
Analysis of GPGPU Platforms Efficiency in General-

Purpose Computations

P. Kartashev
1
 and V. Nazaruk

1

1
Institute of Applied Computer Systems, Riga Technical University, Riga, Latvia

Abstract - Nowadays a technique of using graphics process-

ing units (GPUs) for general-purpose computing (or GPGPU)

is becoming more and more widespread. The goal of this pa-

per is to analyze efficiency of computing with use of the

GPGPU technique, depending on several factors. In this pa-

per, there are analyzed differences in performance and plat-

form organization between widespread GPGPU computa-

tional platforms (both hardware and software). There are also

described differences between CPU and GPU computations,

as well as presented performance measurements for some

GPGPU hardware architectures. This paper can help soft-

ware developers choose more appropriate ways to implement

specific fairly large computational tasks.

Keywords: graphics processing units (GPUs), general-

purpose computing on graphics processing units (GPGPU),

OpenCL

1 Introduction

 Many modern computers (approximately since 2006)

have video cards that can be used not only for performing

calculations connected with graphics, but also for arbitrary

(even not related with graphics) calculations. Such technique

of using graphic processing units for general-purpose calcula-

tions is called general-purpose computing on graphics proc-

essing units (GPGPU).

 Therefore, nowadays (in contrast to a period of several

years before) most processing systems belong to one of the

following two classes:

— central processing units (CPUs),

— graphics processing units (GPUs).

 In order to use GPUs for computations, it is needed to

write a program which uses a specific GPGPU programming

model and architecture. Nowadays there exist several GPGPU

platforms, which implement some different programming

models and/or architectures; most notable of them include

NVIDIA CUDA, OpenCL, Microsoft DirectCompute, ATI

Stream.

 For some kind of applications (usually for those which

are multi-threaded and/or parallel), the use of general-purpose

computations on modern GPUs can achieve speeds way be-

yond that on modern CPUs. Therefore, the use of graphics

processing units for general-purpose computations is a topical

sphere of research nowadays. The goal of this paper is to

analyze efficiency of computing with use of GPGPU tech-

nique, depending on several factors, including target process-

ing units, as well as GPGPU platforms themselves.

 When speaking about the efficiency of GPGPU plat-

forms, the thing that should be considered first is execution

speed of programs which use the GPGPU technique. This

mostly depends on specific processing units used for calcula-

tions, but also on a specific GPGPU platform architecture and

programming model.

 In this paper, there are analyzed and explained differ-

ences in performance and platform organization between

GPGPU computational platforms (both hardware and soft-

ware). Such GPGPU model comparison can help developers

choose from these platforms to achieve best compatibility,

speed, and portability for their GPGPU applications. Some

guidelines for GPGPU developers, when they can use each of

these platforms best, are formulated.

 In the paper, there are also described differences be-

tween CPU and GPU computations. In our work, a compari-

son of GPU and CPU instructions is provided. There are pre-

sented performance measurements for GPGPU hardware

architectures (including information about performance and

time utilization of target processing units); some of the advan-

tages and disadvantages of platforms are determined. Results

concerning the performance measurements are based on prac-

tical experiments: by the authors, there was written and util-

ized an application (for the OpenCL programming model) for

measuring the time of execution of different types of calcula-

tions. The methodology used is discussed further in this pa-

per.

2 General-purpose computations on

GPUs

 A GPU is specialized for compute-intensive, highly

parallel computation — exactly what graphics rendering

does — and therefore designed in such a way that more tran-

sistors are devoted to data processing rather than data caching

and flow control. A GPU is suited to problems that can be

expressed as data-parallel computations — the same program

is executed on many data elements in parallel — with high

arithmetic intensity. Same program is executed for each data

element, there is a lower requirement for sophisticated flow

control, and because it is executed on many data elements and

has high arithmetic intensity, the memory access latency can

be hidden with calculations instead of big data caches.

 Many applications that process large data sets can use a

data-parallel programming model to speed up the computa-

tions. In 3D graphics, rendering large arrays of pixels and

vertexes are processed in parallel are applied to parallel

threads [1]. Unlike CPUs, GPUs have a parallel throughput

architecture that emphasizes executing many concurrent

threads slowly, rather than executing a single thread very fast.

