
 
Analysis of Grid Service Composition with BPEL4WS 

 
Kuo-Ming Chao1, Muhammad Younas1, Nathan Griffiths2, Irfan Awan3, Rachid Anane1, C-F Tsai4 

 

1School of MIS, Coventry University, UK  
{k.chao, m.younas, r.anane}@coventry.ac.uk  

2Department of Computer Science, University of Warwick, UK 
nathan@dcs.warwick.ac.uk 

3Department of Computer Science, University of Bradford, UK 
i.awan@scm.brad.ac.uk 

4Department of Industry Management, Aletheia University, Taiwan 
tsai@email.au.edu.tw 

 
 

Abstract 
 

The Open Grid Services Infrastructure (OGSI) defines 
a distributed system framework by integrating Grid and 
Web services technologies to facilitate resource sharing. 
In OGSI, Web services are supplemented with additional 
features in order to meet the requirements of Grid 
computing. However, the issue of Grid service 
composition is not well addressed in the OGSI 
framework. We apply BPEL4WS (Business Process 
Execution Language for Web Services) as a business 
workflow description language for the composition of 
Grid services. We provide an in depth analysis of 
BPEL4WS and OGSI in terms of their similarities and 
differences in areas such as life cycle management, Web 
service instantiation and instance group management. 
Based on our analysis we propose a high-level 
architecture to compliment OGSI with BPEL4WS for 
defining process workflow among Grid services. We 
describe a prototype system which shows how the 
proposed architecture can be used in modelling or 
orchestrating Grid services with BPEL4WS. 
 
1. Introduction 
 

Web services are becoming an increasingly popular 
technology for Internet application development, 
receiving a significant investment of resources from both 
industrial and academic communities [1,2]. They provide 
a new solution to enable business interactions 
dynamically over the Internet, addressing issues such as 
application-to-application communication and system 
interoperability. The main advantage of Web services is 
that they allow applications to be loosely coupled, in 
contrast to traditional distributed systems that tend to be 
tightly coupled. Web services are based on standard 
technologies and protocols including SOAP (Simple 

Object Access Protocol), WSDL (Web Services 
Description Language), UDDI (Universal Discovery, 
Description, and Integration), and XML (Extensible 
Markup Language) [3, 4,5]. A Web service is an 
independent entity that can be advertised over the 
Internet. Users and developers can orchestrate multiple 
Web services to form useful and complex services in 
order to meet their particular requirements.  

In the light of the maturity and popularity of Web 
service technologies, OGSI [6] adopted Web services as a 
new standard for developing an open Grid technology. 
The benefit of Web services is that the developers of Grid 
applications can benefit from broader support (both 
commercial and otherwise) for Web services standards. 
OGSA (Open Grid Services Architecture) not only 
introduces Web services to Grid technology, but also 
attempts to integrate Web service technologies with 
existing Grid standards by adding extra features such as 
instance management, notification mechanisms, and 
stateful interaction between Grid resources. This results 
in the introduction of the notion of Grid service. OGSA 
provides a platform GT3 (Globus Toolkit 3) [7] that 
allows a higher-level mechanism or language to 
incorporate Grid services into applications. GT3 is an 
implementation of OGSI. 

This paper investigates how BPEL4WS [8] can be 
utilised in the composition and execution of Grid 
services. BPEL4WS is a formal description language for 
defining the workflow between Web services. It provides 
a standard process integration model to manage complex 
interactions between Web services. It also supports 
sequences of peer-to-peer synchronous and asynchronous 
message exchanges within stateful and long running 
interactions involving multiple parties. BPEL4WS 
engines, such as BPWS4J and Collaxa, provide a runtime 
environment for the composition and execution of Web 
services.  

 

mailto:i.awan@scm.brad.ac.uk


We propose a high-level architecture wherein 
BPEL4WS is used for defining the process workflow 
among Grid services. We develop a prototype system in 
order to demonstrate the proposed architecture in 
modelling and orchestrating Grid services with 
BPEL4WS. In this paper, we do not attempt to address 
the issues involved in achieving a full seamless 
integration of BPEL4WS and OGSI, but rather we 
demonstrate the feasibility of applying these two 
technologies together, and we identify the fundamental 
problems regarding their interoperability.  

