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Analysis of human ES cell differentiation
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Abstract

Background: Circular RNAs (circRNAs) are predominantly derived from protein coding genes, and some can act as

microRNA sponges or transcriptional regulators. Changes in circRNA levels have been identified during human

development which may be functionally important, but lineage-specific analyses are currently lacking. To address this, we

performed RNAseq analysis of human embryonic stem (ES) cells differentiated for 90 days towards 3D laminated retina.

Results: A transcriptome-wide increase in circRNA expression, size, and exon count was observed, with circRNA levels

reaching a plateau by day 45. Parallel statistical analyses, controlling for sample and locus specific effects, identified 239

circRNAs with expression changes distinct from the transcriptome-wide pattern, but these all also increased in abundance

over time. Surprisingly, circRNAs derived from long non-coding RNAs (lncRNAs) were found to account for a significantly

larger proportion of transcripts from their loci of origin than circRNAs from coding genes. The most abundant, circRMST:

E12-E6, showed a > 100X increase during differentiation accompanied by an isoform switch, and accounts for > 99% of

RMST transcripts in many adult tissues. The second most abundant, circFIRRE:E10-E5, accounts for > 98% of FIRRE

transcripts in differentiating human ES cells, and is one of 39 FIRRE circRNAs, many of which include multiple

unannotated exons.

Conclusions: Our results suggest that during human ES cell differentiation, changes in circRNA levels are primarily

globally controlled. They also suggest that RMST and FIRRE, genes with established roles in neurogenesis and topological

organisation of chromosomal domains respectively, are processed as circular lncRNAs with only minor linear species.

Background

Circular RNAs (circRNAs) are a numerically abundant

RNA species, generally expressed at low levels relative to

mRNAs [1, 2], which can be defined in silico by the pres-

ence of “shuffled” or “back-spliced” exons in an order in-

consistent with genomic DNA. Rare trans-splicing events

between different pre-mRNA molecules can, however, also

generate rearranged exon junctions [3, 4], meaning that

additional evidence such as resistance to RNase R [5], mi-

gration assays [6], or comparison of read depth inside and

outside of the circRNA [7], is required to confirm circular-

ity in individual cases.

CircRNA biogenesis can be promoted by intronic hom-

ology [5, 8, 9], and knock-down of the dsRNA editing en-

zyme ADAR1 [10, 11], or the RNA helicase DHX9 which

can interact with ADAR1 [12], leads to upregulation of

circRNA expression. Cassette exons have been shown to

be over-represented within circRNAs [13], and a combin-

ation of RNAi screens and specific gene analyses have

established that RNA binding proteins including MBL

[14], QKI [15], and heterogeneous nuclear ribonuncleo-

proteins (hnRNPs) [16] promote formation of some cir-

cRNAs. Furthermore, both depletion of pre-mRNA

splicing factors, and transcript termination read-through,

can increase circRNA levels relative to linear [17].
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The vast majority of circRNAs are derived from protein

coding genes and have no known function [18, 19], but

there is evidence that some can act as micro RNA sponges

[20–23], some can enhance the activity of their own pro-

moters [24], some can contribute to the proteome [25–27],

and a growing number are being associated with disease

(reviewed in [28]). For example, a circRNA isoform of the

long non-coding RNA (lncRNA) ANRIL1 has been impli-

cated in atheroprotection [29, 30], while circRNAs created

by an oncogenic fusion have been reported to influence

tumour progression [31].

Given the evidence for biological impact, changes in cir-

cRNA expression are of interest as they could be indica-

tive of function. CircRNAs are almost always co-expressed

with linear transcripts from the same loci [32], and their

expression has been shown to increase relative to linear

RNA during development [11], proliferation [33], and age-

ing [34, 35]. Global increases over time have been ob-

served in heart and lung, but are most pronounced in

neural tissues [11, 34–37]. Moreover, divergent expression

patterns of linear and circular RNAs from the same loci

have been highlighted in multiple neuronal tissues, at a

variety of developmental stages and in different species

[11, 36, 38], providing circumstantial evidence for inde-

pendent regulation of linear and circular isoforms.

The circRNA population of human ES cells during early

differentiation has also been investigated and CircBirc6

[39], together with a linear trans-spliced RNA derived

from the lncRNA RMST (tsRMST [40]), have been re-

ported to play roles in maintenance of pluripotency [40].

However, analyses of long-term differentiation series, to

investigate changes in circRNA abundance within defined

cell lineages, are currently lacking. Here, we have differen-

tiated human ES cells (H9 line) towards 3D laminated ret-

ina using an established 90 day protocol [41, 42], and have

performed total RNAseq to a depth of > 100 million reads

in 3 biological replicates at 3 time-points (0, 45, 90 days).

Global circRNA levels increased dramatically between day

0 and day 45, and circRNA size and exon number also in-

creased. When we controlled both for this transcriptome-

wide increase, and for locus specific changes in total ex-

pression, we identified 239 circRNAs with significantly al-

tered expression levels between time-points. All also

increased in abundance, consistent with circRNA levels

being controlled globally during differentiation. Surpris-

ingly, however, we identified a significant difference in cir-

cRNA levels between coding and non-coding genes, and

found evidence that two lncRNAs with known functions

in early development, RMST and FIRRE, may warrant

classification as circular lncRNAs in human.

Results
To identify circRNAs potentially involved in the develop-

ment of a defined cell lineage, we differentiated triplicate

human ES cell cultures towards a retinal phenotype [41],

with and without the presence of IGF-1 which has been

reported to enhance retinal differentiation [42]. Embryoid

bodies (EBs) with retinal features developed in all repli-

cates (see Methods), and immunostained cryosections of

organoids at day 90 confirmed the presence of laminar

retinal tissue organisation, with Pax6 positive retinal pro-

genitors, HuC/D positive retinal ganglion cells, and Crx/

Recoverin positive photoreceptors (Fig. 1).

