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Abstract - Nowadays a technique of using graphics process-

ing units (GPUs) for general-purpose computing (or GPGPU) 

is becoming more and more widespread. The goal of this pa-

per is to analyze efficiency of computing with use of the 

GPGPU technique, depending on several factors. In this pa-

per, there are analyzed differences in performance and plat-

form organization between widespread GPGPU computa-

tional platforms (both hardware and software). There are also 

described differences between CPU and GPU computations, 

as well as presented performance measurements for some 

GPGPU hardware architectures. This paper can help soft-

ware developers choose more appropriate ways to implement 

specific fairly large computational tasks. 

Keywords: graphics processing units (GPUs), general-

purpose computing on graphics processing units (GPGPU), 

OpenCL  

 

1 Introduction 

 Many modern computers (approximately since 2006) 

have video cards that can be used not only for performing 

calculations connected with graphics, but also for arbitrary 

(even not related with graphics) calculations. Such technique 

of using graphic processing units for general-purpose calcula-

tions is called general-purpose computing on graphics proc-

essing units (GPGPU). 

 Therefore, nowadays (in contrast to a period of several 

years before) most processing systems belong to one of the 

following two classes: 

— central processing units (CPUs), 

— graphics processing units (GPUs). 

 In order to use GPUs for computations, it is needed to 

write a program which uses a specific GPGPU programming 

model and architecture. Nowadays there exist several GPGPU 

platforms, which implement some different programming 

models and/or architectures; most notable of them include 

NVIDIA CUDA, OpenCL, Microsoft DirectCompute, ATI 

Stream. 

 For some kind of applications (usually for those which 

are multi-threaded and/or parallel), the use of general-purpose 

computations on modern GPUs can achieve speeds way be-

yond that on modern CPUs. Therefore, the use of graphics 

processing units for general-purpose computations is a topical 

sphere of research nowadays. The goal of this paper is to 

analyze efficiency of computing with use of GPGPU tech-

nique, depending on several factors, including target process-

ing units, as well as GPGPU platforms themselves. 

 When speaking about the efficiency of GPGPU plat-

forms, the thing that should be considered first is execution 

speed of programs which use the GPGPU technique. This 

mostly depends on specific processing units used for calcula-

tions, but also on a specific GPGPU platform architecture and 

programming model. 

 In this paper, there are analyzed and explained differ-

ences in performance and platform organization between 

GPGPU computational platforms (both hardware and soft-

ware). Such GPGPU model comparison can help developers 

choose from these platforms to achieve best compatibility, 

speed, and portability for their GPGPU applications. Some 

guidelines for GPGPU developers, when they can use each of 

these platforms best, are formulated. 

 In the paper, there are also described differences be-

tween CPU and GPU computations. In our work, a compari-

son of GPU and CPU instructions is provided. There are pre-

sented performance measurements for GPGPU hardware 

architectures (including information about performance and 

time utilization of target processing units); some of the advan-

tages and disadvantages of platforms are determined. Results 

concerning the performance measurements are based on prac-

tical experiments: by the authors, there was written and util-

ized an application (for the OpenCL programming model) for 

measuring the time of execution of different types of calcula-

tions. The methodology used is discussed further in this pa-

per. 

2 General-purpose computations on 

GPUs 

 A GPU is specialized for compute-intensive, highly 

parallel computation — exactly what graphics rendering 

does — and therefore designed in such a way that more tran-

sistors are devoted to data processing rather than data caching 

and flow control. A GPU is suited to problems that can be 

expressed as data-parallel computations — the same program 

is executed on many data elements in parallel — with high 

arithmetic intensity. Same program is executed for each data 

element, there is a lower requirement for sophisticated flow 



control, and because it is executed on many data elements and 

has high arithmetic intensity, the memory access latency can 

be hidden with calculations instead of big data caches. 

 Many applications that process large data sets can use a 

data-parallel programming model to speed up the computa-

tions. In 3D graphics, rendering large arrays of pixels and 

vertexes are processed in parallel are applied to parallel 

threads [1]. Unlike CPUs, GPUs have a parallel throughput 

architecture that emphasizes executing many concurrent 

threads slowly, rather than executing a single thread very fast. 

This approach of solving general purpose problems on GPUs 

is known as GPGPU. GPU has advantage over CPU by run-

ning data in parallel — benefit many tasks such as 

video/audio processing, large data sets processing, computa-

tional modelling (as industrial, weather, nature, particle simu-

lation), ray-tracing, post-processing of rendered images, video 

encoding and decoding, image scaling, stereo vision, and 

pattern recognition. Many algorithms outside the field of 

image rendering and processing are accelerated by data-

parallel processing, from general signal processing or physics 

simulation to computational finance or computational biology 

[1]. 

