpho-
interpretation of results from different types of data sets, particularly logical data (Smith and Smith, 1992; Bar-Hen et al.,
through clustering procedures. This review focuses on application of 1995), biochemical data obtained by analysis of isozymes
statistical tools and techniques in analysis of genetic diversity at the (Hamrick and Godt, 1997) and storage proteins (Smith
intraspecific level in crop plants. et al., 1987), and, recently, DNA-based marker data that

allow more reliable differentiation of genotypes. Since
each of these data sets provide different types of infor-

Analysis of genetic relationships in crop species mation, the choice of analytical method(s) depends on
is an important component of crop improvement the objective(s) of the experiment, the level of resolu-

programs, as it serves to provide information about ge- tion required, the resources and technological infra-
netic diversity, and is a platform for stratified sampling structure available, and the operational and time con-
of breeding populations. Accurate assessment of the straints, if any (see Karp et al., 1997, for detailed review).
levels and patterns of genetic diversity can be invaluable
in crop breeding for diverse applications including (i) Sampling Strategies
analysis of genetic variability in cultivars (Smith, 1984;

Genetic diversity in crop plants may be analyzed atCox et al., 1986), (ii) identifying diverse parental combi-
different levels: individual genotypes such as inbrednations to create segregating progenies with maximum
lines or pure lines or clones, populations, germplasmgenetic variability for further selection (Barrett and Kid-
accessions, and species. Sampling strategies in each ofwell, 1998), and (iii) introgressing desirable genes from
the above cases would vary, primarily because of thediverse germplasm into the available genetic base
differences in the nature of genetic materials. In contrast(Thompson et al., 1998). An understanding of genetic
to inbred lines or pure lines, sampling strategies forrelationships among inbred lines or pure lines can be
genetic diversity analysis at population level are compli-particularly useful in planning crosses, in assigning lines
cated because of various factors including linkage, in-to specific heterotic groups, and for precise identifica-
breeding, migration, and subpopulation differentiation.tion with respect to plant varietal protection (Hallauer
Genotypes in a population may not be distributed inand Miranda, 1988). Analysis of genetic diversity in
Hardy-Weinberg frequencies. With most measures ofgermplasm collections can facilitate reliable classifica-
genetic diversity, the form of their underlying samplingtion of accessions, and identification of subsets of core distributions is largely unknown. However, on the basisaccessions with possible utility for specific breeding pur- of statistical genetics theories, analytical formulae haveposes. Significant emphasis is being paid to comprehen- been developed for estimating the sampling variance of
some genetic diversity measures (Brown and Weir, 1983;
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measures depend particularly on the number of individ- able to determine the degree of differentiation among
taxonomic units.uals sampled per population, the number of loci sam-

pled, genotypic and allelic compositions of population, Marshall and Brown (1975) recommended that a sam-
ple size of 59 or more unrelated gametes (assured by amating system, and effective population size (Nei and

Chesser, 1983; Namkoong, 1988; Weir, 1990). A large random sample of 50 diploid individuals) is sufficiently
large to have a 95% probability of detecting all allelesportion of the sampling variance of diversity estimates

is due to the variation of diversity levels among loci of 5% or greater in frequency. Crossa et al. (1993)
showed that the sample size (n) required to retain, withacross the genome (Nei, 1987; Weir, 1990). The sampling

error associated with the sampling of loci shall be consid- probability (P), at least one copy of each of k allelic
classes in each of m loci could be calculated as follows:erably reduced if the same set of loci is monitored in

each population of a species.
Frankel et al. (1995) suggested that two distinct con- n �

log[1 � (P)1/m � log (k � 1)]
log(1 � P)cepts of genetic variation are applicable at the popula-

tion level: (i) “richness” of any population or sample With 48 individuals, for m � 5 loci with k � 5 alleles
from it, corresponding to the total number of genotypes per locus, there is a 95% probability of detecting all
or alleles present in the population, and (ii) “evenness” alleles with P � 0.05 or greater (Warburton et al., 2002).
or the frequency of different types or alleles in the Baverstock and Moritz (1996) presented a table of sam-
population or samples analyzed. “Allele richness” is ple size (diploid individuals) needed to detect given
estimated by taking into account the mean number of differences in allele frequency in populations for a given
alleles per locus and percent polymorphic loci. This esti- statistical power. Sampling considerations in relation to
mate is sensitive to the presence or absence of distinct analysis of intraspecific differentiation were discussed in
or rare alleles (5% or lower in frequency) in a popula- detail by Baverstock and Moritz (1996) and Weir (1996).
tion (or sample), as a high degree of sampling error
could be associated with detection of such alleles (Nei, Estimation of Genetic Distance1987; Namkoong, 1988; Sjogren and Wyone, 1994).

Genetic distance is “that difference between two enti-Therefore, in addition to the total number, it would be
ties that can be described by allelic variation.” (Nei,useful to monitor the number of alleles in the sample
1973). This definition was later elaborated by Nei (1987)above a frequency threshold (say 5%). The percentage
as “the extent of gene differences… between popula-of polymorphic loci in a population is a crude estimation
tions or species that is measured by some numericalof genetic variation, as it is subject to a large genomic
quantity.” A more comprehensive definition of geneticsampling error; this estimate is reliable only when a
distance is “any quantitative measure of genetic differ-large number of loci are sampled (Brown and Weir,
ence, be it at the sequence level or the allele frequency1983). The evenness of allele or genotype frequencies
level, that is calculated between individuals, populationsis accounted for by the measures of average observed
or species” (Beaumont et al., 1998).heterozygosity, expected heterozygosity, and effective

number of alleles. None of these measures are sensitive
to the sampling error associated with rare alleles. Sam- Measures of Genetic Distance–Similarity
pling strategy, sample size, and distribution of a sample

Genetic distance–similarity between two genotypes,over population subdivision (occurrence of subpopula-
populations, or individuals may be calculated by varioustions within a population with differences in allelic fre-
statistical measures depending on the data set. Discus-quencies) affects the probability of sampling rare alleles.
sions on various distance measures are available in theClustered sampling with sufficient samples per subpopu-
literature (Felsenstein, 1984; Nei, 1987; Weir, 1990, 1996;lation or groups can alleviate the complexity associated
Beaumont et al., 1998).with sampling of rare alleles.