To assess gene expression, total RNA was extracted at

day 0, 45 and 90, ribodepleted, and sequenced to a depth

of over 100 million reads per replicate (see Methods and

Additional file 1). Consistent with the phenotypic changes

observed, gene ontologies relevant to the eye were signifi-

cantly over-represented among genes differentially

expressed between time points (e.g. phototransduction,

sensory perception of light stimulus, and structural con-

stituent of the eye lens, Additional file 2), while known

pluripotency genes and eye field markers were downregu-

lated and upregulated respectively (Additional file 3:

Figure S1). In contrast, the impact of IGF-1 upon tran-

scription was very specific, with 30 genes differentially

expressed between treated and untreated samples, many

of which are implicated in development or neuronal func-

tion (See Additional file 2). Of particular interest are

WNT2B and FGF16, as inhibition of Wnt signalling has

been shown to enhance forebrain patterning [41] and FGF

signalling modulates retinal progenitor proliferation and

fate [43], and IRS4 and LIN28A, both of which are already

known to be involved in IGF-1 signalling [44, 45]. Thus,

while few genes are affected by IGF-1, they include logical

candidates for involvement in the reported impact of this

mitogen [42].

circRNA levels increase dramatically during the first

45 days of differentiation

We used PTESFinder [46], a software tool with high sensi-

tivity and specificity [47], to quantify all circRNA (back-

splice) and canonical junctions at all time-points (see

Methods and Fig. 2). A total of 58,528 distinct circRNAs

were identified, the majority of which were also found

using other circRNA identification tools ([8, 20, 34], see

Additional file 3: Figure S2). Hierarchical clustering using

normalised gene expression values (Fig. 2a), circRNA

junction counts (Fig. 2b), or canonical exon junction

counts (not shown), all identified day 0 samples as a dis-

tinct group. This distinction is clear from a heat map of

genes differentially expressed between time-points and

treatments (Additional file 3: Figure S3), and is con-

sistent with the limited expression signature associ-

ated with IGF-1 treatment. The limited impact on

circRNA levels is also consistent with Enuka et al.

[32] who found that stimulation of mammary cells by

EGF did not affect circRNA abundance.
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Relative to canonical junctions, circRNA junctions were

present at low levels at all time-points (Fig. 2c-d), but they

showed a significant ~ 4-5X increase between day 0 and

day 45 (p = 0.0044 Wilcoxon rank sum test, Fig. 2c).

Significant increases were also observed in the physical

distance between circRNA donor and acceptor exons

(genomic span), and the number of exons circRNAs con-

tain (Fig. 2e, both p < 9.2e-39 Wilcoxon rank sum test).

Approximately 6% of the circRNAs identified were

found only in undifferentiated samples (day 0, Fig. 2f )

, compared to over 70% found only in differentiated

samples (Day 45/90), and detailed analysis found no

evidence of abundant circRNAs specific to undifferen-

tiated ES cells (Additional file 3: Figure S4).

To investigate the increase in circRNAs in detail, junction

count distributions from all genes were then examined at

day 0 and day 45. This established that the number of both

circRNAs and circRNA junctions increased more dramatic-

ally between day 0 and day 45 (Fig. 3a) than the number of

independent transcripts and canonical junctions (Fig. 3b).

To assess these changes at the gene level, ratios of normal-

ised circRNA junction counts at day 45 relative to day 0 for

each gene were plotted against the corresponding ratios for

canonical junctions (Fig. 3c): Both circRNA and canonical

junctions increased between day 0 and day 45, but the in-

crease in circRNA junctions was more pronounced (me-

dian increase ~8X, log2 = 3). In contrast, there was little

change in circRNA or canonical junction abundance be-

tween days 45 and 90, with circRNA levels remaining par-

ticularly stable (Fig. 3d). Despite this, ratios were correlated

in both comparisons, consistent with circRNA levels at

each locus being linked to total transcription.

As Muscleblind [14] and QKI [15] RNA binding proteins

can promote circularisation, their expression was investi-

gated. Although QKI remained unchanged (data not

shown), 2 out of the 3 human Muscleblind genes showed a

significant increase by day 45 (Fig. 3e and Additional file 3:

Figure S1). Furthermore, the levels of ADAR1 [10, 11] and

DHX9 [12], which can reduce circRNA levels, decreased

significantly (Fig. 3f-g), consistent with involvement in the

Fig. 1 Neuronal differentiation in retinal organoids. a-b Retinal organoids on day 23 of differentiation displaying (a) phase bright neural retinal

tissue and (b) retinal pigmented epithelium (RPE). c-f Immunostained cryosections of retinal organoids on day 90 of differentiation counterstained with

Hoechst demonstrating the laminar organisation of retinal tissue and presence of (c) Pax6+ retinal progenitors, inner retinal neurons and (d) HuC/D+

retinal ganglion cells at the basal aspect, and (e, f) outer retinal phenotypes including Crx + and recoverin+ photoreceptors towards the apical surface.

GCL = ganglion cell layer, ONL = outer nuclear layer. Scale bars; a, b = 200 μm; c, d = 50 μm; e, f = 20 μm
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observed circRNA upregulation. A small but significant

excess of RNA editing sites (targeted by ADAR1) was

also observed within 1000 bp of circRNA junctions

found only in differentiated time-points, when com-

pared to junctions found only at day 0 (p = 0.0329 Wil-

coxon rank sum test, Fig. 3h).

CircRNA expression change is defined by global

upregulation and locus specific transcription levels

The upregulation of circRNAs prior to day 45, and their

subsequent relative stability, suggests that their abundance is

controlled at the transcriptome level during human ES cell

differentiation. To identify circRNAs showing differential

Fig. 2 circRNA expression increases upon differentiation. a Phylogram based on expression levels of all genes. b Phylogram based on circRNA

(back-splice) junction counts. Both generated using hierarchical clustering of Euclidian distances. c-d Box and whisker plots of circRNA and canonical

junction counts from all genes which generate circRNAs. CircRNAs increase from ~ 0.3 to 1-2% of all junctions between day 0 and 45. e Box and

whisker plots showing (left) genomic span of circRNAs in day 0 (n = 13,146) versus differentiated (day 45 and 90, n = 42,521) untreated

samples, and (right) exon counts of circRNAs in day 0 only (n = 2790) versus differentiated only (n = 32,084) untreated samples. For exon

count calculations, all GENCODE exons between circRNA donor and acceptor exons were included. For all box-plots, medians and upper

and lower quartiles are shown, with outliers as solid circles. f Venn diagram showing distribution of circRNA junctions identified in untreated day 0

samples, relative to differentiated samples (days 45 and 90). Comparable results were obtained with IGF-1 treated samples
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Fig. 3 circRNA expression reaches a plateau by day 45. a-b Histograms comparing junction counts per transcript in day 0 and day 45. c-d Comparison of

changes in back-splice and canonical junction count frequencies between time points. Junction counts were normalised to total read counts at each time-

point. Distributions are shown on both axes, together with correlation coefficients and associated p-values. e-g Expression of genes implicated in circRNA

biogenesis in untreated samples. Associated p-values from t-tests comparing means in day 0 versus day 45/90 are shown. h Box and whisker plot

comparing frequencies of RNA editing sites found within 1000 bp windows flanking circRNA junctions in undifferentiated (day 0) or differentiated

(day 45 and day 90) samples only, with associated p-value (Wilcoxon rank-sum test)
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expression (DE) patterns, independent both of the glo-

bal increase and of changes in total expression at their

loci of origin, we performed two sets of pairwise com-

parisons between time-points: One (sample-level DE

analysis) controlled for differences in library size and

total circRNA levels between samples, the other (locus-

level DE analysis) controlled for locus specific changes

in total gene expression. Fisher exact tests were first

performed, using junction counts summed across repli-

cates, to identify candidate differentially expressed (DE)

circRNAs. Then, to mitigate against sample heterogen-

eity, read counts of these candidate DE circRNAs in

each replicate were re-analysed using two-tailed t-tests

(see methods and Additional file 3: Figure S5).

