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Introduction

The experimental material and techniques that must be used in
some fields make it advantageous to follow individuals for a period of
time, perhaps over a sequence of doses,‘thus negating the assumption of
independence among points of the response curve. Models appropriate for
the analysis of such data are often discussed under the title of growth
curve experiments, although the models also have application to other
studies.

The objectives of this paper are to study the growth curve model
from the point of view of the analysis of covariance begun by Rao [9],
(101, [11]1. This leads to a relatively simple derivation of the results
produced by Khatri [6] and to easily implemented methods of estimating

parameters and performing tests.

The Model
Suppose there are N individuals who have been randomly assigned
to one of the r cells of some design, and that the same characteristic
has been measured at p times or under p different conditions for each
{ndividual. Further suppose that each individual's responses to treat-
ment or at each time can be described by a linear model of the form

By = B &y . (1)
pxl p*q g%l
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where_g_{ij is the vector of observations made on the ith individual in
the jth group and B is a known matrix of ramk q. We shall call (1) the
within individual model. The expected values are allowed to vary from
group to. group, but they must belong to the same family. That is, if
the expected value is a qth degree polynomial in one group, it must be
a qth degree polynomial in other groups, but the actual values of the
'parameters are allowed to be different.

The complete model expressing both the within individual and
across individual designs can be expressed in matrix notation as

X = B 3 4 + E (2)
(pxN)  (p%q) (gxr) (xxN)  (pxN)

where the columns of E are independently distributed as a p-variate

normal with common covariance matrix L  and mean vector O0; B is the
(pxp)
design matrix within individuals; A is the design matrix across individ-

vals; and £ is a matrix of unknown parameters. The matrices A and B can
be assumed to be of full rank without loss of generality. This model can
be extended in an obvious way to the case of p measurements on each of
several characteristics, and Allen [l] has extended it to the case in
which the response of each individual is described by a function which is
nonlinear in the parameters. We shall not be concerned with these exten-
sione.

This model has many similarities to the mixed model in which the
individuals are considered to be a random sample from some population.
The mixed model approach, discussed in [4], has limitations due to the
agssumption of uniform correlation among elements of the response vector.

In the development to follow we require no special assumptions about the



pattern of covariance in I, but the development permits exploitation of
the pattern when one exists. The data in Table 1 are presented as an
example of the type of analysis problem we wish to discuss.

The data can be related to the model as follows: the elements of

the vector are the responses over time of the ith dog, i = 1,...,N,,

J
to the jth treatment, j = 1,2,3,4. Assume that a third degree polynomial

Xy

is an adequate description of response of the ith dog over the period of

observation. Then the orthogonal coefficients make up the matrix B, i.e.;

- O 1 2 3
1 -3 5 -1
1 -2 0 1
1 -1 -3 1
B =
x4 1 0 ~4 0
1 1 -3 -1
1 2 0 -1
1 3 5 1

The powers t, t2, t3

(t = time after occlusion) could have been used.
However, since the observations were made at equally spaced intervals we
shall make use of the orthogonal coefficients. According to the model

every dog in the jth group has the same expected response, 1i.e.,

E(Ry ) = BoPo + 81401 * Soybp + 83yP5

where b, , k = 0,1,2,3, are the elements of the kth colums of B as shown

k)
above. Different groups of dogs may have different expected values but

thelr response function is assumed to be a member of the same family.
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This does not preclude some of the £'s being zero. Now we can define the

matrix
p— -
A = |11 e 100 e 000 e 000 e 0
4% 36
00 o e 011 e 100 .o 000 - 0

60 ... 000 ... 011 ... 100 ... O

o0 ... 000 ... 00O ... 0111 ... 1

e

-

to show how the expected value changes from group to group. Expansion
of E(X) = BEA shows that this model gives the predicted value of the
respongse of each dog at time t after coronary occlusion under the assump-
tion that the expected functional form of the response in each treatment
group is the same.

In this example A is the group indicator matrix of a simple design.
However, this is not required. A could be a matrix of continuous variables
as in multiple regression, or it could be made up of design variables and
covariables. Thus A is allowed to be quite general. In contrast B is
somewhat restricted. The present state of development of the theory re-
quires that B be the same for each individual, i.e., the pattern of ob-

servations within individual be the same.

Review of the Literature

In the growth curve model as first formulated by Potthoff and Roy [8],
an arbitrary matrix of weights G_l was introduced into the analysis. They
noted that their estimate of £ was always unbiased, but that the variance
of E increased as G - departed from g, They did not, however, develop
the requisite theory for allowing G_l = S-l, where § is proportional to
the estimate of I calculated from the data being used to estimate §.

