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Abstract

Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful
outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of
SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of
heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available.
Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among
multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first
employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the
outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous
stock mice dataset show that the proposed method can outperform existing penalization methods.
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Introduction

This study has been partly motivated by the analysis of the

genetic architecture of complex traits in heterogeneous stock mice

from Wellcome Trust Center. This data resource, which also

includes pedigree information, was based on an advanced

intercross mating among 8 inbred strains over 50 generations of

random mating [1,2], since the use of pseudorandom breeding for

over 50 generations should result in an average distance between

recombinants of v2 cM. The average linkage disequilibrium

(LD), as measured by R2 between adjacent markers, is 0.62 [3]. As

with many complex mammal diseases, clinical risk factors and

environmental exposures have failed to provide a comprehensive

description of immunological disorders. The laboratory mouse is a

key model organism for understanding gene function in mammals.

Valdar et al. [1,4] conducted a genome-wide association study and

gene-environment interaction modeling to search for genetic

markers possibly correlated to phenotypes. We analyze the CD4/

CD8 ratio and CD4:CD3 in this study. CD4/CD8 ratio, which is

also known as the T-Lymphocyte Helper/Suppressor Profile, is a

basic laboratory test in which the percentage of CD3-positive

lymphocytes in the blood positive for CD4 (T helper cells) and

CD8 (a class of regulatory T cells) are counted and compared.

CD4:CD3 is another clinical index for immunological diseases.

Both indices are related to the diagnosis of immunological diseases.

Since the indices, CD4/CD8 ratio and CD4:CD3, are highly

correlated and mechanisms behind them are related, the

potentially associated genetic markers are expected to be very

similar. Thus it may be more powerful to analyze the phenotypes

simultaneously.

GWAS data have high dimensionality. Conventional statistical

approaches analyze one SNP at a time and then adjust for multiple

comparisons. Such approaches are easy to implement, however,

they may contradict the fact that the development and progression

of complex diseases and traits are caused by the aggregated effects

of multiple SNPs. They may miss SNPs with weak marginal but

strong joint effects. In the analysis of joint effects of a large number

of SNPs, regularized estimation is needed. In addition, it is

expected that only a subset of profiled SNPs are associated with

the response variables. Thus, marker selection is needed along

with estimation.

With high-dimensional data, penalization has been extensively

applied for regularized estimation and variable selection. Com-

monly used penalization methods include Lasso, elastic net,

bridge, SCAD, MCP and others. Such methods can effectively

analyze data with a single response variable with interchangeable

covariate effects. When there exists hierarchical structure among

covariates, for example the ‘‘pathway, SNP-within-pathway’’ two-

level structure, the ‘‘group’’ version of the aforementioned

penalization methods have been proposed. The group penalty is

usually a composite penalty. For example with group SCAD [5],

the outer is the SCAD penalty, and the inner is the ridge penalty.

We note that such group penalization methods are mainly used for

the analysis of data with a single response variable.

In this study, our goal is to analyze data with multiple correlated

response variables and conduct marker selection. In classic

statistical analysis with a small number of covariates, data with

multiple response variables can be accommodated under the

framework of multivariate analysis of variance (MANOVA) [6]
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and multivariate analysis of covariance (MANCOVA). However,

such methods cannot accommodate high dimensional covariates.

It is possible to first apply existing penalization methods, for

example Lasso, analyze each response variable separately, and

then combine the analysis results using meta-analysis methods.

However, such an approach ignores the correlation among

response variables and hence can be less informative. Yuan and

Ekici [7] introduced a nuclear norm approach encouraging the

sparsity among singular values which at the same time gives

shrinkage coefficient estimates and thus conducts dimension

reduction and coefficient estimation simultaneously in multivariate

linear models. Chen et al. [8] proposed an approach for solving

reduced rank multivariate stochastic regression models.

In the heterogeneous stock mice dataset, there are multiple

continuously distributed, highly correlated response variables. Under

a joint modeling framework, we propose first transforming multi-

response data into uni-response data following the same distribution.

Then a group Lasso approach is applied to the transformed uni-

response data. With two responses, the effect of one SNP needs to be

represented by two regression coefficients, which naturally form a

‘‘group’’. We emphasize that, unlike other group penalization studies

in which one group usually corresponds to multiple covariates, here

one group corresponds to a single covariate for multiple responses.

Materials and Methods

Analysis of multi-response data
Consider data with multiple correlated response variables. With

data like the heterogeneous stock mice from Wellcome Trust

Center, it is reasonable to assume that multiple responses share a

certain common genetic basis, particularly the same set of

susceptible SNPs. However, we note that although the response

variables are correlated, they are not identical. With the inherent

heterogeneity, it is not sensible to reinforce the same model with

the same regression coefficients for different response variables.

Let M(w1) be the number of response variables, n be the

number of subjects, and p be the number of SNPs. Denote

y1, . . . ,yM as the response variables and x as the n|p covariate

matrix. For m~1, . . . ,M, assume that ym is associated with x via

the linear model ym*xbm, where bm(~(bm
1 , . . . ,bm

p )
0
) is the

regression coefficient corresponding to the mth response variable.

We first transform the original data frame. For simplicity of

notation, we use the same symbol y but with different subscripts

for the new response variable. Although the proposed method can

accommodate different covariates for distinct response variables,

we assume that the same set of covariates are measured for all

responses. Let yi be the length-M vector of response variables for

the ith subject, and y~(y
0

1, . . . ,y
0

n)
0
. Covariates for the ith subject

have the form Xi~(Ui1, . . . ,Uip) where Uij~xijIm. The regres-

sion coefficient vector is then B~(b
0

1, . . . ,b
0

p)
0

where

bj~(b1
j , . . . ,bM

j )
0
.