In pairwise comparisons between the day 45 and day 90

samples (rows 5-8 Table 1) between 1 and 256 DE cir-

cRNAs were identified using Fisher’s exact tests, but only

1 was significant in either of the subsequent t-tests. In

contrast, over 2500 transcripts were identified in each

pairwise comparison between day 0 samples and later

time-points, and 46-496 were significant in the subse-

quent t-tests (rows 1-4 Table 1). However, only 239 (~ 0.

6% of all circRNAs analysed) gave 1 or more significant

results in both analyses (Table 1 and Additional file 4). Ex-

pression heat maps illustrate that circRNA junction levels

of all 239 increase upon differentiation (Fig. 4a), with

more modest changes in canonical junction counts (Fig.

4b). Thus, these circRNAs differ from the broader popula-

tion only in the magnitude/consistency of expression

change, not direction. Gene Ontology analysis did identify

enrichment of some molecular processes and biological

functions among genes from which these circRNAs are

generated (Additional file 5), but none are specifically rele-

vant to differentiation or neuronal/retinal development. In

an effort to increase power, this analysis was repeated with

day 45 and day 90 samples combined. As expected, this

produced a larger number of DE transcripts (> 2000), but

the direction of change in circRNA levels remained uni-

form (Additional file 3: Figure S6), providing no evidence

for regulation of specific circRNAs independent of the

global upregulation observed prior to day 45.

Non-coding circRNA producing genes have higher

circular/linear ratios than coding genes

The vast majority of the 239 significant DE circRNAs

have been identified previously and are derived from

coding genes (Additional file 3: Figure S4). However, the

most abundant is from RMST, a lncRNA known to be

involved in the regulation of neural stem cell fate [48].

As the functional relationship between linear and circu-

lar transcripts from coding and non-coding loci will be

different, we analysed the relationship between circRNA

and canonical junction frequency with respect to coding

potential (Fig. 4c-d). This established that circRNAs

from non-coding genes make up a higher proportion of

the total transcripts from their loci of origin than cir-

cRNAs from coding genes (p < 1 × 10− 5 Wilcoxon rank-

sum test), with a mean circular to linear junction ratio

of 0.25 (IQR 0.18) compared to 0.04 (IQR 0.024) for

coding genes, despite non-coding genes being generally

expressed at lower levels. Interestingly, the 2nd most

abundant non-coding circRNA was from the lncRNA

FIRRE, implicated in both adipogenesis in mouse [49]

and chromosomal nuclear localisation [50, 51], with

anti-sense RNAs of unknown function also having a high

proportion of circRNA junctions. Because of the known

involvement of both RMST and FIRRE in developmental

processes, we analysed read depth and splice junction

frequency in these two genes in detail.

CircRMST:E12-E6 can account for > 99% of RMST

transcription, and upregulation is consistent with a

promoter change

RMST read and circRNA junction counts were consist-

ent between replicates at each time-point, and represen-

tative data from day 0 and 45 are shown in Fig. 5a. All

exons corresponding to annotated isoform uc001tez.1

(grey) increased > 30 fold in abundance between these

Table 1 Numbers of DE transcripts identified in pairwise time-point analyses, controlling for transcriptome wide changes in circRNA

levels and locus specific changes in total expression

Comparison Locus-level tests Sample-level tests Identified by
both t-tests

Fisher t Fisher t

day 0 v day 45 4207 63 6411 60 8

day 0 v day 90 2671 80 4577 46 12

day 0 v day 45 IGF-1 2965 496 4395 496 197

day 0 v day 90 IGF-1 2786 126 4362 148 29

day 45 v day 45 IGF-1 60 0 256 0 0

day 45 v day 90 121 0 208 0 0

day45 IGF-1 v day 90 IGF-1 10 1 56 0 0

day 90 v day 90 IGF-1 1 0 15 0 0
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time-points, but there is an equivalent increase in a

back-splice junction which spans all exons in this

transcript. This is consistent with a single abundant cir-

cRNA (circRMST:E12-E6, red box Fig. 5a and see

Additional file 3: Figure S7). Strikingly, when junction

counts across all time-points were analysed (Fig. 5b),

only junctions internal to E6 and E12 (so expected to be

within the circRNA) exceeded 150 counts at any time

point, and most exceeded 3000 at days 45 and 90. An

additional 18 low abundance RMST circRNAs were also

identified, collectively encompassing all but the terminal

annotated exons (Fig. 5b). Furthermore, exon junctions

which both involve the main circRNA splice acceptor

(E6) and could potentially be within linear RNAs (E5-E6

and E5B-E6), were at frequencies < 0.5% of E12-E6 at

later time-points (e.g. 24 and 17 v 5425 at day 45).

To identify potential sites of transcript initiation, exons

5′ to the main circRNA were investigated (Fig. 5c), and

uncovered both a high frequency of intron retention be-

tween exons 1 and 2 of uc001tey1 (defined here as E5A

and E5B, blue box), and a reduction in reads mapping to

this region by day 45. Over the same period there was an

increase in reads and splice-junctions involving E4 and E5

(green box), indicating a change in isoform structure over

Fig. 4 Expression increase of DE genes and abundance with respect to coding capacity. a-b Expression heat maps showing relative frequency of

untreated sample junction counts from 239 DE transcripts identified in both sample-level and locus-level t-tests (see methods). c Total canonical

junctions versus total circRNA junctions in all circRNA producing coding genes (summed across all samples). The 5 genes with the highest circRNA counts

are indicated. d Total canonical junctions versus circRNA junctions in all circRNA producing non-coding genes (summed across all samples). The 10 genes

with the highest circRNA counts are indicated. Total numbers of canonical and circRNA junctions in untreated samples at each time-point are also shown,

and confirm that the increase in junction counts between days 0 and 45 affects circRNAs from both coding and non-coding genes
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Fig. 5 (See legend on next page.)
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time. These exons lie within a regions defined by EN-

CODE/Broad chromatin state segmentation [52] as a weak

promoter (light red) within the human H1 ES cell line

(Fig. 5c). In contrast, transcription immediately upstream

and downstream of the E6-E12 region, which span

miRNA precursors and could potentially be involved in

generation of the circRNA, showed no consistent change

(Fig. 5c middle and right hand panels).