Khatri [6], using the method of maximum likelihood, obtained the estimate
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of £ in which S*l is used as the weights, and he showed that the likeli-
hood ratio, trace, or largest root test criterion could be used to test

the hypothesis C £ V = 0, where C is of rank ¢ < q and V is of
eXg gXr rxv

rank v < r. However, he did not give the details about any of the test
criterialexcept the largest root.

Rao [9] (appendices 1 and 2) commented on Potthoff and Roy's ap~
‘proach. He pointed out that their method did not use all the information
available in the sample for estimating £ unless G'l happened to equal 2_1.
He showed further that the additional information could be utilized by
incorporating into the model (p-q) cova}iables which are a basis of the
set of linear functions of the columns of X given by [I - B(B'B)_lB']X,
i.e., the vectors which span the within individual error space. Rao
continued the discussion in [9] in which he pointed out in an example
that weighting did not necessarily produce shorter confidénce intervals.
Rao's approach [9], [10], [1l], turns out to give results algebraically
identical to those of Khatri.

Gleser and Olkin [5] studied the properties of a k-sample regres-
sion model with covariates. This model can be expressed as follows: if
the ith vector observation is from the jth sample, the (3,1) element of
A i3 one, and all other elements of the ith column of A are zero.

They obtained a form for the unconditional probability density
function of the estimate of §. However, this dens;ty function is ex-
pressed as an integral, a representation which restricts its usefulness.
They also derived tests of hypotheses and showed that their statistics
were functions of the maximal invariant statistics. Their tests are

identical to those we present when the models coincide.
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Rao [11] also studied the properties of E in a one-sample regres-
sion model with the specially chosen covariates. His discussion of the
choice of covariates in the one-sample case is applicable in general.

In a recent paper Watson [13] discussed some time series models.
This work turng out to have elements of similarity to the problem we are
considering except our problem is somewhat simpler, since, under our
.model, we have enough data to obtain an independent estimate of L.

Williems [14] derived the variance of regression estimators weighted
inversely as S"1 using a different technique from Rao [11], and investi-
gated the effect of using the estimated weights on the variance of the
eatimator.

We note that the patterned dispersion matrices discussed by Rao [11]
may also be appropriate for the Gleser and Olkin model. The effect of

assuming one of these patterns 1is to reduce the model to another of the

same type but with fewer covariates.

Derivation of Maximum Likelihood Estimate of £

Let Bl and 32 be matrices of full rank such that
(pxq) pXx(p-q)

B/B= I
(gxq)

and
BéB " 0 .
(p=q)%q

It should be noted that possible choices for Bl and 32 are

—l
- !
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and B2 = a column basis of (I ~ B(B'B)_lB'}, or when the elements of B

are the intercept and orthogonal polynomials up to degree g - 1 < p, then

32 can be chosen as the coefficients of order q, ¢ + 1, ..., P - 1.

Let
< B!
Yl le’
(axy)
and
= ! H
Y2 BZX’
(p-q) *N
then
- ]
E(Yl) BlBgA
= EA,
Hence, Y, is composed of the vectors spanning the estimation space if

1
each individual's expected response is given by equation (1.

The expected value of Y2 is
|
E(YZ) - BzBEA

"0,
which shows that Y2 is composed of the vectors in the within individual

error space.

The model (2) can be written in terms of Yl and Yz as

where 8 = 0 if our original model is adequate, and the columns of El
are independently distributed as p-variate normal with covariance

matrix
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' '
Bl L Bl Bl z 32

' '
B) z By 32 L B,

and mean vector 0. — -

Assuming that our within individual model is correct (E(Yz) = 0,)

the joint density of Y1 and Y2 can be factored into the product of the

marginal density of Yo, wz(Yz;Vz) and the conditional density of Yl
given Yz, wl(Ylle;Vi,n). Applying the technique of Anderson {2, p.28]

we have

.N;.
-1,2
) 1 -1
wz(Yzivz) wl(Y1|Y2»Vl.n)“ N( _ 2 exp{— "2' tr(Vz YZYE)} X
(2m?
N
-1,2
[V ] 1 -1 :
g expl- g erlvy” (¥) - BA - Y)Yy - EA- nY,)'1} (3)
(21r)2
where
v, = B} I B,,
(p=q) x(p-q)

= R - n! ' )
V1 Bl L B1 Bl z BZ(BZ z Bz) B2 r Bl

(a%q)
and

n = B! -1,

% B,(BL I B,)
q*(p-q) ! 272 2
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By the use of Khatri's [6] lemma 1 we have

- ! - ' -1 44
Vl Bl(z 2B2(32 Z Bz) BZZ)Bl

= R? v o1 o
Bl(B (' £ " B) B )Bl

-1 1

= (B' £ " B) .