The remainder of this paper is structured as follows. 
Section 2 describes the related technologies; in particular 
Web services, Grid services in the OGSA, and the 
characteristics of BPEL4WS. The proposed architecture 
to enable BPEL4WS to compose grid services, along with 
a simple prototype, is described in Section 3. In Section 4, 
we discuss a number of issues regarding the integration of 
BPEL4WS and Grid services.  Finally, Section 5 draws 
conclusions about applying BPEL4WS to Grid services. 
 
2. Related Technologies 
 

This section provides the description of Web services, 
Grid services, and BPEL4WS.  
 
2.1 Web Services 

 
A Web service is a service that contains a collection 

of operations to enable its interaction with the 
environment over the Internet through standardised XML 
messaging [9, 10,11]. The Web services platform is built 
on existing and emerging standards and technologies such 
as HTTP, XML, SOAP, WSDL, and UDDI. These 
technologies and standards are organized into four layers, 
comprising network, messaging, service description, and 
service publication and service discovery layers.  

The lowest layer of the Web services framework is the 
network layer. Web services that are publicly available on 
the Internet use commonly deployed network protocols 
such as TCP/IP, HTTP, FTP, and IIOP. 

In Web services, messages are communicated between 
participating systems using the XML-based SOAP 
protocol. SOAP provides an enveloping mechanism so as 
to communicate document-based messages.   

WSDL facilitates the process of service description. 
Each service provider uses WSDL in order to describe the 
details of the services it provides. Services are defined 
through WSDL as collections of network endpoints, or 
ports [3]. In order to define services, a WSDL document 
contains several distinct elements, including: portType 
(an abstract description of the port); message (a typed 
definition of the data); operation (describes an action 
which is supported by the respective service); port 

(specifies an address for a binding); and service 
(aggregates a set of related ports). 

The advantage of Web services is to provide a 
platform to allow business applications to interact or 
interoperate in a heterogeneous environment.  However, 
use of Web services assumes that business applications 
have relatively simple interactions and only require a 
stateless model. This is inadequate to support complex 
applications demanding complex interactions, and long-
lived stateful interactions.  OGSI attempts to address 
some of these issues by incorporating a number of 
features introduced below. 

 
2.2 Grid Services 

 
The OGSI specification, utilises the WSDL and XML 
schema definition languages from Web services to define 
an extended component model [6]. The aim of the 
specification is to address the common issues that occur 
in sophisticated distributed applications, such as the 
management of distributed long-lived states. In order to 
achieve this aim, OGSI defines the notion of a Grid 
service instance [6]. “A Grid service instance is a 
(potentially transient) service that conforms to a set of 
conventions (expressed as WSDL interfaces, extensions, 
and behaviours) for such purposes as lifetime 
management, discovery of characteristics, notification, 
and so forth.” [6]. The OGSI specification not only 
inherits the interoperability features from Web services, 
but also includes the following features. 

- Stateful interactions: serviceData is the OGSI 
approach to stateful Web services. It exposes a service 
instance’s state data to service requestors for queries, 
updates and change notifications [6]. The concept of 
serviceData is similar to a JavaBean. Thus, each item 
of data is associated with a set of methods (e.g., get 
and set) to access the state of data (attributes). 

- References: OGSI uses Grid Service Handles (GSH) 
to name and manage Grid service instances. A client 
wishing to communicate with a service instance must 
map the GSH to a Grid Service Reference (GSR). 
This is because a GSH only contains a minimal set of 
information, such as a URI and it does not carry 
sufficient information to allow a client to 
communicate directly with the service instance. 
Instead, a GSR contains all information that a client 
requires to communicate with the service.   

- Collection of service instances: OGSI allows a 
number of services to be grouped together so that they 
can be easily maintained by clients. A Grid service 
can define its relationship with other member services 
in the group. Services can join or leave a service 
group. 

  



- Life Cycle management: This gives a client the ability 
to create and destroy a service instance according to 
its requirements.  

- Inheritance: OGSI adopts some of the features from 
the WSDL 1.2 such as portType inheritance which 
allows one portType to extend from other portTypes. 
To distinguish between WSDL 1.1 and 1.2 [12], OGSI 
uses GWSDL to name the WSDL 1.2 portTypes.  

- Asynchronous notification: OGSI provides a facility 
for asynchronous notification of state change using a 
pull/push mechanism.  
In summary, the OGSI specification is an attempt to 

provide an environment for Grid services to be more 
manageable within large and complex distributed 
applications, and also to provide a platform for higher-
level mechanisms to compose services.  
 