To better illustrate the basic features of the model settings here,

consider a dataset with M = 2 response variables and p SNPs.

Assume that only the first four SNPs are associated with responses.

Then the coefficients may look like

b1~(0:1,0:4,0:3,0:8,0, . . . ,0)
0

b2~(0:03,0:2,0:5,0:6,0, . . . ,0)
0
,

and correspondingly,

B
0
~(0:1,0:03,0:4,0:2,0:3,0:5,0:8,0:6,0, . . . ,0):

The regression coefficient B and corresponding model have the

following features. First, only the first four response-associated SNPs

have nonzero regression coefficients (i.e. the model is sparse). Thus

marker identification amounts to identifying SNPs with non-zero

regression coefficients. This strategy has been commonly used in

regularized marker selection. Second, as the two response variables

share the same susceptible SNPs, there is a natural grouping

structure with the transformed covariates. For example, the first two

regression coefficients/covariates correspond to the first SNP. Thus,

they form a group of size two and should be selected at the same time.

Motivated by the heterogeneous stock mice dataset, we describe

the proposed approach for studies with quantitative traits under

linear models. The proposed approach can be extended to other

types of response variables and other statistical models, as long as

the joint modeling of response variables can be conducted. In a

study with M response variables, the least square loss function for

transformed data can be written as

Xn

i~1

(yi{XiB)
0
S{1(yi{XiB),

where S is the covariance matrix for residuals.

Penalized estimation and marker selection
Penalized estimation. From definition, bj~(b1

j , . . . ,bM
j )

0
is

the coefficients for the M responses at the jth locus. We define B̂B
as the minimizer of the penalized least squares loss function:

B̂B~ argmin
B

1

2n

Xn

i~1

(yi{XiB)
0
S{1(yi{XiB)zl

Xp

j~1

ffiffiffiffi
dj

p
jjbj jjSj

( )

~ argmin
B

1

2n
jj~yy{

Xp

j~1

~UUjbj jj2zl
Xp

j~1

ffiffiffiffi
dj

p
jjbj jjSj

( )
:

ð1Þ

Here ~yyi~S{1
2yi , ~XXi~S{1

2Xi , ~UUij~S{1
2Uij , ~yy

0
~(~yy

0
1, . . . ,~yy

0
n),

~UUj~( ~UU
0
1j , . . . , ~UU

0
nj)
0
, Sj~n{1 ~UU

0
j

~UUj , DDbj DDSj
~DDb

0
j Sjbj DD, DD:DD is the L2

norm, and dj is the number of levels at the jth locus (equals to M under

the present setting). Note that prior to the transformation, we assume

that the response follows a multivariate normal distribution. In contrast,

after transformation, each element in the new response ~yy follows a

univariate normal distribution. We center the response and make

the grand mean equal to zero.

The proposed penalty has been motivated by the following

considerations. For a given SNP locus, we treat its regression

coefficients for M response variables as a group, so that we can

evaluate its overall effects. The within-group penalty has an L2

norm, and the group-level penalty has an L1 norm. Thus, the

proposed penalty may have the following main properties. First, it

can conduct group-level selection. Second, if a group is selected,

then all members within that group are selected with non-zero

estimates. But the magnitudes of regression coefficients may differ.

On the other hand, if a group is not selected, all of its members are

set to be zero. Such properties fit the goal of the proposed analysis.

As discussed in [9], we need to orthogonalize the transformed

covariates block-wise in order to achieve computational efficiency.

Write Sj~R
0
jRj for an upper triangular matrix Rj via Cholesky

decomposition. Assume that Sj is invertible. Let Vj~ ~UUjR
{1
j and

bj~Rjbj , then the penalized least-squares in expression (1) becomes

GWAS with Multiple Outcomes Using Penalization
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Q(b,l)~
1

2n
DD~yy{

Xp

j~1

Vjbj DD2zl
Xp

j~1

ffiffiffiffi
dj

p
DDbj DD: ð2Þ

If we center ~yy, there is no need to fit for intercept for (2).

Computational algorithm. We use the group cyclical

coordinate descent (GCD) algorithm. The GCD algorithm is a

natural extension of the coordinate descent algorithm [10]. It

optimizes a target function with respect to a single group

parameter at a time and iteratively cycles through all group

parameters until convergence. It is particularly suitable for

problems as the present one which has a simple closed-form

solution with a single group but lacks one with multiple groups.

The GCD algorithm proceeds as follows. For a given l,

1. Let ~bb(0) be the initial estimate. A sensible initial estimate is zero

(component-wise). Initialize the vector of residuals

r~~yy{
Pp

j~1 Vj
~bb(0)

j and s~0.

2. For j~1, . . . ,p, repeat the following steps:

(a) Calculate the least-square estimates with respect to bj

~vvj~n{1V
0
j (~yy{

Xp

j~1

Vj
~bb(s)

j zVj
~bb(s)

j )

~n{1V
0
j rz~bb(s)

j :

(b) Compute

~bb(sz1)
j ~S(~vvj ;

ffiffiffiffi
dj

p
l)~ 1{

ffiffiffiffiffiffi
M
p

l

DD~vvj DD

� �
z

~vvj : ð3Þ

(c) Update r/r{Vj(~bb
(sz1)
j {~bb(s)

j ).

2. s/sz1.

