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Abstract Scraped-surface heat exchangers (SSHEs) are widely used in industries that manufacture and
thermally process fluids; in particular, the food industry makes great use of such devices. Current under-
standing of the heat flow and fluid dynamics in SSHEs is predominantly based on empirical evidence. In
this study a theoretical approach (based on asymptotic analysis) is presented for analysing both the flow
and heat transfer in an idealised SSHE (a cylindrical annulus) for Newtonian fluids. The theory allows
the effects of scraping-blade configuration, pumping rates, annular shear velocity and material properties
all to be accounted for. The analysis relies on asymptotic simplifications that result from the large Péclet
numbers and small geometrical aspect ratios that are commonly encountered in industrial SSHEs. The
resulting models greatly reduce the computational effort required to simulate the steady-state behaviour
of SSHEs and give results that compare favourably with full numerical simulations. The analysis also leads
to what appears to be the first theoretical study on the undesirable phenomenon of “channelling”, where
fluid passes through the device in an essentially unheated or uncooled state. A parametric study is also
undertaken to investigate the general circumstances under which channelling may occur.

Keywords Advection-driven thermal flow · Averaging · Lid-driven cavity · Lubrication theory ·
Scraped-surface heat exchanger

1 Industrial background

One of the food industry’s constant goals is to reduce manufacturing costs whilst retaining control over
food quality. The process optimisation of heat transfer is therefore a particular priority for the many food
products that are made by heating or cooling a raw material or mixture of materials. A number of distinct
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Fig. 1 Diagram of a typical Chemtech International Ltd. SSHE

Fig. 2 Cross-sectional
diagram of a typical
scraped-surface heat
exchanger
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types of heat exchangers are routinely used in the food sector. The fluid flow and heat transfer in classi-
cal plate and tubular heat exchangers is normally relatively straightforward and easy to understand and
optimise. Matters are a great deal more complicated in scraped-surface heat exchangers (SSHEs) where
both operational and modelling difficulties are often present. SSHEs are often used to process products
that require more sophisticated heat-transfer mechanisms; an illustration of a Chemtech International Ltd.
SSHE is shown in Fig. 1.

In devices such as that shown in Fig. 1, food is pumped axially through a long cylindrical annulus. The
outer cylinder, sometimes called the stator, is heated or cooled and the inner “rotor” cylinder (which may
be assumed to be thermally insulated) rotates at a prescribed velocity. Blades are attached to the rotor and
continuously scrape foodstuffs from the stator, the heat-exchange surface. A typical SSHE cross-sectional
configuration is shown in Fig. 2.

The materials that are processed in an SSHE encompass a broad spectrum of rheological behaviour.
Some possess a yield stress and exhibit viscoelastic or pseudoplastic properties and many have a highly
temperature-dependent viscosity. Some processed foods also involve multiphase flow and/or particle sus-
pensions. Crystallisation, freezing and other phase changes may also take place. Generally, however, the
main aim in SSHE operation is to ensure that the heat transfer from the stator to the food is both (a)
maximised and (b) distributed as evenly as possible within the food. In order to achieve these twin goals,
process engineers may alter many aspects of a particular machine. Blade configuration, annular gap width,
axial length, rotation speed and pump pressure may all be changed not only for optimisation purposes,
but also to avoid the occurrence of flow regimes that are regarded as undesirable. One such flow regime,
which is normally to be avoided at all costs, involves “channelling”. Under certain conditions large regions
of the material being processed may pass through the heat exchanger in an essentially thermally unaltered
fashion. The existence of such flow “channels” can render the final product completely useless.
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How can channelling be avoided? Currently, the theoretical understanding of SSHEs is limited. Food
manufacturers therefore usually rely on empirical knowledge, and may expend significant resources adapt-
ing operating parameters to new materials or products. The aim of this study is to try to produce a
simplified model of flow and heat transfer in an SSHE and thereby allow the phenomenon of channelling
to be approached from a theoretical point of view.

2 Preamble

A number of authors have previously modelled heat and fluid flow in SSHEs. All have assumed that the
flow is laminar, and we will also make this assumption. Numerical approaches include a 3D simulation
of the flow of a Newtonian liquid in an SSHE [1] and 2D cross-sectional studies [2, 3] of pseudoplastic
materials with temperature-dependent viscosities; each of these studies involved substantial computational
effort. Isothermal fluid flow analyses were undertaken in [4, 5] which both employed asymptotic analysis
based on the small axial and transverse reduced Reynolds numbers. In [4], the behaviour of freely pivoted
scraper blades in a Newtonian viscosity dominated liquid was considered and predictions were made of
the conditions under which the blades could act successfully as scrapers. Isothermal pseudoplastic flow in
an SSHE was studied in [5] where a throughput optimisation problem was also considered. Though the
experimental studies [6, 7] of pseudoplastic isothermal fluid flow in an SSHE provided additional evidence
supporting the asymptotic approach of [5], the relevance of purely isothermal studies of a process, whose
ultimate object is heat exchange, is naturally limited. The aim of our work here is therefore to investigate
the dependency of output temperature distribution on the design and process parameters.