 The main GPU advantage over CPU is its high through-

put. Whilst CPU performance now increases only ~26% a 

year, GPU performance increases more than 100% a year. 

 GPU uses different architecture using many ALU units 

in the chip is the main difference from CPU, for example 

AMD PHENOM II X4 has 12 ALU, but GeForce GT240 

GPU — 96 ALU (see Table 1). 

 GPU developers provide free GPU programming librar-

ies (or SDKs), e. g. OpenCL, CUDA by Nvidia, Stream SDK 

by AMD. 

 CUDA (an acronym for ―Compute Unified Device Ar-

chitecture‖) is a parallel computing architecture developed by 

NVIDIA. CUDA is the computing engine in NVIDIA graph-

ics processing units (GPUs) that is accessible to software 

developers through variants of industry standard program-

ming languages. CUDA is accessible to software developers 

through C for CUDA, CUDA Fortran Compiler and third 

party language wrappers, such as Jcuda, pyCUDA, etc. 

CUDA has been used to accelerate non-graphical applica-

tions. Programmers use C for CUDA (C with NVIDIA exten-

sions and certain restrictions), compiled through NVCC com-

piler to code algorithms for execution on the GPU. CUDA 

gives developers access to the virtual instruction set and 

memory of the parallel computational elements in CUDA 

GPUs. 

 CUDA uses a recursion-free, function-pointer-free sub-

set of the C language, plus some simple extensions. However, 

a single process must spread across multiple disjoint memory 

spaces, unlike other C language runtime environments. Fermi 

GPUs now have (nearly) full support of C++ [2]. 

 OpenCL (Open Computing Language) is a framework 

for writing programs that execute across heterogeneous plat-

forms consisting of CPUs, GPUs, and other processors. 

OpenCL provides parallel computing using task-based and 

data-based parallelism. 

 OpenCL includes a language based on the C99 standard 

for writing kernels, plus APIs that are used to define and then 

control the GPGPU platforms. Programs written on OpenCL 

can access GPU of all supported GPU vendors for GPGPU 

computations. The OpenCL specification is under develop-

ment by Khronos Consortium, which is open to everyone [3]. 

 Microsoft’s DirectCompute is a new GPU Computing 

API that runs under both Windows Vista and Windows 7. 

DirectCompute is supported on current DirectX 10 class 

GPUs, DirectX 11 GPUs. It allows developers to harness the 

massive parallel computing power of GPUs to create compel-

ling computing applications in consumer and professional 

markets [4]. 

 GPGPU platform comparison is described in further 

sections. 

Table 1. Comparison of modern CPU and GPU  

used for the measurements in this paper 

 AMD Phenom II 

X4 

NVIDIA GeForce 

GT240 

ALU in core / multiproces-

sor 

3 8 

Cores / Multiprocessors 4 12 

Total ALU 12 96 

Peak theoretical perform-

ance, GFLOPS 

48 (3000 MHz) 385.9 (MADD+MUL) 

(3 instructions per cycle) 

(~1400 MHz) 

3 Related works 

 In this section, there are discussed similar works to the 

research topic. 

 V. Volkov’s work [5] shows that matrix manipulation 

with GPU can achieve speedup up to 2 times greater in dou-

ble precision and 4–8 times for single precision than CPU. 

Comparison of performance is maintained. In [6], the authors 

provide a research study to achieve 10
3
 speedup by using 

algorithm implementation with CUDA. Some works imple-

ment whole complex of algorithms on GPU: for example, the 

work [7] shows up to 20–100 times speedup, by implement-

ing SQL-Lite SQL engine on CUDA architecture. The work 

[8] shows 20x speedup over CPU in AES cryptography. Re-

search has been done by using NVIDIA CUDA. The work [9] 

proves that GPGPU computing problem is high PCI-E latency 

and low bandwidth, and sometimes optimizations required to 

achieve performance and there is big speedup in processing 

when using large data-set processing on GPU. 

 These works prove the efficiency of GPU based algo-

rithms and describe useful uses of GPU. GPU has been used 



mainly for scientific computations and large data processing. 

In this field, according to preceding works, GPU mostly out-

performs CPU. 

4 Comparison of GPGPU platforms 

 In this section, most widespread GPGPU programming 

models are described in context of comparison with each 

other. 