To confirm changes in circRNA levels, and investigate

the putative change in isoform levels, we used qPCR to

assay splice junctions at days 0 and 45, and at an intermedi-

ate time-point (day 30) from the same differentiation series.

Overall, the correlation between RNAseq junction counts

and qPCR data was 0.93 (Additional file 3: Figure S8) and

results are shown in Fig. 5d. A ~ 100 fold induction of E5-

E6 (7-8 Ct) was observed between day 0 and 30, together

with a similar increase in the E5-E5B junction by day 45

(both p < 0.001), the latter establishing that isoforms

ENST00000538559.6 and uc001tey1 are not independent.

A modest drop in E5B-E6 expression was also observed

(p < 0.01 by day 45). The E12-E6 circRNA junction, present

at similar levels to E5B-E6 at day 0, also increased > 100

fold by day 30 (p > 0.001). However, there was little change

in the downstream canonical E12-E13 junction. The induc-

tion of both the E5A containing isoform, and the E12-E6

circRNA, is clear when the data is displayed relative to E12-

E13 (Fig. 5e). In silico analysis of RNAseq data from human

fetal and embryonic eye tissue (Mellough et al. in prepar-

ation) also established that the E12-E6 circRNA is the most

abundant RMST isoform during differentiation in vivo

(Additional file 3: Figure S9).

The lncRNA FIRRE is downregulated, and upon

differentiation its major transcripts are circular

FIRRE expression at day 0 was consistent between repli-

cates, and exons with the highest RNAseq read counts (E5

to E10) were also bound by an abundant back-splice junc-

tion (Fig. 6a and see Additional file 3: Figure S7), indica-

tive of a single dominant circRNA. Although expression

fell in all replicates between day 0 and day 45, heterogen-

eity was observed, with replicate 1 showing a pronounced

drop in expression of all exons (Fig. 6a). This is likely to

reflect differences in activity of the single promoter region

inferred from ENCODE data (Fig. 6a). In total, 20 FIRRE

circRNAs were identified, ranging in abundance over 3 or-

ders of magnitude (Fig. 6b) and encompassing all but 3

annotated exons (E1, E2, E13). All exon junction counts

(Fig. 6b) were consistent with the general reduction in

FIRRE expression between day 0 and 45. Critically, junc-

tion counts involving exons external to circRNAs (E1 and

E2) fell more dramatically than others: Only the E10-E5

circRNA junction, and canonical junctions internal to

these exons, exceeded 150 counts at days 45 and 90

(Fig. 6b). By day 45 the E10-E5 junction count (362)

was ~ 10 fold higher than the E1-E2 junction count (32),

and > 50 fold higher than any counts from junctions which

could both involve the main circRNA acceptor exon

(E5) and be within linear RNAs (E2-E5, 4; E3-E5, 2;

E4-E5, 0). This suggests that in differentiating H9 ES

cells, > 98% of reads from the abundant central exons

are from circular RNAs.

The read distributions also suggested that FIRRE tran-

scripts may contain additional exons which are either un-

annotated, or annotated within alternative transcripts

(grey in Fig. 6b). We investigated these using a combin-

ation of annotation-free exon junction mapping and

amplicon sequencing of RT-PCR products (see Methods).

This both confirmed the existence of the rearranged tran-

script structures inferred from RNAseq data, and estab-

lished that exons E5A, E5B, E6A, and the minor exon

E10A and E10C, are integrated within multiple circRNAs

up to > 1 kb in length (Additional file 3: Figure S10 and

Additional file 6). Of the annotated FIRRE exons, only E1,

E2, E4 and E13 were not identified within circRNAs by

amplicon sequencing. This analysis also ruled out the ex-

istence of FIRRE transcripts containing upstream linear

exons (e.g. E1, E2) spliced directly to unannotated exons

downstream of E5 (Additional file 7), and identified a

(See figure on previous page.)

Fig. 5 RMST is a circRNA in differentiated H9 cells. a Modified UCSC browser representation of mapped read count (black) and back-splice

junction count (blue) at the RMST locus in untreated replicate 1 at day 0 and day 45. Back-splice reads span a single junction and only

the donor and acceptor exons are indicated. Scales are different in the two time-points to allow visualisation of both. GENCODE (green)

and Refseq (purple and grey) annotations are shown, together with genomic scale. Exons within circRMST:E12-E6 are enclosed by a red

box, upstream exons highly expressed at day 0 are enclosed by a blue box. b Schematic of RMST exon structure, showing circRNA junction counts

(above exons) and canonical counts (below exons) summed across untreated replicates for all time-points (0/45/90). Counts were calculated for all

exon combinations within each annotated transcript. Numbers are only shown for junctions with 10 or more supporting reads at 1 or more time-

points. Exons specific to a single annotated transcript are colour coded (as in a). Exons present in multiple annotated transcripts are shown in grey.

Exons are numbered relative to the longest ENCODE annotation ENST00000538559.6 (ENST~ 559.6). Annotated (red) and inferred (orange) transcription

start and stop sites are also shown. Data from IGF-1 treated samples are comparable. c Adapted UCSC screen-shots showing changes in expression at

exons of uc001tey.1 and ENST00000538559.6 upstream of E6 (left panel) and miRNA precursors flanking the E12-E6 circRNA (middle and right panels)

in all untreated replicates. ENCODE/Broad chromatin state segmentation [52] within the H1 ES cell line is also shown (H1): Light red/bright red/purple

= weak/active/poised promoter, light/dark green =weak/elongation transcription, orange/yellow = strong/weak enhancer). Scale is capped at 150 to

allow direct comparison between time-points. d-e qPCR confirmation of increase in RMST circRNA and E5-E5B junctions. d. Mean ΔCt values from 3

biological replicates assayed at day 0, 30 and 45 are shown (+/− S.E.M). e ΔΔCt values relative to E12-E13. p-values *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 6 (See legend on next page.)
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further 19 circRNA junctions and minor unannotated

exons distal of E10 (Additional file 3: Figure S10).

Interestingly, a dot-matrix of internal sequence repeti-

tion within FIRRE (Additional file 3: Figure S11) also

established that the E5-E10 region contains the ma-

jority of the DCC repeats known to function as nu-

clear localisation signals [50, 53].