Thus V, does not depend upon the particular choices of Bl and 32.

1
It is evident from (3) that the maximum likelihood estimator of £ and
the likelihood ratio statistics for testing hypotheses concerning § can
be obtained using the conditional density of Yl’ given Yz, since the
marginal density of Y2 assumes the role of a constant. Notice also that

the conditional distribution of Yl’ given Yz, is a linear multivariate

model:
v,o=0e n)]  [a] o+ E (48)
(m;-qﬁ)xu
or for simplicity
Yl - 8 D + Ez, (4b)

qx(r+p-q) (r+p-q)*N
where the columns of E2 are independently distributed as q-variates normal

with covariance matrix Vl

The matrix D = | A will have rank r+p-q with nrobability one.
Y

e

and mean vector 0.

2
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Thus (DD')-'l axists with probability one, and the maximum likelihood
estimator of £ is given by the least squares estimate of § using model

(4b), 1.e.,
(€0 = 6 = ¥,0' (o)) 7, (5)

and £ is the first r columns of 6.

The matrix DD' is

-

DD' = [AA' AX'B2

' Eodl
BZXA BZXX 32 .

If we invert DD' algebraically, write out the estimate of & and
apply Khatri's [6] lemma 1 we £ind that

g avcaan™? (6)

E o= (3's7iB)~t B's”
where

S = X[I - A'(AA')'lA]x'. (7

Hence, the estimates obtained by the analysis of covariance, by maximum
likelihood and by weighting inversely as the estimated variance are shown
to be identical. A slight extension of the result given in equation 50

of Rao's paper [12] yields the unconditional covariance matrix the elements
of E as

var (5) = (Aa")t

® N=r-l Vl' (8)
N~r-(p-q) -1

where 8 is the Kronecker product, and Var (£) denotes the covariance
matrix of the elements of £ taken in a columwise mauner.
It is easily shown that E(f) = £ and that the residual error sum

of products matrix from fitting the model (4a)
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is
S. = B' SB. - B! SB.(BA8B.)"* B' sB7t (9)
y, " P18 B Sh, 388,) 7 B, SBy
- (8's™1p) 7L,
That
B(Sy ) = V) [N-2-(p=a) ] (10)

1

follows from the fact that S

v is distributed as wq[N-r-(p-q),Vl,O]

1
where Wk [kz,t.u] denotes a kl dimensional Wishart distribution with
1
k2 degrees of freedom, covariance matrik I, and noncentrality matrix u.
From equation (8) and (10) it follows that an unbiased estimate

of the variance of § is

Var (© = ()™ 8 ¥, (8-2-1)/ [N-r-(p-9)-1], (11)
where G . - S .
1 Ner=(p-q) Y,

Even though the fifst two moments of E are known, its complete
distribution is not available in a gimple form. The conditional
distribution of E given Y2 is, by linear multivariate theory, normally
distributed with mean £ and covariance matrix Rl 8 Vl where R1 is the

leading rxr minor of (o' "L,

Test of the Fit of the Model
" The test of the fit of the model is, strictly speaking, a test of
the fit of the within individual model, We have partitioned the observed
vector into two parts: Yl which spans the within individual estimation
space, and Yz which spans the within individual error space. Therefore

if each {individual's response over time or over doses is described
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adequately by equation (1), E(Yz> = 0, and a test of the fit of the

model is given by testing

HO: E(Yz) = 0,

This test is produced easily from conventional multivariate analysis

of variance in which
E(X) = &* A ’
PXr rXn
where A 18 the design matrix for individuals shown in equation (2), and
§* are the parameters associated with the analysis when the within in-

dividual espect described by B is omitted. We assume this model and test

BEE* I =0,

The hypothesis matrix is

P, = =3} xA' aan "L ax's
(p-q) x(p-q)

2I
and the error matrix is
- R! - A -1 t
Q1 32 X[I - A'(AA") TAlX Bz.
(p=-q) x(p~q)

These matrix forms will be produced automatically by any multivariate
analysis of variance program which will test HO: CE*V = 0 by setting

Cs= Bz and VeI,

TERAAY
It i{s easy to show that P, is distributed as W(p_q)[r,Vé.BZE AA E*'le

and Q, is distributed as wp_q[N-r,Vz,O] independently of P,. All of the

1-



17

eriteria in common use are functions of the characteristic roots Al of

-1
PlQl .
P=q 1
The likelihood ratio test criteria is U= -m log T s
e 1 (1+Ai)

where m = N-r -'%(p-q—r+l). This test statistic has asymptotically a

‘x2~diatr1bution with rx(p-q) degrees of freedom, or the exact percentage
points can be found in [12].