 We describe native programming language support and 

well as support for third party languages, for example Java, 

Python. We compare 3 main GPGPU platforms: OpenCL, 

CUDA, DirectCompute. We provide 3 criteria for the com-

parison:  

1) Portability: what operating systems GPGPU compu-

tations could be made on? 

2) Third party language support: is there support for 

GPGPU platform function call from other program-

ming languages? 

3) Possible execution on CPU (heterogeneous comput-

ing). 

 The weakness of DirectCompute is that it uses compute 

shader, which has specific restrictions: initialize a Direct3D 

device, create data buffers (resources) for shader, set shader 

state and launch it. Specific programming rules must be met. 

 As one can see, the DirectCompute API relies on 

DirectX 10 or 11 API to initialize GPU and make computa-

tions possible. 

 Despite DirectCompute benefits, that there is no need to 

special driver to make GPGPU computations using Di-

rectCompute, and computations will run on every GPU that 

supports DirectX 10 or 11. DirectCompute is available for 

Windows Vista/7 only. 

 OpenCL and CUDA provide more flexibility and easy-

to-write applications for GPU. We do not need compute 

shader to write and execute CUDA and OpenCL application. 

CUDA is available to only NVIDIA GPU's – application 

which was written for NVIDIA CUDA platform cannot be 

executed on ATI GPU's. OpenCL in comparison can be exe-

cuted on various kinds or processing units, the only request is 

OpenCL driver from manufacturer of processing unit. 

 For the comparison summary, see Table 2. 

Table 2. Summary of GPGPU programming model comparison 

 OpenCL CUDA DirectCompute 

Programming C/C++ extensions C/C++ extensions C/C++, Shader 

Language 

Portability Windows, Linux, 

MacOS 

Windows, Linux, 

MacOS 

Windows Vista/7 

with DirectX 

10/11 

API OpenCL API CUDA API DirectX 11 API 

 OpenCL CUDA DirectCompute 

Third party lan-

guage support 

yes 

(JOCL, 

PyOPENCL etc.) 

yes 

(JCUDA, pyCU-

DA, Fortran PGI 

CUDA compiler 

etc.) 

no 

Heterogeneous 

computing possi-

ble?  

yes partial 

(only with pro-

gram recompila-

tion) 

no 

(possible execu-

tion only on GPU) 

5 Analysis of an impact of a GPGPU 

platform on computations 

 As it is stated before in this paper, use of GPGPU in an 

application can have an effect on the resulting characteristics 

of computations. The impact can be made, for example, by a 

target architecture for a GPGPU application. Such an impact 

is analyzed next; as well as further in this section, there is 

analyzed a possible impact of a platform on the performance 

of a GPGPU application. 

5.1 Comparison of possible target hardware 

architectures for GPGPU: CPUs and 

GPUs 

 Platforms for general-purpose computing on graphics 

processing units (for example, OpenCL and CUDA) provide 

ways to execute an application written with a GPGPU tech-

nique also on computers where there are no GPGPU-

compatible GPUs. In these cases, all instructions of the pro-

grams are executed on CPU — a GPGPU environment is 

imitated on CPU in a way that is transparent for an executing 

program. 

 This means that there exist two main target processing 

unit models for programs with GPGPU: when a program is 

executed both on a CPU and a GPGPU-enabled GPU, and 

when it is run only on a CPU. Therefore, it is important to 

compare which each other these two possible modes of oper-

ating for a GPGPU program. 

 For much software, the speed of their execution is of 

great importance. Bottlenecks for this speed usually are a 

processor (or processors) on which the software is executed, 

as well as memory and buses. However, when the software 

highly depends on calculations, or in the software there are 

many continuous uniform operations, the execution speed is 

mostly dependent on performance of the processing units. 

 In order to efficiently maximize the speed of execution 

of an application, a processing unit should be used to the 

extent possible. 

 All GPUs suitable for arbitrary calculations (i. e., with a 

support of GPGPU) are multi-core (for example, NVIDIA 

GeForce 580 GTX consists of 16 multiprocessors); and a 

large number of modern CPUs are also multi-core. 



 Modern GPUs, in contrast to CPUs, are composed of a 

large number of cores. Moreover, computational power of 

GPUs in average is comparable to (and mostly larger than) 

computational power of CPUs. This means that GPUs (as 

well as multi-core CPUs) provide a big possibility for speed-

ing up execution of applications [10]. 

 A majority of common algorithms are defined in a se-

quential way (i. e., the corresponding code of an algorithm is 

sequential). However, the fact that nowadays most of modern 

processors are multi-core assumes that for a specific sequen-

tial algorithm in order to execute efficiently, it should be 

parallelized — divided into several maximally independent 

(parallel) tasks. Thus, in order to take advantage of using 

multi-core processors, algorithms should be adapted for paral-

lel execution [10]. 

