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SUMMARY

In this paper we examine the performance of high-order finite element methods (FEM) for aeroacoustic
propagation, based on the convected Helmholtz equation. A methodology is presented to measure the
dispersion and amplitude errors of the p-FEM, including non-interpolating shape functions, such as ‘bubble’
shape functions. A series of simple test cases are also presented to support the results of the dispersion
analysis. The main conclusion is that the properties of p-FEM that make its strength for standard acoustics
(e.g. exponential p-convergence, low dispersion error) remain present for flow acoustics as well. However,
the flow has a noticeable effect on the accuracy of the numerical solution, even when the change in
wavelength due to the mean flow is accounted for, and an approximation of the dispersion error is proposed
to describe the influence of the mean flow. Also discussed is the so-called aliasing effect which can reduce
the accuracy of the solution in the case of downstream propagation. This can be avoided by an appropriate
choice of mesh resolution. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When applied to the Helmholtz equation, the conventional finite element method (FEM) is known

to suffer from numerical dispersion and the so-called pollution error [1]. Since the dispersion error

increases for increasing frequency, the mesh resolution required to obtain a reasonable accuracy also

increases with frequency. As a consequence, the use of the standard FEM is restricted in practice to

low frequencies. To circumvent this limitation, innovative numerical methods have been proposed

over the past two decades, amongst which are the partition of unity method [2], the discontinuous

enrichment method [3], and the ultraweak variational method [4]. These methods have in common

their reliance on fundamental solutions of the governing equation for the construction of their

approximation bases. Although these methods are very promising and have proven their efficiency

in addressing the pollution problem, they still suffer from a number of drawbacks. Firstly, they rely

on a frequency dependent approximation space which leads to computationally intensive assembly

procedures due to the evaluation of oscillatory integrals, which has to be repeated for each frequency.

Secondly, they often yield ill-conditioned matrices which prevents the use of efficient iterative

solvers. Finally, they are inherently less adapted for problems with inhomogeneous media, likely

∗Correspondence to: LMS International nv Interleuvenlaan 68, Researchpark Z1, 3001 Leuven, Belgium. E-mail:
hadrien.beriot@lmsintl.com

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using nmeauth.cls [Version: 2010/05/13 v3.00]



2 H. BÉRIOT ET AL.

to be encountered in many applications. In particular, their generalization to the modeling of sound

propagation in the presence of a non-uniform background flow remains an area of active research

[5, 6, 7]. For these reasons, high-order FEM or p-FEM methods, which rely on polynomial bases,

still represent an efficient and viable alternative for many wave propagation applications [8, 9].

Several studies can be found examining the performance of the p-FEM for solving the Helmholtz

equation. A common approach consists in solving the dispersion relation of the discretized wave

operator. These dispersion analyses are typically performed on periodic mesh stencils, and so the

boundary conditions are not included. The dispersion error can then be obtained either numerically

by searching for the roots of the finite element equations, or analytically by finding a closed-form

expression of the discrete dispersion relation. While analytical derivations are typically obtained

in one dimension, and extended to the two-dimensional (quadrangle) and three-dimensional

(hexahedron) cases through tensor products, numerical analysis allows one to address directly a

larger variety of mesh topologies. Thompson and Pinsky [10] were among the first to focus on

the dispersion properties of higher-order FEM for the Helmholtz equation. They perform a one-

dimensional numerical dispersion analysis for different polynomial bases up to the interpolation

order P = 5. The results indicate that the dispersion relation for a P -th order scheme is accurate

to order 2P when kh tends to zero, where k is the wavenumber and h is the element size. Mulder

[11] also performed a numerical dispersion analysis of high-order methods for the one-dimensional

Helmholtz equation, with special emphasis on the so-called ‘spectral techniques’, based on high-

order Lagrange polynomial interpolation. He evaluated the effects of different nodal sampling (e.g.

regular or Chebyshev-based) on the dispersion error for the order P = 1 to 6.

An important aspect of reference [11] was to demonstrate that for high-order methods one

needs to consider not only the dispersion error but also the amplitude error to obtain a complete

assessment of the dispersion properties. In a series of papers, Ihlenburg and Babuška [12, 13]

propose a mathematical analysis of the dispersion properties of general Galerkin finite elements for

Helmholtz equation. They prove that the pollution effect is closely linked to the dispersion error and

demonstrate its low frequency asymptotic behavior (e.g. kh ≪ 1) in 2P . Later on, Deraemaeker

et al. [14] performed a numerical analysis of various finite element schemes for the Helmholtz

equation in two and three dimensions. In particular, they present results for the integrated Legendre

quadrangle and hexahedron elements up to the order 4. Their analysis demonstrated that for a

given number of unknowns, the p-FEM drastically reduces the pollution error. Ainsworth [15]

generalized the work of Ilhenburg and Babuška by deriving analytical expressions at all orders

for different discretization rates, including the asymptotic low frequency regime kh ≪ 1 where the

p-convergence is exponential, as well as three different regimes at high frequency.

A prominent feature of the p-FEM is the presence of significant peaks in both the dispersion and

amplitude errors for specific mesh resolutions. They are related to the bubble shape functions, which

are internal degrees of freedom in each element that can be eliminated using static condensation. As

indicated in [12, 13], the peaks of error correspond to the eigenvalues of the condensation problem.

Using an analogy with crystal lattices, Thompson and Pinsky [10] describe this phenomenon as

band gaps in the dispersion relation while Cottrell et al. [16] refer to the existence of so-called

optical branches in the dispersion relation (see also [17]). Mulder [11] interprets this feature as an

aliasing effect between wavenumber components supported by the discrete wave operator.

In parallel to dispersion analyses, performance evaluations on numerical benchmarks also

demonstrate the significant benefits of the p-FEM over conventional low-order FEM for the

Helmholtz equation. In [18], several polynomial bases commonly used in spectral and FE

methods (Lagrange, integrated Legendre and Bernstein shape functions) are compared. High-order

polynomial approximations are proved to effectively control the pollution and to lead to more

efficient simulations. Bernstein polynomials are also shown to be superior when resorting to Krylov

subspace iterative solutions. Vos et al. [19] investigate various implementation strategies of the

integrated Legendre polynomials for different operators and compare their computational efficiency.

Computational tests are performed on different Helmholtz problems with a large number of h and

p-refinement combinations. Results indicate that the optimal performance for a given error tolerance

is typically obtained with an order 5 or 6. The advantage of benchmark analysis in comparison with
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HIGH-ORDER FINITE ELEMENTS FOR CONVECTED ACOUSTICS 3

the dispersion analysis lies in the fact that they incorporate all sources of errors likely to appear in

real-life computations, such as boundary conditions and local mesh irregularities. In addition, the

numerical efficiency can be assessed by comparing run-times, memory consumption, etc. However,

the conclusions of these engineering analyses remain dependent on the choice of the benchmark

parameters (mesh resolution, frequency, boundary conditions), the choice of the implementation

strategy and the choice of the computational resources and, as such, results are less general than

those provided by the dispersion analysis.

In the present paper, we are interested in predicting sound propagation in moving media, which

is of particular importance for various industrial applications such as aircraft noise. Compared

to the standard Helmholtz problem, the number of dispersion analyses of FE methods for aero-

acoustics applications is quite limited. To the authors’ knowledge, Gabard et al. [20, 21] were the

first to examine the dispersion properties of the finite elements for the convected wave equation. The

amplitude error was also taken into account in the analysis, as in [11]. They examined the sensitivity

of the numerical model to the wave and/or the flow directions, and highlight some important aliasing

effects in the case of downstream propagation. However, their analysis was restricted to conventional

linear and quadratic finite element shape functions. Here, we intend to extend the study to higher-

order finite elements, by analyzing the performance of integrated Legendre p-FEM shape functions

for the convected wave equation.