We used qPCR to validate the expression levels of E10-

E5 and upstream exon junctions within RNAs isolated at

days 0 and 45, together with an intermediate time-point,

day 30 (Fig. 6). The correlation between RNAseq-derived

junction counts and qPCR data across all FIRRE assays was

0.75, lower than for RMST (Additional file 3: Figure S8).

This is likely due to the impact of repetitive sequence ([53]

and Additional file 3: Figure S11) on both read mapping

and PCR amplification. Despite this, the relative expression

of all junctions at day 0 were consistent with the RNAseq

data (Fig. 6d). We did observe an increase in E10-E5 ex-

pression by day 30, a time-point not assayed by sequencing,

but all other junctions decreased in abundance. The rela-

tively low expression level of all FIRRE exons in replicate A

by day 45 (Fig. 6a) resulted in large standard errors of ex-

pression estimates at this time-point. However, relative ex-

pression levels of junctions remained consistent within

replicates at each time-point, and the fall in E1-E2 and E2-

E3 relative to E10-E5 observed in the RNAseq data was

both confirmed, and found to be significant (~ 16-32X re-

duction, Fig. 6e). In silico analysis of RNA seq data from

human fetal and embryonic eye tissue also established that

the E10-E5 circRNA is the most abundant FIRRE isoform

during differentiation in vivo (Additional file 3: Figure S9).

RMST E12-E6 accounts for > 99% of adult neural RMST

expression

Having established that two functionally important

lncRNAs almost exclusively generate circular isoforms

during ES differentiation, we investigated their abun-

dance in adult tissues (Fig. 7). In all neural tissues ana-

lysed as well as heart, the RMST E12-E6 circRNA

junction was detected 7-8 cycles earlier than either of

the linked upstream canonical junctions assayed (E5-E6,

E5B-E6), indicating that it is also > 100 fold more abun-

dant in these tissues (Fig. 7a). Read and back-splice dis-

tributions within independent publicly available total

RNAseq data from adult brain [54] were also consistent

with this (Additional file 3: Figure S12). In tissues such

as lung and kidney the circRNA was ~ 15-50X more

abundant, while in liver the linear transcripts could not

be detected. In contrast, all FIRRE structures are present

at much lower levels in the adult tissues analysed relative

to ES cells (Fig. 7b), consistent with previous analyses

[50]. Although all junctions were detected at low levels,

E1-E2 was ~ 10X more abundant than other junctions in

spinal cord, and the E10-E5 junction was very low in all tis-

sues, indicating no circRNA enrichment. In silico analysis

of independent publicly available RNAseq datasets also

confirmed the low expression of all FIRRE exons in the

adult tissues analysed here, as well as skin, breast, muscle,

bladder, prostate, ovary, and colon ([54], data not shown).

RMST and FIRRE exons external to circRNAs are sensitive

to RNase R

To confirm that transcripts from both genes are circu-

lar in ES cells, we tested the prediction that circRNA

specific exon junctions would be resistant to RNase R,

using independent day 0 RNA isolations from the H9

cell line (Fig. 7c). As anticipated, RNase R digestion

reduced levels of linear housekeeping genes ~ 100-500

fold (~ 7-9 cycles, left panel). In contrast, RMST E12-

E6 and FIRRE E10-E5, together with FIRRE E10-E11

(which is present within 8 circRNAs), were enriched

~ 30-60 fold relative to linear housekeeping controls,

significantly more than other junctions (p < 0.01 all

comparisons). This is similar to the enrichment seen

with a control circRNA (SMARCA5 E16-E15 [7, 15]).

However, the terminal exons assayed, which are not

associated with any circRNAs (RMST E12-E13 and

FIRRE E1-E2), showed no enrichment, confirming

their linearity. Other proximal exons assayed either

showed limited enrichment (2-4 fold RMST E5-E6,

(See figure on previous page.)

Fig. 6 FIRRE is downregulated, and its major transcripts are circular in differentiated cells. a Modified UCSC browser representation of mapped

read count coverage (black) and back-splice junction count (blue) at the FIRRE locus in untreated replicate 1 at day 0 (top), shown above the

mapped read data from all untreated replicates at days 45 and 90. Back-splice reads span a single junction and only the donor and acceptor

exons are indicated. GENCODE (green) and RefSeq (purple) annotations are also shown, together with a genomic scale. ENCODE/Broad chromatin

state segmentation [52] within the H1 ES cell line is also shown: Light red/bright red/purple = weak/active/poised promoter, light/dark green =

weak/elongation transcription, orange/yellow = strong/weak enhancer, grey = heterochromatin low signal, blue = insulator. b Schematic of FIRRE

exon structure, showing circRNA junctions and counts (above exons) and canonical junctions and counts (below exons), summed across un-

treated replicates for all time-points (0/45/90). Additional exons not present within the GENCODE FIRRE annotation are shown in grey (asterisked)

and numbered A, B etc. with respect to ENCODE annotation. Only junctions involving annotated FIRRE exons are shown, and numbers are only

given for junctions with 10 or more supporting reads in 1 or more time-points. c Modified UCSC browser image showing position and relative

abundance of additional exons not in ENCODE annotation. The scale is split at 150 to facilitate visualisation of rare exons (see Additional file 3:

Figure S4). d-e qPCR validation of expression changes of circFIRRE:E10-E5 and upstream junctions. d. Mean ΔCt values from 3 biological replicates

assayed at day 0, 30 and 45 are shown (+/− S.E.M). e. ΔΔCt values relative to to E10-E5. *p < 0.05, **p < 0.01
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Fig. 7 Tissue distribution and RNase R resistance of RMST and FIRRE junctions. a RMST junctions in adult tissue. b FIRRE junctions in adult tissue.

Mean ΔCt values of 3 technical replicates are shown (+/− S.E.M). c RNase R sensitivity of RMST and FIRRE junctions. Left panel; –Ct values of 3

housekeeping genes in digested and mock reactions. Right panel; -ΔΔCt values of RNase R digested relative to undigested (see methods). A

control linear/circRNA transcript pair (SMARCA5) is also shown. Means from 3 biological replicates are shown +/− S.E.M, except for FIRRE E2-E5

where only technical replicates were available. *p < 0.05, **p < 0.01, ***p < 0.001. d Replicate Northern blots of day 0 ES (E) and adult brain (B)

RNAs, digested with RNase R (D) or undigested (U) and hybridised with i. SMARCA5 probe internal to circRNA (E15-E16), ii. SMARCA5 probe external to

circRNA (E10-E13), iii. RMST probe internal to main circRNA (E6-E9), iv. RMST probe external to main circRNA (retained intron 5A-E5B), v. GAPDH probe

(E3-E6). RNase R resistant transcripts are highlighted with asterisks, and approximate position of human rRNAs are shown
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E5B-E6), or no enrichment (FIRRE E2-E5), suggesting

they are also primarily within linear RNAs.