3. Iterate Step 2 until convergence.

Breheny and Huang [11] discussed the convergence of

coordinate descent algorithms for SCAD and MCP. We now

consider the GCD for group Lasso. For any given l, starting from

an initial estimate b(0), the GCD algorithm generates a sequence of

updates b(s)~(b
(s)0

1 , . . . ,b(s)0

p ), s~1,2, . . ., where

b
(s)
j ~ argmin

bj

Q (b
(s)0
1 , . . . ,b

(s)0
j{1,b

0
j ,b

(s{1)0
jz1 , . . . ,b(s{1)0

p ); l
� �

, 1ƒjƒp:

Since the sequence fQ(bs; l) : s~1,2 . . .g is non-increasing and

bounded below by 0, it always converges. The following proposition

is concerned about the convergence of fb(s) : s~1,2 . . .g.
Proposition 1 For any fixed l, the GCD updates fb(s) : s~1,2 . . .g

converge to a global minimizer of the group Lasso criterion Q(l) and satisfy the

inequality

Q(b(s{1); l){Q(b(s); l)§
1

2
DDb(s{1){b(s)DD2:

This proposition can be proved following the arguments of [12]

who established the convergence of the coordinate descent

algorithm for concave penalized selection methods including the

Lasso.

Choice of tuning parameter. There are various methods

that can be applied, including for example AIC, BIC, cross-

validation, and generalized cross-validation. Chen and Chen [13]

developed a family of extended Bayesian information criteria

(EBIC) to overcome the overly liberal selection problem caused by

the small-n-large-p situation. Furthermore, Chen and Chen [14]

established the consistency of EBIC under the generalized linear

Table 1. Simulation studies: the numbers are mean (standard deviation) based on 100 replicates.

Combined Individual

p r True Positive Model Size FDR FNR SSE

5000 0.1 17.60(1.99) 20.18(2.93) 0.12(0.09) 0.27(0.08) 96.89(12.67)

5000 0.5 17.80(1.82) 20.66(3.02) 0.13(0.08) 0.26(0.08) 97.85(13.51)

5000 0.9 17.66(1.72) 20.32(3.11) 0.12(0.09) 0.26(0.07) 97.39(15.61)

10000 0.1 16.78(1.64) 19.24(2.76) 0.12(0.09) 0.30(0.07) 92.76(11.16)

10000 0.5 16.84(1.80) 18.96(2.56) 0.10(0.08) 0.30(0.07) 92.44(12.57)

10000 0.9 16.70(1.79) 18.22(2.41) 0.08(0.06) 0.30(0.07) 91.37(13.68)

Proposed Approach

p r True Positive Model Size FDR FNR SSE

5000 0.1 24.00(0.00) 29.16(3.75) 0.17(0.09) 0.00(0.00) 61.02(3.41)

5000 0.5 23.92(0.40) 29.16(3.84) 0.17(0.10) 0.00(0.02) 61.45(3.76)

5000 0.9 23.92(0.40) 29.84(4.51) 0.18(0.11) 0.00(0.02) 72.66(4.19)

10000 0.1 24.00(0.00) 28.96(3.62) 0.16(0.10) 0.00(0.00) 61.66(3.30)

10000 0.5 23.88(0.48) 28.92(3.82) 0.16(0.10) 0.00(0.02) 62.16(3.63)

10000 0.9 23.64(0.96) 29.36(5.65) 0.17(0.13) 0.02(0.04) 72.60(3.68)

False discovery rate (FDR) and false negative rate (FNR) are reported together with true positives and model sizes.
doi:10.1371/journal.pone.0051198.t001
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models in the small-n-large-p situation. For group Lasso, Yuan and

Lin [15] proposed an approximation of the degree of freedom

(DF). Here, we apply EBIC with an approximated DF to select the

tuning parameter l. The EBIC is defined as:

EBIC~nlogRSSl=nz~ddf m̂m(l):X b̂b
n o

(lognz2clogp),c§0,

where RSSl is the residual sum of squares under a fixed l. The

DF for group Lasso [15] is defined as:

~ddf m̂m(l):X b̂b
n o

~
X

j~1...p

I(DDb̂bj DDw0)z
X

j

DDb̂bj DD

DDb̂bLS
j DD

(pj{1) ð4Þ

where pj is the number of predictors in the jth group and b̂bLS
j is the

least-square estimate for the jth group obtained by fitting group j

only.

Note that when pj~1 for j~1, . . . ,p, group Lasso becomes

Lasso, and its DF is the number of non-zero parameters selected.

Therefore, one can take Lasso as a special case of group Lasso, and

so does the DF in expression (4).

Significance level for the selected SNPs. With penalization

methods, the relevance of a covariate usually is determined by

whether its regression coefficient is nonzero. As secondary analysis,

it may also be of interest to compute the p value. However, it

should be noted that it is usually insensible to use both estimation

magnitude (zero or nonzero) and significance level for selection.

Here, we use a multi-split method modified from the one

proposed by Meinshausen et al. [17] to obtain p-values. With

linear regression, we use F -test for each group to evaluate whether

there are elements in this group with significant effects. This

procedure puts us in a position to obtain p-values at the group

level. It is simulation-based and can adjust for multiple compar-

isons. The multi-split method proceeds as follows:

1. Randomly split data into two disjoint sets of equal size: Din and

Dout.

2. Fit data in Din with the proposed method. Denote the set of

selected groups by S.

3. Compute ~PPj , p-value for group j(~1, . . . ,p), as follows:

(a) If group j is in set S, set ~PPj equal to the p-value from the

F-test in the regular linear regression where group j is the

only group.

(b) If group j is not in set S, set ~PPj~1.

4. Define the adjusted p-value as Pj~minf~PPj DSD,1g,j~1, . . . ,p,

where DSD is the size of set S.

This procedure is repeated B times for each group. Let P
(b)
j

denote the adjusted p-value for group j in the bth iteration. For

p[(0,1), let qp be the p-quartile of fP(b)
j =p; b~1, . . . ,Bg. Define

~QQj(p)~minf1,qpg. It is shown in [17] that ~QQj(p) is an

asymptotically correct p-value, adjusted for multiplicity. The

authors also proposed an adaptive version that selects a suitable

value of quartile based on data:

Qj~min 1,(1{log p0) inf
p[(p0,1)

~QQj(p)

� �
,

where p0 is chosen to be 0.05. It is shown that fQj ,j~1, . . . ,pg,
can be used for both FWER (family-wise error rate) and FDR

(false discovery rate) control [17].