The largest root test is given by

and has degrees of freedom parameters
8 = min(r,p-q),
m= (|r-(p~q)|-1)/2,
n = (N-r-(p-q)=1)/2,

using the notatien given in Morrison [7].

A convenient form for cemputing the non-zero roots of P1Q11 which

avoids specification of B1 and 32 is to use the identity

ch. qui4~ ch. xA'(AA')'l AX' s’lls - B(B's'la)‘ln']s'l,

where ch. denotes non-zero characteristic roots. A more suggestive

form for egse of interpretation is

Lacn xR -x o8t

[4
ch. P1Q, s~ Xa,p S %0

where XA denotes the predicted value of X when using A only as the basis

of prediction and X

4.3 denotes that both A and B are to be used in pre-
]

diction.
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Test of Linear Hypotheses About and
Testing the hypotheses

Ho: c E vV =0,
cXq gXr Xy

where rank C = ¢ < q and rank V= < r, for model (2) is accomplished
by testing the hypothesis

v

Hyt ClEn] o =CgV=0

for model (4a). The error matrix produced is the correct form, namely,

' v"l '
Q2 - CYl(I - D'(DD') D)YiC,

and its distribution given D 1is wc[N-r-p+q, CVlC',O].

Since the distribution Q2 depends only on the rank of D, the uncondi-
tional distribution of Q2 is the same as its conditional distribution.

The hypothesis matrix is
Py = (CEV) (v'RIV)’1 (cegwn’',

where R1 is the leading rXxr minor of (DD')-l. The conditional distrib-
ution of P, 18 W [v,CV,C', (C E V) (VRW™ (CEW']. If the null
hypotheses is true, the distribution of P2 does not depend on D, and its
conditional and unconditional distributions are the same. If the null

hypothesis is false the noncentrality parameter depends upon Yz.

There are at least two approaches to estimating £ and to testing

CE V=0, Ifwe choose to estimate { by equation (6) we can compute

B, = (CEW R (CEW,
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where
R, = (AA')"l + (AA')'l Ax'[s"l - gt B(B's'lxa)'1 B'S—I]XA'(AA')-I,
and
Q, = ca'sTipy ke,

This method avoids finding Bl and 32, but it has the disadvantage of

requiring a special computer program. (We assume that the majority of

analysis of this type will be performed with the assistance of an
electronic computer.)

An alternative method which requires less special programming is
to use model given by (4b) which leads to the estimate of £ given in
equation (5). Then any general multivariate linear hypothesis program
can be used to analyze the data. When we want to test the hypothesis
CE Ve 0 we msast remember that n has been estimated also. The matrix

of estimated parameters is (£ n), and we must eliminate n from the test.

This is done eésily by augmenting V by the null matrix 0 to insure that
v

0) in the

n ie eliminated. Thus to test C £ V we actually test C(£ n) (

model (4a). Then the correct P2 and Q2 are produced automatically. The
only difficulty in this approach is finding 32' When equation (1) can
be expressed in terms of orthogonal polynomials, B2 is easily found as
the coefficients of the polynomials of degree q, q+l, ..., p-1, which
avoids finding B, = a column basis of [I - B(3'B)™''].

In either case once 32 has been determined the analysis could
proceed as follows. B! = (B'Bf'lB' is formed, and as the data are read

1l
into the computer the linear trangformations
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= R = R
Yl Bl X and Y2 B2 X

are made, and we proceed in a straightforward way using model b)
for the remainder of the analysis.

Another advantage is that in case we do not want to use all
vectors in the error space as covariables, which is equivalent to
changing the weights used to something other than S-l, those selected
can be easily included in this method of calculation. In contrast
deletion of some of the variables could not be accomplished so easily
by the first method described.

Both the likelihood ratio and largest root test criteria are

functions of the characteristic roots of PzQ;l. The likelihood ratio
¢ 1 1
test criterion is U = -m log, 1 (s5—), where m = N -r-(p-q)- S(c-wl),
e =1 l+/\i 2

and has a central yx%-distribution with cv degrees of freedom if the null

hypothesis is true.