 Despite both CPUs and GPUs are multi-core, their ar-

chitectures differ significantly. According to Flynn’s taxon-

omy [11], multi-core CPUs have in general a MIMD (Multi-

ple Instruction stream, Multiple Data stream) architecture, 

with each core usually having a support for a set of SIMD 

(Single Instruction, Multiple Data) instruction. Alternatively, 

all GPGPUs have a SIMD architecture [10]. 

 The difference between the architectures of multi-core 

CPUs and GPGPUs substantiates differences between optimi-

zation processes for these two types of processing systems. 

However, all optimizations for a SIMD architecture are also 

applicable to a MIMD architecture — because a MIMD archi-

tecture can be considered as a more enriched SIMD architec-

ture [10]. This means that when writing an application for a 

heterogeneous GPGPU programming model and targeting 

and correspondingly optimizing it for execution on a SIMD 

GPU, the optimizations will work and will have effect also 

when executing on a CPU. 

 There are differences between x86 CPU instructions and 

GPU instructions — GPU takes with one instruction also 

memory reference (address). This makes addressing more 

effective. Also GPU can deploy single instructions with many 

operands into SIMD array, which can consist of 8–512 

(NVIDIA GPU) ALU. This makes developing parallel appli-

cations in a more effective way. In CUDA, OpenCL, Di-

rectCompute, there is an emended native parallelism support. 

That make sense for example GPU executes parallel code 100 

times faster than CPU, but CPU executes serial code 50 times 

faster than GPU. It is efficient to combine CPU and GPU to 

make possible heterogeneous computing with task diver-

gence. 

5.2 Analysis of performance of GPGPU 

applications 

 If one wants to use a processing unit to the maximal 

extent, before implementing an application it is good to know 

some guidelines, what actions which will perform the applica-

tion are supposed to be fast, and which actions are supposed 

to be slow while running on a specific processing unit. In case 

of slow actions, at the application design stage, it is useful to 

avoid using slow operations to the extent possible. Therefore, 

it is useful to know, which operations on a specific applica-

tion platform will perform faster, and which — slower. 

 In this section there are described practical results con-

cerning speed of execution of primitive unary and binary 

operations (including basic arithmetical and bitwise Boolean 

operations) for three commonly used data types (char, int, 

and float) on the OpenCL GPGPU platform. OpenCL as a 

programming model was chosen mainly because of its sup-

port for ATI, NVIDIA GPUs and CPU, as well as multiple 

operating systems. OpenCL provides opportunity to run the 

same code on CPU and GPU. 

 For the measurement of speed, by the authors there was 

written a test application — an OpenCL program in the C++ 

programming language. To maximally smooth out the meas-

urement errors, to measure small amounts of time with a high 

precision, each operation with the same input data was called 

10 million times. This was implemented in a following way: 

an OpenCL kernel contained one operation (or a block of 

several similar operations), and the kernel was executed a 

specific number of times (for different data values) in a spe-

cial loop (provided by an OpenCL programming model). The 

measurement of time intervals needed for the kernel to exe-

cute was implemented in the following way: the system time 

was measured just before and just after the execution of the 

kernel, and the difference of these values was considered as 

the execution time. The system time was measured using 

system calls, with the precision of several milliseconds. 

 The test programs (32-bit) were executed on a computer 

with an AMD Phenom II X4 965 CPU (3.40 GHz in each of 

4 cores), 4 GB RAM, and 64-bit Microsoft Windows 7 oper-

ating system, and the following video adapters: 

— GPU ATI = ATI Radeon HD 5750, 

— GPU NVIDIA = NVIDIA GeForce 240 GT. 

 With GPU NVIDIA due to technical problems there 

were measured only operations on the char data type. 

 It is needed to be stated that the obtained CPU perform-

ance is when forcing to run an OpenCL application on a CPU, 

not GPU. This means that in such a way obtained perform-

ance is not the same as the performance of a CPU when an 

application is implemented especially for running on CPU 

(i. e., without a use of a GPGPU). 

 The generalized results of the experiments in different 

views are provided in Figure 1–Figure 3. 