This paper is organized as follows: in Section 2 we begin by introducing the convected Helmholtz

equation, its variational formulation and the associated boundary conditions. The definition and

properties of the integrated Legendre shape functions are also presented. In Section 3, a one-

dimensional dispersion analysis is performed for the p-FEM elements up to the order 10. A simple

one-dimensional benchmark boundary value problem is also solved to relate the findings of the

dispersion analysis to the numerical error observed in practice. A two-dimensional dispersion

analysis is then presented in Section 4 to study the anisotropy induced by the mesh topology.

2. HIGH-ORDER ELEMENTS FOR THE CONVECTED HELMHOLTZ EQUATION

2.1. Governing equations and variational formulation

We consider acoustic perturbations of small amplitude propagating on a mean flow. For the purpose

of the present work we can consider a uniform flow with mean velocity v0 and sound speed c0.

For the sake of conciseness, we will work with non-dimensional variables by setting the sound

speed c0 and the mean flow density ρ0 to unity. The perturbations are modelled in the frequency

domain, assuming an implicit time dependence given by e−iωt. This problem can be described by

the convected Helmholtz equation written for the acoustic pressure p:

d20p

dt2
−∇2p = 0 , (1)

where d0/dt = −iω + (v0 · ∇) is the material derivative in the mean flow. This equation can be

expressed as a weak variational statement over a domain Ω with boundary Γ (see [22] for more

details):

∫

Ω

−
d0w

dt

d0p

dt
+∇w · ∇p dΩ +

∫

Γ

w

[

(v0 · n)
d0p

dt
−

∂p

∂ν

]

dΓ = 0 , ∀w , (2)

where w is the test function, the overbar denotes the complex conjugate and n is the outward unit

normal on Γ and ∂p/∂ν = ∇p · n. For a hard wall, we have v0 · n = 0 and ∂p/∂ν = 0 and the

boundary integral vanishes. We shall also use a Robin boundary condition (generalized to include

the mean flow effect):

∂p

∂ν
−

iω

1 + v0 · n
p = g , (3)
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Figure 1. Reference elements EL(ξ) (left), EQ(ξ, η) (center) and ET (ξ, η) (right).

where g is a given source term. The corresponding boundary integral in the variational formulation

then reads:
∫

Γ

w
{

[(v0 · n)
2 − 1]g − iωp

}

dΓ ,

where we have assumed that the mean flow is normal to the boundary.

With no flow, equations (1) and (2) reduce to the standard formulation for Helmholtz problems.

With flow the main difference is the term v0 · ∇ introduced by the material derivative. This adds an

element of convection in addition to the standard Helmholtz equation.

2.2. High-order discretization

The computational domain Ω is partitioned into a set of non-overlapping elements. In this study,

we consider line, triangle and quadrilateral elements, denoted by EL, EQ and ET respectively, and

defined in Figure 1.

We use the classical H1-conforming hierarchic p-FEM shape functions (see Šolı́n et al. [23] for

details). The hierarchic shape functions are defined such that the finite element basis of degree P + 1
is obtained as a correction to the basis of degree P . For one-dimensional analysis the hierarchic

shape functions of order P = 1 defined on the reference element EL = [−1; 1] are the standard

linear shape functions:

l0(ξ) =
1− ξ

2
, l1(ξ) =

ξ + 1

2
. (4)

The functional basis for an element of order P is then formed by appending P − 1 shape functions

of the form

lq(ξ) =

√

2q − 1

2

∫ ξ

−1

Lq−1(s) ds , with q = 2, ..., P , (5)

where Lq(ξ) is the Legendre polynomial of order q. These integrated Legendre polynomials, also

called Lobatto functions, verify the following orthogonality property:

∫ 1

−1

∂li
∂ξ

∂lj
∂ξ

dξ = δij , with i, j = 0, 1, ..., P , and i or j � 2 . (6)

This property has the benefit of minimizing the conditioning of the stiffness matrix for Helmholtz

problems [24]. The numerical approximation p̃n over an element n, is constructed as the sum of two

contributions:

p̃n(ξ) = p̃vn(ξ) + p̃bn(ξ) , (7)

with

p̃vn(ξ) = l0(ξ)α
v
n + l1(ξ)α

v
n+1 , and p̃bn(ξ) =

P
∑

q=2

αb
q,nlq(ξ) , (8)

where p̃vn is the standard linear nodal interpolation (with degrees of freedom αv
n) while p̃bn represents

the hierarchic bubble enrichment functions added within each element (αb
q,n denotes the bubble

degrees of freedom of order q in element n).
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The shape functions on the quadrilateral reference element EQ are easily obtained by taking

a tensor product of the one-dimensional shape functions. On the triangle reference element ET ,

the construction of the shape functions is less trivial, as they are constructed through a specific

generalized mapping which matches the corresponding quadrilateral shapes [19]. The triangle

reference element defined in Figure 1 is first equipped with affine coordinates

λ1(ξ, η) = (η + 1)/2 , λ2(ξ, η) = −(η + ξ)/2 , λ3(ξ, η) = (ξ + 1)/2 . (9)

The numerical approximation p̃ over a triangle element is constructed as the sum of the nodal, edge

and bubble functions contributions as follows

p̃(ξ, η) = p̃v(ξ, η) + p̃e(ξ, η) + p̃b(ξ, η) . (10)

The nodal contribution reads

p̃v(ξ, η) =

3
∑

r=1

ϕvr (ξ, η)αvr , (11)

where ϕvr denote the conventional linear shape functions

ϕv1 = λ2(ξ, η) , ϕv2 = λ3(ξ, η) , ϕv3 = λ1(ξ, η) , (12)

and αvr the corresponding nodal degrees of freedom. The edge contribution reads

p̃e(ξ, η) =

P
∑

q=2

3
∑

r=1

ϕer
q (ξ, η)αer

q , (13)

where αer
q denotes the degree of freedom of order q of the rth edge and ϕer the corresponding edge

shape functions

ϕe1
q = λ2λ3Ψq−2 (λ3 − λ2) , ϕe2

q = λ3λ1Ψq−2 (λ1 − λ3) , ϕe3
q = λ1λ2Ψq−2 (λ2 − λ1) , (14)

with 2 ≤ q ≤ P , where we have introduced the following kernel function

Ψq(x) =
lq+2(x)

l0(x)l1(x)
. (15)

The edge shape functions are the traces of the integrated Legendre functions on one of the edges

and vanish elsewhere on the element boundary. Finally, the bubble functions read

p̃b(ξ, η) =

P
∑

q1=1

P−1−q1
∑

q2=1

ϕb
q1,q2(ξ, η)α

b
q1,q2 , (16)

where ϕb
q1,q2 denotes the following bubble shape functions [23]

ϕb
q1,q2 = λ1λ2λ3Ψq1−1 (λ3 − λ2)Ψq2−1 (λ2 − λ1) , with 1 ≤ q1, q2 and q1 + q2 ≤ P − 1 ,

(17)

and αb
q1,q2 are the corresponding bubble degrees of freedom. To evaluate the elementary integrals

described in (2), one has to numerically integrate the products of higher-order shape functions

and their derivatives. High-order numerical quadrature is used for this purpose with an order of

accuracy corresponding to the highest polynomial order that appears in the integrand. For the

line and the quadrangle elements, standard Gauss-Legendre quadrature is used. For the triangle

elements, we use the Dunavant economical quadrature rules [25]. Due to their hierarchic structure,

the integrated Legendre basis functions are very flexible and neighbouring elements may have

different interpolation orders (localized p-refinements). In fact, it has been shown that some interior

shape functions can be rather ineffective and may not yield a large improvement in accuracy.

For instance, Deraemaeker et al. [14] show that the optimal interpolation scheme is obtained by

maintaining a P − 1-th order for the bubble functions, while considering edge shape functions of

order P . However, for the sake of simplicity, only complete polynomial spaces of order P , where P
is uniform over the entire mesh will be considered in this study.
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3. ONE-DIMENSIONAL ANALYSIS

3.1. Dispersion relation of the numerical model

We consider an infinite, periodic mesh with nodes xn evenly spaced with distance h as depicted in

Figure 2.

xn xn+1xn−1 xn+2

EnEn−1 En+1
h

Figure 2. Mesh used for the one-dimensional dispersion analysis.

