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ABSTRACT
Motivation: We consider the detection of expressed
genes and the comparison of them in different experi-
ments with the high-density oligonucleotide microarrays.
The results are summarized as the detection calls and
comparison calls, and they should be robust against data
outliers over a wide target concentration range. It is also
helpful to provide parameters that can be adjusted by the
user to balance specificity and sensitivity under various
experimental conditions.
Results: We present rank-based algorithms for making
detection and comparison calls on expression microarrays.
The detection call algorithm utilizes the discrimination
scores. The comparison call algorithm utilizes intensity
differences. Both algorithms are based on Wilcoxon’s
signed-rank test. Several parameters in the algorithms
can be adjusted by the user to alter levels of specificity
and sensitivity. The algorithms were developed and
analyzed using spiked-in genes arrayed in a Latin square
format. In the call process, p-values are calculated to
give a confidence level for the pertinent hypotheses.
For comparison calls made between two arrays, two
primary normalization factors are defined. To overcome
the difficulty that constant normalization factors do not fit
all probe sets, we perturb these primary normalization
factors and make increasing or decreasing calls only if all
resulting p-values fall within a defined critical region. Our
algorithms also automatically handle scanner saturation.
Availability: These algorithms are available commercially
as part of the MAS 5.0 software package.
Contact: wei-min liu@affymetrix.com

INTRODUCTION
High density oligonucleotide microarrays are powerful
tools to study gene expression, genotypes, and gene
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† Current address: Mail Code CR145, Oregon Health Sciences University,
Portland, OR 79201

mutations (Fodoret al., 1993; Lockhartet al., 1996;
Mei et al., 2000; Li and Wong, 2001). Analysis of the
large amounts of data produced by these microarrays,
however, requires robust computer algorithms. While
heuristic approaches have been used very effectively
in the past, it is usually difficult to adjust parameters
with these methods to allow the user to alter levels
of sensitivity and specificity often essential to obtain
optimal biological results. Statistical methods have also
been used to analyze microarray expression data. For
example, Callowet al. (2000) have successfully applied
p-values obtained from thet-test to study expression
profiling in high-density lipoprotein (HDL) deficient mice.
However, thet-test is a parametric method based on the
assumption of normal distribution of data, making this
approach sensitive to outliers. In contrast, nonparametric
methods are usually less sensitive to outliers. Chenet al.
(1997) applied the nonparametric Mann–Whitney test for
image segmentation of cDNA arrays. Jinet al. (2001)
also used the Mann–Whitney test on fold-change results
of multiple microarray experiments. We have reported
previously on nonparametric statistical tests for detection
calls (also known as absolute calls) for limited data sets
(Liu et al., 2001). In this paper, we further develop these
concepts using Wilcoxon’s signed-rank test (Wilcoxon,
1945; Hollander and Wolfe, 1999) for making both
detection and comparison calls. In addition, since a single
constant normalization factor does not fit all genes on
the microarrays, we define and perturb two normalization
factors and make increasing or decreasing calls only
if all of the p-values obtained from this approach fall
within a defined critical region. To provide a highly
controlled data set for the development and testing of
these algorithms, we used a series of genes spiked-in
at known concentrations and arranged in a Latin square
format (Box et al., 1978). These algorithms, as well as
those providing robust estimation of expression values
described in the accompanying paper by Hubbellet al.
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(2002) are contained in the new Affymetrix software
package, MAS 5.0.

EXPERIMENTAL DESIGN AND METHODS
We cloned 112 yeast genes and 14 human genes using
the TOPO TA cloning kit (Invitrogen). They were labeled
and fragmented with the method described by Wodicka
et al. (1997). Each of the labeled genes were pooled into
groups and diluted to concentrations of 0, 0.25, 0.5, 1, 2,
4, 8, 16, 32, 64, 128, 256, 512 and 1024 pM. In every
microarray experiment, 14 groups of genes in 14 different
concentrations were hybridized to the microarray in the
presence of a complex background of expressed human
genome (30 Mb) and several control genes. For this Latin
square design, we perform 14 groups of experiments.
The concentrations of the 14in vitro transcript (IVT)
groups in the first experiments are 0, 0.25, 0.5, . . . , 1024
pM, their concentrations in the second experiments are
0.25, 0.5, . . . , 1024, 0 pM, and so on. To reduce the
saturation effect, we use low voltage of photomultiplier
tube (PMT).