Since we will consider fluid flows that are predominantly unaltered by thermal gradients, an asymptotic
description similar to that used in [5] will be employed. Here, however, analysis of the heat transfer in
the flow will be considered to be of paramount importance. In Sect. 3, a 3D “lubrication theory” model
is presented, along with detailed discussion of the boundary conditions in the blade regions. We describe
the structure of the heat-flow problem and compare model simulations with full numerical CFD results. In
Sect. 4, this 3D model is simplified further and a 2D averaged equation and its solutions are investigated.
This allows us to examine the dependence of SSHE output on operating parameters and to draw some
theoretical conclusions regarding the phenomenon of “channelling”.

3 3D “lubrication” model

We now present the scaling arguments for a “lubrication theory” model. This model will also form the
basis of the further simplified model studied in Sect. 4. The approximation is valid everywhere, except near
the scraper blades, and is derived by assuming that the reduced Reynolds number and the channel aspect
ratios are both small. Near the blades, we propose a simple boundary condition (based on particle tracking
and asymptotically negligible residence times) that allows us to avoid the complications of full numerical
3D computations; a comparison with a full CFD simulation is given to outline the potential strengths and
weaknesses of the model used.

We begin by stating the full problem. Since processing typically occurs over a period of hours (O(104 s))
or sometimes days, and particle residence times are of O(10 s), we assume that a steady state prevails. The
governing Navier–Stokes and energy equations are (the summation convention has been used)
∂uk

∂xk
= 0, (1)

ρuk
∂ui

∂xk
= − ∂p

∂xi
+ 2

∂

∂xk
(µeik), (2)

ρcpuk
∂T
∂xk

= ∂

∂xk

(
k
∂T
∂xk

)
+ 2µekl

∂uk

∂xl
. (3)
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Table 1 Typical values (SI units) for SSHE parameters (L based on 2 or 3 blade configurations)

k cp ρ U W µ
ρ

G H L a

Chemtech 0.4 4 800 2.0 0.2 0.1 2.0 0.015 0.15 0.075
Tetra Pak 0.5 3.5 1000 0.2 1.5 0.4 2.0 0.016 0.2 0.061

Here ui are the components of the fluid velocity u, eij = 1
2

(
∂ui/∂xj + ∂uj/∂xi

)
is the infinitesimal rate-

of-strain tensor, p is the fluid pressure and T the temperature. The material properties are denoted by ρ
(density), cp (specific heat) and k (thermal conductivity), all of which are assumed to be constant. The
boundary conditions are

u = 0 and T = Ts at r = a + H, (4)

u = Ueθ and
∂T
∂r

= 0 at r = a, (5)

u = Ueθ and
∂T
∂n

= 0 on the surface of each scraper, (6)

where Ts is the prescribed stator temperature, n is normal to the blade surface and the cylindrical polar
unit vectors (er, eθ ) lie in the transverse (cross-sectional) plane as illustrated in Fig. 2. To complete the
problem specification it is necessary to prescribe suitable conditions at the inlet and outlet. In general, the
solution to this three-dimensional problem requires demanding numerical computation (see, for example
[1,8]). However, we will try below to analyse “channelling” by employing asymptotic analysis.

3.1 Scalings and asymptotic analysis

We begin by presenting, in Table 1, some typical operating parameters from two of our industrial collab-
orators. In the table W and G denote axial velocity and length-scale, respectively. Note that, though the
values (in particular those related to material properties) may vary substantially depending on what sort
of food is being processed, the aspect ratios ε and L/G are almost invariably small.

Since the annular gap-width/rotor-radius ratio H/a is small, we assume that flow takes place in a periodic
parallel channel as shown in Fig. 3. We also use a frame of reference that rotates with the blades and rotor
so that the stator now moves at speed U. The problem may be decomposed into periodic (and adjacent)
blade and cavity regions which are assumed to have lengths l and L, respectively. We address problems
where (l/L) � 1 so that the blade regions are relatively short. We therefore focus our attention on the fluid
dynamics in the periodic cavity. The case where the blade penetration height h1 is equal to the channel
height H, so that the blades completely block the channel, resembles the classical fluid-dynamics problem
of a lid-driven cavity; this was studied in the context of an SSHE in [5, 8].