2.3 BPEL4WS 

 
BPEL4WS is an industry standard specification for 

defining the workflow between Web services [8]. It is 
intended to provide a workflow language to model 
complex and non-deterministic business processes. The 
characteristics of correlating business processes often 
depends on the data and BPEL4WS provides a set of 
activities to model data-dependent behaviours. 
BPEL4WS provides conditional and time-out constructs 
in order to address non-deterministic situations which 
often occur in business processes. BPEL4WS also 
provides developers with the ability to specify exception 
conditions and their consequences, including recovery 
sequences. The most important feature of BPEL4WS is to 
support business process coordination among multiple 
parties. This enables the outcome (success or failure) of 
units of work at various levels of granularity of the 
business processes. BPEL4WS enables modelling of 
long-running interactions between business processes 
with nested units of work between them and each with its 
own data requirements.  

BPEL4WS is built upon three XML-based 
specifications: WSDL 1.1, XML Schema 1.0 and XPath 
1.0. Partners are used by BPEL4WS to model interacting 
services in business processes. Each partner has a unique 
name and other services can interact with the partner 
through the name. Each partner is associated with a 
WSDL document, which describes the information that a 
service contains. The process model allows developers to 
specify the relationships between partners through a set of 
pre-defined activities in order to orchestrate Web 
services.  

In BPEL4WS, the business process begins with a 
receive activity that receives a request from the client and 
triggers the process as a whole. The reply activity is the 
end of the process that responds to the request associated 

with a receive activity. The invoke activity allows 
invocation of an operator associated with portTypes 
(which is defined in a partner Web service). The state of 
messages related to business process is temporarily stored 
in variables.  

Developers can handle known and unexpected 
exceptions with throw and compensate activities. The 
response to external events can be specified through event 
handlers. Control flow in BPEL4WS is similar to 
traditional structured process control containing 
constructs such as while, switch, and sequence. The 
sequence activity defines blocks that contain one or more 
activities that are performed sequentially. A flow activity 
allows the activities within the block to be performed 
concurrently.  A link activity allows concurrently running 
activities to establish inter-dependency. Finally, the 
correlation construct specifies that only correlated 
instances can be invoked. 
 
3. The proposed architecture and 

implementation 
 

BPEL4WS was originally designed to orchestrate 
standard Web services, but it has not been used to 
orchestrate Grid services due the following issues. As 
described earlier, OGSI introduces GSH and GSR so as to 
reference Web service instances, but this is not supported 
by the BPEL4WS specification. Additionally, the 
adoption of certain WSDL 1.2 features for the Grid 
service interface descriptions, is not recognisable by 
BPEL4WS. This is because the current version of 
BPEL4WS is still based on WSDL 1.1.  

In this paper, we propose an architecture (as shown in 
Figure 1) in order to alleviate the above problems and to 
enable Grid service composition via BPEL4WS. In the 
proposed architecture, we wrap Grid service clients as 
Web services called Proxy Web Services. All of the 
interfaces defined for the Grid services are re-defined in 
Java beans as an XML complex type (in WSDL) with a 
public Grid service instance attribute. An additional 
operator, startGService, is defined and implemented in 
the Proxy Web Service. This operator is to create new 
Grid service instances. The process of a series of 
activities being carried out is described as follows. 

The BPEL4WS user initiates the client. The Proxy 
Web Services are invoked according to the workflow 
descriptions in BPEL4WS. The Proxy Web Services will 
trigger corresponding Grid services through an embedded 
startGService operator. The startGService operator is the 
standard procedure for creating a Grid service instance by 
calling a GSH, holding its returned value, and mapping it 
to a GSR. When a Grid service instance is created, the 
startGService operator obtains a reference and stores it in 
the predefined public Grid service instance attribute.