The largest root test criterion is 8 = has degrees of

1+
max

freedom parameters

s = min (V,C)
m = (|v-c| -1)/2
n = (N-r-(p-q)-c-1)/2

If all the vectors in the error space are not used as covariables
the (p~q) shown in parentheses should be reduced to the number actually
used. The circumstances in which it is desirable to use a smaller

number are discussed in the next section.
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We may also test the contributions made by the inclusion of any
set of linear combinations of the columns of N in the model. Testing

the hypothesis

HO: nL=20
where L is a known matrix is done by testing the hypothesis
(p-q) %% \
0
Ho: {Z nl L= nL = Q

for model (4a). The error matrix for this test is
Q, = Y. (I - p'(0D') "1p) ¥!
2 1 1
and its conditional and unconditional distribution is wq[N-r-p+q,Vl,O].

The hypothesis matrix is
i\ t -1 - '
Py = (NL) (L'R,L) ~ (nL)

where R2 is the lower right (p-q)x{(p~q) minor of (DD')‘l. The condi-

tional distribution of P3 given D is wq[z, Vl, (nL)'(L'RZL)—l(nL)].

If the null hypothesis is true, the distribution of P3 does not depend
on D, and its conditional and unconditional distributions are the same.
It can be shown that the noncentrality parameter depends upon Y2
and the particular choice of 32 unless L is square. If L is square the
noncentrality parameter depends upon Y2 but not on the particular choice

of BZ‘ When L is square the hypothesis being tested is equivalent to

H: n=20,

or all of the covariances between the elements of Yl and Y2 are zero.
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The likelihood ratioc test has the usual form in which
m = N—r—(p-q)~~%(q—@+l) and U has qf degrees of freedom. The degrees

of freedom for the largest root test criterion are

s = min (2,q)
m= (|R-q|-1)/2
n = (N-r-(p~q)-q-1)/2.

It should be noted that when n = 0, the implication is that covariates
are not needed, that is we might as well have worked with the simpler
model. Rao [11] showed that including covariates did not necessarily

lead to estimates that have smaller variance than when they are omitted.

Choice of Covariates

Rao examined the effect of assuming patterned dispersion matrices
which arise in various mixed models. These patterned dispersion matrices
may also be appropriate when the model is of the special case of (1) con-
sidered by Gleser and Olkin [5].

Suppose that £ = BIB' + HOH' + IGZ where [' and € are unknown dis-
persion matrices, 02 is an unknown variance and H is a known matrix of
dimension (pxq) of full rank such that H'B = 0. When we make our trans-
formation we let B, = B(B'B)_l. We then find that the covarlance matrix

1

between corresponding columns of Yl and Y2 is

Cov(Y ) = (B'B)“ls'(srs' + HBH' + 152)32

1521

= 0.
Here Y2 provides no information about Yl and should be disregarded.
Inferences sbout £ should be made using conventional multivariate tech~

niques applied to Y,, which is equivalent to unweighted least squares,

1
or choosing G = I in Potthoff's and Roy's development.
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If ® or H = 0 this model for variance becomes identical to one
discussed by Rao in [9] in which he showed that the best estimate is
unweighted. These conditions will be met when the parameters describing
each individual's response are considered to be random variables with
dispersion matrix ' and in addition to this source of variation there
is an independent source with covariance matrix Ic2 and expected value
éero. The first reflects the deviation of each individual's curve from
the best description for its group, and the second source reflects the
variation of each individual about its own curve. This is an assumption
made and often reasonable in mixed model problems.

Suppose that ¥ = TI'T' + czI where T' is an unknown dispersion matrix,
02 is an unknown variance, and T is an arbitrary known matrix. When Wwe

make our transformation, we let B, = B(B'B)-l, B2 be a column basis

1

(I - B(8'B)"*B")T, and B, be such that BJB = 0, BYT = 0, and B

is (pxp) of full rank. The transformation is

l:32:133]

: - Tt
‘Yl Bl
= '

Y2 32 X.
b B!

3 3

We then find that the covariance matrix between corresponding columns

of Y1 and Y2 is

= ry=las ' 2
Cov(Ylini) (BB') "B' (TTT' + ¢ 1)32

between corresponding columns of Y, and Y, is

1 3

. = 1yl ' 2
Cov(YliYSi) (BB') "B' (TI'T' + ¢ I)B3

= 0
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and the covariance matrix between corresponding colums of Y2 and Y3
is

Cov (Y

2
= 1 d ] “
21Y31) BZ(TPT + O 1)33

= 0.

Here Y, provides no information about Y

3 or Y2 and may be disregarded.