Finally, RNase R resistance of RMST E12-E6 was also

confirmed by Northern blotting of RNA from day 0 ES

cells and adult brain (Fig. 7d). A control probe internal to

the circRNA from SMARCA5 (E16-E15) confirmed effect-

ive RNase R digestion, as it identified a small RNase R re-

sistant transcript abundant only in brain (Fig. 7d-i) which

was not identified by a SMARCA5 probe external to the

circRNA (Fig. 7d-ii). This is consistent with RNAseq data

(Additional file 3: Figure S12) and qPCR data (above). The

RMST probe internal to the main E12-E6 circRNA

(Fig. 7d-iii) identified a single RNase R resistant tran-

script as the dominant isoform in adult brain, also con-

sistent with RNAseq data (Additional file 3: Figure S12)

and qPCR data (above). Furthermore, this transcript was

less abundant than other, longer, RMST transcript in ES

cells, and was not identified by the RMST probe external

to the E12-E6 circRNA (Fig. 7d-iv). The intensity of hy-

bridisation to this transcript indicated some loss of mater-

ial during RNase R digestion. However, loss was also

observed with the SMARCA5 circRNA control. These re-

sults provide additional evidence that RMST E12-E6 cir-

cRNA is the dominant isoform in adult brain. They also

establish the presence of linear RMST isoforms over 5 kb

in length within H9 ES cells, much longer than current

annotations for this gene (~ 1.0-2.6 kb).

Discussion

We have performed deep sequencing of a human ES cell

retinal differentiation series to investigate changes in cir-

cRNA expression in a defined cell lineage, and to iden-

tify those of potential functional importance. We

observed a striking transcriptome-wide increase in cir-

cRNA abundance specifically within the first 45 days,

consistent with circRNA levels being under global con-

trol during differentiation. These results have parallels

with temporal increases observed in previous analyses of

tissues from a variety of species [32, 34, 37, 55], but the

observation here of rapid circRNA increase upon differ-

entiation, followed by relative stasis, is novel.

The most abundant circRNA we observed, and the one

which showed the most significant change in expression

over time, was from the lncRNA RMST, previously impli-

cated in neuronal differentiation [48]. Surprisingly, we es-

tablish that > 99% of the transcriptional output from

RMST in differentiating human ES cells, and a variety of

adult tissues, is accounted for by this circRNA. This pro-

vides a simple explanation for the very weak signals ob-

tained in Northern blots of PolyA+ RNA from brain

during the original characterisation of this gene [56]. The

RMST:E12-E6 structure was first described as an ES cell-

specific trans-spliced transcript (tsRMST) and reported to

play a role in maintenance of pluripotency [40]. However,

it has since been shown to be both circular and abundant

in differentiating and adult tissues ([11, 37], this study). It

was identified as one of several hundred circRNAs

expressed at > 50% of the level of associated linear iso-

forms in embryonic neuronal tissues [37]. In addition, its

murine orthologue is abundant in mouse brain, RNase R

resistant, and enriched in synaptoneurosomes [11]. Critic-

ally, the expression differential established here between

circRMST:E12-E6 and flanking exons suggests that the

RMST isoform in differentiated cells warrants classifica-

tion as a circular lncRNA, and that linear transcripts could

represent by-products or unprocessed precursors. Our re-

sults also suggest that the circular isoform present in dif-

ferentiating cells and adult tissues, and linear isoforms

present in ES cells, are driven by distinct promoters.

We have also established that FIRRE is predominantly

a circular lncRNA during human ES cell differentiation

when it is expressed at high levels, and that the major

circular isoform can account for > 98% of FIRRE tran-

scription. This provides a simple explanation for the re-

ported stability of mature FIRRE transcripts relative to

pre-mRNAs [50], and for the larger changes in FIRRE

expression observed in total RNA relative to oligodT

enriched templates [51]. We have identified a total of 39

FIRRE circRNAs whose abundance spans 3 orders of

magnitude, and confirmed the integration of novel unan-

notated FIRRE exons into circular transcripts. While the

complexity of this locus has been noted [50], it is clear

from our in silico analysis and amplicon sequencing that

the structure and transcriptional output of this gene re-

mains to be fully resolved. Furthermore, for both genes,

sequence motifs and RNA binding proteins involved in

circularisation, and the factors which control promoter

activity and isoform changes, remain to be defined.

The huge differential in abundance of circular and linear

exons we observed in differentiated time-points (average

of >100X for RMST and > 30X for FIRRE) is presumed to

be due to stability of circular forms and degradation of

back-splice by-products. On an evolutionary timescale cir-

cularisation may provide a route through which the level

of a lncRNA can be dramatically increased, due to the re-

duced degradation of circular forms, without altering pro-

moter activity. It follows that subtle changes in the activity

of promoters driving both genes could have profound ef-

fects upon circRNA levels and may, for instance, underpin

the expression heterogeneity observed here for FIRRE at

day 45. Our data also suggest that high sequencing

depths will be required to accurately define the linear

exons and transcription start sites of circular lncRNAs

such as these and, together with the recent discovery

that the archetypal circRNA ciRS-7 (CDR1-AS) is em-

bedded within cryptic exons of a linear lncRNA [57],

highlight the growing need for the integration of cir-

cRNA data within genome-wide annotations.
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A key question to address is whether circularity merely

serves to influence transcript abundance, or whether it can

impact qualitatively upon function. While in vitro over-

expression of both RMST and FIRRE have been shown to

rescue some effects of loss or absence of endogenous gene

expression [40, 48], the linear transcripts used in these ana-

lyses contained exons shown here to be almost exclusively

circular at some time-points. As circularisation will alter se-

quence proximity and relative orientation, it could influ-

ence protein binding or binding partner position within

RNA/protein complexes. Isoform differences could, there-

fore, account for the distinct roles in pluripotency [40] and

neuronal differentiation [48, 58] attributed to RMST. Fur-

thermore, circularity may increase complex stability, some-

thing particularly relevant to FIRRE which is involved in

establishing and maintaining physical interactions between

remote chromatin domains [59].

Our observation that circRNAs from non-coding RNAs

account for a higher proportion of transcriptional output

from their loci of origin than other circRNAs is also of

interest, as the novel circular antisense RNAs we have

identified may represent further circular lncRNAs of func-

tional importance. However, non-coding RNAs are

enriched for interspersed repeats which can promote cir-

cularisation [5, 8, 9], so it is possible that differences in the

local genomic environment will contribute to these ele-

vated circRNA levels.