To non-dimensionalise the problem, we use the scalings

x = Lx̄, y = εLȳ, z = αL
z̄
ε

,

u = U(ū, εv̄, εw̄)T , T = Ts + (Tin − Ts)T̄, p = pa + µU
Lε2 p̄, (7)

where ε = H/L denotes the transverse aspect ratio, α = ε(G/L) = O(1), Tin is the inlet temperature at
z = 0, and an over-bar refers to a non-dimensional, order unity variable. These scalings are equivalent to
a “lubrication theory” approach, where both the reduced Reynolds number ε2Re = ε2 (ρUL/µ) � 1 and
the aspect ratio ε � 1. In this limiting case (1)–(2) become, to leading order,



J Eng Math (2007) 57:407–422 411

Fig. 3 A cross-sectional
diagram of periodic
cavities and blade-array
regions
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∂ū
∂ x̄

+ ∂ v̄
∂ ȳ

= 0, (8)

∂2ū
∂ ȳ2 − ∂p̄

∂ x̄
= 0, −∂p̄

∂ ȳ
= 0, α

∂2w̄
∂ ȳ2 − ∂p̄

∂ z̄
= 0. (9)

Note that the centripetal acceleration, Coriolis and gravity terms have all been ignored in deriving (8)
and (9). It transpires that the largest centripetal term (which appears in the x-momentum equation) is of
order L3ε2/νa, the Coriolis term is of order 2Uε3L2/νa and the largest gravity term (which appears in the
z-momentum equation) is of order gεL2/νU. Using the values from Table 1, all of these terms are seen to
be much less than unity and may therefore be ignored.

The flow is viscosity-dominated, fully developed and laminar; to leading order, axial and transverse
components of the fluid motion can be treated separately and mass in the transverse plane is globally
conserved. The solution to (9), with ū = 1, w̄ = 0 at ȳ = 0 and ū = w̄ = 0 at ȳ = 1, is

ū = (6Qȳ + (1 − 3ȳ)) (1 − ȳ), v̄ = 0, w̄ = λȳ(1 − ȳ), p̄ = −2λαz̄ + 2(3 − 6Q)x̄. (10)

The quantity Q = Qx/ρUH denotes the dimensionless transverse flux (produced by flow over the blades
between adjoining chambers), and involves the transverse mass flux Qx per unit z-direction length (dimen-
sions kg/m/s) defined by

Qx =
∫ H

0
ρu dy.

The axial mass flux Qz (dimensions kg/s) is defined exactly by

Qz =
∫ 2π

θ=0

∫ r=a+H

r=a
ρwr dr dθ .

Since in our approximation H � a, it is consistent to assume that NL = 2πa where N denotes the number
of scrapers. Thus

Qz � NL
∫ H

0
ρw dy

and, using (10), λ = 6Qz/(NρUH2). The dimensionless quantity λ thus represents a ratio of the axial veloc-
ity induced by pumping to the circumferential velocity induced by rotation. Normally a process operator
may control both the transverse and axial flux; the former is altered by changing the blade geometry or
configuration and the latter by altering the pumping rate. In our analysis below we will assume that Qx

is simply prescribed. If, however, the reduced Reynolds number ε2ρUL/µ � 1 in the blade region, then,
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using the calculations of [4], the inter-cavity transverse flux can be related to blade angle φ and height h1
(see Fig. 3).

The remaining governing field equation is the energy balance (3), and by applying the scalings (7) we
find that, to leading order,

1
γ

(
ū(ȳ; Q)

∂T̄
∂ x̄

+ δŵ(ȳ)
∂T̄
∂ z̄

)
= ∂2T̄
∂ ȳ2 + Br

(
∂ū
∂ ȳ

)2

+ O(Brε2, ε2), (11)

where

γ−1 = ε2Pe, δ = ε2λ

α
= 3Qz

πNGρUH
and ŵ = ȳ(1 − ȳ). (12)

The reciprocal of γ is a reduced Péclet number and δ may be thought of as a ratio of axial to transverse
velocity. We have introduced ŵ so, that the process parameter δ is more clearly visible in (11). The Péclet
number, the product of the Prandtl and Reynolds numbers, characterises the ratio of advection to heat
diffusion and is defined as

Pe = µcp

k
ρUL
µ

= Pr Re.

Based on the values in Table 1, we see that ε = O(10−1), ε2Re = O(10−2) or less, Pe = O(103) and
γ = O(10−2). The Brinkman number

Br = µU2

k(Tin − Ts)
,

characterises the ratio of viscous dissipation to heat diffusion. For the Tetra Pak machine Br ∼ O(1) when
the temperature difference Tin − Ts is about 10◦C (for the Chemtech machine Br is approximately 10
when the temperature difference is 80◦C, but ε2Br � 1). We conclude from these parameter estimates that
the temperature equation (11) is advection-driven (u being dominant over w), but also includes viscous
dissipation and radial diffusion (in the y-direction) between rotor and stator. For the model to be valid we
require

ε2Re, ε2, γ and ε2Br � 1.

Note that the constraints on the reduced Reynolds and inverse reduced Péclet numbers and aspect ratios
are fundamental to the problem formulation, whereas if the reduced Brinkman number ε2Br were to be
of order unity or larger, additional viscous dissipation terms could be included.

By application of the scalings (7), the thermal boundary conditions in (4)–(6) become

T̄ = 1 at z̄ = 0,
∂T̄
∂ ȳ

= 0 at ȳ = 1, T̄ = 0 at ȳ = 0. (13)

To complete the problem defined so far by (11) and (13) we need to consider the flow near the blades in
the blade regions at x̄ = 0 and x̄ = 1. This aspect of the problem is non-trivial and would normally require
solving the full problem (1)–(3) in boundary layers of size O(ε) at x̄ = 0 and x̄ = 1 where the fluid flow
ceases to be two-dimensional. However, since we are considering advection-dominated thermal flow we
shall see that it will be possible to reduce the problem here to a simple “mapping condition” described in
Sect. 3.2.