This approach of solving general purpose problems on GPUs

is known as GPGPU. GPU has advantage over CPU by run-

ning data in parallel — benefit many tasks such as

video/audio processing, large data sets processing, computa-

tional modelling (as industrial, weather, nature, particle simu-

lation), ray-tracing, post-processing of rendered images, video

encoding and decoding, image scaling, stereo vision, and

pattern recognition. Many algorithms outside the field of

image rendering and processing are accelerated by data-

parallel processing, from general signal processing or physics

simulation to computational finance or computational biology

[1].

 The main GPU advantage over CPU is its high through-

put. Whilst CPU performance now increases only ~26% a

year, GPU performance increases more than 100% a year.

 GPU uses different architecture using many ALU units

in the chip is the main difference from CPU, for example

AMD PHENOM II X4 has 12 ALU, but GeForce GT240

GPU — 96 ALU (see Table 1).

 GPU developers provide free GPU programming librar-

ies (or SDKs), e. g. OpenCL, CUDA by Nvidia, Stream SDK

by AMD.

 CUDA (an acronym for ―Compute Unified Device Ar-

chitecture‖) is a parallel computing architecture developed by

NVIDIA. CUDA is the computing engine in NVIDIA graph-

ics processing units (GPUs) that is accessible to software

developers through variants of industry standard program-

ming languages. CUDA is accessible to software developers

through C for CUDA, CUDA Fortran Compiler and third

party language wrappers, such as Jcuda, pyCUDA, etc.

CUDA has been used to accelerate non-graphical applica-

tions. Programmers use C for CUDA (C with NVIDIA exten-

sions and certain restrictions), compiled through NVCC com-

piler to code algorithms for execution on the GPU. CUDA

gives developers access to the virtual instruction set and

memory of the parallel computational elements in CUDA

GPUs.

 CUDA uses a recursion-free, function-pointer-free sub-

set of the C language, plus some simple extensions. However,

a single process must spread across multiple disjoint memory

spaces, unlike other C language runtime environments. Fermi

GPUs now have (nearly) full support of C++ [2].

 OpenCL (Open Computing Language) is a framework

for writing programs that execute across heterogeneous plat-

forms consisting of CPUs, GPUs, and other processors.

OpenCL provides parallel computing using task-based and

data-based parallelism.

 OpenCL includes a language based on the C99 standard

for writing kernels, plus APIs that are used to define and then

control the GPGPU platforms. Programs written on OpenCL

can access GPU of all supported GPU vendors for GPGPU

computations. The OpenCL specification is under develop-

ment by Khronos Consortium, which is open to everyone [3].

 Microsoft’s DirectCompute is a new GPU Computing

API that runs under both Windows Vista and Windows 7.

DirectCompute is supported on current DirectX 10 class

GPUs, DirectX 11 GPUs. It allows developers to harness the

massive parallel computing power of GPUs to create compel-

ling computing applications in consumer and professional

markets [4].

 GPGPU platform comparison is described in further

sections.

Table 1. Comparison of modern CPU and GPU

used for the measurements in this paper

 AMD Phenom II

X4

NVIDIA GeForce

GT240

ALU in core / multiproces-

sor

3 8

Cores / Multiprocessors 4 12

Total ALU 12 96

Peak theoretical perform-

ance, GFLOPS

48 (3000 MHz) 385.9 (MADD+MUL)

(3 instructions per cycle)

(~1400 MHz)

3 Related works

 In this section, there are discussed similar works to the

research topic.

 V. Volkov’s work [5] shows that matrix manipulation

with GPU can achieve speedup up to 2 times greater in dou-

ble precision and 4–8 times for single precision than CPU.

Comparison of performance is maintained. In [6], the authors

provide a research study to achieve 10
3
 speedup by using

algorithm implementation with CUDA. Some works imple-

ment whole complex of algorithms on GPU: for example, the

work [7] shows up to 20–100 times speedup, by implement-

ing SQL-Lite SQL engine on CUDA architecture. The work

[8] shows 20x speedup over CPU in AES cryptography. Re-

search has been done by using NVIDIA CUDA. The work [9]

proves that GPGPU computing problem is high PCI-E latency

and low bandwidth, and sometimes optimizations required to

achieve performance and there is big speedup in processing

when using large data-set processing on GPU.