Conclusions

Finally, although there are a growing number of reports of

functional circRNAs derived from coding genes [22, 60–62],

some of the clearest evidence for circRNA function involves

transcripts from non-coding loci. These include CDR1-AS

and CircPVT1, which act as sponges for miR-7 and let-7 re-

spectively, and have been implicated in zebrafish midbrain

development [20] and cellular senescence [23]. In addition,

CircANRIL has been shown to modulate rRNA maturation

through binding to the 60S rRNA assembly factor PES1

[29]. Current evidence suggests that the two lncRNAs de-

fined here as being circular, function through distinct mech-

anisms: RMST is a transcriptional co-regulator which can

bind to SOX2, hnRNPS2/B1, NANOG, and the PRC2 com-

plex [40, 48], while FIRRE has been implicated in organising

chromosomal domain topology, and tethering the inactive X

chromosome to the periphery of the nucleolus through

interaction with CTCF [50, 51]. Our results therefore also

extend the range of molecular mechanisms through which

circRNAs are known to function.

Methods

Source of human materials used

All tissue RNAs, and the control human DNA, were ob-

tained as purified nucleic acids from Biochain (AMS

Biotechnology).

Differentiation of H9 ESCs

Passage 34-35 of the human embryonic stem cell line

H9 line (obtained from WiCell, agreement number 06-

W097), were expanded and differentiated according to

the protocol outlined in [41], with minor modifications

[42] to generate 3D laminated retina containing the

major retinal cell types including photoreceptors. Cells

were differentiated in triplicate with and without insulin

growth factor 1 (IGF-1) treatment [42]. Upon differenti-

ation, hESCs formed embryoid bodies (EBs) which de-

veloped morphologically distinct phase-bright structures

reminiscent of the evaginating optic vesicle and invagin-

ating optic cup, as previously described [42]. Phase-

bright structures were first observed to develop around

the periphery of differentiating EBs, with optic vesicles

arising as early as day 15 and optic cups developing by

day 45. The retinal identity of these structures was deter-

mined by immunocytochemistry: Retinal organoids were

cryosectioned and reacted against Pax6 (Covance PRB-

278P, 1:200), HuC/D (Invitrogen A21271, 1:100), Crx

(Abnova H00001406-M02, 1:200) and Recoverin (Milli-

pore AB5585, 1:1000) antibodies as previously described

[42]. Images were obtained using a Zeiss Axio Imager.Z1

microscope with ApoTome.2 accessory equipment and

AxioVision or Zen software.

High-throughput RNA sequencing

Cells were harvested at multiple time points without any

physical selection for embryoid bodies, to ensure cells

harvested were representative of the whole population.

RNA was extracted using the RNAeasy micro extraction

kit with DNA elimination columns according to manu-

facturer’s recommendations. RNA was quantified using

the NanoDrop ND-1000 spectrophotometer (Thermo

Scientific), and RNA quality was assessed using the Agi-

lent 2100 Bioanalyser (Agilent Technologies). RIN values

indicated some reduction in RNA quality over time, with

day 0 sample RIN values ranging from 9.8-10, day 45

ranging from 7.6-9.1 and day 90 ranging from 7.1-8.9.

RNAs were ribosome depleted and sequenced by AROS

Applied Biotechnology (Aarhus, Denmark), using the

TruSeq RiboZero Stranded Total RNA LT kit (Illumina)

to generate paired-end 100 bp sequence libraries as de-

scribed previously [7].

Sequence references

Genome and transcriptome FASTA files for human

(HG19) were obtained from the UCSC genome browser

[63]. Aligner-specific index files were built for STAR

(command: STAR —runThreadN 8 —runMode genome-

Generate —genomeFastaFiles $hg19_dir —genomeDir

$output_dir), and Bowtie1 (command: bowtie-build hg19.

fa hg19) and Bowtie2 (bowtie2-build hg19.fa hg19)

aligners.
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Mapping

The quality of sequenced reads was checked with

FASTQC (http://www.bioinformatics.babraham.ac.uk/pro

jects/fastqc/). Sequence reads were first mapped to the

genome using Bowtie2 [64] to derive inner distance met-

rics prior to Tophat [65] runs. Metrics were calculated

using CollectInsertSizeMetrics.jar from Picard (https://

sourceforge.net/projects/picard/). Parameters for Tophat

runs were: —library-type fr-firststrand, —no-coverage-

search, —b2-sensitive, —microexon-search and -× 20. For

alignments to the genome using STAR [66] parameters

used were: —outFilterMultimapNmax 7 and —outFilter-

MismatchNmax 2. Annotation free canonical splice-

junction mapping was performed, where indicated, with

MapSplice 2.0 [67] using default parameters.

circRNA (back-splice) and canonical splice detection

After modifying read ids, PTESFinder v.1 [46] was used to

screen all reads from each sample for back-splice exon

junctions within the GENCODE v19 human reference

transcript set, using the following parameters: JSpan = 8,

PID = 0.85, segment size = 60 and m = 7. Analyses were

guided by supplying FASTA sequences of previously iden-

tified back-splice junctions (n = 40,594). PTESFinder was

also used for annotation-free identification of back-splice

junctions against the HG19 human reference genome se-

quence (modified scripts available on request).

Analysis of RNA editing sites

RNA editing sites were identified in 1000 bp regions

flanking circRNA back-splice junctions by cross-

referencing genomic coordinates of published RNA edit-

ing sites (rnaedit.com [68, 69]) using intersectBed and

closestBed from BEDTools. Data from circRNA generat-

ing genes identified only in day 0 only were then com-

pared to circRNA producing genes identified only in

differentiated cells (day 45 and 90).

Gene expression estimates

HTSeq [70] and Cufflinks [71] were used to quantify

transcripts. Library size normalisation and statistical

tests of differential expression (based on raw counts pro-

duced using HTSeq) were performed using the DESeq2

[72] package in R (https://www.r-project.org). Splice site

expression values were calculated as Junctions per Mil-

lion (JPM) by dividing each junction count by total

counts per sample (canonical + back-splice) and multi-

plying by 10e6. Gene ontology analyses were performed

using the Panther classification system [73].

Visualisation

BigWig files were generated from alignments to the gen-

ome using genomeCoverageBed from BEDtools and bed-

GraphToBigWig from UCSC, and visualised using Galaxy,

a web-based tool for sequence analysis [74]. Distributions

of aligned reads were visually examined on the integrative

genomics viewer [IGV v 2.1.21 [75]] and on the UCSC

genome browser. Dot matrix analyses were performed

using YASS [76] with default parameters. Exon junction

heat maps were generated using junction counts normal-

ised to total read counts per sample, and mean expression

value of each transcript across samples.