  



Protocol 1
(binding)

Specific Stub

Protocol 1
(binding)

Specific Stub

Protocol 1
(binding)

Specific Stub

Handle
Resolver

Grid
ServiceHandle

Resolver
Grid

Service

Cache

Handle
Resolver

Grid
Service

Handle Scheme
Specific Resolver

Protocol

Client
Application

Proxy
Web Service

Client
(BPEL)

In
vo

ca
tio

n 
of

 G
rid

S
er

vi
ce

 
 

Figure 1: The Proposed Architecture  
 
 
 
Thus, the GRS reference is stored as a global variable 

and is visible to the whole instance. When BPEL4WS 
wishes to call individual operators in the Grid service, it 
calls the BPEL4WS engine, such as BPWS4J or Collaxa, 
to activate Proxy Web Services stored in the Web service 
container. The Proxy Web Service then uses the Grid 
service reference, which is stored in the public attribute, 
to tell the Grid service container to invoke the 
corresponding Grid services.  The Grid service replies 
with its results to the Grid service client that made the 
request. The Grid service client passes the response to its 
Proxy Web Service. The BPEL4WS engine can obtain 
the result and pass it on to the next service. This 
architecture is illustrated in Figure 1. 

This principle can be used to design a Grid service 
from existing BPEL4WS descriptions. The advantage of 
this approach is that the impact on the BPEL4WS 
descriptions and the associated WSDL can be minimised 
when the Grid service is re-deployed to different 
locations.  

In order to examine the feasibility of the proposed 
architecture, we use a simplified heartbeat example, 
which is based on Model-View-Control (MVC) [13] 
design patterns. The example is implemented such that it 
represents three Grid services. As shown in Figure 2, the 
client includes an interface for users to see the number of 
heartbeats and control the speed of heartbeat. 

The client triggers the Heart View service to invoke 
other Grid services and to receive the output from the 
Heart Model. The Heart Control model (a Grid service) 
receives the request from the Heart View model and 
passes it to the Heart Model. A fragment of WSDL 
generated from the GT3 that describes the Heart Control 
model is shown in the Appendix. Similarly, the Heart 
Model is a Grid service that takes the request from the 

control, responds to it and sends the result to the Heart 
View model (see Figure 2). 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Heart Model
 

Heart View   
request: 
addexercitement_event  
removeexcitement_even
t

 
stopbutton_event 

request: 
addexercitement_ActionPerformed
removeexercitement _ActionPerformed
stopButton_ActionPerformed 

response  
to events   
 

number of 
heart beats 

Heart Control
 

response to  
actions 

  
 

Figure 2. Composition of Grid services 

Web services, corresponding to three Grid services, 
are specified as partners. Three possible events are 
defined (add, remove and stop) as an XML complex type, 
and are implemented as Java beans. Thus BPWS4J starts 
up the Web services, which in turn call the Java beans. 
These Java beans invoke the corresponding operators in 
the Grid services. 
  
<process name="HeartbeatModelling"  
---- 
  <variables> 
    <variable name="request"  
               messageType="tns:MVC"/> 

 



    <variable name="HeartContol"  
               messageType="tns:MVC"/> 
  </variables> 
  <partners> 
    <partner name="contoller"  
             serviceLinkType="lns:HeartControlLinkType" 
             myRole="controller"/> 
    <partner name="requester"  
             serviceLinkType="lns:HeartViewLinkType" 
             myRole="viewer"/> 
    <partner name="modeller"  
             serviceLinkType="lns:HeartModelLinkType" 
             partnerRole="modeller"/> 
  </partners> 
 
  <Sequence> 
    <receive name="initial" partner="viewer"  
             portType="view:HeartViewPT"  
             operation="start" variable="request" 
             createInstance="yes"> 
    </receive> 
    <invoke name="heartcontrol" partner="controller"  
            portType="control:HeartControlPT"  
            operation="Performedaction" 
            inputVariable="request"  
            outputVariable="actionPerformed"> 
     </invoke> 
    <assign name="assign"> 
      <copy>  

<from variable = "actionPerformed" 
 portType="control:MVC" /> 

         <to variable="HeartControl" PortType = "tns:MVC"/> 
      </copy> 
    </assign> 
-------- 
  </Sequence> 
</Process> 
 

Figure 3. A Code fragment of BPWSJ 
 
 
4. Analysis and discussion  
 

Experiments carried out on the prototype system show 
the feasibility of the proposed architecture — using 
BPEL4WS for Grid service composition. The 
experiments also revealed a number of similarities 
between BPEL4WS and Grid services. That is, 
BPEL4WS and Grid services share a number of similar 
properties such as life cycle management and stateful 
interactions. 