1

.We then make inferences about £ using the conditional distribution of

Yl given Y2 as described earlier. This partitions the within individual
error space into parts which are useful as covariables and a part which
can be discarded.

As a general principal only those vectors in the within individual
error space that are correlated with the vectors in the within individual
estimation space should be used as covariables. Due to the patterns
assumed above the two groups of vectors are mutually independent. Other
assumptions about the patterns in L and about the model could lead to
the choice of only a few of the vectors in the error space being included
as covariables.

Rao [1l1] shows that the difference in variance between the weighted

and unweighted estimates are

Ner-1 N

t R L lndt Sl SEE v

-1

Bl L Bl - (B' L B)”l is non-negative definite. But since

(N-x-1)/[N-r-(p-q)~-1] > 1, the difference in variance is not necessarily
in favor of the weighted estimate. By reducing the numbexr of covariates,
we make p-q small and hence the multiplier moves closer to its lower

bound of unity, and by discarding the vectors that are independent of §

we decrease the effect of random variation in the weights actually used.
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It was illustrated above that depending on the pattern in I, all of the
vectors in Y2 may not carry useful concomitant information. In partic-
ular fields of inquiry, the most useful Yz could be found, and then only
those concomitants should be used in the analysis.

Consider wha£ could happen if there were 20 observations made on
each individual and a linear trend provided an adequate description for
each individual. Then p-q =18 and if a large reduction in variance did
not result from using all covariates, efficiency would be lost. However,
it is entirely reasonable to suppose that 5 or 6 properly chosen co-
variates could effect a reduction in variance comparable to using all 18.
Then instead of p-q = 18 we should have 5 and efficiency should be gained.
When the number of useful concomitant variables can be decreased without
sacrificing an appreciable amount of information, more powerful tests will
result by increasing the degrees of freedom and by decreasing the variance
of E.

An alternative approach is to use the same data to find the use-
ful concomitants as was used in making the test. Of course this will
result in the probability of a Type I error no longer being exactly o,
but it might be worth the price. Rao [11] points out that the dominant

characteristic vectors of
(T - B(B'B)“la']s

can be determined. These constitute the vectors in B2 instead of the

previously defined form. We require that B'B, = 0; hence it is essential

2
that the left handed characteristic vector be used. It is easily seen

2

that 1f S approximates Idz, the roots will be 0" or 0 with multiplicity

p-q and q respectively.
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Williams [14] discussion throws some light on allocating effort
toward making p or N large when the amount of experimental effort and
q are fixed., He conjectures that when the response model is exact, it
is better to replicate a small design over many individuals than to
sample the response at too many points. The pattemn in Biz 32 would
be the deciding factor if it were known. The fact that one can sometime
do as good or better when using a sub-set of covariates on even none

than by using all is evidence that effort may have been wasted.

Confidence Intervals

Confidence bounds on C £ V were derived by Khatri [6]. He shows
that (1 - o) 100% confidence bounds for a'(C £ V)b are given by

1
a'(C E Wb + [x (a'Q,0) (b'v'R, ) 12

vwhere Q, = C(B'S—lB)-lc', R, = the leading upper left rxr minor of DD’

u

and A = =2
Q l—ua

)y Yy being the ath percentage point of the largest root
test criteria with degrees of freedom s = min(c,v), m = (|v-c| - 1)/2,
n = (N-r-(p-q)-c~-1)/2. These confidence bounds hold for all vectors

a and b, Notice that Q2 is the error sum of products matrix associated
with the test of the hypothesis C § V = 0 when the model given by equa-
tion (4a) is used, When s = 1, Aa can be found from the F distribution.

In the case v= 1, Aa = ¢
N-g-(p-q) ~c+l

F {a, C,N-r—(p—q)_c.’.l] , and when

cm 1, A = v

o N-r-(p-q) F[Q,V,N—r-(p-—q) 1’

The linear parametric function a'(C & V)b, where a and b are

arbitrary, is an expression of the general linear function belonging to
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the vector space generated by C & V. Thus the Khatri bounds permit us
to control simultaneously the error levels for all linear parametric
functions in subspace C £ V of the total parameter space §. The smaller
we can keep C £ V, while retaining the comparisons of interest, the
shorter will be the confidence intervals or the more powerful will be
the tests. This technique is an extension of Scheffé's method of multiple
’comparisons.