Euclidean or straight-line measure of distance is theIn terms of sampling for analysis of genetic diversity,
most commonly used statistic for estimating genetic dis-the law of diminishing marginal returns holds true.
tance (GD) between individuals (genotypes or popula-While the cost of sampling new individuals, particularly
tions) by morphological data. Euclidean distance be-by means of molecular markers, is directly proportional
tween two individuals i and j, having observations onto the size of the sample, the probability of detecting
morphological characters (p) denoted by x1, x2, …, xpan additional allele with each added individual sample
and y1, y2,…, yp for i and j, respectively, can be calculateddecreases rapidly with increasing sample size (Marshall
by the following formula:and Brown, 1975; Brown, 1989; Frankel et al., 1995). In

studies aimed at analysis of population structure, it is d(i, j) � [(x1 � y1)2 � (x2 � y2)2 � … (xp � yp)2]1/2

necessary to balance the need to collect as large a sample
On the basis of data obtained by measurement ofsize as possible, against the need to screen as many

quantitative traits in inbred lines, Smith et al. (1991)populations as possible, and the need to get allele fre-
applied another measure of genetic distance as follows:quencies from as many loci as possible. There is no

simple recommendation for the ideal sample size, num- d(i, j) � �[(T1(i) � T2(i))2/varT(i)]1/2

ber of samples, or number of loci. However, whether or
where T1 and T2 are the values of the ith trait for inbrednot the aim is to describe genetic variation in taxonomic
lines 1 and 2, respectively, and the varT(i) is the varianceunits (populations or species), it will be necessary to

estimate the variation within the taxonomic unit, to be for the ith trait over all inbreds.
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Gower (1971) described a general coefficient for mea- where N11 is the number of bands–alleles present in both
individuals; N00 is number of bands–alleles absent insuring genetic distance between individuals on the basis

of various types of characters, such as dichotomous, both individuals; N10 is the number of bands–alleles pres-
ent only in the individual i; N01 is the number of bands–qualitative, and quantitative. For qualitative characters,

the distance between two individuals is scored as 0 alleles present only in the individual j; and N represents
the total number of bands–alleles.(wherever there is a match) and 1 (wherever there is

a mismatch). For quantitative characters, the distance GDJ takes into consideration only matches between
bands–alleles that are present and ignores pairs in whichbetween two individuals is calculated as the difference

in the trait values divided by the overall range for the a band–allele is absent in both individuals. In contrast,
GDNL measures the proportion of bands–alleles sharedtrait. This method converts the distance for quantitative

characters to a specific value on a scale of 0 to 1; this, as the result of being inherited from a common ancestor,
and represents the proportion of bands–alleles presentin turn, allows simultaneous use of both quantitative

and qualitative data in generating a distance matrix. For and shared in both individuals divided by the average of
proportion of bands–alleles present in each individual.this purpose, the individual character distances for each

pair of individuals are summed and then divided by GDSM, a Euclidean measure of distance, takes into ac-
count mismatches and matches, and gives equal weightthe number of characters scored in both individuals.

Gower’s measure of distance between individuals (i and to both in estimating genetic distance. GDMR, another
Euclidean distance measure, considers each locus scoredj) is defined as DGij � 1/p �wk dijk where p is number

of characters, dijk is the contribution of the kth character as an orthogonal dimension (Link et al., 1995; Johns et
al., 1997).to the total distance between two individuals; dijk �

|xik–xjk|, where xik, xjk are the values of the kth character One specific problem often encountered during anal-
ysis of genetic diversity in crop plants by molecularon the individuals i and j, respectively, and wk � 1/Rk,

where Rk is the range of the kth character in the sample markers, particularly with the microsatellite or SSR
markers, is the failure of some genotypes to show ampli-(Franco et al., 1997).

Various genetic distance measures have been pro- fication for some SSR primer pairs. It is often difficult
to ascertain whether such lack of amplification is dueposed for analysis of molecular marker data for the

purpose of genetic diversity analysis. For molecular to “null alleles” (Robinson and Harris, 1999). Unless
the researcher is confident about the null status of amarker data where the amplification products may be

equated to alleles, as in case of simple sequence repeats genotype for a specific SSR locus, such data might be
considered missing data during computation of genetic(SSRs) and restriction fragment length polymorphisms

(RFLPs), allele frequencies can be calculated. The ge- similarity–distance matrix (Warburton and Crossa,
2000), to minimize the possibility of erroneous interpre-netic distance between individual i and j can be esti-

mated using the formula, tation.

d(i,j) � Constant (�
n

a�1

|Xai � Xaj|r)1/r

Choice of a Distance Measure

Appropriate choice of a genetic distance measure, onwhere Xai is the frequency of the allele a for individual
the basis of the type of the variable and the scale ofi, n is number of alleles per locus, and r is constant
measurement, is an important component in analysis ofbased on the coefficient used. In its simple form (that

is, when r � 1), genetic distance can be calculated as genetic diversity among a set of genotypes. GDNL and
GDJ differ in the weighting of dominant and codominant

d1ij � 1⁄2 �
n

a�1

|Xai � Xaj| polymorphic markers. While both measures lead to
identical rankings of GD among pairs of inbred lines,

When r � 2, dij is referred to as Rogers’ (1972) measure the GD estimates may differ when one analyzes hetero-
of distance (RD), where zygous loci in hybrids (Link et al., 1995) or in case

of populations where heterozygous genotypes are ex-RDij �
1⁄2 [ �(Xai � Xaj)2]1/2

pected to occur commonly. For codominant markers
Although allele frequencies can be calculated for (such as RFLPs and SSRs), the expected GDNL of re-

some of the molecular markers, the data is most widely lated pairs of lines is a linear function of their coancestry
employed to generate a binary matrix for statistical anal- coefficient (Melchinger, 1993). For dominant markers,
ysis. The commonly used measures of genetic distance this property applies to GDJ but not to GDNL (Link etor genetic similarity (GS) using such binary data are (i) al., 1995). In case of codominant markers, both GDJNei and Li’s (1979) coefficient (GDNL), (ii) Jaccard’s and GDNL may lead to identical ranking of GD estimates(1908) coefficient (GDJ), (iii) simple matching coeffi-

among inbred lines. In general, GDJ and GDNL suffercient (GDSM) (Sokal and Michener, 1958), and (iv) Mod-
from unknown statistical distributions resulting fromified Rogers’ distance (GDMR). Genetic distances deter-
the denominator, which is a random variable. The distri-mined by these measures can be estimated as follows:
bution of any statistic is indispensable for calculating

GDNL � 1 � [2N11/(2N11 � N10 � N01)] sampling variance and confidence interval. To overcome
this problem, the “bootstrap” technique (discussed later)GDJ � 1 � [N11/(N11 � N10 � N01)]
can be effectively used to empirically estimate sampling