The experiments also revealed the following main 
differences between BPEL4WS and Grid services: 

(1) Coordination between Web service instances is 
driven by the data in BPEL4WS. The way of correlating 
Web service instances in BPEL4WS is similar to database 
systems handling tables through index keys. Thus, 
developers have to define correlation sets from portTypes 

in WSDL and use them to correlate instances. On the 
other hand, OGSI uses Grid service instance references to 
coordinate Grid service instances. Each Grid service 
instance has a unique reference (similar to an object 
reference). Since GT3 is mainly implemented through the 
JAXRPC specification (a Web Service specification 
based on Java RMI), the management of a collection of 
instances is similar to handling multiple instances in Java. 
Therefore, GT3 cannot export its Grid service instance 
references to BPEL4WS, and BPEL4WS cannot hold 
references of the Grid service instances. Consequently, 
the additional functions in the GT3 such as the grouping 
of Grid services and life cycle management, pre-call, 
post-call grid services cannot be utilised by BPEL4WS 
directly. BPEL4WS does not support any construct that 
allows Web service instances to be destroyed. Instead, it 
provides termination of the whole process.  

(2) The other main issue is the different serialisation 
approaches used in GT3 and BPEL4WS. Serialisation in 
Grid services is to serialise the Grid service instances, but 
BPEL4WS only serialises the variables in the process. 
Therefore, BPEL4WS cannot instruct Grid services to 
serialise the instances. Both BPEL4WS and GT3 refer to 
WSDL to obtain information about services, using this 
information to initiate requests and respond to them. 
However, the versions they build upon are different. GT3 
adopts WSDL1.2, renaming it as GWSDL, and 
BPEL4WS is based on version 1.1. BPEL4WS cannot 
parse the extra features proposed in WSDL 1.2. This 
issue may easily be resolved when WSDL 1.2 becomes an 
official WWW specification. One of important features 
that GT3 supports is the notification mechanism. It is 
similar to the observer and observable mechanism in 
Java, allowing services to push or pull information when 
the state changes. However, no mechanism in BPEL4WS 
can map to this mechanism.       
 

We make the following observations from the above 
analysis:  
 
• It is not a trivial task to design a specification or 

system that enables BPEL4WS and OGSI 
infrastructures to be fully integrated. Even though 
they have different focuses, they should have 
consistent infrastructures to explore their potentials. 

• BPEL4WS is not the only specification for 
orchestrating Web services. The Semantic Web 
community has proposed DAML-S [14] for describing 
the semantics of Web services and composition 
mechanisms for Web services. However, there is no 
sophisticated engine like BPWS4J or Collaxa to 
support the DAML-S specification. [15] defines the 
semantics of Web services via DAML-S and translates 
the descriptions to BPEL4WS. Thus, BPWS4J can 

 



 

provide a run-time environment to execute Web 
services accordingly. Other on-going research is to 
employ agents with a specific reasoning mechanisms, 
such as GoLog [16], to compose the Web services.   

 
5. Conclusions   

 
In this paper, we proposed an architecture that enables 

the composition of Grid services using BPEL4WS. The 
proposed architecture provides a high-level bridging 
between BPEL4WS and OGSI, but it does not attempt to 
fully integrate their infrastructures due to reasons stated 
above. An MVC design pattern was used to test the 
feasibility of the proposed architecture. Experiments 
show that the proposed architecture is adequate for 
modelling or orchestrating Grid services using 
BPEL4WS. Based on our experiments we provided a 
detailed analysis of the issues related to the mis-match 
between OGSI and BPEL4WS. It is observed that such 
issues must be addressed so as to use BPEL4WS in Grid 
service composition. Failing to do so may impede 
applications that require more controllable power over 
Grid service instances or try to utilise the features 
supported by the GT3. In the future, we plan to extend 
our architecture in order to tackle the issues identified in 
this paper. 
 
6. References 
[1] D. J. Mandell, and S. A. McIlraith, “A Bottom-Up Approach 

to Automating Web Service Discovery Customization, and 
Semantic Translation”, The Proceedings of the Twelfth 
International World Wide Web Conference Workshop on E-
Services and the Semantic Web, Budapest, 2003. 

[2] F. Curba, R. Khalaf, N. Mukhi, S. Tai, & S. Weerawarana, 
The Next Step in Web Services, Communication of ACM, 
46(10), 2003, pp29-34. 