Results

Simulation studies
In simulation, we consider six different scenarios, each with 500

subjects and 5,000 or 10,000 SNPs. For each subject, we simulate

two response variables. The correlation between the two responses

is set to be 0.1, 0.5 or 0.9, representing weak, moderate and strong

correlations. For each response variable, there are twelve SNPs

with nonzero effects. Those twelve SNPs can be grouped into

three clusters. Among each cluster, the correlation between two

SNPs is 0.2. The correlation among SNPs not associated with

response is set to be 0.2. Response-associated and noisy SNPs are

independent. More specifically, the genotypes are first generated

from multivariate normal distributions and then categorized into

0, 1 or 2. To mimic a SNP with equal allele frequency, we

categorize genotype in a way similar to [16]. The genotype is set to

be 0, 1 or 2 depending on whether xijv{c, {cƒxijƒc or

xijwc, where c is the 3rd-quartile of x. For the first response

variable, the regression coefficient is

Table 2. Multi-split p-values for simulated data with all
matched non-zero bs and rho = 0.9.

p = 5000 p = 10000

SNP
index DDb̂bDD p-value DDb̂bDD p-value

25 0.293 9.3E210 0.318 2.2E210

26 0.270 7.3E212 0.263 1.5E207

27 0.263 3.1E210 0.346 2.9E210

28 0.251 1.1E211 0.301 1.2E208

41 0.264 0.054 0.182 1.000

42 0.100 1.000 0.336 0.007

43 0.245 0.006 0.249 0.019

44 0.096 1.000 0.177 0.798

57 0.107 0.004 0.093 1.000

58 0.174 1.000 0.071 1.000

59 0.183 2.3E205 0.173 7.4E205

60 0.089 1.000 0.094 1.000

342 0.006 1.000

2200 0.009 1.000

3623 0.010 1.000

3920 0.013 1.000

4177 0.004 1.000

4555 0.003 1.000

5494 0.008 1.000

5899 0.037 1.000

7156 0.020 1.000

9061 0.001 1.000

9343 0.004 1.000

9501 0.004 1.000

9884 0.013 1.000

Empty cells stand for SNPs that are not identified from the model.
doi:10.1371/journal.pone.0051198.t002
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( 0, . . . ,0|fflfflffl{zfflfflffl}
24

,2,2,2,2, 0, . . . ,0|fflfflffl{zfflfflffl}
12

,1,1,1,1, 0, . . . ,0|fflfflffl{zfflfflffl}
12

,2,1,2,1, 0, . . . ,0|fflfflffl{zfflfflffl}
p{60

):

For the second response variable, the regression coefficient is

( 0, . . . ,0|fflfflffl{zfflfflffl}
24

,0:5,0:5,0:5,0:5, 0, . . . ,0|fflfflffl{zfflfflffl}
12

,2,2,2,1, 0, . . . ,0|fflfflffl{zfflfflffl}
12

,1,2,1,2, 0, . . . ,0|fflfflffl{zfflfflffl}
p{60

):

The two response variables depend on the same genotypic data

and are correlated through the residuals. Clustering structure

exists in this simulation.

Table 3. Simulation studies: the numbers are mean (standard deviation) based on 100 replicates.

Combined Individual

p r True Positive Model Size FDR FNR SSE

5000 0.1 16.96(1.92) 19.52(3.07) 0.12(0.09) 0.29(0.08) 90.82(12.20)

5000 0.5 16.96(1.82) 19.82(3.45) 0.13(0.10) 0.29(0.08) 91.35(12.19)

5000 0.9 17.10(1.67) 19.68(3.45) 0.12(0.10) 0.29(0.07) 91.63(13.66)

10000 0.1 16.06(1.73) 18.42(3.38) 0.11(0.09) 0.33(0.07) 86.30(10.36)

10000 0.5 15.92(1.70) 18.24(2.88) 0.12(0.09) 0.34(0.07) 86.13(10.90)

10000 0.9 15.96(1.75) 17.88(2.80) 0.10(0.08) 0.34(0.07) 85.43(12.50)

Proposed Approach

p r True Positive Model Size FDR FNR SSE

5000 0.1 20.96(0.90) 28.92(3.71) 0.26(0.09) 0.13(0.04) 58.88(3.01)

5000 0.5 20.82(0.96) 28.52(4.76) 0.25(0.10) 0.13(0.04) 59.25(3.32)

5000 0.9 22.06(1.06) 31.72(4.50) 0.29(0.08) 0.08(0.04) 68.70(3.72)

10000 0.1 20.18(1.22) 25.44(3.66) 0.20(0.08) 0.16(0.05) 59.37(3.17)

10000 0.5 19.70(1.63) 25.72(4.41) 0.22(0.10) 0.18(0.07) 59.86(3.46)

10000 0.9 21.70(1.25) 32.44(5.40) 0.32(0.10) 0.10(0.05) 68.94(3.89)

False discovery rate (FDR), false negative rate (FNR) and sum of squared errors (SSE) are reported together with true positives and model sizes. 25% of the regression
coefficients are not matched.
doi:10.1371/journal.pone.0051198.t003

Table 4. Simulation studies: the numbers are mean (standard deviation) based on 100 replicates.