GDSM � 1 � [(N11 � N00)/(N11 � N10 � N01 � N00)] variance (Brown, 1994).
Euclidean distances, such as GDSM or GDMR, can beGDMR � [(N10 � N01)/2N]0.5
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modeled as binomial variables with known statistical respondence of matrices derived by means of different
marker systems over the same set of genotypes (vanproperties when the genome is randomly sampled (Ti-

vang et al., 1994; Lombard et al., 2000). Among the Bueningen and Busch, 1997; Bohn et al., 1999; Lombard
et al., 2000; Lübberstedt et al., 2000; Virk et al., 2000;various genetic distance measures, GDMR is widely pre-

ferred because of its excellent genetical and statistical Vuylsteke et al., 2000).
properties. GDSM has Euclidean metric properties that
allows its use in hierarchial clustering strategies (de- Genetic Differentiation of Populations
scribed later) such as the minimum variance method

Several approaches have been proposed to estimatewithin a group, proposed by Ward (1963), and the analy-
the amount of genetic differentiation between popula-sis of molecular variance, AMOVA (Excoffier et al.,
tions and in subdivisions of a population. �2 Tests using1992), which can be used for the estimation of the vari-
frequency-based statistics have greater power for de-ance components among and within groups. However,
tecting differences between populations or populationmany researchers do not prefer using GDSM as it gives
subdivision when mutation rate (and thus allelic diver-equal weight to both 0-0 and 1-1 matches in case of
sity) is low. It is also possible to quantify the extentbinary data. The 1-1 matches in reality indicate more
of between–within population differentiation by the Fsimilarity than the 0-0 matches because there are many
statistics of Wright (1951) or the analogous measuresreasons for lack of amplification or absence of bands,
of Cockerham (1969, 1973). Wright’s approach consistsand a 0-0 match may not reflect identity by descent, but
of three different F coefficients that estimate (i) correla-rather identity in state.
tion of genes within individuals over all populationsIn case the researcher is interested to make use of
(FIT), (ii) correlation of genes of different individuals inmore than one measure of genetic distance to analyze
the same population (FST), and (iii) correlation of genesa given data set or different data sets, it is important to
within individuals within populations (FIS). FST, FIT, andascertain the correspondence between matrices derived
FIS are interrelated so thatfrom different distance measures. The test of matrix

correspondence, popularly known as Mantel test (Man- 1 � FIT � (1 � FST)(1 � FIS)
tel, 1967), analyzes matrix correspondence on the basis

FST � (FIT � FIS)/(1 � FIS)of the assumption of asymptotic normality for a particu-
lar test criterion. Mantel test is a regression in which FST equals 0 when the subpopulations are identical in
the variables are themselves distances or dissimilarity allele frequencies, and 1 when they are fixed for differ-
matrices summarizing pair-wise similarities–dissimi- ent alleles. FST is a measure of genetic differentiation
larities between units of study. It is based on a simple over subpopulations and is always positive. FIS and FIT
cross-product term, Z � �XijYij , and is normalized by are measures of deviation from Hardy-Weinberg pro-
means of the following formula: portions within subpopulations and in the total popula-

tion, respectively, where positive values indicate a defi-r � 1/(n � 1)�[(Xij � X)/SX][(Yij � Y)/SY]
ciency of heterozygotes, and negative values indicate
an excess of heterozygotes. Estimation of the F statistics,where Xij and Yij are the off-diagonal elements of matri-

ces X and Y, n is the number of elements in the distance and the inferences from such estimates, were discussed
in detail by Weir (1996).matrices, and the SX and SY are standard deviations

for variables X and Y, respectively. This standardized Parameters analogous to FST have been defined by
several authors on the basis of alternative assumptionsequation allows one to consider variables of different

measurement units within the same framework, rescal- about the evolutionary model and consequent modifica-
tions to the algorithm. Nei (1973) suggested anothering the statistic to the range of a conventional corre-

lation coefficient bounded on �1 to 1. Because the statistic, GST, which utilizes information from several loci
simultaneously. GST is calculated from allele frequencieselements of a distance matrix are not independent, Man-

tel’s test of significance is evaluated via permutation rather than genotype frequencies (assuming Hardy-
Weinberg equilibria in all subpopulations). GST mea-procedures to overcome the problem of dependent ele-

ments (Manly, 1991). Note that the Mantel test is based sures the proportional amount of variation within sub-
populations as compared with the total population andon linear correlation, and hence, is subject to the same

set of assumptions that beset a common Pearson correla- does not specify the identity of alleles involved. When
subpopulations appear similar, GST is biased and resultstion. However, the test of spatial dependence is aver-

aged over all distances in the simple Mantel test, and in an overestimate of the degree of substructuring. Be-
cause of the dependence of GST on the level of diversity,so this test cannot discover changes in the pattern of

correlation at different distances (scales). Nei (1973) proposed an absolute measure of gene differ-
entiation called the “minimum genetic distance” (D)Because the Mantel test proceeds from a dissimilar-

ity–similarity matrix, it can be applied to different types which is independent of gene diversity within popula-
tions. The FST value is not expected to be affected by theof variables (categorical, rank, or interval-scale data).

This is especially important in analysis of genetic diver- type of genetic marker used (i.e., markers with different
evolutionary rates, e.g., isozymes and microsatellites).sity, where various data sets may be used to assess the

relationships among different individuals or popula- In contrast, measures of absolute genetic differences,
like Nei’s genetic distance D, are expected to give differ-tions. Mantel test has been used in analysis of genetic

diversity in crop plants, particularly in ascertaining cor- ent results depending on the evolutionary rate (muta-



MOHAMMADI ET AL.: GENETIC DIVERSITY ANALYSIS—STATISTICAL TOOLS AND CONSIDERATIONS 1239

tion rate) of the actual marker. For example, mini- and gram) in which clusters may be visually identified; and
(ii) model-based methods, in which observations frommicrosatellites give larger D-values than isozymes.