ALGORITHMS
Detection calls
Detection calls are used to determine whether the tran-
script of a gene is detected (present) or undetected
(absent). On high-density expression microarrays, a gene
is usually interrogated using probes that either perfectly
match the sequence in a segment of the target gene (PM
probes), or contain a single mismatched nucleotide in the
middle position of the corresponding perfectly matched
probe (MM probes). The intensity difference of perfect
and mismatch probe cells are usually used to make
detection calls.

Several different methods have been used to make detec-
tion calls (Lockhartet al., 1996; Liuet al., 2001). We be-
gin by defining the discrimination score that can be calcu-
lated directly from raw intensity data. The discrimination
score of thei th probe pair in a unit (also known as a probe
set) isRi = (P Mi −M Mi )/(P Mi +M Mi ), whereP Mi is
the intensity of thei th perfect match cell, andM Mi is the
intensity of thei th mismatch cell. We see that the discrim-
ination score is a relative measure, therefore if the whole
microarray intensity is rescaled by a constant, the discrim-
ination score remains unchanged. We remark in passing
that probe pairs of a probe set may be at distant locations
on a microarray to minimize the influence of a local defect
of a microarray, but the perfect match cell and mismatch
cell of a probe pair are always next to each other. There-
fore, in the difference of their intensities, i.e. in the numer-
ator of the above ratio, the location-dependent background
intensities can be canceled.

Weuse the one-sided Wilcoxon’s signed-rank test to ob-

tain a p-value for the null hypothesisH0 : median(Ri ) =
τ versus the alternative hypothesisH1 : median(Ri ) > τ .
Here,τ is defined as a small nonnegative number that can
be altered by the user to balance experimental specificity
and sensitivity. Choosing the proper threshold value ofτ

is important since we observe that the discrimination score
of a probe pair can be a small positive number even if the
corresponding gene is not present in the hybridization so-
lution. While the origin of this phenomenom is worth ad-
ditional study, we do not consider it further here. To re-
duce false detected calls, we chose the default valueτ =
0.015 because it falls between the medians of discrimi-
nation scores for transcripts with concentrations of 0 and
0.25 pM for both the human and yeast data.

We next set two significance levels calledα1 and α2
that serve as the cutoffs ofp-values for detection calls.
Specifically, if we letα1 and α2 be two small positive
numbers such that 0< α1 < α2 < 0.5, we make
detected calls forp < α1, undetected calls forp ≥ α2,
and marginally detected calls forα1 ≤ p < α2. The
significance levels,α1 andα2, can also be altered by the
user to adjust sensitivity and specificity. In MAS 5.0, the
default values areα1 = 0.04 andα2 = 0.06 for 15 to
20 probe pairs per probe set. These values in combination
with the default value ofτ result in fewer false detected
calls than MAS 4 for the data sets that we studied.

As an example of the performance of MAS 4 and MAS
5.0 in making present calls, and the effect that changing
the adjustable parameters has on this performance, we
begin with the default setting for parametersτ and α.
Under these conditions, MAS 5 gives no false detected
calls, while MAS 4 yields 2% of false detected calls. Both
algorithms also call genes present with 100% accuracy
at target concentrations at and above 4 pM. In contrast,
MAS 5 gives fewer present calls than MAS 4.0 at target
concentrations between 0.25 and 2 pM. If we maintain
τ = 0.015 and adjust the parameters toα1 = 0.15 and
α2 = 0.17, MAS 5.0 yields the same false positive rate
as MAS 4.0, namely, 2%. However, MAS 5.0 now calls
100% of the genes present at or above 2 pM, as well as
making higher percentages of present calls than MAS 4.0
at concentrations between 0.25 to 2 pM.

In scanning microarray images, saturation can occur
when the pixel brightness exceeds the response range
of the scanner. The cell intensity used in affymetrix
microarrays is the 75th percentile of intensities of the
inner pixels in a cell. Thus, if some pixels in a cell
are saturated, the cell intensity can be very close to
the maximal brightness of the scanner. For example, if
the maximal brightness of a scanner is 46 109, we can
consider a cell to be saturated if its intensity is larger than
or equal to 46 000. Saturated probe pairs cause troubles in
using discrimination scores. For instance, if both PM and
MM cells are saturated, the discrimination score is zero,
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but it also means that the target binds strongly to both PM
and MM probes. To deal with this problem, we set forth a
series of rules in our algorithm. If one or more mismatch
cells in a unit are saturated, we exclude them from further
computation. If only the perfect match cell is saturated,
and the mismatch cell is not, we still include the probe pair
in the detection call computation. If all mismatch cells in a
unit are saturated, we make a detected call. To understand
this handling, we consider the opposite situation. That is,
if a target is absent, the cross hybridization may cause high
intensity or saturation of a mismatch cell. In this case,
however, it is very unlikely that the cross hybridization
can make all mismatch probes saturated.