Each element En = [xn, xn+1] of the infinite mesh is mapped onto the usual reference element

EL = [−1, 1]. In the absence of boundary terms, the discretization of the weak form (2) leads to an

algebraic system of the form

R∞φ∞ = 0 (18)

where R∞ is a coefficient matrix and φ∞ the column vector containing the degrees of freedom. The

unknowns are ordered as follows:

φ∞ =
(

...,φn−1,φn,φn+1, ...
)T

, (19)

where φn is the line vector

φn =
(

αv
n , α

b
2,n , α

b
3,n , ..., α

b
P,n

)

(20)

containing the degree of freedom associated to the node n and the internal degrees of freedom of the

element En. Since the mesh and the interpolation are periodic, the equations satisfied by the degrees

of freedom φn are the same as for φn+1 and the matrix R∞ can be constructed from a finite number

N of equations. If we consider the equation associated with the qth component of the vector φn, we

can write this equation as follows:

N
∑

m=1

∑

n

A(q,m)
n φ(m)

n = 0 , for q = 1, 2, ..., N , (21)

where φ
(m)
n denotes the mth component of φn and A

(q,m)
n its contribution in the equation for the

component q. This contribution is non-zero if and only if the corresponding shape functions overlap.

To find the dispersion relation of the numerical model, we seek harmonic solutions of the form:

p(x) = eikx . (22)

By definition of the nodal degrees of freedom, we have: p̃n(ξ = −1) = αv
n and p̃n(ξ = 1) = αv

n+1,

and it follows that

αv
n = eikxn = τn , (23)

where we have introduced the parameter τ = eikh. Expression (23) easily generalizes to any nodal

shape functions (e.g. based on Lagrange shape functions) irrespectively of the interpolation order or

the topology of the periodic, infinite mesh. Any nodal degree of freedom φ
(1)
n can thus be written as

a harmonic wave with complex amplitude φ
(1)
0 :

φ(1)
n = φ

(1)
0 τn , (24)

where the complex amplitude φ
(1)
0 does not depend on the element number n. If the approximation

basis only contains nodal functions, the numerical dispersion relation is then readily obtained [14].

In the context of hierarchic finite element interpolation, generalizing (24) to show that all

unknowns can be reduced to the form (24) is not trivial, given that the amplitude αb
q,n of the bubble
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functions are not directly related to nodal values of the solution (22). We follow here the idea of

projection-based interpolation presented by Šolı́n et al. [23].

The amplitudes of the bubble functions are chosen so as to minimize the residue r = p− p̃n =
p− p̃vn − p̃bn over each En element. Here r is minimized in the semi-norm H1(En) (see [23] for

details). This yields
∫ 1

−1

∂r

∂ξ

∂lm
∂ξ

dξ = 0, m = 2, 3, ..., P , (25)

which indicates that the residue is orthogonal to the Lobatto functions. Using the orthogonality

property (6) of the Lobatto functions, one finds

αb
q,n = ik

h

2

∫ 1

−1

∂lq
∂ξ

eik
h
2
(ξ+1) dξ

(

eikh
)n

, q = 2, 3, ..., P . (26)

This expression highlights the fact that the contributions of the bubble shape functions are also of

the form (24), and any degree of freedom of the vector φn satisfies

φ(m)
n = φ

(m)
0 τn, m = 1, ..., N . (27)

Substituting (27) into (21), one can derive a linear system of size N = P of the form:

R(ω, k)φ0 = 0 , (28)

with φ0 =
(

φ
(1)
0 , φ

(2)
0 , ..., φ

(N)
0

)T

. This system represents the dispersion relation of the numerical

model. For a fixed angular frequency ω, the ‘discrete wavenumbers’ k̃ to this dispersion relation can

be sought by solving det (R (ω, k)) = 0. Except for linear or very low-order P , the k-dependency

(or equivalently τ -dependency) of the system matrix R is not trivial and non-linear optimization

algorithms such as the Gauss-Newton scheme are used to find the solutions of the dispersion

relation.

3.2. Dispersion and amplitude errors

For a fixed value of the angular frequency ω, when combining the equations (22) and (1) one finds

that the convected Helmholtz equation supports two exact solutions with distinct wavenumbers:

k± =
ω

M ± 1
, (29)

where M = v0/c0 is the mean flow Mach number. These correspond to the wave propagating in the

positive (k+) or negative (k−) direction. The dispersion error is then defined as follows:

Ed =

∣

∣

∣

∣

∣

k − k̃

k

∣

∣

∣

∣

∣

. (30)

The numerical eigenvector φ̃0 also needs to be analysed as it contains information about the

local error of the numerical scheme. After normalization by the first (nodal) component φ̃
(1)
0 = 1,

a local approximation is reconstructed by combining the nodally exact linear interpolation with the

numerical eigenvector φ̃0 for the bubble functions:

p̃0(ξ) = l0(ξ) + l1(ξ)e
ik(1+ξ)h/2 +

P
∑

q=2

φ̃
(q)
0 lq(ξ) , (31)

where p̃0 does not depend on the element number. We can define the amplitude error which measures

the difference between the numerical approximation provided by the bubble functions and the exact
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plane wave solution pexact = eikx:

Ea =
‖p̃0 − pexact‖H1

‖pexact‖H1

, with ‖f‖H1 =

(
∫

En

(

|f |2 + |f ′|2/k2
)

dx

)1/2

, (32)

where the integral in the norm is computed using Gaussian quadrature with a large number of

Gauss points. In practice the dispersion and amplitude error will add up at any point on the

mesh. But there is a fundamental difference between the two in that the dispersion error tends to

accumulate as a wave propagates from the source to the observer (this is the pollution effect) while

the amplitude error contributes uniformly on the mesh. As a consequence, when the computational

domain contains many wavelengths, the dispersion error is likely to dominate.

In many dispersion analysis, results are presented as a function of the number of elements per

wavelength. When considering high-order interpolation, it is generally more relevant to discuss

results in terms of the number of degrees of freedom per wavelength which can be defined as

d±λ =
2πP

|k±|h
, (33)

for the upstream (d−λ ) and the downstream (d+λ ) waves. Note that these parameters include the

change in acoustic wavelength induced by the mean flow. The d+λ and d−λ criteria are useful to

study independently the upstream and the downstream cases. However, for problems of practical

relevance, upstream and downstream waves coexist in the solution and the choice of grid resolution

should be based on the shortest possible wavelength, i.e. the upstream wave. Therefore the parameter

d∗λ = d−λ =
2πP

|k−|h
, (34)

representing the number of degrees of freedom per shortest wavelength is introduced. It will be

used both for upstream and downstream waves. In practice, when designing finite element meshes

for convected wave propagation, one should prescribe a minimal value for d∗λ. The choice of the

most appropriate criterion will be further discussed in Section 3.3. It should be mentioned that the

number of degrees of freedom per wavelength does not necessarily provide a complete picture of

the computational costs of a numerical method. When solving a given problem within a specified

accuracy, higher-order interpolating shape functions generally lead to smaller matrices. However,

these matrices are generally more costly to assemble, and exhibit a larger bandwidth and a higher

condition number. For these reasons, to reach a target accuracy on a given problem, decreasing

the number of degrees of freedom does not necessarily yield a lower computational cost and a

trade-off between efficiency and interpolation order has to be achieved [19]. The effect of the mean

flow on the condition number of the p-FEM system matrices will be commented in Sec. 4.2. Other

performance aspects (run time and memory requirement) will not be considered in the current paper

but will be systematically examined on large-scale, three-dimensional problems in a forthcoming

study.

3.3. Discussion of results

Results will be presented here for the wave travelling in the positive direction with wavenumber

k = k+ = ω/(1 +M). So M > 0 corresponds to downstream propagation and M < 0 to upstream

propagation.