Some subpopulations may have further levels of obvi- each cluster are assumed to be random draws from some
parametric model, and inferences about parameters cor-ous structure, enabling grouping on the basis of regions

or colonies. Assuming that there is a local regional level responding to each cluster and cluster membership of
each individual are performed jointly using standardinto which subpopulations can be placed, additional

measures such as FSR and FRT that partition variation statistical methods such as maximum-likelihood or
Bayesian methods. Pritchard et al. (2000) discussedinto the diversity among subpopulations within a region

and that among regions for a total population, respec- some of the constraints of distance-based methods, and
described an innovative model-based clustering methodtively, may be adopted (Weir and Cockerham, 1984; Nei,

1987). Data related to molecular differences between based on Bayesian statistics for inferring population
structure using multilocus genotypic data consisting ofalleles can be highly useful in determining hierarchical

array of groups in a population by sequence-based statis- unlinked markers. The strength of this structured associ-
ation approach lies in effective analysis of populationtics (e.g., NST; Lynch and Crease, 1990). Nucleotide di-

versity data can be inferred from differences in allele structure, accurate clustering and assignment of individ-
uals into their appropriate populations, even using asize (microsatellites) or single nucleotide polymor-

phisms (SNPs). modest number of unlinked markers, and identification
of migrants and admixed individuals. Using this ap-
proach, one can estimate the proportion of an individu-Multivariate Methods
al’s genome contributed by a specific subpopulation,

With increases in the sample sizes of breeding materi- referred to as “genetic background matrix” (Q). By
als and germplasm accessions used in crop improvement suitably modifying the test statistic to deal with quantita-
programs, methods to classify and order genetic vari- tive traits, Thornsberry et al. (2001) provided the first
ability are assuming considerable significance. The use empirical demonstration of the utility of the “structured
of established multivariate statistical algorithms is an association” method in plant genetics, identifying a gene
important strategy for classifying germplasm, ordering associated with variation for flowering time in maize.
variability for a large number of accessions, or analyzing At present, distance-based methods are most fre-
genetic relationships among breeding materials. Multi- quently applied.
variate analytical techniques, which simultaneously ana- Distance-based clustering methods can be catego-
lyze multiple measurements on each individual under rized into two groups: hierarchical and nonhierarchical.
investigation, are widely used in analysis of genetic di- Hierarchical clustering methods are more commonly
versity irrespective of the dataset (morphological, bio- employed in analysis of genetic diversity in crop species.
chemical, or molecular marker data). Among these algo- These methods proceed either by a series of successive
rithms, cluster analysis, principal component analysis mergers or by a series of successive divisions of group
(PCA), principal coordinate analysis (PCoA), and mul- of individuals. The former, known as “agglomerative
tidimensional scaling (MDS) are, at present, most com- hierarchical” methods, start with a single individual.
monly employed and appear particularly useful (Mel- Thus, there are initially as many clusters as individuals.
chinger, 1993; Johns et al., 1997; Thompson et al., 1998; The most similar individuals are first grouped and these
Brown-Guedira et al., 2000). We shall focus here only initial groups are merged according to their similarities.
on the salient features of statistical methodologies and Among various agglomerative hierarchical methods, the
some important considerations, specifically in relation UPGMA (Unweighted Paired Group Method using
to genetic diversity in crop plants at the intraspecific Arithmetic averages) (Sneath and Sokal, 1973; Panchen,
level. 1992) is the most commonly adopted clustering algo-

rithm, followed by the Ward’s minimum variance
Cluster Analysis method (Ward, 1963).

The nonhierarchical clustering procedures do not in-“Cluster analysis” refers to “a group of multivariate
volve construction of dendrograms or trees. These pro-techniques whose primary purpose is to group individu-
cedures, also frequently referred to as “K-means cluster-als or objects based on the characteristics they possess,
ing,” are based on “sequential threshold,” “parallelso that individuals with similar descriptions are mathe-
threshold,” or “optimizing” approaches for assigningmatically gathered into the same cluster” (Hair et al.,
individuals to specific clusters, once the number of clus-1995). The resulting clusters of individuals should then
ters to be formed is specified (Everitt, 1980). Optionsexhibit high internal (within cluster) homogeneity and
for performing nonhierarchical clustering are availablehigh external (between cluster) heterogeneity. Thus, if
in statistical packages such as SAS [FASTCLUS] andthe classification is successful, individuals within a clus-
SPSS [QUICK CLUSTER]. Nonhierarchical clusteringter shall be closer when plotted geometrically and differ-
methods are rarely used for analysis of intraspecificent clusters shall be farther apart (Hair et al., 1995).
genetic diversity in crop plants. The primary reasonThere are broadly two types of clustering methods:
could be the lack of prior information about the optimal(i) distance-based methods, in which a pair-wise distance
number of clusters that are required for accurate as-matrix is used as an input for analysis by a specific
signment of individuals. Thompson et al. (1998) andclustering algorithm (Johnson and Wichern, 1992), lead-

ing to a graphical representation (such a tree or dendro- Thompson and Nelson (1998) also reported that the



1240 CROP SCIENCE, VOL. 43, JULY–AUGUST 2003

FASTCLUS procedure did not separate three of the the dissimilarity matrices (Rincon et al., 1996). With
distance matrices as input of clustering, the magnitudepredominant and well-defined ancestral groups in soy-

bean germplasm, unlike hierarchical clustering. of cophenetic correlation coefficient decreases if the
number of individuals increases to about 50, but no
changes may result over 50 (Rohlf and Fisher, 1968). ForChoice of a Clustering Method
a large sample of individuals, the cophenetic correlation

UPGMA dendrograms have tended to predominate coefficients have similar values and are not affected by
in past literature. Although some studies indicated the the number of characters.
relative advantages of UPGMA clustering algorithm in Several clustering methods were compared in group-
terms of consistency in grouping biological materials ing maize accessions on the basis of agronomic and
with relationships computed from different types of data morphological characters; UPGMA method was gener-
(Ajmone-Marsan et al., 1992; Mohna et al., 1992; Mumm ally consistent with regard to the allocation of clusters,
et al., 1994), a single clustering method might not be when different types and number of characters were
always optimal or effective in revealing genetic associa- used (Rincon et al., 1996). UPGMA also revealed higher
tions. Despite some favorable attributes in UPGMA, cophenetic correlation coefficient in comparison to
the underlying assumptions are rarely met. Also, very UPGMC, Single Linkage, and Ward’s method. Genetic
few studies have analyzed the congruence between re- relationships in rapeseed (Brassica spp.) cultivars were
sults obtained by application of different clustering pro- analyzed on the basis of amplified fragment length poly-
cedures and the relative strengths and constraints of morphisms (AFLP) by means of UPGMA and Ward’s
each. We shall cite some of the studies performed in method in combination with Jaccard, Simple Matching,
recent years, particularly those that have attempted to and Modified Simple Matching coefficients (Lombard
utilize different datasets and multivariate methods in et al., 2000). Despite very high correlations between
analysis of genetic diversity in crop plants. distance matrices obtained through use of different coef-