An examination of the terms in (11) when γ � 1 and δ � 1 reveals that the thermal boundary layers
on the rotor and stator, respectively, are of different types, with correspondingly different “entry region”
lengths. For the rotor, where the flow is primarily of shear type, the entry length has size z̄ = O(δ) and
the thermal boundary layer thickness is O(γ 1/3). For the stator, where the x-component of the velocity
is nearly constant and the z-component is of shear type, the entry length has size z̄ = O(δγ 1/2) and the
thermal boundary layer thickness is O(γ 1/2).
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Fig. 4 An illustration of the flow speed ū in the case 0 < Q < 1/3 from (10) and stream function from (14) with regions I, II
and III marked accordingly. (a) Velocity profile and (b) stream function

3.2 Fluid and heat flow near the blades

We begin by describing the fluid flow (10) arising from the “lubrication model” (8)–(9) in more detail. To
leading order, mass is conserved in the transverse plane and it will be convenient to introduce a stream
function ψ̄ , such that ū = ∂ψ̄/∂ ȳ, v̄ = −∂ψ̄/∂ x̄ and

ψ̄ = 6Q
(

ȳ2

2
− ȳ3

3

)
+ ȳ3 − 2ȳ2 + ȳ. (14)

The topology of the flow inside the heat-exchanger cavity now depends on the size of the quantity Q. A
number of cases may be identified:

3.2.1 Flow for 0 < Q < 1/3

An examination of ψ̄ and ū shows that, in this case, we have forward flow for 0 < ȳ < 1/(3(1 − 2Q)).
Further, ū decreases as ȳ increases, reaching 0 at ȳ = 1/(3(1 − 2Q)). Reverse flow with ū < 0 takes place in
the region 1/(3(1−2Q)) < ȳ < 1; the reverse flow speed has a maximum at ȳ = (3Q−2)/(3(2Q−1))where
ū = (9Q2−6Q+1)/(3(2Q−1)); thereafter the reverse flow speed decreases until at ȳ = 1, ū = 0 once again.
Since, in practice, values of Q tend to be small, this is the case upon which we will expend most of our effort;
plots of ū and ψ̄ for 0 < Q < 1/3 are shown in Fig. 4. We identify three regions, labelled I, II and III in Fig. 4.
Region I (where ū ≥ 0, 0 ≤ ȳ ≤ Q/(1 − 2Q) and 0 ≤ ψ̄ ≤ Q) is composed solely of fluid that has leaked
over the scrapers from an adjacent cavity. In region II ū ≥ 0, Q/(1 − 2Q) ≤ ȳ ≤ 1/(3(1 − 2Q)), ψ̄ increases
with increasing ȳ and Q ≤ ψ̄ ≤ (4−9Q)/(27(1−2Q)2). In region III we have ū ≤ 0, 1/(3(1−2Q)) ≤ ȳ ≤ 1,
ψ̄ decreases with increasing ȳ, and Q ≤ ψ̄ ≤ (4−9Q)/(27(1−2Q)2). Regions II and III are both composed
of fluid that remains trapped, recirculating in a given inter-scraper cavity.

3.2.2 Flow for Q = 0

When Q = 0 matters are simplified as there is no leakage from adjacent chambers. The scraper blades
block the flow completely and all of the fluid recirculates between the blades, remaining in its specific
cavity. Region I disappears but regions II and III remain as described above.

3.2.3 Flow for Q ≥ 1/3

When Q ≥ 1/3 the leakage between adjacent cavities dominates the flow, regions II and III disappear and
only region I, where 0 ≤ ȳ ≤ 1 and ψ̄ increases monotonically with increasing ȳ from 0 to Q survives: no
fluid particle now remains trapped in a single inter-blade cavity and there is no reverse flow so that ū ≥ 0
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Fig. 5 An illustration of the transverse streamlines for a periodic array of scraping blade and cavities

for all ȳ ∈ [0, 1]. For Q = 1/2 the flow is of pure Couette type with a linear velocity profile; for Q > 2/3 an
internal maximum flow speed exists at ȳ = (2 − 3Q)/(3(1 − 2Q)) where ū = (9Q2 − 6Q + 1)/(3(2Q − 1)).
Though this case could be further analysed with profit, we do not do so here, as it characterises a regime
not normally found in SSHEs.

3.2.4 Cavity boundary conditions when 0 ≤ Q < 1/3

We now concentrate solely on the most practically realistic case when Q < 1/3. In the boundary layers of
size O(ε) at x̄ = 0 and x̄ = 1, we expect a streamline in region II to re-connect to a streamline in region
III. The fluid in region I will move between cavities through the boundary layers; particles will leave a
cavity at x̄ = 1 and re-enter the next cavity at x̄ = 0 with the value of the stream function preserved. Note
that, viewed three-dimensionally, all particles will follow helical trajectories; those particles that begin in
region I will circumnavigate the rotor periodically, whereas those that begin in regions II or III will remain
between the same two adjacent blades. Figure 5 shows the planar projection of these helical motions. Our
observations based on the stream function show good agreement with full numerical simulations in [1, 8].