Comparison calls
In many applications, we need to evaluate gene expression
changes in two different experiments, e.g. stimulated ver-
sus unstimulated cells, or normal versus cancerous tissues.
This can be done with the comparison call algorithm using
two microarrays. Typically, one microarray is designated
the baseline and the other the experimental. We define the
possible results to be that the studied genes are found to be
increasing, marginally increasing, marginally decreasing,
decreasing, or exhibit no change at all.

Our comparison call algorithm includes the following
steps. We first exclude saturated probe pairs and calculate
the quantities on the baseline and experimental arrays.
We then calculate the two primary normalization factors
for the baseline and experimental array pair, perturb the
primary normalization factors and apply them to form the
quantities of three Wilcoxon’s signed-rank tests for every
probe set. Next, we calculate thep-values of the three
Wilcoxon’s signed-rank tests, and form the criticalp-
value from the threep-values. Based on two significance
levels that are either constant or intensity dependent, we
make the comparison calls.

Since saturated intensities can provide inaccurate infor-
mation, we exclude a probe pair from further calculation
of our comparison call algorithm if its PM or MM cell is
saturated on either array. If all probe pairs of a probe set
are so excluded, then there is no comparison call can be
made and this information is output as no call.

To make comparison calls, we use the differences
between PM and MM intensities, as well as the differences
between PM intensities and background. When the false
increasing or decreasing rates are adjusted to be the same,
using both of these quantities yields higher rates of true
increasing or decreasing calls than using one of them
alone.

The background observed with microarrays consists of
fluorescence intensity resulting from a variety of factors,
including nonspecific binding of labeled target, stain,
and incidentally fluorescent species. The background
can also vary at different locations within a microarray.

Currently, we divide the microarray intoN × N zones
(default N = 4), where the background in a zone is the
average of lowest 2% of probe set cell intensities within
that zone. To avoid the discontinuity of background
on the boundary of zones, we now use a smoothing
method in MAS 5. If we assume the background of a
zone is at its center, we can denote the background of
zone(i, j) by B(i, j), and the coordinates of the center
of the zone by(X (i, j), Y (i, j)) (i, j = 1, . . . , N ). If
the coordinates of a cell are(x, y), we calculate the
background at this cell as a weighted average:b(x, y) =
∑N

i=1
∑N

j=1 w(i, j)B(i, j)/
∑N

i=1
∑N

j=1 w(i, j), where

w(i, j) = 1/[(x − X (i, j))2+(y −Y (i, j))2+100]. Other
interpolation methods such as bilinear interpolation work
as well. But the method we implemented is smoother.

If there aren unsaturated probe pairs in a unit, we
use two n-dimensional vectorsu(e) and v(e) for the
‘experimental’ array and twon-dimensional vectorsu(b)

andv(b) for the ‘baseline’ array. The superscripts(e) and
(b) denote quantities in the experimental and baseline
arrays, respectively. The components of these vectors are
u(e)

i = P M (e)
i − M M (e)

i , v(e)
i = P M (e)

i − B(e)
i andu(b)

i =
P M (b)

i − M M (b)
i , v(b)

i = P M (b)
i − B(b)

i (i = 1, . . . , n).
Bi is the background calculated at thei th perfect match
cell with the formula forb(x, y). Weomit the coordinates
(x, y) for clarity.

In order to bring the averages of those vectors from the
two microarrays to the same level, we use two primary
normalization factors: one for(P M − M M) and the other
for P M − B. There are many different ways to calculate
normalization factors, including the use of the intensities
on the whole array, or the intensities of control genes. For
a general-purpose expression algorithm, we use trimmed
means of average quantities of all units. Users also have
the option to select specific units for normalization. We
use mi = mean(P Mi j − M Mi j , j = 1, . . . , ni ) and
si = std(P Mi j − M Mi j , j = 1, . . . , ni ) to denote
the sample mean and sample standard deviation of the
intensity differences between PM and MM cells in the
i th probe set, whereni is the number of unsaturated
probe pairs in that probe set. Moreover, we letm′