Dispersion error: Ihlenburg and Babuška [13] derived an upper bound on the dispersion error Ed

for the hp-FEM for the Helmholtz equation. Ainsworth [15] then obtained various approximations

of Ed for small or large wavenumbers. By solving the numerical dispersion relation (28), and by

comparing the results with Ainsworth’s analysis, we have found that the dispersion error of the

p-FEM for the convected Helmholtz equation can be described by

Ed =
1−M

2

[

P !

(2P )!

]2
(kh)2P

2P + 1
+O(kh)2P+2 when kh → 0 , (35)
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Figure 3. Dispersion error in % for upstream propagation M = −0.5 (left) and downstream propagation
M = 0.5 (right) for a polynomial order P varying from 1 to 8. Solid lines: numerical dispersion error.

Dashed lines: dispersion error predicted by equation (35).

which is the same result as equation (3.4) in [15] except for the additional 1−M factor and for

the fact that the effect of the mean flow is also accounted for by the relation k = ω/(1 +M).
Comparisons of equation (35) with the results obtained by solving the numerical dispersion relation

(28) are shown in figure 3. It is clear that equation (35) provides a very accurate approximation of the

dispersion error over the whole range of polynomial orders and Mach numbers (with the exception

of the aliasing problem which is discussed below). We verified that Equ. (35) is consistent with the

dispersion relation for P = 1 and P = 2 which can be easily derived and solved in closed form. It

was also verified that the next term in (35) is indeed of order O(kh)2P+2.

It follows that the convergence rate of the dispersion error observed for the Helmholtz equation

(Ed ∼ (kh)2P for kh sufficiently small) remains unchanged with flow. The key property of

exponential convergence in P is therefore maintained.

However, the presence of the 1−M factor indicates that, even when the change in wavenumber

k due to the mean flow is accounted for, the dispersion error increases for upstream waves

and decreases for downstream waves. This can be attributed to the convection terms present in

the convected wave equation (1). In the worst case (M → −1) this corresponds to doubling the

dispersion error.

Overall, the mean flow introduces a factor (1−M)/(1 +M)2P in the dispersion error (for fixed

frequency and mesh resolution), which is a combination of the change in wavelength introduced by

the mean flow and of the 1−M factor noted above.

Amplitude error: The amplitude error Ea as defined in (32) is also analysed for the downstream

and upstream propagations. In either case, by inspection of the numerical results, it is found to

behave asymptotically like

Ea ≃ Ca(P )(kh)P , when kh → 0 , (36)

for P > 1, where Ca is a weak function of P . Not shown here is the amplitude error measured in

terms of the L2 norm which was found to have a convergence rate of O(kh)P+1 when kh → 0.

The amplitude error (32) is plotted for the cases M = ±0.5 in Figure 4. The main observation is

that the asymptotic behaviour of Ea is the same for the upstream and downstream waves (in other

words Ca(P ) does not depend on the sign of M ). This is to be expected since Ea is a measure of

how well the bubble shape functions can interpolate the waveform eikx within each element.

Aliasing: The dispersion and amplitude errors Ed and Ea are characterized by the presence of

numerous error peaks in the low resolution regime when the wave propagates downstream (see

figures 3 and 4). The occurrence of these errors peaks corresponds to the so-called aliasing effect

[11]. To describe this effect in more detail, let us examine the variational formulation (2) and in
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Figure 4. Amplitude error Ea in % for upstream propagation M = −0.5 (left) and downstream propagation
M = 0.5 (right) for a polynomial order P varying from 2 to 8.

particular the part of this formulation governing the bubble degrees of freedom, which can be

fully determined at the element level since these shape functions do not interact with neighbouring

elements. After separating the nodal and bubble shape functions for both the solution and the test

function, we can isolate the variational formulation associated with the bubble functions:

∫

En

(

−
d0wb

n

dt

d0p̃
b
n

dt
+∇wb

n · ∇p̃bn

)

dx =

∫

En

(

d0wb
n

dt

d0p̃
v
n

dt
−∇wb

n · ∇p̃vn

)

dx, ∀wb
n , (37)

where wb
n is the test function associated with the bubble degrees of freedom. The right-hand side

can be interpreted as the forcing induced by the nodal degrees of freedom on the bubble shape

functions. The operator on the left-hand side can be inverted to statically condense out the bubble

degrees of freedom within each element. This is however only possible away from the eigenvalues

of this operator, as indicated in [12, 13, 15]. If the parameters (element size, frequency, etc.)

correspond to an eigenvalue then the amplitudes of the bubble functions are undefined. The root

cause of the aliasing effect is therefore that the bubble functions, which have the benefit of enabling

static condensation, introduce the possibility for the corresponding matrix to be singular or poorly

conditioned.

To proceed further note that (37) corresponds to the formulation of a simple propagation problem

in a one-dimensional acoustic cavity of length h. The solution inside this cavity satisfies the

convected Helmholtz equation (1) with homogeneous Dirichlet boundary conditions at x = 0 and at

x = h. The corresponding eigenvalue problem leads to the following characteristic equation

eik
+h = eik

−h , (38)

which defines the modes of the cavity. Applying the static condensation is equivalent to solving a

small Dirichlet problem inside each element describing the acoustic field in a cavity. The aliasing

effect can hence be interpreted as spurious internal resonances within each element.

Equation (38) also indicates that at the nodes of the mesh the left-running wave is

indistinguishable from the right-running wave (that is exp(ik+xm) = exp(ik−xm) with xm = mh),

hence justifying the name ‘aliasing effect’ used by Mulder [11].

Using (29), we find that for the convected wave equation the aliasing effect occurs for the

following values of the number of degrees of freedom per downstream wavelength d+λ or degrees of

freedom per shortest wavelength d∗λ:

d+λ =
2P

j(1−M)
, d∗λ =

2P

j(1 +M)
, (39)

with j a strictly positive integer. It is worth noting that these only constitute approximations since

they are based on the theoretical dispersion relation (29). It can also be noted that the more accurate

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



HIGH-ORDER FINITE ELEMENTS FOR CONVECTED ACOUSTICS 11

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

2

2 3

3
4

4

5

5

6

6

7

7

8

8

d∗λ

E
a
(%

)

Figure 5. Absolute amplitude error Ea in % as a function of the number of degrees of freedom per shortest
wavelength d∗λ for a polynomial order P varying from 2 to 8. Solid lines: Upstream case (M = −0.5).

Dot-dashed lines: Downstream case (M = 0.5).

the numerical model is, the more localized the aliasing effect becomes, that is: for high resolutions,

the width of each aliasing peak becomes narrower, as seen in figure 4.

The remaining question is that of the significance of the aliasing error in practical situations. In

the absence of flow (M = 0), Equ. (39) indicates that aliasing effects occur when the element size

equals at least half an acoustic wavelength. Such a mesh resolution is not used in practice for low-

order elements (say P < 3) but may occur for higher-order elements which typically span a larger

portion of a wavelength. In Ref. [11] aliasing peaks are observed at common discretization rates but

it is however concluded that their impact on the global numerical error is limited.

In the presence of downstream flow, Equation (39) indicates that the aliasing effect is even

emphasized, because the aliasing error peaks migrate to higher mesh resolutions. In reference [20]

it was therefore concluded that the aliasing has an important impact for convected applications

and should lead to finer mesh requirements. In the present paper, we qualify this interpretation

by showing that the aliasing error is in fact of limited significance in practical applications. The

difference in interpretation lies in the choice of the criterion used to measure the resolution rate.

In the presence of flow, the aliasing effect does indeed move to higher mesh resolutions when

measured using d+λ , but it also corresponds to low resolutions when measured using d∗λ, as indicated

by equation (39). One has to keep in mind that in practice the grid is designed based on the shortest

possible wavelength, that is based on d∗λ. For instance, in the case M = 0.5 we have d∗λ = d+λ /3, the

region in which the aliasing peaks dominate Ed and Ea in the downstream case corresponds to a

region in which the upstream wave is clearly under-resolved.