Since the Péclet number is large, the temperature of a fluid particle will remain essentially constant as
it moves through the boundary layers near the blade regions. Periodic-type boundary conditions may thus
be prescribed at x̄ = 0 and x̄ = 1 using the stream function “re-connections” discussed above. We have

T̄(0, ȳII, z̄) = T̄(0, ȳIII, z̄)
(

Q
1 − 2Q

< ȳ < 1
)

, (15)

T̄(1, ȳIII, z̄) = T̄(1, ȳII, z̄)
(

Q
1 − 2Q

< ȳ < 1
)

, (16)

T̄(0, ȳI , z̄) = T̄(1, ȳI , z̄),
(

0 < ȳI <
Q

1 − 2Q

)
, (17)

where for a given value of ȳ = ȳII in region II say, ȳIII is determined by ψ̄(ȳIII) = ψ̄(ȳII). The
“reconnections” and region boundaries are shown schematically in Fig. 6.

The heat-transfer problem to be solved is therefore Eq. 11 (with (x̄, ȳ, z̄) ∈ [[0, 1]×[0, 1]×[0, 1]]) subject
to conditions (13) and (15)–(17), with ψ̄ defined by (14) and ū and ŵ defined by (10) and (12), respectively.

3.3 Numerical solution

The heat-transfer problem described above is relatively easy to solve numerically. We used a standard
implicit finite-difference scheme to integrate down the exchanger, employing a cubic spline to impose the
“connection” conditions (15) and (16) (for brevity we omit the full details). To validate our theoretical
approach, we compared the numerical solution obtained to (11) (hereafter termed “modelling results”)



J Eng Math (2007) 57:407–422 415

_

_
u

x
1

II

III

I

Q
12Q

1
=Q

ψ=0

ψ

ψ=Q

_
T=0

1
3(12Q)

_

y

T
y

_

49Qψ =27(12Q)

=0
_

_

_

_

u = 1
_

T(0,y,z) = T(1,y,z)
_ _

_

2

Fig. 6 Schematic diagram of “reconnection” boundary conditions for Q > 0

with a full CFD numerical solution (hereafter termed “CFD”). To obtain CFD predictions, we used the
results calculated in [8], where (1)–(3) were solved subject to the boundary conditions (6) and (13), in a
3D rectangular lid-driven cavity, using the commercial software package FASTFLO. The numerical results
were carefully verified for both convergence and accuracy: for further details see [8] (and also [2, 3]).
Cross-sectional contour plots of isotherms for both CFD and modelling results are shown in Fig. 7.

We observe in Fig. 7 that in both simulations the fluid is cooled in a boundary layer on the stator at
ȳ = 0, and then transported onto stationary surfaces where the thermal boundary layer width is larger.
The “reconnection” conditions imposed in our model, namely (15)–(17), assume that the fully two-dimen-
sional flow regions adjacent to the blades are small in extent. Therefore, although detailed comparisons for
the aspect ratio ε = 1/5 (a typical value for industrial SSHEs) are not particularly good, it is evident that
the temperature contours from the modelling results correctly predict both the qualitative and much of the
quantitative behaviour between x̄ ≈ 1/5 and x̄ ≈ 4/5 (as predicted in Sect. 3). For transverse aspect ratios
smaller than ε = 1/5, the model will also provide good quantitative approximations. Similar comparisons
may be made with many other numerical results: the conclusions are much the same.

4 Parametric investigations and channelling prediction

Now that we have derived a simplified model for an “idealised” SSHE in Sect. 3, we proceed with a
parametric study in order to understand how the problem control parameters influence the heat-treatment
process and, more specifically, to identify conditions under which channelling may occur. The numerical
calculations of the heat flow given in Sect. 3.3 are reasonably time-consuming and so a further simplified
model will be presented that allows us to study the parameter space (δ, γ , Br, Q) with greater ease. Of
particular interest to designers and process engineers is the thermally unaffected central region, as illus-
trated in Fig. 7. As operating parameters are altered, this unaffected region can be reduced or extended
axially down the exchanger. If this region extends to the exit of the exchanger, this produces the unwanted
effect of “channelling”. The analysis below focuses on parameter regimes where this phenomenon occurs.
It should be noted that the occurrence of channelling for a constant-viscosity fluid would be exacerbated
if heat-thinning or shear-thinning effects were introduced, but we shall not quantify this here.
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Fig. 7 Results for the
case Q = 0, γ = 1/3200,
Br= 0.512, δ = 1/8 —
comparison of CFD
results (upper plots) with
ε = 1/5 and “modelling”
results (lower plots). The
plots are shown for two
points (z̄ = 0.4 and
z̄ = 0.6). Isotherms have
intervals of 10−1 and are
scaled to the range [0,1]