 These works prove the efficiency of GPU based algo-

rithms and describe useful uses of GPU. GPU has been used

mainly for scientific computations and large data processing.

In this field, according to preceding works, GPU mostly out-

performs CPU.

4 Comparison of GPGPU platforms

 In this section, most widespread GPGPU programming

models are described in context of comparison with each

other.

 We describe native programming language support and

well as support for third party languages, for example Java,

Python. We compare 3 main GPGPU platforms: OpenCL,

CUDA, DirectCompute. We provide 3 criteria for the com-

parison:

1) Portability: what operating systems GPGPU compu-

tations could be made on?

2) Third party language support: is there support for

GPGPU platform function call from other program-

ming languages?

3) Possible execution on CPU (heterogeneous comput-

ing).

 The weakness of DirectCompute is that it uses compute

shader, which has specific restrictions: initialize a Direct3D

device, create data buffers (resources) for shader, set shader

state and launch it. Specific programming rules must be met.

 As one can see, the DirectCompute API relies on

DirectX 10 or 11 API to initialize GPU and make computa-

tions possible.

 Despite DirectCompute benefits, that there is no need to

special driver to make GPGPU computations using Di-

rectCompute, and computations will run on every GPU that

supports DirectX 10 or 11. DirectCompute is available for

Windows Vista/7 only.

 OpenCL and CUDA provide more flexibility and easy-

to-write applications for GPU. We do not need compute

shader to write and execute CUDA and OpenCL application.

CUDA is available to only NVIDIA GPU's – application

which was written for NVIDIA CUDA platform cannot be

executed on ATI GPU's. OpenCL in comparison can be exe-

cuted on various kinds or processing units, the only request is

OpenCL driver from manufacturer of processing unit.

 For the comparison summary, see Table 2.

Table 2. Summary of GPGPU programming model comparison

 OpenCL CUDA DirectCompute

Programming C/C++ extensions C/C++ extensions C/C++, Shader

Language

Portability Windows, Linux,

MacOS

Windows, Linux,

MacOS

Windows Vista/7

with DirectX

10/11

API OpenCL API CUDA API DirectX 11 API

 OpenCL CUDA DirectCompute

Third party lan-

guage support

yes

(JOCL,

PyOPENCL etc.)

yes

(JCUDA, pyCU-

DA, Fortran PGI

CUDA compiler

etc.)

no

Heterogeneous

computing possi-

ble?

yes partial

(only with pro-

gram recompila-

tion)

no

(possible execu-

tion only on GPU)

5 Analysis of an impact of a GPGPU

platform on computations

 As it is stated before in this paper, use of GPGPU in an

application can have an effect on the resulting characteristics

of computations. The impact can be made, for example, by a

target architecture for a GPGPU application. Such an impact

is analyzed next; as well as further in this section, there is

analyzed a possible impact of a platform on the performance

of a GPGPU application.

5.1 Comparison of possible target hardware

architectures for GPGPU: CPUs and

GPUs

 Platforms for general-purpose computing on graphics

processing units (for example, OpenCL and CUDA) provide

ways to execute an application written with a GPGPU tech-

nique also on computers where there are no GPGPU-

compatible GPUs. In these cases, all instructions of the pro-

grams are executed on CPU — a GPGPU environment is

imitated on CPU in a way that is transparent for an executing

program.

 This means that there exist two main target processing

unit models for programs with GPGPU: when a program is

executed both on a CPU and a GPGPU-enabled GPU, and

when it is run only on a CPU. Therefore, it is important to

compare which each other these two possible modes of oper-

ating for a GPGPU program.

 For much software, the speed of their execution is of

great importance. Bottlenecks for this speed usually are a

processor (or processors) on which the software is executed,

as well as memory and buses. However, when the software

highly depends on calculations, or in the software there are

many continuous uniform operations, the execution speed is

mostly dependent on performance of the processing units.