Five clustering methods, namely UPGMA, UPGMC ficients, and derivation of the same patterns with both
(Unweighted Paired Group Method using Centroids), clustering methods, Ward’s method was found more
Single Linkage, Complete Linkage, and Median, were suitable as it avoided the chaining effects that are often
compared for their utility in revealing genotype associa- observed with UPGMA. Similar observations were
tions in barley germplasm collections (Peeters and Mar- made in analysis of genetic diversity among maize in-
tinelli, 1989). UPGMA and UPGMC were found to bred lines based on RFLP data (Dubreuil et al., 1996).
be almost comparable with a relatively high level of Apart from cophenetic correlation, another alterna-
accuracy, in accordance with pedigrees, compared to tive and simple way of comparison is possible when
other methods. Single Linkage and Median clustering there is a prior idea about the structure of groups ac-
methods led to “chaining effect,” which gave poor reso- cording to geographical or germplasm origin of individu-
lution of individual groups and complicated the inter- als. Here, the best method is that which recovers much
pretation of results. UPGMA, Single Linkage, Com- of the expected structure. By simulating different hierar-
plete Linkage, UPGMC, Ward’s method, and Principal chical cluster methods and measures of distance on data
Component Analysis (PCA), were compared in as- with various levels of noise, Milligan and Cooper (1985)
sessing genetic diversity in dent and popcorn maize in- found that the single linkage cluster method was found
bred lines based on intersimple sequence repeat poly- to be the worst cluster strategy to recover the true struc-
morphism (Kantety et al., 1995). UPGMA provided ture, while Ward’s and UPGMA were the best for simi-
results most consistent with known heterotic groups and lar and different group sizes, respectively (Milligan and
pedigree information, while PCA clearly separated the Cooper, 1985). Mahalanobis distance (D2) between
dent corn lines from the popcorn germplasm. centroids (vectors of means) of the groups can be used

One way of comparing the efficiency of different clus- to identify the best clustering algorithm (Franco et al.,
tering algorithms is through estimation of the “co- 1997). The best clustering method produces the largest
phenetic correlation coefficient,” which is a product- distance, D2, among groups or clusters; this method may
moment correlation coefficient measuring agreement be particularly appropriate for quantitative data.
between the dissimilarity–similarity indicated by a phe- Cluster analysis based on algorithms such as UPGMA,
nogram–dendrogram as output of analysis and the dis- UPGMC, Ward’s, Single Linkage, and Complete Link-
tance–similarity matrix as input of cluster analysis. A age has drawbacks. For instance, these algorithms do

not provide an objective definition of what constitutesmethod yielding a high cophenetic correlation coeffi-
cient can be considered as an appropriate method for an optimal tree or dendrogram, and systemic errors are

likely to be introduced during cluster analysis recon-a particular analysis (Romesburg, 1984). The degree of
fit can be interpreted subjectively as: 0.9 � r, very good structions. Such constraints may possibly be overcome

by employing alternative methods, such as neighborfit; 0.8 � r � 0.9, good fit; 0.7 � r � 0.8, poor fit;
r � 0.7, very poor fit (Rohlf, 1992). However, a low joining or Fitch–Margoliash, that remove the assump-

tion that the data are ultrametric (Swofford et al., 1996).cophenetic correlation coefficient does not mean that
the dendrogram has no utility, but only indicates that Methods such as neighbor joining have been more com-

monly used for phylogenetic studies; but very few re-some distortion might have occurred. There is no statis-
tical test for the correlation coefficient because of the searchers (Liu et al., 2000) have applied this method

for intraspecific differentiation in crop plants. To ourlack of independence of the individual coefficient in
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knowledge, no in-depth analysis has been made to ob- genetic diversity among North American spring wheat
cultivars.jectively ascertain the efficiency of neighbor-joining

method or other related algorithms over commonly used
clustering algorithms such as UPGMA and Ward’s. What- Individual versus Combined Analyses of Data Sets
ever algorithm is used for generating the dendrogram,

Two questions assume considerable significance: (i)it is useful to carry out bootstrapping of the allele fre-
whether analysis and interpretation should be based onquencies (followed by calculation of genetic distances,
individual or combined data sets when multiple dataetc.) to assess the reliability of the nodes.
sets are available; and (ii) how to combine different
data sets effectively. Hillis et al. (1996) provided anMultivariate Analysis of Genetic Diversity–
excellent discussion on these two questions.Some Important Considerations

The most important point to consider before combin-
Researchers should carefully consider the following ing different data sets is the congruence or correspon-

points (Franco et al., 1997) while applying diversity mea- dence among the results derived from individual data
sures and multivariate methods for analysis of genetic sets. Several studies in recent years have analyzed corre-
diversity: (i) judicious and effective use of different types lations among genetic distance–similarity matrices de-
of variables like continuous, discrete, ordinal, multi- rived from application of different DNA-based marker
state, binomial etc.; (ii) application of multiple data sets systems, such as RFLP, random amplified polymorphic
(morphological, biochemical and molecular marker DNA (RAPD), SSR, and AFLP, in diverse crop species
data); (iii) proper choice of a genetic distance measure (Powell et al., 1996). However, very few studies have
and clustering algorithm(s) (discussed earlier); and (iv) attempted to compare results derived from individual
determination of optimal number of clusters. Strategies versus combined data sets (even for molecular marker
required to address the above issues vary depending on data) in relation to the study of genetic diversity (Russell
the genetic materials being analyzed and the objectives et al., 1997; Franco et al., 1997; Ajmone-Marsan et al.,
of the experiment. Nevertheless, some of the ways for 1998). Also, comprehensive analyses of data sets of dif-
deriving objective solutions to these issues are pre- ferent nature (combination of qualitative and quantita-
sented below. tive morphological data, or biochemical and molecular

marker data, or morphological data with either bio-
Using Diverse Data Sets chemical or molecular marker data) to ascertain first,

whether the total evidence is within the confidence lim-Multivariate methods such as cluster analysis can be
its of evidence from individual data sets, and second,performed on morphological (qualitative and quantita-
whether such combinations provide a better estimatetive), biochemical, and molecular marker data or combi-
of genetic diversity, are highly scarce. In limited studies,nations of such data. Different types of morphological
biochemical data and morphological data were com-variables, their associations, and implications for cluster
bined for deriving common distance measure (for exam-analysis, were analyzed by Anderberg (1973) who dis-
ple, Wrigley et al., 1982). Seberg et al. (1996) studiedcussed the properties of mean, range, and standard devi-
phylogenetic relationships among a small number ofation as alternatives for removing measurement scale
Triticeae species using individual and combined analysisof different types of variables, and equalizing their ef-
of five data sets (one morphological and four mo-fects in the final output of clustering. When characters
lecular).with different scales such as field evaluation data and