In Figure 4, the amplitude error Ea is plotted as a function of d+λ or d−λ for the upstream and

downstream cases, respectively. In Figure 5, the same results are plotted together as a function

of d∗λ. This provides a more representative description of the link between the choice of mesh

resolution and the impact of the aliasing effect. Even at the error peaks, the amplitude errors on

the downstream wave are a few orders of magnitude lower than the errors incurred on the upstream

wave. This indicates that the numerical error will be driven by the discretization of the upstream

wave. Provided that the mesh resolutions are always defined in terms of the shortest wavelength

using d∗λ, the dispersion analysis shows that the loss of accuracy due to the aliasing effect is offset

by the fact that the downstream wave is necessarily over-resolved. This conclusion is also supported

by the results of the test case presented in the next section.

3.4. Application to a simple test case

We now consider a simple one-dimensional test case to assess the global numerical error observed

in practice, and to discuss the effect of the mean flow and of the aliasing effect on the performance of
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the p-FEM. Three different types of grids are studied (uniform, periodic and random, as illustrated

in figure 6).

uniform:

periodic:

random:

Figure 6. Meshes used for the one-dimensional test case with 40 elements.

3.4.1. Uniform grid Let us first consider a uniform grid of length L and with elements of size h.

The Robin-type boundary condition (3) is used at both ends of the computational domain, with

g = −2ik at x = 0 and g = 0 at x = L so as to create a single propagating wave pexact = eikx in the

computational domain. We calculate the relative error measured in H1 norm

E1 =
‖p− pexact‖H1

‖pexact‖H1

.

Figure 7 shows E1 as a function of the number of degrees of freedom per wavelength d+λ or d−λ when

the wave is going with the flow (downstream propagation M > 0) or against the flow (upstream

propagation M < 0).

Error estimates: For the hp-FEM for the Helmholtz equation it has been shown that E1 can be

estimated by [26, 13]:

E1 � C1

(

kh

2P

)P

+ C2k

(

kh

2P

)2P

, (40)

where C1 and C2 are independent of ω and h, and are weak functions of P . It is worth noting

that the number of degrees of freedom per wavelength is inversely proportional to (kh)/(2P ). By

comparing with the numerical error measured in the test case described above, it was found that for

the convected Helmholtz equation (1) the numerical error remains well approximated by (40).

The first term in (40) represents the asymptotic behavior of the numerical error (kh → 0) and is

associated with the quality of the best interpolation. The presence of the mean flow does not modify

this asymptotic behavior: the E1 error decays like (kh)P (and the relative error in L2-norm like

(kh)P+1). In addition, we find that C1 remains independent of the Mach number M and the size of

the domain L. This is expected since the first term in (40) is associated with the approximation error

and the effect of the mean flow on the wavelength is already fully accounted for by the definition

k = ω/(1 +M). This is consistent with the analysis of the amplitude error in the dispersion analysis

in Section 3.3.

The hp-FEM for the Helmholtz equation is quasi-optimal, i.e. in the asymptotic range (h → 0)

the numerical error is proportional to the error associated with the best approximation , see equation

11 in [26]. With flow we find that the numerical model remains quasi-optimal and the optimality

constant Copt is independent of the mean flow velocity. For polynomial orders of up to 10 we

observe that 1 � Copt � 1.3 when h → 0 indicating that in the asymptotic range the FE model

yields solutions close to the best approximations.

The second term in equation (40) is the pollution error which is driven by the build-up of

phase lead due to the dispersion error (35) as the wave propagates. It becomes significant for high

frequencies, or when the computational model contains many wavelengths.

It was found that the parameter C2, in addition to being a function of the interpolation order,

is a function of the flow Mach number M and the domain length L. The dependence on L is

expected because the longer the domain the more the dispersion error will be able to build up as

the wave propagates from x = 0 to x = L. C2 also scales with (1−M), which is consistent with

the observation made in Section 3.3 that the dispersion error (35) has an additional (1−M) factor

when flow is present. This is illustrated in figure 8 where the error E1 scaled by (1−M)L is plotted,
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Figure 7. Numerical error E1 in % as a function of the number of degrees of freedom per wavelength (with
h fixed and ω varying), with L = 80, h = 1 and for a polynomial order P varying from 1 to 10. Left: wave

propagating upstream M = −0.5. Right: wave propagating downstream M = 0.5.

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
1
/
(1

−
M

)
/
L
(%

)

(kh)/(2P )
10

−1
10

0
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
1
/
(1

−
M

)
/
L
(%

)

(kh)/(2P )

Figure 8. Numerical error E1 scaled by (1−M)L and plotted against (kh)/(2P ) for fixed polynomial
order P = 6 and with h = 1. Left: Fixed Mach number M = −0.5 with domain size L = 40 (solid line),
80 (dashed line) and 120 (dot-dashed line). Right: Fixed domain size L = 80 with Mach number varying

from M = 0.0 to −0.9 with a step of 0.1.

either by varying the domain size (L = 40, 80 and 120) with a fixed Mach number, or by varying the

Mach number with a fixed domain size (L = 80). It can be seen that the convergence plots collapse

onto the same curve in the region where the dispersion error dominates the global numerical error

E1, clearly indicating that the second term in (40) scales like (1−M)L.

Therefore, the presence of the mean flow can degrade the performance of the FE model at high

wavenumbers (that is in the pre-asymptotic range when the dispersion error dominates the numerical

error). Again, this can be attributed to the additional convection terms in the wave operator (1) that

tend to reduce the accuracy of the FE approximation.

Aliasing: Equation (40) does not capture the aliasing effect. In fact it is only valid when kh < π
which precisely excludes aliasing [13]. The aliasing peaks visible in the downstream case in figure

7 can however be closely approximated by equation (39). As explained in section 3.3, to assess the

effect of the aliasing effect it is more representative of engineering practice to use d∗λ to measure the

mesh resolution. This is done in figure 9 where the peaks of error for the downstream waves are still

visible but correspond to much lower levels of error compared to the upstream waves. So in practice

the aliasing effect can occur only when the upstream wave is under-resolved.

Also noticeable for the no flow case are the very small increases of error associated with the

aliasing when the element size is a multiple of half the wavelength. Aliasing errors are therefore
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Figure 9. E1 error obtained with the uniform mesh with domain size L = 80 for a polynomial order from
P = 2 to 8. Solid line: no-flow case (M = 0). Dot-dashed line: upstream case (M = −0.5). Dashed line:

downstream case (M = 0.5).
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Figure 10. E1 error obtained with the periodic mesh (left) and the random mesh (right) with domain size
L = 80 for a polynomial order from P = 2 to 8. Solid line: no-flow case (M = 0). Dot-dashed line: upstream

case (M = −0.5). Dashed line: downstream case (M = 0.5)

also influencing the solution in the no-flow case at common discretization rates. However, the

amplitude of the peaks is much smaller than in the presence of flow. The impact of the aliasing

on the performance of the Helmholtz equation is therefore also very limited. This is in line with the

previous conclusions of Mulder [11].

3.4.2. Unstructured grid In practice meshes are rarely uniform so we consider two non-uniform

grids, as depicted in figure 6, with a periodic mesh with a two-element pattern of consecutive

element sizes h1 = 1.3 and h2 = 0.7, and a mesh with randomized element sizes. The domain

length is L = 80 and the number of elements is kept constant so that the resulting computational

effort remains equivalent for all meshes. In the definitions of the number of degrees of freedom per

wavelength (33)–(34), the averaged value of the mesh size h = 1 is used. The E1 errors obtained on

the periodic and the random meshes are shown for M = 0, M = 0.5 and M = −0.5 in figure 10 as

a function of d∗λ.

The overall behavior of the numerical error is similar with that observed with a uniform mesh. A

key difference is the occurrence of the peaks associated with the aliasing effect. Equations (34) and

(39) can be combined to show that the angular frequency required for an internal resonance within a

element of size h is given by ω = jπ(1 −M2)/h. So each element will exhibits internal resonances

at different frequencies. This explains the multiplicity of error peaks observed in figure 10. But it
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(a) Quadrangle mesh (b) Triangle mesh A (c) Triangle mesh B
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Figure 11. Finite element meshes used for the two-dimensional dispersion analysis.

can be noticed as well that the magnitude of these peaks is somewhat reduced in the case of the

random mesh.