i be the
average ofP Mi j − M Mi j within [mi −3si , mi +3si ]. We
denote the trimmed means ofm′

i between the second and
98th percentiles for the experimental and baseline arrays
as T (e) and T (b), respectively, and define the primary
normalization factor for(P M − M M) as f = T (b)/T (e).
While in most cases, the trimmed means are positive, they
can be negative in the rare case where very few genes
are present in the hybridization solution. Under those
conditions, we replace the negativem′

i by zero and repeat
the above procedure, and the trimmed means should be
nonnegative. If one of them is zero, then all units on an
array have nonpositive averages, and hence the quality of
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this microarray or the assay should be further examined.
However, we never experienced this situation and always
obtained two positive trimmed means and can form the
normalization factorf without difficulty.

To obtain the primary normalization factor for the differ-
ences between PM intensities and the background, we cal-
culate the sample meanµi = mean(P Mi j , j = 1, . . . , ni )

and sample standard deviationσi = std(P Mi j , j =
1, . . . , ni ). We denote the average ofP Mi j in the interval
[µi − 3σi , µi + 3σi ] by µ′

i . Furthermore, we letP(e) and
P(b) be the respective trimmed means ofµ′

i between the
2nd and 98th percentiles in the experimental and baseline
arrays, and define the normalization factor for(P M − B)

asg = P(b)/P(e). We also attempted to useP Mi j − Bi j
for the normalization factor computation. However, we
found that its performance is not as good as usingP Mi j
only (data not shown).

It is unlikely that two constant primary normalization
factors can fit all units on a microarray, and if used,
could lead to incorrect comparison calls. To overcome this
difficulty, we perturb the primary normalization factors up
and down. Specifically, for(P M − M M), we use three
normalization factorsf1 = f ∗ d, f2 = f , and f3 = f/d;
and for (P M − B) we useg1 = g ∗ d, g2 = g, and
g3 = g/d. The perturbation coefficientd is defined as a
number larger than or equal to 1. In MAS 5, the default
value ofd is 1.1. An example of the influence of changing
this value is shown below.

To combine the two vectors ofP M − M M andP M − B
and to make use of the perturbed normalization factors,
we form three(2n)-dimensional vectorsVk(k = 1, 2, 3)

with componentsVki = fku(e)
i − u(b)

i and Vk,n+i =
c(gkv(e)

i − v(b)
i ) (i = 1, . . . , n), where the constantc

is set to a default value 0.2. Then we calculate thep-
values, pk , for three one-sided signed-rank tests of the
null hypothesesH (k)

0 : median(Vki , i = 1, . . . , 2n) = 0

versus the alternative hypothesesH (k)
1 : median(Vki , i =

1, . . . , 2n) > 0 (k = 1, 2, 3). Note that we do not remove
outliers at this stage since the nonparametric rank-based
method is naturally less sensitive to outliers. To make
comparison calls, we set two significance levelsγ1 andγ2
that satisfy the condition 0< γ1 < γ2 < 0.5. If pk < γ1 is
true fork = 1, 2, 3, we make an increasing call. Similarly,
if pk > 1−γ1 is true fork = 1, 2, 3, we make a decreasing
call. If we cannot make an increasing call, butpk < γ2
is true fork = 1, 2, 3, we make a marginally increasing
call. Similarly, if we cannot make a decreasing call, but
pk > 1 − γ2 is true fork = 1, 2, 3, we make a marginally
decreasing call. In the absence of these conditions, we
make a no change call. The default values used in MAS
5 areγ1 = 0.0025 andγ2 = 0.003.

To avoid reporting threep-values for every probe set,
we report only the criticalp-value. It is defined aspc =

max(p1, p2, p3) in the case wherep1 < 0.5, p2 < 0.5
and p3 < 0.5, and aspc = min(p1, p2, p3) in the case
where p1 > 0.5, p2 > 0.5 and p3 > 0.5. In all other
cases, we definepc = 0.5. With these criticalp-values,
users can choose different significance levels at which to
mine data without repeated running of software.

Note that we combineP M − M M and P M − B to
form the(2n)-dimensional vectorsVk . While we may also
considerP M − M M and P M − B separately and then
combine theirp-values to make calls, we found during the
development of our algorithm that the(2n)-dimensional
vectors Vk often give higher accuracy, especially when
a primary normalization factor is not very accurate.
The parameterc is used to combine and adjust the
contributions of the vectorsP M − M M and P M − B.
Its default valuec = 0.2 is chosen to obtain robust results
using the Latin square data. We triedc = 1, 0.5, 0.2, 0.1,
and 0.05. The valuec = 0.2 gives the best results and the
differences are small.