When only a few specific contrasts are tested, shorter intervals
can usually be obtained by using the Bonferroni inequality which results
in using Fa/k where k is the number of confidence intervals, than from
the intervals based on the largest root criteria which cover all linear
functions in the same space as C £ V with probability 1 - a. The lengths

of the confidence intervals can be compared by computing

c F or v F whichever
N=r~(p—q)+1 [_19:_: ¢,N-r=(p=q)=ctl] ~ N-1-(p—q) [%sVsN"r'(P"Q)]
is appropriate and comparing it to T-u .
o



:xample 1. Data, taken from [4], presented in Table 2, are the ramus

Examples

:f heights, measured in mm., of a cohort of boys at 8, 8 1/2, 9, and

28

' 1/2 years of age. The objective is to establish a normal growth curve

‘or the use of orthodontists.

» straight line should fit the data.

It is apparent within the range covered,

Table 2
Ramus Height of 20 Boys
Age in Years

ndividual 8 8 1/2 9 9 1/2
1 47.8 48.8 49,0 49.7

2 46.4 47.3 47.7 48.4

3 46.3 46.8 47.8 48.5

4 45.1 45.3 46.1 47.2

5 47.6 48.5 48.9 49.3

6 52.5 53.2 53.3 53.7

7 51.2 53.0 54.3 54.5

8 49.8 50.0 50.3 52.7

9 48.1 50.8 52.3 S4.4

10 45.0 47.0 47.3 49.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52,1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8
Mean 48,66 49.62 50.57 51.45
s.d, 2.52 2.54 2.63 2.73

The analysis fits into the general model (2) as follows: Since

‘here is only a single group, the design matrix for individuals is

A
1%20

= (l""","l)’
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and the within individual design can be expressed in terms of orthogonal

polynomial coefficients as

1 -3
Ba 1 - 1.
bl 1
1 3

The parameter matrix is §' = [EO,El].

To test the fit of the linear model, we can choose

1 -1
B, = |-1 3.
R N

|

1 1

which are the orthogonal polynomial coefficients for quadratic and cubic

terms.

The fit of this model is tested by starting with a model in which
the fact that 4 measurements made on each individual are functionally

related is ignored, i.e.,

E(X) = ¢£E* A s
4x20 4x1  1x20

and testing the hypothesis CE*V = O, where C = B; and V= 1. Then if

this hypothesis is accepted, the vectors BéX are assigned to the error

space.
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The variances and covarlances are shown above the diagonal and the

correlations below in the following matrix.

6.33 6.19 5.78 5.55

0.97| 6.45 6.16 5.92

0.87 0.92_6.93 6.95
0.81 0.85 0.971{_7.47

The test for the fit of the model yields

~

C g% v =B gxl= [-0.09, -0.04],
2x4 4x]1 1x1

The likelihood ratio criterion yields y? = ,18 with 2 degrees of freedom.

!X to the

This is far below the critical value. Therefore, we assign 32

error gpace.

Proceeding to the next stage of the analysis we compute B! and

1
1
BZX where _
1 /4 ~3/20
v 1/4 -1/20
3= 4 1/20 | °
2
| 1/4 3/20 |

and B2 is as defined above. It is easy to check that BiB = I and

BéB = 0. Since S has been computed, the correlations between the

vectors in Bix and Béx are easily found to be
Y ]
BlX 82X
1.00
BiX
0.12 1.00
~0.08 0.15 1.00
BéX
~0.06 -0.59 -0.11 1.00 , |
!
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This shows that only the vector expressing the cubic term in Béx

is correlated with the vectors in Bix. Therefore, 1t seems reasonable

to expect a smaller variance when only this term is used as a covariate,
This covariate is easily incorporated into the analysis by aug-

menting the original A by BéX where Bé = {~1, 3, =3, 1]. 1If we define

the quadratic and cubic terms will be incorporated as covariates which

is equivalent to weighting by S—l.

The results of the three analyses are shown below.

Covarilables Used

None ? Cubic Quadratic and Cubic
& 50.07 50,07 50.05
El 4665 L4629 4654
A A 6.27 .090}:{7.00 .070 7.85 .087
20(Var(g))
.090 .08 .070 062 .087 .069
400(Gen.
var,)* .525 L430 .535
* ) r

The generalized variance is defined as the determinant of the Var(f) in
accordance with [2], page 166,

This shows that the unweighted analysis 1s preferable to weighting
by S—l. The unweighted analysis and the analysis using two covariates
correspond to Methods I and III in [4]. The reason that Method I gave
slightly narrower confidence bands in [4] is due to the smaller variance
of the estimated intercept in unweighted analysis. The analysis in which

the cubic term is used as a covariable is intermediate between Methods I
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and III in regard to the variance of the intercept and its slope has the
smallest estimated variance. The analysis using only the cubic term has

the smallest generalized variance,

Example II. The data shown in Table 1 are used in this example.