4. TWO-DIMENSIONAL DISPERSION ANALYSIS

We now move on to the case of two-dimensional meshes, with the aim to assess the effect of the

mesh topology and to see if the observations made for one-dimensional problems remain applicable.

We consider three infinite periodic meshes, one with quadrangle elements and two with triangular

elements, as shown in Figure 11. The meshes are periodic in the sense that they are composed of

a ‘stencil’ of element(s), denoted En,m, which is repeated in all directions to build the infinite

mesh. On the quadrangle mesh, the stencil is composed of a single element, whereas it is composed

of two elements on the triangular meshes. Each element stencil is characterized by its origin,

denoted xn,m = (nhx,mhy) for the quadrangle mesh and for the triangle mesh A, and xn,m =
(nhx +mhx/2,mhy) for the triangle mesh B. The dispersion properties of similar mesh topologies

have already been studied in the no-flow case for conventional low-order finite elements by Harari

et al. [27] and for high-order elements by Deraemaeker et al. [14]. Both studies demonstrated the

strong influence of the mesh topology on the performance of the numerical method.

We seek plane wave solutions

p(x, y) = eik·x , (41)

with the exact wavenumber k given by

k = (kx, ky) = (k cos θw, k sin θw) , with k =
ω

1 +M cos(θw − θf )
. (42)

where M = |v0|/c0. θw and θf denote the wave angle and the orientation of the mean flow,

respectively. The discretization of the weak form (2) using p-FEM elements on the periodic meshes

yields an algebraic system of infinite size, of the form (18). The vector of unknowns φ∞ now

contains nodal, edge and bubble degrees of freedom. Following the approach presented in the one-

dimensional case, it can be shown that these unknowns belong to a finite number N of classes

such that all degrees of freedom of a given class satisfy the same difference equations. A total of

N = P 2 classes are identified for the three meshes. Once the classes are identified, the dispersion

relation of the numerical model (28) can be readily obtained. The complete demonstrations are

given in Appendix A for the quadrangle mesh and in Appendix B for the two triangular meshes.

For a given angular frequency ω, mesh size (hx, hx), wave orientation θw and flow direction θf , a

discrete wavenumber k̃ is obtained by solving the system (28), and compared to the exact dispersion

relation given in Equation (42) to obtain the dispersion error Ed, as defined by Equation (30).

To compute the amplitude error, the numerical approximation p̃0 is first reconstructed from the

numerical eigenvector φ̃0. After normalization by the first (nodal) component φ̃
(1)
0 = 1, it takes the

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme
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following form for the quadrangle

p̃0(ξ, η) =

4
∑

r=1

ϕvr (ξ, η)eik·xr +

N
∑

g=2

ϕg(ξ, η)φ̃
(g)
0 , (43)

where ϕvr designates the standard bilinear shape functions. xr corresponds to the node location on

the grid. φ̃
(g)
0 is the amplitude of a given edge or bubble degree of freedom given in Appendix A and

ϕg(ξ, η) is the corresponding shape function. Note that p̃0 does not depend on the element number.

The amplitude error measures the difference between this numerical approximation and the exact

plane wave solution pexact = eik·x on an element stencil En,m, as follows,

Ea =
‖p̃0 − pexact‖H1

‖pexact‖H1

, ‖f‖H1 =

(

∫

En,m

(

|f |
2
+ |∇f |

2
/k2

)

dx

)1/2

. (44)

Let us now define some indicators for the resolution effort. When solving a boundary value

problem on a two-dimensional bounded computational domain Ω, the number of degrees of freedom

per wavelength is generally defined as follows

dλ =

√

Ndof

Area(Ω)

2π

|k|
, (45)

where Ndof and Area(Ω) denote respectively the total number of unknowns and the domain area.

However, it is not so straightforward to define such a criterion on an unbounded domain. Following

[14], a ‘density of unknowns’ is used here, whereby weighting coefficients of 1/4, 1/2 and 1
are associated with nodal, edge and bubble degrees of freedom, respectively. These coefficients

correspond to the area covered by each type of shape functions. On an element stencil En,m, this

yields a density of unknowns of Ndof = (14 × 4) + 1
2 × 4(P − 1) + 1× (P − 1)2, which simply

leads to Ndof = P 2. The following definition is therefore introduced:

dλ =
2π

|k|
√

hxhy

P . (46)

For the sake of conciseness, only square stencils are considered in this study, such that hx = hy =
h. In this case, definition (46) is equivalent to the one derived for the one-dimensional dispersion

analysis (33). The number of degrees of freedom per shortest wavelength d∗λ is also defined by

considering the wave propagating against the flow (θw = θf + π):

d∗λ =
2π(1−M)

ωh
P . (47)

Note that in the no flow case, the two parameters are equivalent. In Ref. [21], it is shown that

the mean flow orientation has only a marginal impact on the properties of the numerical scheme

in comparison with the other parameters, such as the Mach number and the wave orientation.

Therefore, for the sake of simplicity, only the case θf = 0 will be considered throughout this study.

Besides, when the wave propagates along the lines of the mesh, the results are very similar to the

ones obtained in the one-dimensional case. Therefore, the analysis will focus on the anisotropy

properties of the dispersion and amplitude errors with the objective to determine the influence of the

wave propagation angle on the accuracy for flow acoustics with different mesh topologies.

4.1. Discussion of results

To study the anisotropy properties of the p-FEM on the different mesh stencils, a fixed resolution

of 6 degrees of freedom per wavelength is used. The Mach number is fixed at M = 0.5. Two

representations are proposed, one using dλ = 6, similar to the one used in Reference [20] where

the mesh size h is adjusted to the plane wave orientation at each angle, or by setting d∗λ = 6 where
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Figure 12. Dispersion error Ed (left) and amplitude error Ea (right) in % for M = 0.5 on the quadrangle as
a function of the propagation angle θw , for a polynomial of order P varying from 1 to 8 with a step of 1.

Solid lines: d∗λ = 6. Dash-dotted lines: dλ = 6.
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Figure 13. Dispersion error Ed (left) and amplitude error Ea (right) in % for M = 0.5 on the triangle stencil
A as a function of the propagation angle θw , for a polynomial of order P varying from 1 to 8 with a step of

1. Solid lines: d∗λ = 6. Dash-dotted lines: dλ = 6.

the mesh size is fixed to ensure that the shortest wavelength (corresponding to the purely upstream

wave) is sufficiently resolved. Obviously, for θw = 180◦, the two criteria are equivalent.

The dispersion and amplitude errors are plotted up to order P = 8 as a function of the wave

propagation angle θw in Figures 12, 13 and 14 for the quadrangle mesh, the triangle mesh A and

the triangle mesh B respectively. Taking symmetry into account, the results are shown only in the

interval θw = [0, 180◦].
When setting dλ = 6, the aliasing peaks completely dominate the amplitude error for low angles

(θw = [0, 90◦]) corresponding to the downstream propagation. The aliasing effect is even more

pronounced on the triangle meshes where higher angles are also affected (up to θw = 140◦). The

higher-order elements present better approximation properties but, overall, this is mitigated by the

aliasing effect. In any case, even at high orders, the robustness of the p-FEM cannot be guaranteed

using that criterion.

When using the criterion d∗λ = 6, aliasing peaks are not visible and the numerical model is

much more robust. For downstream propagation (θw < 90◦), very high p-convergence is observed.