 In order to efficiently maximize the speed of execution

of an application, a processing unit should be used to the

extent possible.

 All GPUs suitable for arbitrary calculations (i. e., with a

support of GPGPU) are multi-core (for example, NVIDIA

GeForce 580 GTX consists of 16 multiprocessors); and a

large number of modern CPUs are also multi-core.

 Modern GPUs, in contrast to CPUs, are composed of a

large number of cores. Moreover, computational power of

GPUs in average is comparable to (and mostly larger than)

computational power of CPUs. This means that GPUs (as

well as multi-core CPUs) provide a big possibility for speed-

ing up execution of applications [10].

 A majority of common algorithms are defined in a se-

quential way (i. e., the corresponding code of an algorithm is

sequential). However, the fact that nowadays most of modern

processors are multi-core assumes that for a specific sequen-

tial algorithm in order to execute efficiently, it should be

parallelized — divided into several maximally independent

(parallel) tasks. Thus, in order to take advantage of using

multi-core processors, algorithms should be adapted for paral-

lel execution [10].

 Despite both CPUs and GPUs are multi-core, their ar-

chitectures differ significantly. According to Flynn’s taxon-

omy [11], multi-core CPUs have in general a MIMD (Multi-

ple Instruction stream, Multiple Data stream) architecture,

with each core usually having a support for a set of SIMD

(Single Instruction, Multiple Data) instruction. Alternatively,

all GPGPUs have a SIMD architecture [10].

 The difference between the architectures of multi-core

CPUs and GPGPUs substantiates differences between optimi-

zation processes for these two types of processing systems.

However, all optimizations for a SIMD architecture are also

applicable to a MIMD architecture — because a MIMD archi-

tecture can be considered as a more enriched SIMD architec-

ture [10]. This means that when writing an application for a

heterogeneous GPGPU programming model and targeting

and correspondingly optimizing it for execution on a SIMD

GPU, the optimizations will work and will have effect also

when executing on a CPU.

 There are differences between x86 CPU instructions and

GPU instructions — GPU takes with one instruction also

memory reference (address). This makes addressing more

effective. Also GPU can deploy single instructions with many

operands into SIMD array, which can consist of 8–512

(NVIDIA GPU) ALU. This makes developing parallel appli-

cations in a more effective way. In CUDA, OpenCL, Di-

rectCompute, there is an emended native parallelism support.

That make sense for example GPU executes parallel code 100

times faster than CPU, but CPU executes serial code 50 times

faster than GPU. It is efficient to combine CPU and GPU to

make possible heterogeneous computing with task diver-

gence.

5.2 Analysis of performance of GPGPU

applications

 If one wants to use a processing unit to the maximal

extent, before implementing an application it is good to know

some guidelines, what actions which will perform the applica-

tion are supposed to be fast, and which actions are supposed

to be slow while running on a specific processing unit. In case

of slow actions, at the application design stage, it is useful to

avoid using slow operations to the extent possible. Therefore,

it is useful to know, which operations on a specific applica-

tion platform will perform faster, and which — slower.

 In this section there are described practical results con-

cerning speed of execution of primitive unary and binary

operations (including basic arithmetical and bitwise Boolean

operations) for three commonly used data types (char, int,

and float) on the OpenCL GPGPU platform. OpenCL as a

programming model was chosen mainly because of its sup-

port for ATI, NVIDIA GPUs and CPU, as well as multiple

operating systems. OpenCL provides opportunity to run the

same code on CPU and GPU.

 For the measurement of speed, by the authors there was

written a test application — an OpenCL program in the C++

programming language. To maximally smooth out the meas-

urement errors, to measure small amounts of time with a high

precision, each operation with the same input data was called

10 million times. This was implemented in a following way:

an OpenCL kernel contained one operation (or a block of

several similar operations), and the kernel was executed a

specific number of times (for different data values) in a spe-

cial loop (provided by an OpenCL programming model). The

measurement of time intervals needed for the kernel to exe-

cute was implemented in the following way: the system time

was measured just before and just after the execution of the

kernel, and the difference of these values was considered as

the execution time. The system time was measured using

system calls, with the precision of several milliseconds.