Combined Individual

p r True Positive Model Size FDR FNR SSE

5000 0.1 16.94(1.89) 19.80(2.92) 0.14(0.09) 0.29(0.08) 89.29(11.00)

5000 0.5 17.00(1.92) 19.82(2.99) 0.13(0.08) 0.29(0.08) 89.67(11.41)

5000 0.9 17.08(1.90) 20.02(3.47) 0.13(0.09) 0.29(0.08) 89.94(14.40)

10000 0.1 16.26(1.55) 19.36(3.08) 0.15(0.09) 0.32(0.06) 84.41(10.06)

10000 0.5 16.20(1.58) 19.06(2.85) 0.14(0.09) 0.32(0.07) 84.24(10.48)

10000 0.9 16.16(1.60) 18.34(2.50) 0.11(0.08) 0.33(0.07) 83.38(11.16)

Proposed Approach

p r True Positive Model Size FDR FNR SSE

5000 0.1 19.58(1.36) 33.28(5.30) 0.40(0.08) 0.18(0.06) 58.33(2.97)

5000 0.5 19.70(1.27) 33.28(6.40) 0.39(0.09) 0.18(0.05) 58.73(3.28)

5000 0.9 21.46(1.40) 39.40(5.86) 0.45(0.06) 0.11(0.06) 70.05(4.08)

10000 0.1 18.72(1.20) 29.92(6.09) 0.36(0.09) 0.22(0.05) 58.57(2.92)

10000 0.5 19.14(1.26) 31.56(5.90) 0.38(0.08) 0.20(0.05) 59.09(3.16)

10000 0.9 20.92(1.47) 37.84(5.84) 0.44(0.07) 0.13(0.06) 69.88(3.89)

False discovery rate (FDR), false negative rate (FNR) and sum of squared errors (SSE) are reported together with true positives and model sizes. 50% the regression
coefficients are not matched.
doi:10.1371/journal.pone.0051198.t004
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To better gauge performance of the proposed approach, we also

consider the following alternative approach. We first analyze each

response variable separately using Lasso, and then combine the

results by examining the overlapped SNPs. For both approaches,

we apply the EBIC method described in the previous section to

select the tuning parameter l. We evaluate the number of SNPs

identified, number of true positives, false discovery rate (FDR) and

false negative rate (FNR). In addition, estimation performance is

also evaluated using SSE (sum of squared error).

Results based on 100 replicates are summarized in Table 1.

Note that the true response-associated SNPs are 25–28, 41–44 and

57–60 for both responses. In total, there are 24 SNPs associated

with the two responses. Table 1 shows that under all simulation

scenarios, the proposed approach is able to identify almost all of

the true positives, significantly more than the individual-dataset

Figure 1. Absolute values of DbD estimates from the simple linear regression on CD4/CD8 ratio and CD4:CD3.
doi:10.1371/journal.pone.0051198.g001
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approach. The price is a few more false positives. With the

proposed approach, the highest FDR is 0.18, which can be

acceptable in practice. Under all scenarios, the proposed approach

has significantly smaller SSEs. Taking both marker identification

and estimation into consideration, we conclude that the proposed

approach provides a competitive alterative to the existing

individual-dataset approach. For one simulated dataset, p-values

evaluated by the multi-split method for the selected groups are

presented in Table 2. It can be seen that many true positives have

significant p-values, while all false positives have insignificant p-

values.

With the proposed approach, it is assumed that the multiple

responses of interest have exact the same set of important SNPs.

Such an assumption is reasonable under some settings but too

restricted under others. To get a more comprehensive under-

standing of the proposed approach, we also conduct simulation

where the two sets of important SNPs are partially matched. In

Table 3, we consider the simulation setting where 25% of the

important SNPs are not matched. In Table 4, we consider the

scenario with 50% unmatched important SNPs. Under both

simulation scenarios, the proposed approach identifies more true

positives. However, the model sizes and FDRs are much larger.

Such an observation is reasonable: for a SNP associated with a

single response variable, when it is identified using the proposed

approach, this SNP is automatically identified for the response

variable it is not associated with, creating one false positive. Thus

with the proposed approach and partially matched important SNP

sets, identifying more true positives inevitably leads to much larger

model sizes. It is interesting to note that under all simulation

scenarios, the proposed approach has significantly smaller SSEs.

Here we focus on the scenario with two response variables to

match the data analyzed in the next section. It is possible to

conduct analysis with three or more responses, which may have

higher computational cost.

Application to heterogeneous stock mice dataset
The heterogeneous stock mice dataset is described in the

Introduction section. We refer to the original publication for more

detailed descriptions [1,2,4]. This dataset includes fully phenotypic

records on 2,202 mice, and each was genotyped for 13,459 SNP

markers. In joint modeling, SNPs with missingness cannot be

included. Thus, we implement fastPHASE to impute the

missingness in SNPs [18]. After deleting observations with missing

phenotypes and alleles with minor allele frequency less than 0.05,

there are 1,514 mice and 9,991 SNP markers in 19 autosomes. We

analyze the data using three different approaches: the traditional

one-SNP-at-a-time approach, analysis of individual response using

Lasso, and the proposed approach. In Figure 1, we show the

absolute values of b estimates from the single-SNP analysis on both

CD4/CD8 ratio and CD4:CD3. Here single-SNP analysis is

conducted using a Bonferroni approach with overall p-value 0.05.

In Figure 2, we show the DbD from Lasso on both phenotypes and

DDbDD from the proposed method. In Figure 1, one can see that the

signal to noise ratio is weak, and it is difficult to tell the real

associated signals from background. In contrast, the signal to noise

ratio is strong, and a small number of SNPs are selected by using

the Lasso and proposed method. When analyzing each response

separately using Lasso and multiple responses using the proposed

method, we use the method described in the previous section to

select the tuning parameter l. We use the multi-split method to

evaluate the significance of selected SNPs. In Figure 2, the larger

dots stand for the selected SNPs with significant p-values. In

Table 5, the total number of significant SNPs is summarized in the

parenthesis for the Lasso on both phenotypes and the proposed

method. Detailed information on the selected SNPs by the

proposed method and individual Lasso methods on both CD4/

CD8 ratio and CD4:CD3 is presented in Table 6, Table 7 and

Table 8, respectively. Note that there is no one-to-one correspon-

dence between the magnitude of estimates and significance level.