The dispersion and amplitude errors are decreased by more than one order of magnitude when

the polynomial order is increased from P to P + 1, leading rapidly to virtually ‘dispersion-free’

propagation. For angles close to the upstream propagation, the p-convergence is not as strong but

still effective. It is important to compare the performance of the different meshes on this particular

region that will, most likely, dominate the numerical error on practical applications.
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Figure 14. Dispersion error Ed (left) and amplitude error Ea (right) in % for M = 0.5 on the triangle stencil
B as a function of the propagation angle θw, for a polynomial of order P varying from 1 to 8 with a step of

1. Solid lines: d∗λ = 6. Dash-dotted lines: dλ = 6.

• At θw = 180◦, the triangle mesh A and the quadrangle mesh exhibit the same performance.

When the flow and the plane wave are exactly aligned with the mesh nodes, the problem can

be considered as purely one-dimensional.

• The triangle mesh A performs poorly in the upstream region (θw > 90◦). Surprisingly enough,

the anisotropy is such that the worst performance is not observed for the pure upstream

angle (θw = 180◦) but for a substantially lower angle (θw ≈ 160◦). For this particular mesh

topology, it may therefore be judicious to adapt the d∗λ criterion.

• Overall, the triangle mesh B offers the best performance (this is consistent with the

observations made in the no-flow case for linear elements by Harari et al. [27]). The anisotropy

is less severe and for a given order P , the dispersion and amplitude errors are substantially

lower than for the two other meshes in the vicinity of θw = 180◦. For instance, an order P = 4
on the stencil B yields smaller dispersion and amplitude errors than an order P = 5 on the two

other meshes.

These results confirm the fact that, provided that the waves are sufficiently resolved for all angles

of propagation, p-FEM is a very efficient scheme for convected acoustics applications. Also, some

important anisotropy effects may be observed on periodic meshes.

4.2. Application test case

Following the analysis carried out in one dimension, let us now consider a simple two dimensional

test case to assess the global numerical error observed in practice. The computational domain Ω is

rectangular with 0 < x < 50 and 0 < y < 10. We consider structured and unstructured meshes, both

with the same numbers of nodes and elements (see Figure 15). A hard-wall condition is defined

at y = 0 and y = 10, and a Robin-type boundary condition is used at x = 0 (with g = −2ik) and

at x = 50 (with g = 0) so as to create a wave pexact = eikx propagating from left to right in the

computational domain.

We calculate the relative error measured in H1 norm defined as

E1 =
‖p− pexact‖H1

‖pexact‖H1

.

Figure 16 shows E1 as a function of the number of degrees of freedom per shortest wavelength

d∗λ for the case of a wave propagating upstream v0 = (−0.5, 0) and downstream v0 = (0.5, 0). The

results are similar to the ones obtained in the one-dimensional case in Section 3.4, even on the

unstructured grid for which the problem is truly bi-dimensional. As a result, the numerical error

remains in line with the error estimator (40). In the low resolution regime, where the dispersion

error dominates, the presence of the mean flow can degrade significantly the performance of the FE
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Figure 15. Structured mesh (top) and unstructured mesh (bottom) used for the two-dimensional test case.

model. The downstream wave exhibits numerous aliasing peaks. However their impact on the overall

performance is marginal since the global error is dominated by the discretization of the upstream

wave. The performances of the two computational grids are very comparable which highlights the

ability of the p-FEM to effectively deal with unstructured grids. The main difference lies in the

number and amplitude of the aliasing peaks, which are reduced when using an unstructured mesh.
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Figure 16. E1 error obtained with the structured mesh (left) and the unstructured mesh (right) for polynomial
order from P = 2 to 8. Solid line: no-flow case. Dashed dotted line: upstream case (M = −0.5). Dashed line:

downstream case (M = 0.5).

The superiority of the p-FEM is also highlighted on this test case. To reach a reasonable

engineering accuracy, say 1% error for E1, a mesh resolution as high as d∗λ = 120 is required with

P = 2. For P = 8, this reduces to d∗λ = 6.3 in the no flow-case and d∗λ = 6.5 at M = 0.5. This

clearly demonstrates the ability of the p-FEM to mitigate the pollution effect when solving wave

propagation phenomena, including in the presence of strong background mean flow.

It is well known that the condition number of finite element matrices constructed from

interpolating basis functions grows as the polynomial order of the basis functions is increased

[23]. The poor conditioning of the system matrix can result in slow convergence of iterative

solution procedures but may also hinder the stability of a direct solution procedure. In Fig. 17,

the condition number of the p-FEM system matrix obtained for several orders P is plotted as a

function of the mesh resolution measured using d∗λ. An important observation is the fact that the

condition number is not deteriorated by the presence of the mean flow. Especially in the asymptotic

range, and for the same number of degrees of freedom per wavelength, the no-flow, upstream
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and downstream system matrices yield comparable condition numbers. As expected, the condition

number increases regularly with the order of interpolation, and it remains acceptable for the orders

studied here (P ≤ 8). However, for much higher-orders, say P < 15, this could limit the practical

use of hierarchical basis. For low polynomial orders, the condition number of the global matrix

increases with the number of degrees of freedom per wavelength (i.e for low values of the angular

frequency ω). In contrast, for higher polynomial orders the conditioning is quite poor in the pre-

asymptotic range, where the solution is not satisfactory. Interestingly, in the asymptotic range when

the interpolation error dominates, the conditioning appears to be independent of the mesh resolution.
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Figure 17. Condition number of the system matrix for the no-flow case (left) and in the presence of flow
(right) obtained with the unstructured mesh for polynomial order from P = 2 to 8. Solid line: no-flow case.

Dashed dotted line: upstream case (M = −0.5). Dashed line: downstream case (M = 0.5).

5. CONCLUSIONS

An analysis of the performance of the p-FEM was presented in the context of convected wave

propagation. This assessment was carried out through dispersion analyses in both one and two

dimensions to systematically measure the dispersion and amplitude errors of the discrete model. In

addition simple benchmark problems with structured and unstrustured meshes have been considered

to confirm that the conclusions of the dispersion analyses apply also to actual simulations.

The overall conclusion is that the properties of p-FEM that make its strength for standard acoustics

(e.g. exponential p-convergence) remain present for flow acoustics as well. More precisely, by

modifying a result derived by Ainsworth, an estimator for the dispersion error which incorporates

convection effects was proposed. It features an additional (1−M) coefficient even when the change

in wavelength due to the mean flow is accounted for. In the worst case, this leads to a doubling

of the phase errors for waves propagating upstream. At high wavenumbers, where the dispersion

error is likely to dominate the total numerical error, the presence of mean flow can degrade the

performance of the numerical scheme. However the key property of exponential convergence of the

dispersion error with increasing polynomial order P is conserved and as such, p-FEM elements

prove to efficiently mitigate the pollution effect also for convected applications. The condition

number was also examined and it is proved not to be deteriorated by the presence of mean flow.

Other performance aspects, notably the choice of the order that minimizes the run time and memory

requirements for a given flow configuration up to a desired accuracy will be examined on three-

dimensional applications in a future work.

An analysis of the aliasing phenomenon occurring for downstream propagation was also carried

out, since its properties differ significantly when flow is present. It was shown that the aliasing

resonances appear only when the upstream wave is under-resolved. Provided the grid is designed
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to ensure an accurate discretization of the shortest possible wavelength, the aliasing resonances

were found to have a marginal impact in practice. It should be noted that even when the aliasing

phenomenon is avoided it is still necessary to keep the interpolation error and the dispersion error

(and hence the pollution effect) under control. This can be guided by the error estimator (40).
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APPENDIX A: DISPERSION RELATION FOR THE QUADRANGULAR MESH

The dispersion relation of the quadrangular mesh given in Figure 11 is obtained by projecting the

exact solution in Equ. (41) on the quadrangle element. First consider the nodal degrees of freedom.

At each node, the edge and bubble contributions vanish
(

p̃en,m = p̃bn,m = 0
)

and we have

αv1
n,m = αv2

n,me−ikxhx = αv3
n,me−i(kxhx+kyhy) = αv4

n,me−ikyhy = eik·xn,m . (48)

From the relation (48) it follows that each nodal degree of freedom on the grid αv1
n,m = φ

(1)
n,m can be

written under the form:

φ(1)
n,m = φ

(1)
0 τnx τ

m
y , (49)

where φ
(1)
0 does not depend on (n,m) and we have introduced the following notations

τx = eikxhx and τy = eikyhy .