We now give an example to explain the role of the
perturbation coefficient,d. For the probe set named
1024 at with the same concentration 256 pM on both
the human genome experimental and baseline arrays, we
obtain a p-value 0.000467 without perturbation. Using
this p-value and the default significance levelsγ1 =
0.0025 andγ2 = 0.003, we would make an erroneous
increase call for a target that is known to be present at
the same concentration on the two arrays. In setting the
perturbation coefficient tod = 1.1, however, we obtain
two additionalp-values, 0.0776 and 3×10−6. The critical
p-value, 0.0776 (thep-value that is closest to 0.5), yields
the correct call of no change.

The default parameters in our algorithm were chosen
to give small errors of no change calls. For example, the
overall error rate of no change calls for the 12 626 genes
on the Hgu95 arrays was found to be 0.83% using the
replicates in the human data set of 59 microarrays from
three different lots. The rate was 0.7% for the human
genes spiked in the Latin square experiments. However,
the tradeoff for keeping the no change call error rate low
is that it increases the error rates of true increasing or
decreasing calls. We can balance the tradeoff by reducing
the perturbation coefficientd. Namely, whend is reduced
from 1.1 to 1.08, the no change error rate increases to
1.11% for all 12 626 genes, and 1.26% for the genes spiked
in the Latin square experiments. However, the accuracy
of two-fold increasing calls are increased from 72.5% to
80.7% for the concentration change from 1 to 2 pM.

Figure 1 shows the accuracy of comparison calls of
MAS 4 and MAS 5 for the human Latin square data
at various concentrations. We use the default parameters
for both algorithms. Marginally increasing and marginally
decreasing calls are counted as no change calls. From this,
we see that both algorithms have similar accuracy for no
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4 fold change accuracy for human Latin square data

Fig. 1. The accuracy of comparison calls of MAS 4 and MAS 5 for the human Latin square data at various concentrations. The default
parameters are used for both algorithms. Marginal calls are counted as no change calls. The results of MAS 4 are represented by the dotted
curves with marks×. The results of MAS 5 are represented by the solid curves with marks+. (a) No change and generalized two-fold change
comparison calls. No change curves are close to the horizontal liney = 1. The results of comparisons of 0 pM versus 0.25 pM are plotted
in the middle of these two values. (b) Generalized four-fold change comparison calls. The results of comparisons of 0 pM versus 0.5 pM are
plotted at the middle of these two values.

change comparisons, and MAS 5 demonstrates improved
accuracy for two-fold and four-fold change comparisons.

DISCUSSION
We have described here the algorithms based on
Wilcoxon’s signed-rank test to make detection and
comparison calls on expression microarrays. The ac-
companying paper Hubbellet al. (2002) describes the
computation of microarray signals based on Tukey’s
biweight estimation. These algorithms are based on
robust statistical methods, and they together comprise
the expression analysis of our newly released microarray
software package, MAS 5.0.

There have been recent discussions about the value of
approaches that do not use mismatch cells. In both a
previous study (Liuet al., 2001) and the accompanying
paper by Hubbellet al. (2002), we show that using the
signal from mismatch cells helps raise the sensitivity
of detection calls at low target concentrations. We also
notice that using mismatch cells improves the sensitivity
of comparison calls at certain concentrations.

Although theoretically the data for signed-rank test
should be independent, real data may not be completely
independent. To assess this, we used the nonparametric
Spearman’s test on the discrimination scores of two
groups of 12 replicates of human data and found that
only 7% of probe pairs havep-values in Spearman’s
test below the significance level of 0.01. This indicates
that the discrimination scores of most probe pairs can be
considered as independent.