 The test programs (32-bit) were executed on a computer

with an AMD Phenom II X4 965 CPU (3.40 GHz in each of

4 cores), 4 GB RAM, and 64-bit Microsoft Windows 7 oper-

ating system, and the following video adapters:

— GPU ATI = ATI Radeon HD 5750,

— GPU NVIDIA = NVIDIA GeForce 240 GT.

 With GPU NVIDIA due to technical problems there

were measured only operations on the char data type.

 It is needed to be stated that the obtained CPU perform-

ance is when forcing to run an OpenCL application on a CPU,

not GPU. This means that in such a way obtained perform-

ance is not the same as the performance of a CPU when an

application is implemented especially for running on CPU

(i. e., without a use of a GPGPU).

 The generalized results of the experiments in different

views are provided in Figure 1–Figure 3.

CPU GPU ATI
GPU

NVIDIA
CPU GPU ATI CPU GPU ATI

char float int

(empty kernel) 17,02 2,02 0,48 18,30 2,04 19,32 2,09

arithmetical 14,45 9,47 1,87 16,91 2,01 14,68 2,01

arithmetical and bitwise 6,88 8,48 1,60 6,93 1,98

assigning a constant 20,52 4,44 1,30 20,31 2,00 20,70 2,01

assigning a variable 19,28 4,44 1,30 24,28 2,00 21,24 2,01

bitwise 15,12 8,62 1,75 15,23 1,96

negation 24,48 8,47 1,91 28,06 2,06 24,47 2,05

0,00

5,00

10,00

15,00

20,00

25,00

30,00

Figure 1. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type,

and a target processing unit

0,00

5,00

10,00

15,00

20,00

25,00

30,00

(e
m

p
ty

 k
e

rn
e

l)

ar
it

h
m

e
ti

ca
l

ar
it

h
m

e
ti

ca
l a

n
d

 b
it

w
is

e

as
si

gn
in

g
a

co
n

st
an

t

as
si

gn
in

g
a

va
ri

ab
le

b
it

w
is

e

n
e

ga
ti

o
n

(e
m

p
ty

 k
e

rn
e

l)

ar
it

h
m

e
ti

ca
l

ar
it

h
m

e
ti

ca
l a

n
d

 b
it

w
is

e

as
si

gn
in

g
a

co
n

st
an

t

as
si

gn
in

g
a

va
ri

ab
le

b
it

w
is

e

n
e

ga
ti

o
n

(e
m

p
ty

 k
e

rn
e

l)

ar
it

h
m

e
ti

ca
l

ar
it

h
m

e
ti

ca
l a

n
d

 b
it

w
is

e

as
si

gn
in

g
a

co
n

st
an

t

as
si

gn
in

g
a

va
ri

ab
le

b
it

w
is

e

n
e

ga
ti

o
n

char float int

CPU

GPU ATI

GPU NVIDIA

Figure 2. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type,

and a target processing unit. It is easy to see that almost in all tested cases the fastest target processing unit is NVIDIA GPU, and the lowest — CPU

Figure 3. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type,

and a target processing unit. One can see that on GPUs all operations with char data type (which takes integer values from -128 to 127) are significantly slower

than operations with int and float data types. However, on GPUs operations with float data type are approximately as fast as with int data type; the same situa-

tion is on CPUs with all data types

 From Figure 2 one can see that the fastest target process-

ing unit is NVIDIA GPU, and the lowest — CPU. This is true

almost for all operations. The performance of two different

GPUs should not be compared directly; however, comparing

the performance of the GPUs with a performance of the

CPUs, one can see that the formers are much higher than the

latter.

 From Figure 3 one can see that on GPUs all operations

with char data type (takes integer values from -128 to 127)

are significantly slower than operations with int and float data

types. This situation is slightly different from the usual situa-

tion with CPUs, where operations with char operands per-

form much faster than operations with int and float operands.

Also, from the figure it is seen that, on GPUs operations with

float data type are approximately as fast as with int data type;

the same situation is on CPUs with all data types.