Such an observation is not uncommon in regression analysis. In

addition, the proposed penalization approach is based on Lasso,

which is known to shrink estimates towards zero. Another

observation is that SNPs in high LD may have very different

estimates, which is also ‘‘as expected’’. In single-response analysis,

Lasso has the tendency to select one out of a set of highly

correlated covariates. Thus, it is possible or even likely that out of

the SNPs with high LD, one may have a large estimate while

others have very small or zero estimates. The numbers of selected

SNPs and overlaps among the proposed method, the Lasso

method and single-SNP analysis are presented in Table 5. We see

that the single-SNP analysis selects a large number of SNPs. This

may be due to the fact that the selection of assayed SNPs is not

totally random.

With our limited knowledge on susceptibility SNPs for

immunology, we are not able to objectively evaluate the biological

implications of identified SNPs. As an alternative, we consider the

following evaluation of prediction performance, which may

provide partial information on identification performance. (a)

Randomly split the sample into five parts with equal sizes; (b)

Analyze four parts using the proposed approach; (c) Use the

obtained model and make prediction for subjects in the left-out

part; (d) Repeat Steps (b) and (c) over all five parts. For

comparison, the same approach is also used to evaluate the

individual Lasso approach. The prediction mean squared errors

are 1.66 for the proposed approach and 2.33 for the combined

Lasso. By jointly analyzing two responses, the proposed approach

has better prediction performance.

Figure 2. Absolute values of DbD estimates from Lasso on CD4/CD8 ratio and CD4:CD3 and DDbDD estimates for the proposed method.
Smaller dots represent SNPs selected by the Lasso/proposed method with insignificant multi-split p-values. Larger dots represent SNPs with
significant p-values.
doi:10.1371/journal.pone.0051198.g002

Table 5. Number of SNPs identified, and overlap of SNPs
among the proposed method, the Lasso and single-SNP
analysis for heterogeneous stock mice dataset.

Method # of SNPs # of Overlapping SNPs

L1* L2** S1*** S2****

The Proposed Method 45(38) 12 13 38 45

Lasso on M1 53(49) 10 51 53

Lasso on M2 31(28) 30 31

single-SNP analysis on M1 2964 2964

single-SNP analysis on M2 3128

*Short for Lasso on M1.
**Short for Lasso on M2.
***Short for single-SNP analysis on M1.
****Short for single-SNP analysis on M2.
The number in the parenthesis is the number of SNPs with significant p-values.
doi:10.1371/journal.pone.0051198.t005
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Table 6. SNPs selected by the proposed method on both phenotypes CD4/CD8 ratio and CD4:CD3.