Rotor

Stator

1

0 1

_
z = 0.6

_
z = 0.4

_
x

_
y

4.1 x-Averaged model

For simplicity we shall henceforth disregard the dimensionless notation over-bar. Based on our previous
consideration of parameter sizes from Table 1, we consider the limits Br= O(1), γ → 0 and δ → 0 in
the distinguished limit δ = O(γ ). Physically, this represents the case where dissipation is important, the
Péclet number is large and the flow around the exchanger is much faster than the flow down it. We seek an
asymptotic solution of the form

T(x, y, z) = T0 + γT1 + O(γ 2). (18)

Substitution of (18) in the governing equation (11) gives the O(1) balance

u(y; Q)
∂T0

∂x
= 0. (19)

This states that the leading-order temperature is independent of x, so that T0 = F(y, z), and the temper-
ature will be constant along streamlines T0(ψ , z). To derive a governing equation for T0 we consider the
O(δ, γ ) terms and arrange as follows

∂T1

∂x
+ δŵ(y)
γu(y; Q)

∂T0

∂z
= 1

u(y; Q)
∂2T0

∂y2 + Br
u(y; Q)

(
du
dy

)2

. (20)
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An integration of (20) with respect to x will produce an averaged equation for T0 once the boundary
conditions (15)–(17) have been applied. The streamwise-mapping conditions (15) and (16) can be applied
more easily when we change variables from y to ψ using (14), so Eq. 20 becomes

∂T1

∂x
+ δŵ
γu

∂T0

∂z
= u

∂2T0

∂ψ2 + uy

u
∂T0

∂ψ
+ Br

u

(
du
dy

)2

. (21)

Equation 21 involves both T1(x, y, z) and T0(y, z); to generate an equation that allows T0 to be determined
we employ a “Fredholm alternative” type argument in each flow region. First, consider region I and sup-
pose that y = yI . Integration of (21) from x = 0 to x = 1 gives (upon using (17) and observing that u, ŵ
and T0 are all independent of x)

δŵI

γuI

∂T0

∂z
= uI

∂2T0

∂ψ2 + uyI

uI

∂T0

∂ψ
+ Br

u2
yI

uI
(0 < ψ < Q), (22)

thus giving an equation for T0 in region I.
To determine an equation for T0 in regions II and III, we integrate (21) from x = 0 to x = 1 first for

y = yII in region II and then for y = yIII in region III, yielding

T1(1, yII, z)− T1(0, yII, z)+ δŵII

γuII

∂T0

∂z
= uII

∂2T0

∂ψ2 + uyII

uII

∂T0

∂ψ
+ Br

u2
yII

uII

and a similar equation, but with subscripts II replaced by III. Subtracting and using (15) and (16) now gives

δ

γ

(
ŵII

uII
− ŵIII

uIII

)
∂T0

∂z
= (uII − uIII)

∂2T0

∂ψ2 +
(

uyII

uII
− uyIII

uIII

)
∂T0

∂ψ

+ Br

(
u2

yII

uII
− u2

yIII

uIII

) (
Q < ψ <

4 − 9Q
27(1 − 2Q)2

)
. (23)

We note that (22) and (23) are convection-diffusion type equations with timelike direction z that require
the prescription of suitable boundary and initial conditions. At the inlet z = 0 and the stator ψ = 0 we
have, respectively,

T0(ψ , 0) = 1, T0(0, z) = 0. (24)

At the interface between regions II and III where y = 1/(3(1 − 2Q)) and ψ = (4 − 9Q)/(27(1 − 2Q)2),
we impose continuity in both the temperature and the heat flux. Since ∂T0/∂y = (∂T0/∂ψ)(∂ψ/∂y) and
∂ψ/∂y = 0 here, we must ensure that ∂T0/∂ψ is non-singular. This is most easily imposed in practice by
expanding (23) in a Taylor series for T0 about y = 1/(3(1 − 2Q)). This shows that singular behaviour in
∂T0/∂ψ may be avoided by imposing the Neumann condition

δ

γ

(
ŵII

uII
− ŵIII

uIII

)
∂T0

∂z
=

(
uyII

uII
− uyIII

uIII

)
∂T0

∂ψ
+ Br

(
u2

yII

uII
− u2

yIII

uIII

) (
ψ = 4 − 9Q

27(1 − 2Q)2

)
. (25)

Finally, we require boundary conditions on the streamline ψ = Q that separates the intra-cavity
recirculating regions II and III and the inter-cavity through-flow region I. Again, we require that both
the temperature and the heat flux are continuous. Continuity of temperature implies that

lim
ψ→Q+ T0(Q, z) = lim

ψ→Q− T0(Q, z). (26)

To ensure continuity of the heat flux, we recall that, although the heat flux at ψ = Q+ involves the two
boundaries y = 1/(3(1 − 2Q)) and y = 1, the boundary at y = 1 is insulated. The appropriate flux balance
is therefore

lim
ψ→Q+

∂T0

∂ψ
= lim
ψ→Q−

∂T0

∂ψ
. (27)
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Fig. 8 Isotherms in the
y–z plane derived using
the averaged model of
Sect. 4.1, with the
recirculation (II and III)
and leakage region (I)
boundaries marked by
two vertical lines; the
parameters used were
γ = 10−2, δ = 10−1,
γBr = 10−3 and Q = 0.1.
Contour intervals of 0.05
are shown and
0 < T0 < 0.05 defines the
black region
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The complete problem for the average temperature, T0(ψ , z), is therefore defined by the Eqs. 22 and 23,
along with boundary conditions (24)–(27).

Before discussing numerical solutions to the averaged problem, it is worth briefly discussing the case
Q = 0, where there is no inter-cavity through-flow and region I does not exist. In this case the boundary
at ψ = 0 corresponds to the two points y = 0 and y = 1 at which homogeneous Dirichlet and Neumann
conditions are imposed, respectively. The condition T = 0 at y = 0 has the effect of cooling the flow and,
consequently, a thermal boundary layer develops. The condition Ty = 0 imposed at y = 1 will only alter
the size of this layer after it is transported through the blade region by the mapping conditions (15) and
(16). Therefore, in the case Q = 0, we still impose the boundary conditions specified in (24).

4.2 Numerical results

Solutions to (22)–(27) were obtained using a standard implicit finite-difference method. The point ψ = Q
was always chosen to lie on a grid point and consequently a ghost point was required for the boundary at
ψ = (4 − 9Q)/(27(1 − 2Q)2); for brevity we omit further details of the numerical scheme, which are of a
standard nature. Figure 8 shows typical results from the averaged model, displayed as a plot of the thermal
contours. (For ease of interpretation, the results have been “un-mapped” from ψ-space to y-space.) In
the example shown, the parameters γ = 10−2, δ = 10−1, Br = 10−1 and Q = 0.1 were used. We observe
that near the start of the exchanger, where z is small, the recirculation regions II and III are relatively
unaffected by the heat-exchange boundary at y = 0 (they appear as light-coloured regions). Once the
boundary layer has diffused into region II, the heat-exchange process is aided by the recirculating flow, and
so the width of region I, or the amount of inter-cavity flow, critically affects the thermal mixing properties
of an SSHE. As far as channelling is concerned, the light areas of Fig. 8 may be considered “bad” and the
dark areas “good”. As expected, for a given z the maximum temperature in Fig. 8 invariably occurs at the
boundary between regions II and III; a qualitative glance at the figure reveals however that, since at z = 1
no light-coloured regions remain, channelling is not present in this example.

A comparison of the temperature profiles predicted by the averaged model (22)–(27) and the 3D numer-
ical “modelling” results of Sect. 3.3 is shown in Fig. 9 for two values of the transverse flux, namely Q = 0
and Q = 0.1. For comparison purposes, the 3D “modelling” results have been presented for a given z = 0.4
in the form of an average temperature in x (TAV), and a temperature at a position adjacent to each blade
at x = 0.04 and x = 0.96. From these results we can see that the temperature T0 predicted by the averaged
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Fig. 9 A comparison between the averaged model of Sect. 4.1, (thick line), and the 3D “modelling” results of Sect. 3.3 at
z = 0.4. The “modelling” results are given as the average TAV = ∫ 1

0 Tdx, (solid line), and at two positions x = 0.04 and
x = 0.96, (dashed lines). The parameters used were γ = 10−2, δ = 10−1, γBr = 10−3. (a) Q = 0 and (b) Q = 0.1

model is usually less than TAV but is very close to the temperature at one of the blades (x = 0.96). The
fact that in general T0 < TAV is entirely predictable, for the heat flux produced in the averaged model has
been overestimated by the averaging. This fact is best illustrated by examining the results when Q = 0. In
this case, the boundary condition for the region II/III problem is (24), so that the heat flow in this case is
dominated by the heat flow into the stator rather than the slower flow near the insulated rotor. Evidently,
including further terms from the asymptotic series would account better for the insulating boundary layer
on the rotor.

4.3 Parametric study

We now investigate how the various problem parameters Q, Br, δ and γ affect the exchanger behaviour;
one could consider a number of different metrics for heat transfer within the system such as flux aver-
aged temperature or Nusselt numbers. Here we have chosen to use the maximum temperature of the
output flow at z = 1 as our metric. This metric has the property that if ever channelling is indicated,
Tmax(δ, γ , Br, Q) ∼≥ 1 (recall that under some circumstances dissipative viscous heating can make it
possible for the output temperature to exceed the inlet temperature).

To illustrate the range of behaviours that can occur, Fig. 10 shows two-dimensional cross-sections in
the four-dimensional parameter space. These cross-sections have been chosen so that they show extremes
of behaviour encompassing regimes where no channelling at all takes place, and regimes where severe
channelling is present. Once again, light-coloured regions show channelling and white regions indicate an
output temperature greater than unity: in effect, a “cooler” that in fact heats.

In the first three examples ((a)–(c)) Q is fixed at zero and δ, γ and Br are varied. In plot 10(a) the
maximum temperature at the exchanger outlet is plotted as a function of the diffusive properties of the
material γ and the ratio of axial and transverse velocities δ. The model predicts a greater possibility of
channelling when the axial velocities increase (decreasing residence times) and when thermal conductivity
decreases. In Fig. 10(b), where δ is fixed and γ and Br vary, the isotherms are closer together near to
the channelling regime where the output temperature exceeds unity; here relatively small decreases in
γ produce more dramatic differences in the output temperature. The results shown in Fig. 10(c) where
Q = 0 and γ is fixed show that increasing either δ or γBr (the axial through-flow or viscous dissipation
respectively) results in larger output temperatures. Note that in each of the plots shown in Fig. 10((a)–(c))
the parameter variations lead to essentially monotonic variations in the output temperature.

The remaining three plots ((d)–(f)) in Fig. 10 illustrate the effects of varying Q, the inter-cavity through-
flow while other parameters remain constant. Plots 10 (d), (e) suggest that, increasing the inter-cavity
through-flow, will generally result in poorer heat transfer; when the size of region I increases, the thermal
boundary layer takes longer to diffuse into the intra-cavity recirculating region, which mixes the heat
more effectively. Essentially, it becomes harder for heat to exit from the fluid to the stator wall. However,
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Fig. 10 Parametric plots of maximum temperature T0 at the exchanger outlet z = 1 predicted by averaged model. The
temperature contours are at intervals of 0.05 and the black regions are defined by 0 < T0 < 0.05. Dotted lines indicate
projections of other graphs contained in this figure on the plane of each graph. (a) Q = 0, Br = 0, (b) Q = 0, δ = 10−1, (c) Q =
0, γ = 10−3, (d) Br = 0, γ = 10−3, (e) Br = 0, δ = 10−1 and (f) γ = 10−2, δ = 10−1

once there is significant viscous dissipation within the exchanger, we observe in plot (f) that increasing
Q can either increase or decrease the maximum temperature, which is a non-monotonic effect. Note that
the viscous dissipation (du/dy)2 decreases monotonically as Q increases. The reduction in dissipation as
a result of increasing the inter-cavity flux, competes with the associated poorer heat transfer due to the
increase in size of region I, as seen in plots (d) and (e) of Fig. 10.
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5 Summary and conclusions

The temperature evolution of a Newtonian fluid within an idealised SSHE has been studied in a physically
realistic parameter regime. To our knowledge, this is the first theoretical (non-numerical) study to attempt
to address the phenomenon of “channelling” in an SSHE that has included the effects of both three-dimen-
sionality and heat transfer. The simultaneous inclusion of both multi-dimensional and thermal effects is
complicated by the fact that the thermal problem necessarily involves advection, diffusion and dissipation.
It is only through the use of asymptotic analysis and averaging methods that progress may be made.

A four-parameter model was studied which included material properties, geometrical variables of SSHEs
and processing parameters. The analysis enables the key non-dimensional parameters that govern the indus-
trial process to be identified and analysed. It it worth noting that the main assumptions of the study (namely
laminar flow, large Péclet number, small aspect ratio and small reduced Reynolds number) hold for a very
wide range of SSHEs. The analysis is therefore widely applicable to industrial processes involving SSHEs.

The solutions obtained compare well to a full numerical simulation, although the agreement is likely
to improve markedly as the aspect ratio ε decreases. The asymptotic analysis that was used has the great
advantage of leading to a numerical formulation that is markedly simpler than a full numerical simulation,
and this allows the parametric dependence of the solutions to be investigated with ease. The asymptot-
ics also allow the different flow topologies that result from different chamber leakage rates to be easily
enumerated and explained.

A two-dimensional averaged model was then formulated and solved numerically, using “reconnection”
boundary conditions that faithfully reflect the salient details of the flow inside an SSHE and its effect on
the heat transfer that occurs. The averaged model allows easy identification of regimes where undesirable
“channelling” may occur.

Finally, the methodology that has been developed allowed a parametric study to be performed. This
focused on predicting the onset of “channelling”. This allowed the identification of parameter regimes that
resulted in dramatic changes in output temperature profiles. The effect of increasing blade through-flow
and the associated dissipation, illustrated in Fig. 10, was also discussed.

In spite of the relative generality of the model presented, many further developments are possible.
Key aims for the future include accounting for the dependence of viscosity on temperature and adding
non-Newtonian effects (many foodstuffs processed in SSHEs are known to be pseudoplastic). It may also
be possible to extend the analysis presented here to encompass multiphase materials (e.g. jams contain-
ing fruit segments or soups containing vegetable parts). Phase changes such as freezing may also take
place in SSHEs (though these are usually considered to be undesirable) and it may be possible to use the
methodology developed in this study to examine such scenarios.

It is also clear that, if more experimental data were to become available, comparison studies could be
carried out to assess the accuracy of the results presented here. One reason why experimental data is
inherently hard to gather is that, if any apparatus is added to the flow for the purpose of data collection, it
is likely to be damaged by the scrapers.
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