CPU GPU ATI
GPU 

NVIDIA
CPU GPU ATI CPU GPU ATI

char float int

(empty kernel) 17,02 2,02 0,48 18,30 2,04 19,32 2,09

arithmetical 14,45 9,47 1,87 16,91 2,01 14,68 2,01

arithmetical and bitwise 6,88 8,48 1,60 6,93 1,98

assigning a constant 20,52 4,44 1,30 20,31 2,00 20,70 2,01

assigning a variable 19,28 4,44 1,30 24,28 2,00 21,24 2,01

bitwise 15,12 8,62 1,75 15,23 1,96

negation 24,48 8,47 1,91 28,06 2,06 24,47 2,05
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Figure 1. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type, 

and a target processing unit 
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Figure 2. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type, 

and a target processing unit. It is easy to see that almost in all tested cases the fastest target processing unit is NVIDIA GPU, and the lowest — CPU 



 

Figure 3. Time (in milliseconds) needed to execute 10 million equal primitive operations in an OpenCL kernel, depending on a type of operations, a data type, 

and a target processing unit. One can see that on GPUs all operations with char data type (which takes integer values from -128 to 127) are significantly slower 

than operations with int and float data types. However, on GPUs operations with float data type are approximately as fast as with int data type; the same situa-

tion is on CPUs with all data types 

 From Figure 2 one can see that the fastest target process-

ing unit is NVIDIA GPU, and the lowest — CPU. This is true 

almost for all operations. The performance of two different 

GPUs should not be compared directly; however, comparing 

the performance of the GPUs with a performance of the 

CPUs, one can see that the formers are much higher than the 

latter. 

 From Figure 3 one can see that on GPUs all operations 

with char data type (takes integer values from -128 to 127) 

are significantly slower than operations with int and float data 

types. This situation is slightly different from the usual situa-

tion with CPUs, where operations with char operands per-

form much faster than operations with int and float operands. 

Also, from the figure it is seen that, on GPUs operations with 

float data type are approximately as fast as with int data type; 

the same situation is on CPUs with all data types. 

 The differences between the obtained results showing 

GPU instruction performance, and generally known results on 

the performance of CPU instructions (including that floating-

point operations on a CPU are performed much slower that 

integer operations) can be explained with the differences in 

the instruction sets and architectures of GPUs and CPUs. (For 

example, in [12], there is described instruction set architec-

ture for ATI Evergreen Family GPUs). 

6 Conclusions 

 When designing programs for GPUs which support 

general-purpose computing, in order to make programs be 

efficient, it is necessary to be aware of some specific features 

of GPUs. This includes the knowledge of the performance 

level of primitive mathematic operations — as there was 

shown in this paper, in calculations, it is better not to use 

variables of small size (i. e., of char/byte data type) but re-

place them with integer-type or floating point variables. 

 When intending an application for a GPGPU platform, it 

is needed to be known that in case of there is no GPGPU-

enabled GPU on a destination computer, the performance will 

somewhat suffer. Speaking about GPGPU software platforms, 

it can be stated that OpenCL and CUDA provide more flexi-

bility and easiness to write applications for GPU: there is no 

need for a compute shader to be used to execute CUDA and 

OpenCL app (unlike in DirectCompute). However, Di-

rectCompute benefits from the point of view that there is no 

need to special driver to make GPGPU computations using 

DirectCompute, and computations will run on every GPU that 

supports DirectX 10, 11 or later. In addition to the above, in 

many cases the use of a specific GPGPU software platform 

(except OpenCL) can be limited either by GPU manufacturer 

(CUDA supports only NVIDIA GPUs, and Stream supports 

only ATI GPUs), or by a running operating system (Di-

rectCompute cannot be run, for example, on Linux). 
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 One of the directions of the further work is to improve 

the application used for the experiments in order to be able 

obtain wider measurement results (for example, not only for 

arithmetic or Boolean operations). Also, the experiments 

should be made on a larger set of different processing units. 

 GPGPU computations benefit in such tasks as image 

processing, physics simulations, large array processing, and 

many others tasks which deals with large data sets. A signifi-

cant importance is information synchronization between 

threads that uses shared memory. As CPU cores can also use 

shared memory, it is possible for the further research to com-

pare CPU and GPU data synchronization. Also the future 

research may include a new field of study — heterogeneous 

computing, which include both CPU and GPU computations. 

This is topical when a CPU and a GPU are combined on sin-

gle die. Future research in the heterogeneous computing and 

APU (accelerated heterogeneous processing units) field may 

give results in understanding how to accelerate today’s algo-

rithms and programs in order for them to run faster on hetero-

geneous processors. In further studies, there could be also 

discussed the way how computations can be transferred be-

tween CPU and GPU, and how effectively a program written 

for GPU can be translated for running on CPU, and vice 

versa. 
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