SNP Chromosome Position MAF Band Gene* Proposed Method

DDbDD p-value

rs13475794 1 32202097 0.189 1qB Khdrbs2 0.024 1.7E207

rs13475847 1 45969220 0.301 1qC1.1 Slc40a1 0.008 2.8E201

rs3679459 1 120341835 0.098 1qE2.3 Clasp1 0.024 4.7E208

rs8256197 1 130485642 0.428 1qE4 Cxcr4 0.006 3.8E205

rs8256196 1 130485675 0.428 1qE4 Cxcr4 5.1E215 4.3E205

rs3682465 2 156317950 0.146 2qH1 Epb4.1l1 0.004 3.9E207

rs3718812 3 52605874 0.155 3qC Cog6 0.036 3.1E208

rs3659643 3 115759847 0.205 3qG1 Extl2 2.3E203 2.2E206

rs6176477 3 117874757 0.259 3qG1 Snx7 4.3E204 9.6E206

rs13460366 4 129804978 0.137 4qD2.2 Pef1 5.5E204 0.241

rs13477979 4 130004434 0.137 4qD2.2 Zcchc17 2.6E215 0.332

rs13477980 4 130281564 0.137 4qD2.2 Pum1 2.4E216 0.332

rs13478285 5 61706070 0.078 5qC3.1 G6pd2 0.015 0.003

rs3692826 5 63287018 0.078 5qC3.1 Gm17384 8.5E216 0.004

rs6222023 5 76590704 0.397 5qC3.3 Srd5a3 0.007 2.1E208

rs3711751 5 137393986 0.290 5qG2 4933404O12Rik 0.009 5.9E207

rs13478656 6 21893927 0.078 6qA3.1 Ing3 0.038 v1.0E218

rs3665567 6 71342207 0.442 6qC1 Rmnd5a 0.043 6.4E213

rs3671932 6 134808128 0.228 6qG1 Crebl2 0.041 2.9E207

rs3657482 7 121209199 0.458 7qF1 Rras2 0.013 0.559

rs13479673 8 30344780 0.102 8qA3 Unc5d 0.017 3.5E208

rs33227034 8 131027085 0.480 8qE2 Nrp1 0.013 0.016

rs29634420 9 16961090 0.075 9qA2 Gm5611 0.006 0.015

rs13480141 9 36754648 0.474 9qA4 Pknox2 0.015 6.7E207

rs13480826 10 127874456 0.194 10qD3 Rnf41 0.017 2.6E204

rs3719526 10 127890255 0.194 10qD3 Smarcc2 1.4E214 2.6E204

rs3670360 11 6153674 0.107 11qA1 Ddx56 0.051 4.2E210

rs13481186 11 100224674 0.441 11qD Jup 0.003 2.1E206

rs13481187 11 100513551 0.441 11qD Zfp385c 5.5E215 2.1E206

rs6393715 11 111796714 0.322 11qE2 Gm11679 0.002 1.000

rs13472132 13 55515090 0.184 13qB1 Slc34a1 0.002 3.0E205

rs3692326 13 99316615 0.143 13qD1 Gm10320 0.028 v1.0E218

rs4161101 16 10701008 0.369 16qA1 Clec16a 0.002 0.537

rs4163042 16 13142435 0.172 16qA1 Ercc4 0.001 0.005

rs3714738 16 14722893 0.091 16qA1 Si2 0.008 1.5E203

rs4219905 16 92999911 0.348 16qC4 Runx1 0.024 3.3E209

rs33886220 17 33354677 0.345 17qB1 Zfp955a 0.165 v1.0E218

rs33477985 17 33744640 0.345 17qB1 Myo1f 1.7E215 v1.0E218

rs33661797 17 35276713 0.456 17qB1 Bag6 0.038 2.4E210

rs13482968 17 37268628 0.445 17qB1 Olfr93 0.061 1.8E210

rs33270235 17 38311721 0.093 17qB1 Olfr134 0.011 v1.0E218

rs3668036 17 45823731 0.339 17qB3 Tmem63b 0.004 7.4E211

rs3712953 17 50402827 0.076 17qC Dazl 0.021 6.0E208

rs3720827 18 63449870 0.248 18qE1 Fam38b 0.020 v1.0E218

rs13483449 18 77559708 0.141 18qE3 8030462N17Rik 0.023 5.1E211

*Gene names that SNPs belong to or are closest to.
doi:10.1371/journal.pone.0051198.t006
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Table 7. SNPs selected by individual Lasso on CD4/CD8 ratio.

SNP Chromosome Position MAF Band Gene* Lasso

b p-value

rs13475847 1 45969220 0.301 1qC1.1 Slc40a1 0.017 1.4E204

rs3727162 1 118830782 0.098 1qE2.3 Cntp5a 20.015 8.7E211

rs13476234 1 172771818 0.479 1qH3 Atf6 0.031 0.004

rs13476239 1 174151892 0.346 1qH3 Atp1a4 20.002 1.9E205

rs13476242 1 175295510 0.423 1qH3 Cadm3 20.034 2.5E204

rs13476251 1 176722388 0.430 1qH3 Fmn2 20.024 1.000

rs13476764 2 127974055 0.360 2qF1 Bcl2l11 0.007 1.000

rs6411422 2 128199227 0.447 2qF1 Gm14005 0.018 1.000

rs3718812 3 52605874 0.155 3qC Cog6 2.4E204 8.2E210

rs3674296 3 52738092 0.155 3qC Cog6 20.010 8.5E210

rs3709732 3 117669810 0.259 3qG1 Snx7 20.012 7.6E212

rs6176477 3 117874757 0.259 3qG1 Snx7 0.013 7.8E212

rs13477434 3 136689645 0.482 3qG3 Gm10955 0.008 3.7E207

rs13477551 4 9051848 0.463 4qA1 Rps18-ps2 0.008 2.9E209

rs13477584 4 17051798 0.353 4qA2 Gm11850 20.009 9.7E210

rs13478285 5 61706070 0.078 5qC3.1 G6pd2 20.027 0.001

rs13478286 5 62201328 0.078 5qC3.1 G6pd2 3.1E213 0.003

rs29501536 5 72711078 0.465 5qC3.2 Corin 20.011 v1.0E218

rs31537882 5 72995337 0.465 5qC3.2 Cnga1 23.4E214 6.4E213

rs3711751 5 137393986 0.290 5qG2 4933404O12Rik 0.026 2.29E212

rs13478801 6 65057795 0.365 6qC1 Smarcad1 20.009 v1.0E218

rs3665567 6 71342207 0.436 6qC1 Rmnd5a 20.072 v1.0E218

rs13478941 6 103348834 0.441 6qE1 Chl1 0.015 5.6E208

rs6334723 6 134651968 0.368 6qG1 Loh12cr1 20.042 1.1E212

rs13479376 7 91596873 0.074 7qD3 Gm2115 0.005 4.2E208

rs13479465 7 120046978 0.075 7qF1 Tead1 20.020 2.1E204

rs13479621 8 15993378 0.451 8qA1.1 Csmd1 20.044 v1.0E218

rs13479930 8 97201198 0.248 8qC5 Pllp 0.013 0.001

rs6180306 8 109166165 0.074 8qD3 Cdh1 20.006 0.002

rs29634420 9 16961090 0.075 9qA2 Gm5611 20.018 4.2E204

rs6280411 10 125575083 0.451 10qD3 AC153489.1 20.024 1.11E207

rs3701568 10 128933102 0.248 10qD3 Olfr790 0.001 1.1E209

rs3670360 11 6153674 0.107 11qA1 Ddx56 0.039 v1.0E218

rs3656583 11 64442910 0.456 11qB3 Gm12291 0.030 1.5E209

rs6297520 11 64472210 0.456 11qB3 Gm12291 20.003 2.5E209

rs13481170 11 95489416 0.074 11qD Gm11528 0.038 v1.0E218

rs3684699 12 28209015 0.076 12qA2 Sox11 0.027 0.001

rs13481411 12 42060667 0.071 12qB1 Immp2l 20.015 0.001

rs13481412 12 42722660 0.071 12qB1 Immp2l 2.4E216 0.004

rs13472132 13 55515090 0.184 13qB1 Slc34a1 0.020 3.4E208

rs13482225 14 65324729 0.363 14qD1 Kif13b 20.011 0.076

rs4139535 14 109988359 0.082 14qE3 Slitrk1 20.004 0.009

rs6209981 14 110067383 0.082 14qE3 Slitrk1 26.3E215 0.031

rs31100152 14 110432009 0.082 14qE3 n-R5s50 7.7E214 0.041

rs4163058 16 13269758 0.181 16qA1 Mkl2 0.003 9.3E206

rs4163196 16 13400890 0.181 16qA1 Mkl2 1.5E216 8.8E205

rs4199044 16 69289859 0.449 16qC2 Speer2 0.007 1.2E206

rs13482952 17 32937360 0.345 17qB1 Zfp811 0.230 v1.0E218
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Table 8. SNPs selected by individual Lasso on CD4:CD3.