There are divergent opinions about the utility of com-per se performance are used as inputs for cluster analy-
bining data sets from different types of variables forsis, scale differences can be eliminated by standardizing
the purpose of analyzing genetic diversity. Caution iseach variable by means of either its standard deviation
required in combining data from qualitative and quanti-or its range to give equal weightage and contribution
tative measures because of possible biases in distancesof all the characters in the final output. However, stan-
estimated on the basis of quantitative characters anddardization of variables by range is a better option than
the high correlation of qualitative characters; instead,standard deviation (Milligan and Cooper, 1985). When
combining parentage and genetic marker informationbinary data such as morphological (qualitative) data,
can lead to a better estimate of the genetic relationshipsand molecular marker data (scored as 1 or 0) are used,
(Souza and Sorrells, 1991). Assigning differential weightstandardization is not warranted since the distribution
to the characters is often advocated to take effectivelyis binomial and not normal.
into account the possible incongruence among charac-Principal components can be used as input for cluster-
ters in terms of their genetic nature and contributionsing, rather than directly applying data from quantitative
to genetic diversity in individuals or populations (Hillis,characters, particularly when the correlations among
1987; Chippindale and Weins, 1994). Such a procedurethe characters are significant (Goodman, 1972; Everitt,
is difficult to adopt since there are no fool-proof criteria1980). Principal component analysis provides variable
for determining appropriate weight to each characterindependence and balanced weighting of traits, which
under analysis.leads to an effective contribution of different characters

The Modified Location Model (MLM) combines allon the basis of respective variation. On the basis of
the categorical variables into one multinomial variable,quantitative morphological traits, van Bueningen and

Busch (1997) applied such a procedure for analysis of W, which can be then used with the available continuous
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variables (Franco et al., 1998). Initial grouping can be geometrical distances among individuals in the plot re-
flect the genetic distances among them with minimalperformed by Ward’s minimum variance method, and

then improved by the MLM. This strategy was success- distortion. Aggregations of individuals in such a plot will
reveal sets of genetically similar individuals (Melchinger,fully employed to classify maize accessions from most

of the Latin American and U.S. gene banks (Taba et 1993; Karp et al., 1997; Warburton and Crossa, 2000).
PCA is defined as “a method of data reduction toal., 1999). When simultaneously using genetic markers

and phenotypic attributes to classify genotypes, this clarify the relationships between two or more characters
and to divide the total variance of the original charactersmethod could be further extended to obtain a relevant

minimum subset of marker fragments that can be used into a limited number of uncorrelated new variables”
(Wiley, 1981). This will allow visualization of the differ-in conjunction with morphoagronomic data to classify

genotypes better rather than can be done with classifica- ences among the individuals and identify possible
groups. The reduction is achieved by linear transforma-tions based on individual data sets (Franco et al., 2001).

It is not only reasonable to analyze data sets separately tion of the original variables into a new set of uncorre-
on the basis of different modes of inheritance, but also lated variables known as principal components (PCs).
to “… analyze your data in as many ways as possible The first step in PCA is to calculate eigenvalues, which
and sensible, then draw your conclusions.” (Pedersen define the amount of total variation that is displayed
and Seberg, 1998). on the PC axes. The first PC summarizes most of the

variability present in the original data relative to all
Determining Optimal Number of Clusters remaining PCs. The second PC explains most of the

variability not summarized by the first PC and uncorre-Another important aspect in cluster analysis is de-
lated with the first, and so on (Jolliffe, 1986). Becausetermining the optimal number of clusters or number of
PCs are orthogonal and independent of each other, eachacceptable clusters. In essence, this involves deciding
PC reveals different properties of the original data andwhere to “cut” a dendrogram to find the true or natural
may be interpreted independently. In this way, the totalgroups. An “acceptable cluster” is defined as “a group
variation in the original data set may be broken downof two or more genotypes with a within-cluster genetic
into components that are cumulative. The proportiondistance less than the overall mean genetic distance and
of variation accounted for by each PC is expressed asbetween cluster distances greater than their within clus-
the eigenvalue divided by the sum of the eigenvalues.ter distance of the two clusters involved” (Brown-Gued-
The eigenvector defines the relation of the PC axes toira et al., 2000).
the original data axes.Some relatively simple ways of finding optimal num-

When using PCA on molecular marker data, it isber of clusters are the D2 and the “upper tail approach”
preferable not to include negative eigenvalues or any(Wishart, 1987). On the basis of D2, the best point for
with very low (�1) eigenvalues. To eliminate negativecutting a dendrogram is the one that shows the largest
eigenvalues, the similarity matrix may be transformedD2 between centroids of the groups created at that point
by the following formula,(Franco et al., 1997). The upper tail approach is a simple

procedure in which the mean and the standard deviation S�
ij � Sij � Si. � S.j � S..of distance values at the fusion points are used to calcu-

late the optimal number of clusters. where Sij is the coefficient of similarity between individ-
Use of statistical techniques such as bootstrap, MA- uals i and j, Si. is the mean of the values for the ith row

NOVA (Multivariate Analysis of Variance), or discrimi- in the similarity matrix, S.j is the mean of the values for
nant analysis can facilitate determination of optimal the jth column and S.. is the overall mean of similarity
number of clusters. In MANOVA, clusters or groups coefficients. This transformation renders the similarity
obtained in each cutting point are considered as treat- matrix to have zero root but preserves the distance
ments and individuals falling within that group are con- properties on which the methodology is based (Hayes
sidered as replications for that treatment. The analysis et al., 1997).
is performed individually for each cut point with all PCA can be performed on two types of data matrices:
characters or variables selected for cluster analysis. The a variance–covariance matrix and a correlation matrix.
optimal number of clusters or groups will be at that With characters of difference scales, a correlation matrix
specific point which reveals the highest F value. This is standardizing the original data set is preferred. If the
based on the principle that at a proper cut point, within- characters are of the same scale, a variance–covariance
group variance (error variance) shall be less than be- matrix can be used. In the use of these two types of
tween-group variance (between-treatment variance), matrices, one has to consider that with the variance–
leading to a higher F value. Similarly, discriminant anal- covariance matrix, absolute changes among individuals
ysis can be effectively utilized to determine the best can be studied. But, with the correlation matrix, only
possible grouping on the basis of discrimination among differences relative to the standardized data can be in-
groups achieved by different cut points. terpreted (Wiley, 1981).