 The differences between the obtained results showing

GPU instruction performance, and generally known results on

the performance of CPU instructions (including that floating-

point operations on a CPU are performed much slower that

integer operations) can be explained with the differences in

the instruction sets and architectures of GPUs and CPUs. (For

example, in [12], there is described instruction set architec-

ture for ATI Evergreen Family GPUs).

6 Conclusions

 When designing programs for GPUs which support

general-purpose computing, in order to make programs be

efficient, it is necessary to be aware of some specific features

of GPUs. This includes the knowledge of the performance

level of primitive mathematic operations — as there was

shown in this paper, in calculations, it is better not to use

variables of small size (i. e., of char/byte data type) but re-

place them with integer-type or floating point variables.

 When intending an application for a GPGPU platform, it

is needed to be known that in case of there is no GPGPU-

enabled GPU on a destination computer, the performance will

somewhat suffer. Speaking about GPGPU software platforms,

it can be stated that OpenCL and CUDA provide more flexi-

bility and easiness to write applications for GPU: there is no

need for a compute shader to be used to execute CUDA and

OpenCL app (unlike in DirectCompute). However, Di-

rectCompute benefits from the point of view that there is no

need to special driver to make GPGPU computations using

DirectCompute, and computations will run on every GPU that

supports DirectX 10, 11 or later. In addition to the above, in

many cases the use of a specific GPGPU software platform

(except OpenCL) can be limited either by GPU manufacturer

(CUDA supports only NVIDIA GPUs, and Stream supports

only ATI GPUs), or by a running operating system (Di-

rectCompute cannot be run, for example, on Linux).

0,00

5,00

10,00

15,00

20,00

25,00

30,00

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

C
P

U

G
P

U
 A

TI

G
P

U
 N

V
ID

IA

arithmetical arithmetical
and bitwise

assigning a
constant

assigning a
variable

bitwise negation

char float int

 One of the directions of the further work is to improve

the application used for the experiments in order to be able

obtain wider measurement results (for example, not only for

arithmetic or Boolean operations). Also, the experiments

should be made on a larger set of different processing units.

 GPGPU computations benefit in such tasks as image

processing, physics simulations, large array processing, and

many others tasks which deals with large data sets. A signifi-

cant importance is information synchronization between

threads that uses shared memory. As CPU cores can also use

shared memory, it is possible for the further research to com-

pare CPU and GPU data synchronization. Also the future

research may include a new field of study — heterogeneous

computing, which include both CPU and GPU computations.

This is topical when a CPU and a GPU are combined on sin-

gle die. Future research in the heterogeneous computing and

APU (accelerated heterogeneous processing units) field may

give results in understanding how to accelerate today’s algo-

rithms and programs in order for them to run faster on hetero-

geneous processors. In further studies, there could be also

discussed the way how computations can be transferred be-

tween CPU and GPU, and how effectively a program written

for GPU can be translated for running on CPU, and vice

versa.

7 References

[1] ―NVIDIA OpenCL Programing guide for the CUDA

architecture, Version 3.2‖. [Online]. Available:

http://developer.download.nvidia.com/compute/cuda/3_2/tool

kit/docs/OpenCL_Programming_Guide.pdf. [Accessed: Oct

2010].

[2] ―CUDA - Wikipedia, the free encyclopedia‖. [Online].

Available:

http://en.wikipedia.org/w/index.php?title=CUDA&oldid=389

564200. [Accessed: Oct 2010].

[3] ―OpenCL - Wikipedia, the free encyclopedia‖. [Online].

Available:

http://en.wikipedia.org/w/index.php?title=OpenCL&oldid=38

9311710. [Accessed: Oct 2010].

[4] ―DirectCompute - Wikipedia, the free encyclopedia‖.

[Online]. Available:

http://en.wikipedia.org/w/index.php?title=DirectCompute&ol

did=389634399. [Accessed: Oct 2010].

[5] V. Volkov and J. W. Demmel, ―Benchmarking GPUs to

tune dense linear algebra‖, University of California at Berk-

ley, SC08, November 2008. [Online]. Available:

http://parlab.eecs.berkeley.edu/sites/all/parlab/files/Benchmar

king%20GPUs%20to%20tune%20dense%20linear%20algebr

a.pdf. [Accessed: Oct 2010].