Another theoretical requirement of the signed-rank test
is that the distribution of data under the null hypothesis
be symmetric around the constant on the right hand side
of the testing equality or inequality (i.e.,τ for detection
call algorithm and 0 for comparison call algorithm). This
is why we need to introduce a nonzeroτ instead of using
τ = 0 for detection calls, and why we need to perturb the
normalization factors for comparison calls. We can find
an ideal valueτ ′ such that the discrimination scores in
a probe set are symmetric aroundτ ′ when the target is
absent. Of course, this ideal valueτ ′ varies from probe
set to probe set. For a constantτ , there is no guarantee
that the distribution of data is symmetric around it when
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the target is absent. Consequently, to reduce the false
detected calls, we choose a defaultτ value that is a little
higher than the idealτ ′ for many probe sets. Thus, thep-
values calculated in our algorithm are exact only under the
condition that the distribution of discrimination scores is
symmetric aroundτ when the target is absent. Similarly,
for comparison calls, we can find two ideal normalization
factors f ′ and g′ such that the quantities used in the
signed-rank test are symmetrically distributed around 0
when the target has the same concentrations in the baseline
and the experimental arrays. The primary normalization
factors usually do not satisfy this condition. Therefore, we
perturb them. When the ideal normalization factors are in
the range of perturbation, it is reasonable to use the three
p-values to make comparison calls.

Further analysis of our methods for detection calls
and comparison calls indicates that they are robust. For
example, we can multiply a uniformly distributed random
factor in the interval [0.9, 1.1] to the intensities of perfect
match cells of our yeast data. In doing so, we find that
the average difference of absolute call errors is 0.97%,
and the average difference of no change comparison call
errors is 0.22%. Similarly, the average difference of two-
fold comparison call errors is 3.34%, and the average
difference of four-fold comparison call errors is 1.2%.

Our algorithms provide the user with parameters that
can be systematically adjusted to alter the stringency of
calls. For instance, increasing the thresholdτ of detection
calls can reduce the false detected rate; increasing pertur-
bation coefficientd can reduce the errors of no change
calls. Thus, they are very useful for comparisons of dif-
ferent microarray designs, probe selection rules, process
controls and scanners. We can adjust the thresholdτ so
that the false detected rates of two treatments are the same,
and then compare their true detected rates at different con-
centrations. We can also adjust the perturbation coefficient
d so that the error rates of no change calls of two treat-
ments are the same, and then compare their accuracy of
two-fold change or other increasing or decreasing calls.

The default parameters are set for 15 to 20 probe pairs
per probe set. For fewer probe pairs, we suggest increasing
the significance levels. For example, for 11 probe pairs per
probe set, we recommend the default valuesα1 = 0.05,
α2 = 0.065,γ1 = 0.0045 andγ2 = 0.006.

Here we comment on a theoretical benefit of the signed-
rank test in comparison with the MAS 4 heuristic call
algorithms that include the sign test. For detection calls,
the sign test applied to 11 probe pairs can only produce 12
different results, while the signed-rank test can give 211 =
2048 different results. For our comparison calls with 11
probe pairs, the signed-rank test can yield 222 = 4194 304
different results. Therefore, for the reduced number of
probe pairs, it is relatively easy to adjust our algorithm
to balance sensitivity and specificity.

Hubbellet al. (2002) applied a logarithmic transforma-
tion to intensities and to differences between PM inten-
sities and contrast levels. Using a logarithmic transfor-
mation helps obtaining linear responses while the inten-
sities vary significantly. For the detection call algorithm,
the most difficult part is in the low-intensity range. For the
comparison call algorithm, the most challenging part is to
compare similar intensities whose differences are not sig-
nificantly large. Therefore, we do not use the logarithmic
transformation in the call algorithms.

Li and Wong (2001) consider the probe effect using
an additive error model. Hubbellet al. (2002) use a
multiplicative error model of the probe effect to extract
expression values. Our focus here is to present robust
call algorithms for both stand alone and matched pairs
of expression microarrays. Any algorithm that gives
expression values can be used to give calls if a threshold
of the values can be reasonably set. For example, it
is possible to use the log ratios proposed in Hubbell
et al. (2002) to make comparison calls, which can be
done conveniently with a threshold. The call algorithms
described here allow users to analyze their data in a
different way. Moreover, adjustment of only one threshold
parameter is often difficult when attempting to balance
the sensitivity and specificity. For example, Li and Wong
(2001) provide several methods to make comparison calls,
where one of them uses both the threshold of fold change
and the threshold of difference of expression indices. In
the future, we plan to modify our call algorithms to utilize
probe sequence effects.

CONCLUSION
The algorithms presented here providep-values for both
detection and comparison calls. Since the signed-rank test
is a nonparametric test method, the results are robust.
Using discrimination scores helps to reach a reasonable
balance of sensitivity and specificity for detection calls.
Using the perturbation of normalization factors improves
the accuracy of comparison calls. Since the parameters of
our algorithms are easy to adjust, our algorithms are also
useful for comparisons of different microarray designs,
probe selection rules, process controls and hardware.
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