[3] W3C Note "Web Services Definition Language (WSDL) 
1.1", http://www.w3.org/TR/WSDL 

[4] W3C Note "Simple Object Access Protocol (SOAP) 1.1", 
http://www.w3.org/TR/WSDL  

[5] UDDI. The UDDI technical white paper, 
http://www.uddi.org/, 2000.  

[6] OGSI, Open Grid Services Infrastructure (OGSI) Version 
1.0, http://www-unix.globus.org/toolkit/ documentation.html 

[7] Globus toolkits 3, http://www-
unix.globus.org/toolkit/documentation.html 

[8] Business Process Execution Language for Web Services 
Version 1.1, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/ 

[9] Web Services Architecture, http://www.w3.org/TR/ws-arch. 
[10] Service-Oriented Architecture (SOA) Definition: 

http://www.servicearchitecture.com/web-
services/articles/serviceoriented_architecture_soa_definiti
on.html. 

[11] S. Parastatidis, J. Webber, P. Watson, & T. Rischbeck, “ A 
Grid Application Framework based on Web Services 
Specifications and Practises”, 
http://www.neresc.ac.uk/projects/gaf/, 2003 

[12] Web Services Description Language (WSDL) Version 1.2, 
Published W3C Working Draft, World Wide Web 
Consortium, http://www.w3.org/TR/wsdl12/ 

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design 
Patterns: Elements of Reusable Object-Oriented Software, 
Addison Wesley, 1998 

[14] DAML Services Coalition. DAML-S: Semantic Markup 
for Web Services. DAML-S v. 0.9 White Paper, 
http://www.daml.org/services/daml-s/0.7/daml-s-
wsdl.html, Sept 2003. 

[15] Evren Sirin, James Hendler, Bijan Parsia, "Semi-
automatic Composition of Web Services using Semantic 
Descriptions." Proceedings of "Web Services: Modeling, 
Architecture and Infrastructure" workshop in conjunction 
with ICEIS2003, 2002. 

[16] S. McIlraith and T. Son. Adapting Golog for Composition 
of Semantic Web Services. Conference Proceedings on 
Knowledge Representation and Reasoning, April 2002. 

 
Appendix: 
<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions 
targetNamespace="http://hello.gt3tutorial/heartcontrol"… /> 
   <wsdl:message name="stopButton_ActionPerformedRequest"> 
      <wsdl:part name="in0" type="xsd:string"/> 
   </wsdl:message> 
   <wsdl:message 
name="removeExcitement_ActionPerformedRequest"> 
      <wsdl:part name="in0" type="xsd:string"/> 
   </wsdl:message> 
   <wsdl:message name="addExcitement_ActionPerformedRequest"> 
      <wsdl:part name="in0" type="xsd:string"/> 
   </wsdl:message> 
   <wsdl:portType name="HeartControlPortType"> 
----- 
      <wsdl:operation name="removeExcitement_ActionPerformed" 
parameterOrder="in0"> 
         <wsdl:input 
message="impl:removeExcitement_ActionPerformedRequest" 
name="removeExcitement_ActionPerformedRequest"/> 
--------- 
         <wsdl:input 
message="impl:addExcitement_ActionPerformedRequest" 
name="addExcitement_ActionPerformedRequest"/> 
      </wsdl:operation> 
   </wsdl:portType> 
….. 
      <plnk:partnerLinkType name="HeartControl"> 
        <plnk:role name="HeartController"> 
            <plnk:portType name="tns:HeartControlPortType"/> 
        </plnk:role> 
    </plnk:partnerLinkType>    
</wsdl:definitions> 

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/SOAP/
http://www.uddi.org/
http://www-unix.globus.org/
http://www-unix.globus.org/toolkit/documentation.html
http://www-unix.globus.org/toolkit/documentation.html
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.w3.org/TR/ws-arch
http://www.neresc.ac.uk/projects/gaf/
http://www.w3.org/TR/wsdl12/
http://www.daml.org/services/daml-s/0.7/daml-s-wsdl.html
http://www.daml.org/services/daml-s/0.7/daml-s-wsdl.html
http://www.mindswap.org/papers/composition.pdf
http://www.mindswap.org/papers/composition.pdf
http://www.mindswap.org/papers/composition.pdf

	Analysis of Grid Service Composition with BPEL4WS