SNP Chromosome Position MAF Band Gene* Lasso

b p-value

rs13475794 1 32202097 0.189 1qB Khdrbs2 29.5E204 1.9E205

rs13476239 1 174151892 0.346 1qH3 Atp1a4 0.012 0.014

rs3682465 2 156317950 0.146 2qH1 Epb4.1l1 0.007 4.7E208

rs3679962 3 127795535 0.490 3qG2 Gm10650 0.016 0.135

rs6290401 3 142297855 0.314 3qH1 Gbp2 0.003 1.2E208

rs13477459 3 142492044 0.354 3qH1 Pkn2 0.011 2.6E209

rs29501536 5 72711078 0.465 5qC3.2 Corin 6.1E205 v1.0E218

rs3710735 5 73123583 0.465 5qC3.2 Txk 21.4E216 2.2E212

rs6340166 5 73188279 0.465 5qC3.2 Tec 0.011 1.000

rs4225267 5 73700837 0.465 5qC3.2 Ociad1 21.8E216 1.000

rs3711751 5 137393986 0.290 5qG2 4933404O12Rik 20.010 9.4E212

rs13478656 6 21893927 0.078 6qA3.1 Ing3 0.014 2.0E210

rs13478800 6 64766250 0.435 6qC1 Atoh1 0.005 v1.0E218

rs3665567 6 71342207 0.442 6qC1 Rmnd5a 0.100 v1.0E218

rs13479621 8 15993378 0.441 8qA1.1 Csmd1 0.027 v1.0E218

rs13479673 8 30344780 0.102 8qA3 Unc5d 0.011 8.6E209

rs13480141 9 36754648 0.474 9qA4 Pknox2 0.029 1.2E211

rs13480153 9 40483617 0.455 9qA5.1 9030425E11Rik 20.003 1.7E211

rs6280411 10 125575083 0.451 10qD3 AC153489.1 0.028 8.5E211

rs13480817 10 125932724 0.451 10qD3 AC153489.1 21.7E216 3.2E210

rs29383570 10 127146595 0.420 10qD3 Myo1a 0.004 4.3E210

rs13481170 11 95489416 0.074 11qD Gm11528 20.055 v1.0E218

rs3692326 13 99316615 0.143 13qD1 Gm10320 0.014 v1.0E218

rs4219905 16 92999911 0.348 16qC4 Runx1 20.040 v1.0E218

rs13482952 17 32937360 0.345 17qB1 Zfp811 20.194 v1.0E218

rs33661797 17 35276713 0.456 17qB1 Bag6 20.154 v1.0E218

rs33270235 17 38311721 0.093 17qB1 Olfr134 0.007 v1.0E218

rs3712953 17 50402827 0.076 17qC Dazl 20.113 v1.0E218

rs13483448 18 77559708 0.141 18qE3 Loxhd1 20.023 6.7E213

rs13483449 18 77876027 0.141 18qE3 8030462N17Rik 4.8E215 8.6E213

*Gene names that SNPs belong to or are closest to.
doi:10.1371/journal.pone.0051198.t008

Table 7. Cont.

SNP Chromosome Position MAF Band Gene* Lasso

b p-value

rs13459151 17 33078090 0.345 17qB1 Cyp4f13 1.3E216 v1.0E218

rs33886220 17 33354677 0.345 17qB1 Zfp955a 21.4E217 v1.0E218

rs33661797 17 35276713 0.456 17qB1 Bag6 0.126 2.1E211

rs3712953 17 50402827 0.076 17qC Dazl 0.076 v1.0E218

rs6194426 19 50203520 0.286 19qD1 Sorcs1 0.010 1.5E206

*Gene names that SNPs belong to or are closest to.
doi:10.1371/journal.pone.0051198.t007
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Discussion

In the study of complex diseases, it is not uncommon that a

single trait cannot provide a comprehensive description, and

multiple traits need to be measured. In this article, we analyze data

with multiple response variables under the assumption that they

have the same set of important SNPs. A penalization approach is

developed for marker selection. The proposed approach can

accommodate the joint effects of multiple SNPs and be more

informative than single-SNP analysis. Compared with the existing

approaches that analyze different traits separately, it can more

effectively accommodate the correlation among traits and hence

be more efficient in marker selection. Numerical studies, including

simulation and analysis of the heterogeneous stock mice dataset,

show satisfactory performance of the proposed approach.

The heterogeneous stock mice data have two continuous

response variables with marginally normal distributions. With

other types of response variables, there is a rich literature on joint

modeling, which can be adopted to couple with the proposed

marker selection. The proposed approach is based on the group

Lasso penalty. We expect that other ‘‘group-type’’ penalties, such

as group SCAD or group bridge, can be applied. The group Lasso

is selected because of its relatively low computational cost, which is

especially desirable with high-throughput data. In our numerical

study, we focus on the scenario where the MAFs are not very low.

When the MAFs are low, our unpublished numerical study

suggests that penalization methods may not perform well because

the covariate design matrix is ‘‘overly sparse’’. Using penalization

methods with rare variants is still being explored. Analysis of the

heterogeneous stock mice data shows that the proposed approach

can identify SNPs missed by single-response analysis. In addition,

it has improved prediction performance. Therefore, the proposed

method provides a useful alternative to the current analysis of

multivariate traits in GWAS.
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