The nodal unknowns form the first class of degrees of freedom. Similarly to the one dimensional

case, the other classes are determined through an appropriate projection of the solution (41). On

each of the four edges, the contribution of the bubble functions vanish (p̃bn,m = 0) and the trace of

ϕer
q (ξ, η) corresponds to a Lobatto function of order q. The H1

0 (er) semi-norm [23] is used, which

leads to minimizing the following residual:

∫ 1

−1

∂

∂ζ
(p− p̃vn,m − p̃en,m)

∂lq
∂ζ

dζ = 0, q = 2, 3, ..., P, (50)

where ζ is a parametrization of the edge er. The orthogonality properties of the Lobatto functions

are then used to compute each edge contribution:

αe1
q,n,m = αe3

q,n,me−ikyhy = ikx
hx

2

∫ 1

−1

∂lq
∂ξ

eikxhx(ξ+1)/2 dξ eik·xn,m , q = 2, 3, ..., P ,

αe4
q,n,m = αe2

q,n,me−ikxhx = iky
hy

2

∫ 1

−1

∂lq
∂η

eikyhy(η+1)/2 dη eik·xn,m , q = 2, 3, ..., P .

(51)

Following (51), all edge degrees of freedom take the form

φ(g)
n,m = φ

(g)
0 τnx τ

m
y , (52)

where the amplitude φ
(g)
0 is independent of (n,m). For a given order q, the degrees of freedom

associated to the horizontal and vertical edges belong to two different classes. As a consequence,

a total of 2(P − 1) classes are needed for all edges unknowns on an element of order P . The

contribution of internal degrees of freedom is then computed by projecting, in the sense of the

H1(EQ) norm, the residual p− p̃vn,m − p̃en,m onto the space formed by the bubble functions. One

finally obtains:

αb
q1,q2,n,m = −kxky

hxhy

4

∫ 1

−1

∂lq1
∂ξ

eikxhx(ξ+1)/2 dξ

∫ 1

−1

∂lq2
∂η

eikyhy(η+1)/2 dη eik·xn,m . (53)

This completes the proof that all system unknowns are of the form (52). On the En,m element, the

shape functions related to node 1, edges 1 and 4 and all internal shape functions form the ‘minimum’

mesh stencil. Through successive translations of hx and hy in the two cartesian directions of this

stencil, all the approximation basis of the model can be constructed. This leads, for a periodic

quadrangular mesh of element of order P , to a total of N = P 2 classes, which represent as many

independent equations in the algebraic system. Similarly to the one-dimensional case, for all classes

of degrees of freedom g, the corresponding equation reads

N
∑

r=1

∑

n,m

A(g,r)
n,m φ(r)

n,m = 0 , g = 1, 2, ..., N , (54)
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where A
(g,r)
n,m denotes the contribution of φ

(r)
n,m in the equation for the degrees of freedom of class

g. By substituting (52) in equations (54), the dispersion relation of the discrete model is also of the

form (28) with R a matrix of size P 2 and φ0 the interpolation vector containing the contributions of

the different classes of shape functions.
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APPENDIX B: DISPERSION RELATION FOR THE TRIANGULAR MESH

For the triangle meshes, we follow the same approach as in Appendix A for the quadrangle mesh.

The different classes of degrees of freedom are first determined through interpolation and projection

of the plane wave solution (41). After some algebra, the following expressions are obtained for the

nodal and edge contributions of the stencil A:

αv1
n,m = αn2

n,me−ikxhx = αn3

n,me−ikyhy = eik·xn,m ,

αe1
q,n,m = ikx

hx

2

∫ 1

−1

∂lq(ξ)

∂ξ
eikxhx(ξ+1)/2 dξ eik·xn,m , ∀q ≥ 2 ,

αe2
q,n,m = i

(kxhx − kyhy)

2
(−1)q

∫ 1

−1

∂lq(ξ)

∂ξ
ei(kxhx(ξ+1)/2+kyhy(1−ξ)/2) dξ eik·xn,m, ∀q ≥ 2 ,

αe3
q,n,m = iky

hy

2

∫ 1

−1

∂lq(η)

∂η
eikyhy(η+1)/2 dη eik·xn,m, ∀q ≥ 2 .

(55)

It follows that all the nodal degrees of freedom belong to the same class. However, at a given order

q, three distinct classes of edge degrees of freedom are found, corresponding respectively to the

vertical, horizontal and diagonal edges. These expressions indicate that all edge degrees of freedom

can be written in the form:

φ(g)
n,m = φ

(g)
0 τnx τ

m
y . (56)

The same conclusion holds for the stencil B, which theoretical projections are given below

αv1
n,m = αv2

n,me−ikxhx = αv3
n,me−i(kyhy+kx

hx
2

) = eik·xn,m ,

αe1
k,n,m = ikx

hx

2

∫ 1

−1

∂lk(ξ)

∂ξ
eikxhx(ξ+1)/2 dξ eik·xn,m, ∀k ≥ 2 ,

αe2
k,n,m = i(kx

hx

4
− ky

hy

2
)(−1)k

∫ 1

−1

∂lk(ξ)

∂ξ
ei(kxhx(ξ+3)/4+kyhy(1−ξ)/2) dξ eik·xn,m , ∀k ≥ 2 ,

αe3
k,n,m = i(kx

hx

4
+ ky

hy

2
)

∫ 1

−1

∂lk(η)

∂η
ei(kxhx(η+1)/4+kyhy(η+1)/2) dη eik·xn,m , ∀k ≥ 2 ,

(57)

except that all classes of degrees of freedom now take the following form

φ(g)
n,m = φ

(g)
0 τnx τ

m
xy , (58)

where τxy = eikxhx/2+ikyhy . Note that the projection on the EII
n,m element is not necessary since all

nodal and edge degrees of freedom have already been associated to a class.

Concerning the internal unknowns contribution, the residual p− p̃vn,m − p̃en,m of element EI
n,m

is projected over the space spanned by its bubble functions in the H1(ET ) semi-norm [23]. The

minimization problem then leads to solving the following equation:
∫

ET

∇
(

p− p̃vn,m − p̃en,m − p̃bn,m
)

· ∇
(

ϕb
r1,r2

)

dET = 0 , (59)

which can also be written:

P
∑

q1=1

(P−1−q1)
∑

q2=1

αb
q1,q2,n,m

∫

ET

∇
(

ϕb
q1,q2

)

· ∇
(

ϕb
r1,r2

)

dET

=

∫

ET

∇
(

p− p̃vn,m − p̃en,m
)

· ∇
(

ϕb
q1,q2

)

dET . (60)

The former equation represents a linear algebraic system of size (P − 2)(P − 1)/2 for the bubble

unknowns αb
q1,q2,n,m of element EI

n,m. Let us denote αb,I , the vector containing these bubble
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degrees of freedom. Using relations (55) and (57), the right-hand side can be factorized and (60)

becomes:

Bαb,I = S
Iτnx τ

m
y and Bαb,I = S

Iτnx τ
m
xy , (61)

respectively for the triangular meshes A and B, where S
I does not depend on (n,m). The same

operation applied now on element EII
n,m leads to a similar expression:

Bαb,II = S
IIτnx τ

m
y and Bαb,II = S

IIτnx τ
m
xy , (62)

respectively for the triangle mesh A and the triangle mesh B, where SII does not depend on (n,m).
It can be easily shown that SI and S

II are independent, thus the bubble degrees of freedom of

elements EI
n,m and EII

n,m form two distinct classes at a given order. We have proven that all

unknowns can write under the form (56) or (58) respectively for the mesh A and mesh B. A

total of N = 1 + 3× (P − 1) + 2× (P − 1)(P − 2)/2, so simply N = P 2 different classes were

identified. Following the methodology described for the quadrangular mesh, the dispersion relation

of the numerical model can be readily obtained.
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