They are typical of the type of data obtained from nondescript dogs

.often used in medical experimentation,

The covariance and correlation matrices are

0.2261 _  0.1721 0.1724 0.2054 0.1705 0.1958 0.1817
0.88 | 0.1696 0.1840 0.1919 0.1628 0.1700 0.1644
0.58 0.71 . _0.3917  0.3473 0.2370 0.1876 0.2194
0.65 0.70 0.84 0.4407 0.3689 0.2870 0.2582
0.54 0.60 0.57 0.84 0.4337 0.3733 0.3178
0.57 0.57 0.41 0.60 0.78 0.5235 0.4606
0.53 0.56 0.50 0.54 0.67 0.89 | 0.5131.

The variances and covariances are shown above the diagonal and correla-
tions below.

A plot of the data suggest that a third degree polynomial should
fit the data. A test that the 4th, 5th, and 6th degree polynomial co~
efficients have expected value zero simultaneously yield x? = 8.259 with
12 degrees of freedom. This does not approach statistical significance.

This test is made by defining the model E(X) = E*A' and testing
CE*V, where A is as defined when the example was originally presented,

V=1 and
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C= Bé = -1 4 -5 0 5 -4 1

1 -6 15 -20 15 -6 1

The correlations among the vectors in the estimation space and in

the error space are shown in the following table.

1 1
le BZX
1.00

aix 042 100

-0.17  0.25 1.00

-0.16  -0.37 -0.05 1.00

0.22  -0.30 -0.70 -0.31 1.00
grg -0.19  0.02 -0.04 -0.57 | -0.12  1.00

2
-0.11  0.02 -0.20 0.43 0.18 -0.08 1.00

Notice that there are relatively high correlations between the vectors
in the error space with the quadratic and cubic terms in the estimation
space. Therefore, all the vectors in the error space are used as co~
variables. The estimates of £, Gar(g), and tests of homogeneity are

shown in Table 3. The estimated parameters have not been scaled by

dividing by the sums of squares of the orthogonal polynomial coefficients.
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Table 3

Comparison of Weighted and Unweighted Estimates

No Covariates 3 Covariates -1

(Unweighted) (Weighted by S )
-

é Inter- Inter-
O | cept Linear Quad. Cubic cept Linear Quad. Cubic
1 32,57 4.48 -3.63 -0.98 32,70 4,14 -4,68 -1.14

2 24,87 -0.56 -0.78 0.11 25.07 -0.6% -1.00 0.11

29.05 3.49 -4.54 0.23 28.59 4.10 -2.90 -0.48

ove >
W

4 27,58 1.72 -1.79 0.16 27.12 1.91 -1.55 0.04

12,75 4.67 ~2.60 -o.sﬂ 14.10 6.66 =0.96 =1.00
A oAl 9.83  3.31 -1.02|, 10.84  0.66 -1.04
Var(£) N I\I_
3 18.47  -0.20|} "4 10.86  0.59
i 0.76)| L 0.45]
Generalized 1 1
Variance V4 1061 54 349
: h]
J
Test of
Homogeneity x? = 27.27 p = .008 x? = 27,61 p = .007
of Groups

These results show that the generalized variance was decreased
weighting by S'l. However when considered individually the decrease was
not uniform for all parameters estimated. Only the quadratic and cubic
terms show an important decrease in variance; the intercept and slopes
actually showed increases.

The test for homogeneity shows that there are significant differences
among the response patterns of the four groups. Comparisons among the four

groups are shown in Table 4, The comparisons are made by setting C = I and
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V' = (100~-1) to compare the first and fourth groups. Other comparisons
can be made by changing V appropriately in the general form C § V= 0,

In spite of the large reduction in the generalized variance there
is little change in the results of specific tests. However, either

method has the ability to pinpoint fairly precisely where the differences
lie.

Summary

A method of analysis of "growth curves" is developed and 1llustra-
ted which yields iﬁentical results to weighting inversely by the sample
variance. This mgthod has the a&ditional feature of allowing flexibility
in weightipg by choosing subsets of covariates that have some special
property. This permits exploitation of Rao's observation that especially
selected subsets of the covariate may yield better estimates than the
complete set in some casés. However, application of the results to actual
data makes it clear that it is not easy to determine when it will be ad-
vantageous to use all the vectors in the error space as covariates (weight~
ing by S-l), or a subset, or how to choose the 'best" gubset from

examination of sample covariance or correlation matrices.
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