PCA can also be used to determine the optimum
Principal Component Analysis (PCA) and Principal number of clusters in a study. In this case, the objective
Coordinate Analysis (PCoA) is to maximize the variation explained by the first PC

of each cluster. It begins with all individuals in a singlePCA and PCoA can be utilized to derive a 2- or
3-dimensional scatter plot of individuals, such that the cluster and splits them until the second eigenvalue of
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all clusters is less than a level specified by the user. The magnitude. This type of geometric representation is
called “non-metric” MDS. If the actual magnitudes ofsecond eigenvalue may be set at 0.75 to be certain that

most of the variation is explained by the first PC original similarities–distances are used to obtain a geo-
metric representation in m dimensions, the process is(Thompson et al., 1998).

PCoA is a scaling or ordination method that starts called “metric” MDS (Johnson and Wichern, 1992).
The closeness between original similarities–distanceswith a matrix of similarities or dissimilarities between a

set of individuals and aims to produce a low-dimensional and interindividual proximities in the map can be tested
by different methods. The most commonly used test isgraphical plot of the data in such a way that distances

between points in the plot are close to original dissimi- a numerical measure of closeness called “stress.” Stress
indicates the proportion of the variance of the disparitieslarities. Thus, the starting point matrix of similarities or

dissimilarities for PCoA is different from that of PCA, not accounted for by the MDS model, and is measured
as follows: Stress � [(dij � d̂ij)2/(dij � d)2]1/2, where d iswhich starts with the initial data matrix (e.g., presence

versus absence of alleles in molecular marker data). the average distance (�dij /n) on the map. The stress
value becomes smaller as the estimated map distanceWhen there are relatively few characters and no miss-

ing data, the output of PCA and PCoA will be similar. approaches the original distance. The interpretation of
stress in terms of goodness-of-fit is as follows: a stressHowever, Rohlf (1972) found that in PCoA, the treat-

ment of missing data is more satisfactory than that in level of 0.05 provides excellent fit; with 0.1 a good fit;
0.2 a fair fit; and 0.4 a poor fit (Kruskal, 1964). However,PCA. In PCA, each missing value is simply replaced

by the mean value for the corresponding character or a problem often encountered with the use of stress is
analogous to that of R2 in multiple regression, in thatmarker when computing the input matrix for analysis.

Thus, one might expect that individuals with lots of stress always improves with increased dimensions.
For the purpose of visualizing genetic relationships,missing data may group more closely to the centroid of

the group when using PCA compared to PCoA. To the distance matrix can be converted into two or more
dimensional coordinates by means of MDS (Schiffmanovercome the problem of missing data in PCA, the coef-

ficient between two individuals should be independently et al., 1981; Beebe et al., 1995). In MDS, one can effec-
tively employ the distance matrix obtained among acomputed by only using those characters that have been

recorded for both the individuals. PCoA is recom- set of genotypes with data sets such as morphological,
biochemical, or molecular marker data as input, to gen-mended over PCA when there are lots of missing data,

and when there are fewer individuals than characters erate a spatial representation of these genotypes in a
geometric configuration as output (Thompson et al.,(Rohlf, 1972).

When the first two or three PCs explain most of the 1998; Skroch et al., 1998). The resulting multidimen-
sional distance matrices, reflecting the relationshipsvariation, PCA and PCoA become useful techniques

for grouping individuals by a scatter plot presentation. among a set of genotypes, can be presented as a 2- or
3-dimensional representation that can be more easilyIn PCA or PCoA, when the original data are not highly

correlated, the first few PCs do not usually explain much interpreted. The pattern obtained from MDS can also
be used to estimate the actual number of groups thatof the original variation. In such a case, assessment of

genetic relationships on the basis of the first two or may be obtained by cluster analysis.
The actual configurations of individuals resultingthree PCs could lead to misleading interpretations. To

avoid such distortion, analysis of genetic relationships from PCA, PCoA and MDS are usually similar (Rohlf,
1972). However, results based on MDS might differ inamong individuals should be based on optimal number

of PCs that explain maximum amount of original data comparison with PCA and PCoA since (i) differences
between close individuals are, in general, reflected bet-variation. The eigenvalue of PCs can be used as a crite-

rion to determine how many PCs should be utilized. The ter by MDS, and (ii) the smaller or greater distances
between individuals are not necessarily represented byPCs with eigenvalue �1.0 are considered as inherently

more informative than any single original variable alone MDS to the same scale. MDS is preferable over PCA
and PCoA when the number of individuals is very large(Iezzoni and Pritts, 1991).
(Rohlf, 1972). Only if there are no missing data or many
more individuals than characters, should PCA be em-Multidimensional Scaling
ployed.

Multidimensional scaling (MDS), also referred to as
“perceptual mapping,” is a procedure that “represents

Comparison of Efficiencies of Cluster Analysis, PCA,a set of individuals or genotypes (n) in a few dimensions
and PCoA(m) using a similarity/distance matrix between them

such that the inter-individual proximities in the map An increasing number of researchers are employing
PCA or PCoA as a “pattern-finding method” to comple-nearly match the original similarities/distances” (John-

son and Wichern, 1992). The technique, thus, attempts ment cluster analysis (for instance, Kantety et al., 1995;
Rincon et al., 1996; Schut et al., 1997; Russell et al.,to find configurations in m 	 n – 1 dimensions, such

that the match is as close as possible. It is possible to 1997; Johns et al., 1997; Dubreuil and Charcosset, 1998;
Lanza et al., 1997; Thompson et al., 1998; Barrett andarrange the n individuals in a low-dimensional coordi-

nate system on the basis of only the rank order of n Kidwell, 1998; Lombard et al., 2000). When there are
nonhierarchical and reticular patters of diversity, the(n – 1)/2 original similarities–distances and not their
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hierarchical algorithms are somewhat limited in their ters for which analytical methods are not available or
are difficult to calculate. The measures of statistical ac-usefulness to investigate pattern of genetic diversity

(Lessa, 1990). In such a case, ordination methods such curacy in a bootstrap analysis are generated from sam-
pling. The parameter of interest is first estimated fromas PCA and PCoA, and particularly MDS, which does

not assume linearity, might be more useful (Rendine et the original sample. A vast number of bootstrap samples
of size equal to the original sample are then generatedal., 1986; Derish and Sokal, 1988).