[6] A. C. Thompson, C. J. Fluke, D. G. Barnes, and

B. R. Barsdell, ―Teraflop per second gravitational lensing ray-

shooting using graphics processing units‖, Centre for Astro-

physics and Supercomputing, Swinburne University of Tech-

nology, May 2009. [Online]. Available:

http://arxiv.org/pdf/0905.2453.pdf. [Accessed: Oct 2010].

[7] P. Bakkum and K. Skadron, ―Accelerating SQL Data-

base Operations on a GPU with CUDA‖, Department of

Computer Science University of Virginia, GPGPU-3, March

2010. [Online]. Available:

http://www.cs.virginia.edu/~skadron/Papers/bakkum_sqlite_g

pgpu10.pdf. [Accessed: Oct 2010].

[8] S. Manavski, ―CUDA Compatible GPU as an Efficient

Hardware Accelerator for AES Cryptography‖, 2007 IEEE

International Conference on Signal Processing and Commu-

nications (ICSPC 2007), 24–27 November 2007, Dubai,

United Arab Emirates: 2007. [Online]. Available:

http://www.manavski.com/downloads/PID505889.pdf. [Ac-

cessed: Oct 2010].

[9] R. V. van Nieuwpoort, J. W. Romein, ―Using Many-

Core Hardware to Correlate Radio Astronomy Signals‖,

Netherlands Institute for Radio Astronomy, 23rd ACM Inter-

national Conference on Supercomputing. [Online]. Available:

http://www.cs.vu.nl/~rob/papers/ics09-correlator.pdf. [Ac-

cessed: Oct 2010].

[10] V. Nazaruk and P. Rusakov, ―Implementation of Cryp-

tographic Algorithms in Software: An Analysis of the Effec-

tiveness‖, Scientific Journal of Riga Technical University,

Vol. 43, pp. 97–105, 2010.

[11] M. Flynn, ―Some Computer Organizations and Their

Effectiveness‖. IEEE Transactions on Computers, Vol. C-21,

Issue 9, pp. 948–960, 1972.

[12] ―Evergreen Family Instruction Set Architecture. In-

structions and Microcode. Reference Guide‖, Advanced Mi-

cro Devices, Inc., September 2010. [Online]. Available:

http://developer.amd.com/gpu/ATIStreamSDK/assets/AMD_

Evergreen-Family_Instruction_Set_Architecture.pdf. [Ac-

cessed: Oct 2010].

http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/OpenCL_Programming_Guide.pdf
http://en.wikipedia.org/w/index.php?title=CUDA&oldid=389564200
http://en.wikipedia.org/w/index.php?title=CUDA&oldid=389564200
http://en.wikipedia.org/w/index.php?title=OpenCL&oldid=389311710
http://en.wikipedia.org/w/index.php?title=OpenCL&oldid=389311710
http://en.wikipedia.org/w/index.php?title=DirectCompute&oldid=389634399
http://en.wikipedia.org/w/index.php?title=DirectCompute&oldid=389634399
http://parlab.eecs.berkeley.edu/sites/all/parlab/files/Benchmarking%20GPUs%20to%20tune%20dense%20linear%20algebra.pdf
http://parlab.eecs.berkeley.edu/sites/all/parlab/files/Benchmarking%20GPUs%20to%20tune%20dense%20linear%20algebra.pdf
http://parlab.eecs.berkeley.edu/sites/all/parlab/files/Benchmarking%20GPUs%20to%20tune%20dense%20linear%20algebra.pdf
http://arxiv.org/pdf/0905.2453.pdf
http://www.cs.virginia.edu/~skadron/Papers/bakkum_sqlite_gpgpu10.pdf
http://www.cs.virginia.edu/~skadron/Papers/bakkum_sqlite_gpgpu10.pdf
http://www.manavski.com/downloads/PID505889.pdf
http://www.cs.vu.nl/~rob/papers/ics09-correlator.pdf
http://developer.amd.com/gpu/ATIStreamSDK/assets/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf
http://developer.amd.com/gpu/ATIStreamSDK/assets/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf

