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ABSTRACT

Motivation: We consider the detection of expressed
genes and the comparison of them in different experi-
ments with the high-density oligonucleotide microarrays.
The results are summarized as the detection calls and
comparison calls, and they should be robust against data
outliers over a wide target concentration range. It is also
helpful to provide parameters that can be adjusted by the
user to balance specificity and sensitivity under various
experimental conditions.

Results: We present rank-based algorithms for making
detection and comparison calls on expression microarrays.
The detection call algorithm utilizes the discrimination
scores. The comparison call algorithm utilizes intensity
differences. Both algorithms are based on Wilcoxon’s
signed-rank test. Several parameters in the algorithms
can be adjusted by the user to alter levels of specificity
and sensitivity. The algorithms were developed and
analyzed using spiked-in genes arrayed in a Latin square
format. In the call process, p-values are calculated to
give a confidence level for the pertinent hypotheses.
For comparison calls made between two arrays, two
primary normalization factors are defined. To overcome
the difficulty that constant normalization factors do not fit
all probe sets, we perturb these primary normalization
factors and make increasing or decreasing calls only if all
resulting p-values fall within a defined critical region. Our
algorithms also automatically handle scanner saturation.
Availability: These algorithms are available commercially
as part of the MAS 5.0 software package.

Contact: wei-min_liu@affymetrix.com

INTRODUCTION

mutations (Fodoret al., 1993; Lockhartet al., 1996;
Mei et al., 2000; Li and Wong, 2001). Analysis of the
large amounts of data produced by these microarrays,
however, requires robust computer algorithms. While
heuristic approaches have been used very effectively
in the past, it is usually difficult to adjust parameters
with these methods to allow the user to alter levels
of sensitivity and specificity often essential to obtain
optimal biological results. Statistical methods have also
been used to analyze microarray expression data. For
example, Callowet al. (2000) have successfully applied
p-values obtained from thé-test to study expression
profiling in high-density lipoprotein (HDL) deficient mice.
However, thet-test is a parametric method based on the
assumption of normal distribution of data, making this
approach sensitive to outliers. In contrast, nonparametric
methods are usually less sensitive to outliers. Céiead.
(1997) applied the nonparametric Mann—Whitney test for
image segmentation of cDNA arrays. Jh al. (2001)
also used the Mann—-Whitney test on fold-change results
of multiple microarray experiments. We have reported
previously on nonparametric statistical tests for detection
calls (also known as absolute calls) for limited data sets
(Liu et al., 2001). In this paper, we further develop these
concepts using Wilcoxon's signed-rank test (Wilcoxon,
1945; Hollander and Wolfe, 1999) for making both
detection and comparison calls. In addition, since a single
constant normalization factor does not fit all genes on
the microarrays, we define and perturb two normalization
factors and make increasing or decreasing calls only
if all of the p-values obtained from this approach fall
within a defined critical region. To provide a highly
controlled data set for the development and testing of

High density oligonucleotide r_nicroarrays are powerfulihase algorithms, we used a series of genes spiked-in
tools to study gene expression, genotypes, and geng known concentrations and arranged in a Latin square
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format (Boxet al., 1978). These algorithms, as well as

Jhose providing robust estimation of expression values

described in the accompanying paper by Hubleelal.
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(2002) are contained in the new Affymetrix software tain a p-value for the null hypothesibly : mediaiR;) =

package, MAS 5.0. T versus the alternative hypothesis : medianR) > .
Here,t is defined as a small nonnegative number that can
EXPERIMENTAL DESIGN AND METHODS be altered by the user to balance experimental specificity

We cloned 112 yeast genes and 14 human genes usi d sensitivity. Choosing the proper th'reshol.d vglue of
the TOPO TA cloning kit (Invitrogen). They were labeled iS'important since we observe that the discrimination score
and fragmented with the method described by Wodick2f @ probe pair can be a small positive number even if the
et al. (1997). Each of the labeled genes were pooled int¢°Tresponding gene is not present in the hybridization so-
groups and diluted to concentrations of 0, 0.25, 0.5, 1, 2ution. While the origin of this phenomenom is worth ad-
4, 8, 16, 32, 64, 128, 256, 512 and 1024 pM. In eVeryditional study, we do not consider it further here. To re-
microarray experiment, 14 groups of genes in 14 differenfluce false detected calls, we chose the default valee
concentrations were hybridized to the microarray in theX-015 because it falls between the medians of discrimi-
presence of a complex background of expressed humdjftion scores for transcripts with concentrations of 0 and
genome (30 Mb) and several control genes. For this Latif?-2° PM for both the human and yeast data.

square design, we perform 14 groups of experiments, "€ Next set two significance levels called and o>
The concentrations of the 1i vitro transcript (IVT) that serve as the cutoffs gi-values for detection calls,
groups in the first experiments are@25, 0.5, . .., 1024 Specifically, if we leta1 and oo be two small positive
pM, their concentrations in the second experiments ar@Umbers such that 0< a1 < a2 < 0.5, we make

0.25,05,...,1024, 0 pM, and so on. To reduce the detected calls fop < a1, undetected calls fop > ao,
saturation effect, we use low voltage of photomultiplier@d marginally detected calls fon < p < . The
tube (PMT). significance levelsy1 anday, can also be altered by the
user to adjust sensitivity and specificity. In MAS 5.0, the
ALGORITHMS default values arery = 0.04 andao = 0.06 for 15 to
. 20 probe pairs per probe set. These values in combination
Detection calls with the default value of result in fewer false detected

Detection calls are used to determine whether the trarealls than MAS 4 for the data sets that we studied.
script of a gene is detected (present) or undetected As an example of the performance of MAS 4 and MAS
(absent). On high-density expression microarrays, a gere0 in making present calls, and the effect that changing
is usually interrogated using probes that either perfectlthe adjustable parameters has on this performance, we
match the sequence in a segment of the target gene (Pbkgin with the default setting for parametersand «.
probes), or contain a single mismatched nucleotide in th&Jnder these conditions, MAS 5 gives no false detected
middle position of the corresponding perfectly matchedcalls, while MAS 4 yields 2% of false detected calls. Both
probe (MM probes). The intensity difference of perfectalgorithms also call genes present with 100% accuracy
and mismatch probe cells are usually used to makat target concentrations at and above 4 pM. In contrast,
detection calls. MAS 5 gives fewer present calls than MAS 4.0 at target
Several different methods have been used to make detecencentrations between 0.25 and 2 pM. If we maintain
tion calls (Lockharet al., 1996; Liuet al., 2001). We be- t = 0.015 and adjust the parametersotp = 0.15 and
gin by defining the discrimination score that can be calcue; = 0.17, MAS 5.0 yields the same false positive rate
lated directly from raw intensity data. The discrimination as MAS 4.0, namely, 2%. However, MAS 5.0 now calls
score of theth probe pair in a unit (also known as a probe100% of the genes present at or above 2 pM, as well as
set) isR = (PM; —MM;)/(PM; +MM;), wherePM; is  making higher percentages of present calls than MAS 4.0
the intensity of theth perfect match cell, anM M; is the  at concentrations between 0.25 to 2 pM.
intensity of tha th mismatch cell. We see that the discrim- In scanning microarray images, saturation can occur
ination score is a relative measure, therefore if the wholevhen the pixel brightness exceeds the response range
microarray intensity is rescaled by a constant, the discrimef the scanner. The cell intensity used in affymetrix
ination score remains unchanged. We remark in passingicroarrays is the 75th percentile of intensities of the
that probe pairs of a probe set may be at distant locationsner pixels in a cell. Thus, if some pixels in a cell
on a microarray to minimize the influence of a local defectare saturated, the cell intensity can be very close to
of a microarray, but the perfect match cell and mismatchthe maximal brightness of the scanner. For example, if
cell of a probe pair are always next to each other. Therethe maximal brightness of a scanner is 46 109, we can
fore, in the difference of their intensities, i.e. in the numer-consider a cell to be saturated if its intensity is larger than
ator of the above ratio, the location-dependent backgroundr equal to 46 000. Saturated probe pairs cause troubles in
intensities can be canceled. using discrimination scores. For instance, if both PM and
We use the one-sided Wilcoxon'’s signed-rank test to obMM cells are saturated, the discrimination score is zero,
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but it also means that the target binds strongly to both PMCurrently, we divide the microarray inthl x N zones
and MM probes. To deal with this problem, we set forth a(default N = 4), where the background in a zone is the
series of rules in our algorithm. If one or more mismatchawverage of lowest 2% of probe set cell intensities within
cells in a unit are saturated, we exclude them from furthethat zone. To avoid the discontinuity of background
computation. If only the perfect match cell is saturated,on the boundary of zones, we now use a smoothing
and the mismatch cell is not, we still include the probe pairmethod in MAS 5. If we assume the background of a
in the detection call computation. If all mismatch cells in azone is at its center, we can denote the background of
unit are saturated, we make a detected call. To understaxdne (i, j) by B(i, j), and the coordinates of the center
this handling, we consider the opposite situation. That isof the zone by(X(, j), Y@, j)) (,j = 1,...,N). If

if atarget is absent, the cross hybridization may cause higthe coordinates of a cell aréx,y), we calculate the
intensity or saturation of a mismatch cell. In this casebackground at this cell as a weighted averdyg; y) =
however, it is very unlikely that the cross hybridization Zi’\‘zlzz\':lw(i, iHBG, j)/ ZiNzlzz\Llw(i’ i), where

can make all mismatch probes saturated. wi, j) = 1/[(x=X(, )2+ (Y=Y, |))2+100]. Other
Comparison calls interpolation methods such as bilinear interpolation work

| licati dt luat . as well. But the method we implemented is smoother.
n many applications, we need to evaluate gene expression ¢ yhare aren unsaturated probe pairs in a unit, we

changes_ in two different experiments, e.g. stlmulate_d Velise two n-dimensional vectorsu® and v© for the
sus unstimulated cells, or normal versus cancerous tissue

This can be done with the comparison call algorithm usin
two microarrays. Typically, one microarray is designate b) denote quantities in the experimental and baseline

Possibl rosuls to be hat the studiod gone ars found o FLy2Y: /ESpeEtivel. The components of hese vectors are
P 9 ® — PM©® - MM©® v® = PM© — B® andu® =

increasing, marginally increasing, marginally decreasingl,Ji b b b 5
decreasing, or exhibit no change at all. PMi( '~ M Mi( ), Vi( ) = PMi( ) Bi( (i=1,...,n).

Our comparison call algorithm includes the following Bi is the background calculated at thé perfect match
steps. We first exclude saturated probe pairs and calculagell with the formula fob(x, y). We omit the coordinates
the quantities on the baseline and experimental array$X, ) for clarity.

We then calculate the two primary normalization factors In order to bring the averages of those vectors from the
for the baseline and experimental array pair, perturb thévo microarrays to the same level, we use two primary
primary normalization factors and apply them to form thenormalization factors: one fgiPM — MM) and the other
quantities of three Wilcoxon’s signed-rank tests for everyfor PM — B. There are many different ways to calculate
probe set. Next, we calculate thvalues of the three normalization factors, including the use of the intensities
Wilcoxon’s signed-rank tests, and form the critiged ~ on the whole array, or the intensities of control genes. For
value from the threegp-values. Based on two significance a general-purpose expression algorithm, we use trimmed
levels that are either constant or intensity dependent, waeans of average quantities of all units. Users also have

8xperimental’ array and twa-dimensional vectors®
ndv® for the ‘baseline’ array. The superscrige and

make the comparison calls. the option to select specific units for normalization. We
Since saturated intensities can provide inaccurate inforse mj = mearfPM;; — MM;j,j = 1,...,n)) and
mation, we exclude a probe pair from further calculations = stdPMj; — MM;j,j = 1,...,nj) to denote

of our comparison call algorithm if its PM or MM cell is the sample mean and sample standard deviation of the
saturated on either array. If all probe pairs of a probe sentensity differences between PM and MM cells in the
are so excluded, then there is no comparison call can béh probe set, where; is the number of unsaturated
made and this information is output as no call. probe pairs in that probe set. Moreover, wertgtbe the

To make comparison calls, we use the differencesavelage ofPM;j; — M M;j; within [m; —3s, m; +3s]. We
between PM and MM intensities, as well as the differenceslenote the trimmed means wf between the second and
between PM intensities and background. When the fals@8th percentiles for the experimental and baseline arrays
increasing or decreasing rates are adjusted to be the sanas, T® and T®, respectively, and define the primary
using both of these quantities yields higher rates of trueormalization factor fotPM — MM) asf = T®/T®,
increasing or decreasing calls than using one of therlVhile in most cases, the trimmed means are positive, they
alone. can be negative in the rare case where very few genes

The background observed with microarrays consists oare present in the hybridization solution. Under those
fluorescence intensity resulting from a variety of factors,conditions, we replace the negativg by zero and repeat
including nonspecific binding of labeled target, stain,the above procedure, and the trimmed means should be
and incidentally fluorescent species. The backgroundonnegative. If one of them is zero, then all units on an
can also vary at different locations within a microarray.array have nonpositive averages, and hence the quality of
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this microarray or the assay should be further examinedmax(pz, p2, p3) in the case wher@; < 0.5, p» < 0.5
However, we never experienced this situation and alwayand p3 < 0.5, and asp; = min(pz, p2, p3) in the case
obtained two positive trimmed means and can form thevherep; > 0.5, p > 0.5 and ps > 0.5. In all other
normalization factorf without difficulty. cases, we definp; = 0.5. With these criticalp-values,

To obtain the primary normalization factor for the differ- users can choose different significance levels at which to
ences between PM intensities and the background, we cahine data without repeated running of software.
culate the sample mean = meantPM;j, j =1,...,n;) Note that we combinPM — MM and PM — B to
and sample standard deviatien = stdPM;j,j =  formthe(2n)-dimensional vector¥y. While we may also
1,...,nj). We cenote the average &M;j in the interval  considerPM — MM and PM — B separately and then
[ii — 30i, i + 30i] by /. Furthermore, we [eP®® and ~ combine theip-values to make calls, we found during the

P® pe the respective trimmed means;dfbetween the development of our algorithm that th&n)-dimensional
2nd and 98th percentiles in the experimental and baselingectors Vi often give higher accuracy, especially when
arrays, and define the normalization factor (&M — B) a primary normalization factor is not very accurate.

asg = P®/P®. We also attempted to useM;j — B The parameterc is used to combine and adjust the
for the normalization factor computation. However, we contributions of the vector®M — MM and PM — B.
found that its performance is not as good as ugiig Its default valuee = 0.2 is chosen to obtain robust results
only (data not shown). using the Latin square data. We trieé= 1, 0.5, 0.2, 0.1,

It is unlikely that two constant primary normalization &nd 005. The valuee = 0.2 gives the best results and the
factors can fit all units on a microarray, and if used,differences are small. _
could lead to incorrect comparison calls. To overcome this We now give an example to explain the role of the

difficulty, we perturb the primary normalization factors up Perturbation coefficientd. For the probe set named
and down. Specifically, fotPM — MM), we use three 1024_at with the same concentration 256 pM on both

normalization factors; = f xd, f, = f,andf3 = f/d;  the human genome experimental and baseline arrays, we
and for (PM — B) we useg; = g*d,g = g, and obtain ap-value 0.000467 without perturbation. Using

g3 = g/d. The perturbation coefficient is defined as a this p-value and the default significance levels =

number larger than or equal to 1. In MAS 5, the default0.0025 andy; = 0.003, we would make an erroneous

value ofd is 1.1. An example of the influence of changing increase call for a target that is known to be present at

this value is shown below. the same concentration on the two arrays. In setting the
To combine the two vectors M — MM andPM — B  perturbation coefficient tal = 1.1, however, we obtain

and to make use of the perturbed normalization factor§Wo additionalp-values, 0.0776 and310~°. The critical

we form three(2n)-dimensional vector¥i(k = 1, 2, 3) p-value, 0.0776 (thg-value that is closest to 0.5), yields

with componentsVii = fkui(e) _ ui(b) and Vinyi = the correct call of no change. .
( The default parameters in our algorithm were chosen

e (NI
.C(gkvi - Va ]2 (II - Il’ ’ 0 ,2n),ﬂ¥vhere thelcolnstam to give small errors of no change calls. For example, the
IS set to a default value 0.2. Then we calculate e overall error rate of no change calls for the 12626 genes
values, pk, for three one-sided signed-rank tests of theOn the Hgu95 arrays was found to be 0.83% using the

Kk . .
null hypotheseHg” : mediartViq,i = 1,...,2n) = 0 replicates in the human data set of 59 microarrays from
versus the alternative hypothesdg‘) : median{Vj,i =  three different lots. The rate was 0.7% for the human
1,...,2n) > 0(k =1, 2, 3). Note that we do not remove genes spiked in the Latin square experiments. However,

outliers at this stage since the nonparametric rank-basebe tradeoff for keeping the no change call error rate low
method is naturally less sensitive to outliers. To makes that it increases the error rates of true increasing or
comparison calls, we set two significance levaleindy,  decreasing calls. We can balance the tradeoff by reducing
that satisfy the condition & y; < y» < 0.5.If px < y1is  the perturbation coefficiet. Namely, wherd is reduced
true fork = 1, 2, 3, we make an increasing call. Similarly, from 1.1 to 1.08, the no change error rate increases to
if px > 1—y1istruefork = 1, 2, 3, we make a decreasing 1.11% for all 12 626 genes, and 1.26% for the genes spiked
call. If we cannot make an increasing call, qut < y»  in the Latin square experiments. However, the accuracy
is true fork = 1, 2, 3, we make a marginally increasing of two-fold increasing calls are increased from 72.5% to
call. Similarly, if we cannot make a decreasing call, but80.7% for the concentration change from 1 to 2 pM.

pk > 1 —yoistrue fork = 1, 2, 3, we make a marginally ~ Figure 1 shows the accuracy of comparison calls of
decreasing call. In the absence of these conditions, wBIAS 4 and MAS 5 for the human Latin square data
make a no change call. The default values used in MA&t various concentrations. We use the default parameters

5arey; = 0.0025 andy» = 0.003. for both algorithms. Marginally increasing and marginally
To awid reporting threep-values for every probe set, decreasing calls are counted as no change calls. From this,
we report only the criticap-value. It is defined ap; =  we see that both algorithms have similar accuracy for no
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No change and 2 fold change accuracy for human Latin square data
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Fig. 1. The accuracy of comparison calls of MAS 4 and MAS 5 for the human Latin square data at various concentrations. The defa@x
parameters are used for both algorithms. Marginal calls are counted as no change calls. The results of MAS 4 are represented by the dgtted
curves with marks<. The results of MAS 5 are represented by the solid curves with marks) No change and generalized two-fold change  ©
comparison calls. No change curves are close to the horizonta} linel. The results of comparisons of 0 pM versus 0.25 pM are plotted
in the middle of these two values. (b) Generalized four-fold change comparison calls. The results of comparisons of 0 pM versus 0.5 pM
plotted at the middle of these two values.

e

change comparisons, and MAS 5 demonstrates improved Although theoretically the data for signed-rank test
accuracy for two-fold and four-fold change comparisons. should be independent, real data may not be completely
independent. To assess this, we used the nonparametric
Spearman’s test on the discrimination scores of two
DISCUSSION groups of 12 replicates of human data and found that
We have described here the algorithms based omnly 7% of probe pairs havep-values in Spearman’s
Wilcoxon’s  signed-rank test to make detection andiest below the significance level of 0.01. This indicates
comparison calls on expression microarrays. The acthat the discrimination scores of most probe pairs can be
companying paper Hubbe#t al. (2002) describes the considered as independent.
computation of microarray signals based on Tukey’'s Another theoretical requirement of the signed-rank test
biweight estimation. These algorithms are based offs that the distribution of data under the null hypothesis
robust statistical methods, and they together comprispe symmetric around the constant on the right hand side
the expression analysis of our newly released microarragf the testing equality or inequality (i.er, for detection
software package, MAS 5.0. call algorithm and 0 for comparison call algorithm). This
There have been recent discussions about the value @&f why we need to introduce a nonzeranstead of using
approaches that do not use mismatch cells. In both @ = 0 for detection calls, and why we need to perturb the
previous study (Livet al., 2001) and the accompanying normalization factors for comparison calls. We can find
paper by Hubbelkt al. (2002), we show that using the an ideal valuer’ such that the discrimination scores in
signal from mismatch cells helps raise the sensitivitya probe set are symmetric arournd when the target is
of detection calls at low target concentrations. We alsabsent. Of course, this ideal valwé varies from probe
notice that using mismatch cells improves the sensitivityset to probe set. For a constantthere is no guarantee
of comparison calls at certain concentrations. that the distribution of data is symmetric around it when
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the target is absent. Consequently, to reduce the falseHubbellet al. (2002) applied a logarithmic transforma-
detected calls, we choose a defaultalue that is a little  tion to intensities and to differences between PM inten-
higher than the ideal’ for many probe sets. Thus, the  sities and contrast levels. Using a logarithmic transfor-
values calculated in our algorithm are exact only under thenation helps obtaining linear responses while the inten-
condition that the distribution of discrimination scores issities vary significantly. For the detection call algorithm,
symmetric around when the target is absent. Similarly, the most difficult part is in the low-intensity range. For the
for comparison calls, we can find two ideal normalizationcomparison call algorithm, the most challenging part is to
factors f” and g’ such that the quantities used in the compare similar intensities whose differences are not sig-
signed-rank test are symmetrically distributed around Gificantly large. Therefore, we do not use the logarithmic
when the target has the same concentrations in the baselitransformation in the call algorithms.
and the experimental arrays. The primary normalization Li and Wong (2001) consider the probe effect using
factors usually do not satisfy this condition. Therefore, wean additive error model. Hubbelit al. (2002) use a
perturb them. When the ideal normalization factors are ifmultiplicative error model of the probe effect to extract
the range of perturbation, it is reasonable to use the thresxpression values. Our focus here is to present robust
p-values to make comparison calls. call algorithms for both stand alone and matched pairs
Further analysis of our methods for detection callsof expression microarrays. Any algorithm that gives
and comparison calls indicates that they are robust. Fagxpression values can be used to give calls if a threshold
example, we can multiply a uniformly distributed random of the values can be reasonably set. For example, it
factor in the interval [0.9, 1.1] to the intensities of perfectis possible to use the log ratios proposed in Hubbell
match cells of our yeast data. In doing so, we find thakt al. (2002) to make comparison calls, which can be
the average difference of absolute call errors is 0.97%done conveniently with a threshold. The call algorithms
and the average difference of no change comparison callescribed here allow users to analyze their data in a
errors is 0.22%. Similarly, the average difference of two-different way. Moreover, adjustment of only one threshold
fold comparison call errors is 3.34%, and the averaggarameter is often difficult when attempting to balance
difference of four-fold comparison call errorsis 1.2%.  the sensitivity and specificity. For example, Li and Wong
Our algorithms provide the user with parameters tha{2001) provide several methods to make comparison calls,
can be systematically adjusted to alter the stringency ofvhere one of them uses both the threshold of fold change
calls. For instance, increasing the thresholof detection  and the threshold of difference of expression indices. In
calls can reduce the false detected rate; increasing pertuhe future, we plan to modify our call algorithms to utilize
bation coefficientd can reduce the errors of no changeprobe sequence effects.
calls. Thus, they are very useful for comparisons of dif-
ferent microarray designs, probe selection rules, procesSoNCLUSION
controls and scanners. We can adjust the threshad The algorithms presented here provigesalues for both
that the false detected rates of two treatments are the sam Stection and comparison calls. Since the signed-rank test
and then compare their true detected rates at different cori- parnson cags. Since e signed-ranx tes
a nonparametric test method, the results are robust.

centrations. We can also adjust the perturbation coefficierﬁ : T
sing discrimination scores helps to reach a reasonable

d so that the error rates of no change calls of two treat; lance of sensitivity and specificity for detection calls
ments are the same, and then compare their accuracy f Y peciticity . )
sing the perturbation of normalization factors improves

two-fold change or other increasing or decreasing calls. e accuracy of comparison calls. Since the parameters of
The default parameters are set for 15 to 20 probe pairtsh acy P I P
r algorithms are easy to adjust, our algorithms are also

per probe set. For fewer probe pairs, we suggest increasini ful for comparisons of different microarrav desians
the significance levels. For example, for 11 probe pairs pe €tul Tor comparisons o Y gns,

probe set, we recommend the default valugs= 0.05, probe selection rules, process controls and hardware.
a2 = 0.065,y; = 0.0045 andy, = 0.006.

Here we comment on a theoretical benefit of the signed’ACKl\lOWLEDGME'\ITS
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different results, while the signed-rank test can gitt=2  Jevons, Michael Jordan, Paul Kaplan, Gang Lu, Garry
2048 different results. For our comparison calls with 11Myada, Jacques Retief, Vivian Reyes, Mei-Mei Shen,
probe pairs, the signed-rank test can yield 2 4194304  Conrad Sheppy, Dan Shulda, David Smith, John Sowatsky,
different results. Therefore, for the reduced number ofGene Tanimoto, Kai Wu, Geoffrey Yang and Steve Zanki
probe pairs, it is relatively easy to adjust our algorithmfor helpful discussion, and/or providing data. We also
to balance sensitivity and specificity. thank the referees for their comments and suggestions.
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