Using molecular marker data, Melchinger (1993) by repeatedly sampling the entire original data with
replacement. The statistic of interest is then calculatedcompared PCA, PCoA, and cluster analysis with respect

to their efficiency in analyzing genetic diversity in crop for each bootstrap sample produced (Efron and Tibshir-
ani, 1986, 1993).plants. By analyzing a set of five studies in maize and

barley, in general, PCA or PCoA provided faithful por- An important issue in application of molecular
marker data for analysis of genetic diversity concernstrayal of the relationships between major groups of lines,

but distances between close neighbors were often dis- the number of markers that can provide a precise esti-
mate of genetic relationships. It is clear that use of largetorted when a small proportion (�25%) of the total

variation was explained by the first two or three PCs numbers of polymorphic markers or bands which are
uniformly distributed over the genome will provide anor principal coordinates. Cluster analysis proved to be

more sensitive and reliable for detecting pedigree rela- increasingly more precise estimate of genetic relation-
ships and will reduce the variance estimation of genetictionships among genotypes than PCA or PCoA when

the first two or three PCs explained �25% of the total relationship due to over or under sampling of certain
regions of the genome (Tivang et al., 1994). Becausevariation. To extract maximum information from the

molecular marker data, PCA or PCoA can be used in assaying a large number of polymorphic markers is often
prohibitively expensive, it may be desirable to estimatecombination with cluster analysis, particularly when the
genetic relationships using the smallest set of polymor-first two or three PCs explain �25% of the original
phic markers with minimum sampling variance. Boot-variation (Messmer et al., 1992).
strap analysis may be used to determine the effectiveThe major advantage of ordination methods over
number of molecular markers in analysis of genetic di-cluster analysis is that these methods facilitate the detec-
versity through empirical estimation of sampling vari-tion of individuals or populations that show some inter-
ance of genetic distances or similarities calculated frommediacy between two groups (Lessa, 1990). However,
different marker data sets (for instance, Pejic et al.,ordination methods such as PCA or PCoA become im-
1998; Vuylsteke et al., 2000). The relationship betweenpractical when more than a few dimensions are needed
the number of bands and sampling variance of geneticto present the relationships among genotypes. Also,
similarity or distance among all pairs of genotypes canPCA and PCoA may yield distorted picture of genetic
be used to identify a suitable number of markers provid-relationships among genotypes or populations when
ing adequate information, provided that an adequatevariables are nonlinearly related (Wartenberg et al.,
number of markers were sampled in the first place. The1987). This could be a common problem for frequency
effective number of markers is one where the standarddata, such as allele frequencies, particularly if the data
deviation of the estimates is not significantly affectedis heterogeneous. Linkage disequilibrium may also lead
by reducing or increasing the number of loci–bands ana-to unreliable and unstable patterns (Lessa, 1990).
lyzed. Because molecular markers are capable of gener-
ating a large amount of data, they provide an excellentUtility of Resampling Techniques
opportunity for bootstrap sampling using whole data

Resampling techniques such as “Bootstrap” and sets as well as with smaller partitions of the data set. If
“Jackknife” are attracting considerable attention, par- N markers are randomly sampled over the genome, the
ticularly in relation to application of molecular marker standard error (SE) of Rogers’ distance (RD) between
data for analysis of genetic diversity and for finding the homozygous inbreds can be calculated as SE � RD(1 �
smallest set of markers that can provide an accurate RD)/N (Dubreuil et al., 1996), which is identical to Jack-
assessment of genetic relationships among a set of geno- knife estimate of SE (Melchinger et al., 1991). Alterna-
types or groups or populations (Tivang et al., 1994). The tively, the SE of GD estimates can be determined by
bootstrap technique is a general resampling procedure the bootstrap procedure (Tivang et al., 1994).
for estimating the distribution of a statistic on the basis Bootstrapping can be effectively utilized for estimat-

ing the statistical support to the internal branches inof independent observations (Efron, 1979). The tech-
nique resamples the actual data to reveal some its sub- a tree (Felsenstein, 1985). For instance, if a specific

branching pattern is observed 80% of the time, thistler patterns. The basic notion is that the data them-
selves, viewed as a frequency distribution, represent the branching pattern is said to have 80% bootstrap support.

The exact statistical interpretation of bootstrap resultsbest available image of the frequency distribution from
which they were drawn. Thus, the bootstrap metaphor is still an active subject of study, but the rule of thumb

is that internal tree branches that have �70% bootstraprefers to the sense in which the data itself is effectively
used to assess its own utility in statistical analysis (Crow- are likely to be correct at the 95% level (Hillis and Bull,

1993). Some recent studies have utilized such a strategyley, 1992). Bootstrap methods have been mostly em-
ployed to estimate standard errors, confidence intervals, in indicating bootstrap proportions for internal branches

in a tree (for example, Barrett and Kidwell, 1998; Lom-and other measures of accuracy for statistical parame-
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bard et al., 2000). However, a high bootstrap percentage, However, empirical data generated in recent years by
different strategies has provided an enhanced under-indicated by this nonparametric bootstrapping strategy,

still does not guarantee that long branch attractions standing of the above issues, and reasonably effective
means of analyzing genetic diversity at various levelshave not biased the results. Also, in many cases, the

overall tree structure provides better information than (individuals, populations, or species). With the recent
development and use of model-based clustering meth-a particular branch (Hillis et al., 1996). Wherever clear

formulation of a priori hypotheses regarding genetic ods based on Bayesian statistics, the possibilities of car-
rying out association studies in crop plants for identi-relationships is possible, it is preferable to apply para-

metric rather than nonparametric bootstrapping. Hillis fying genes for agronomically important but complex
traits have been enhanced (Pritchard, 2001; Thornsberryet al. (1996) discussed in detail the strengths and limita-

tions of parametric and nonparametric bootstrapping et al., 2001). There is still a distinct need for developing
comprehensive and user-friendly statistical packagesapproaches in this regard.

Another numerical resampling technique is the Jack- that facilitate an integrated analysis of different data
sets for generating reliable information about geneticknife technique, where resampling is performed without

replacement (Efron, 1979). Although this is the simplest relationships, germplasm diversity, and favorable allele
variation. Equally important, and perhaps more chal-resampling technique that provides estimates of bias

and variance for genetic parameter estimates (for in- lenging, is the concerted and planned utilization of ger-
mplasm in crop breeding programs on the basis ofstance, Dje et al., 2000), it imposes a limitation on the

number of resampling units and provides little informa- knowledge accrued from studies on genetic diversity.
tion for the distribution of the estimates. Resampling
techniques such as Bootstrap and Jackknife are now ACKNOWLEDGMENTS
increasingly used to analyze the variance of any parame-
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