Statistical analysis of back-splice abundance

To identity significant changes in circRNA abundance,

two tests for differential expression (DE) were performed

(see Additional file 3: Figure S5):

Sample level DE analysis

To account for differences in library size and transcriptome-

wide changes in circRNA expression levels between pairs of

time points, contingency tables for each circRNA were

constructed consisting of circRNA junction counts in

both time points, versus total junction counts (circular

and canonical) minus the circRNA junction counts for

the circRNA being tested.

Locus level DE analysis

To control for locus specific changes in total gene expression

between time points, contingency tables for each circRNA

were constructed using only junction counts from the locus

of origin. These consisted of circRNA junction counts in

time points A and B, versus canonical junction counts from

all annotated exons from the locus being tested.

For both analyses, Fisher’s exact tests were first per-

formed for each circRNA using contingency tables gen-

erated from summed read counts across replicates. To

control for heterogeneity, t-tests were then performed

on all the significant circRNAs, using read count data

from each replicate normalised against total sample read

count (Sample-level analysis) and against total read

count from each transcript (locus level analysis). A

Benjamini-Hochberg false discovery rate of 0.05 was

used as threshold throughout. Expression heat maps

were generated from circRNA junction counts within

untreated samples following removal of transcripts

present in segmental duplications. Read counts were

subject to sample normalisation relative to total read

count, and transcript normalisation relative to mean

junction count across samples.

Quantitative PCR (qPCR)

cDNA was synthesized using high-capacity cDNA kits

(Applied Biosystem) with random hexamers according

to manufacturers recommended protocols. Quantitative

PCR experiments were performed using Taqman master

mix (Life Technologies). Primers and probe sequences

are given in Additional file 8. Transcript expression was
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normalized using the ∆Ct method relative to the geo-

metric mean of 3 housekeeping genes (GAPDH, PPIA

and GUSB) analyzed using TaqMan gene expression as-

says (Applied Biosystems) as described previously [7].

Significance of expression differences was assessed using

2 tailed t-tests.

RNase R digestion

For qPCR, one microgram of RNA was added to 1 μl of

10× RNase R buffer and 20 units of RNase R (Epicentre), or

zero units for mock treatment, in a 10 μl reaction volume.

Tubes were then incubated at 37 °C for 30 min. For North-

erns, one unit of enzyme was used per μg of RNA, and re-

actions were stopped by incubation at 70 °C for 15 min.

Northern analysis

Replicate sample sets consisting of 6 μg of RNAse R

digested and undigested total RNAs from Day 0 H9 ES

cells and adult brain were loaded on to a 0.9% formalde-

hyde gel, electrophoresed, and blotted onto a Hybond N

nylon membrane (GE Healthcare). Probes were generated

using exon specific primers (see Additional file 8) to amp-

lify day 0 cDNA and purified by 2 X 30 cycles of PCR.

50 ng of probe was labelled by random priming with α-

32-P dNTPs (Megaprime DNA labelling system,

GEHealthcare) and hybridized overnight at 65 °C in

Church and Gilbert solution. Membranes were washed for

10 min at room temperature in 2XSSC (3X) followed by

10 min at 65 °C in 1XSSC/0.1% SDS (2X), and 45 min at

65 °C in 0.1XSSC, 0.5% SDS. Membranes were exposed to

X-ray film with an intensifying screen at − 70 °C.

Amplicon sequencing of FIRRE transcripts

Exon-specific primers linked to Illumina sequencing

adapters were designed to generate amplicons spanning

potentially novel exons using cDNA from day 0 (see

Additional file 6). Primers were used in both convergent

and divergent orientation to enable amplification of both

circular and linear isoforms. Illumina sequencing indexes

were added to each amplicon using a Nextera indexing kit

(Illumina), and amplicons were sequenced to a target

depth of 1500-6000 reads (depending on the number and

intensity of visible products) using a MiSeq Nano Kit (Illu-

mina) all according to manufacturer’s recommendations.

Additional files

Additional file 1: Sequencing Quality Control. Data shows Illumina

quality control metrics. PF = Passing chastity filter. Q30 = Phred quality

score of 30 or above. (XLSX 9 kb)

Additional file 2: a-d. Gene Ontology analyses showing over and

under-represented gene ontologies (biological process and molecular

function) in genes differentially expressed between untreated time-

points. Analyses were performed using the Panther classification system

[73], with a Bonferroni correction for multiple testing. e. Genes differentially

expressed between IGF-1 treated and untreated samples. List includes

genes identified by comparision at each timepoint, and an all v all

comparison. No significant genes were identified in the day 90 analysis.

(XLSX 50 kb)

Additional file 3: Figure S1. Expression of genes implicated in

pluripotency, eye field formation, and circRNA biogenesis. Figure S2.

Intersection of structures identified by PTESFinder relative to other

commonly used circRNA identification methods. Figure S3. Heat map

showing genes differentially expressed between time-points and treatment.

Figure S4. ES cell specific circRNAs are low frequency structures derived

from highly expressed genes. Figure S5. Flow chart showing statistical

analysis of back-splice abundance. Figure S6. Relative expression of

canonical and back-splice junctions in DE genes. Figure S7. Identification

of abundant RMST and FIRRE back-splice junctions using other in silico

methods. Figure S8. Correlation between qPCR and RNAseq data.

Figure S9. Junction counts of major RMST and FIRRE circRNAs in

human embryonic / fetal samples. Figure S10. Additional circRNAs

defined by exons not present in FIRRE annotation and confirmation

of exon integration. Figure S11. The E10-E5 circRNA contains FIRRE

DDC repeats. Figure S12. Confirmation of RMST isoform differences

in independent adult datasets. (PDF 2416 kb)

Additional file 4: CircRNA transcripts showing significantly altered

expression in both locus and sample level analyses. Normalised circRNA

and canonical RNA junction read counts in all control sample replicates

are shown, together with average abundance ratio (circRNA junction

frequency/canonical junction frequency), genomic co-ordinates, and

circbase i.d.s where available. The most significant p-values obtained

in each group of pair-wise t-tests (sample DE and locus DE) are also

shown for each transcript. Analyses in which transcript was identified

are indicated as follows; U (untreated), I (IGF-1 treated), B (Both analyses). For

details of analysis, see text and methods. (XLSX 115 kb)

Additional file 5: Gene Ontology analysis showing over and under-

represented gene ontologies (biological process and molecular function)

in parent loci of 239 significantly altered circRNAs. Analyses were performed

using the Panther classification system [73], with a Bonferroni correction for

multiple testing. (XLSX 11 kb)

Additional file 6: FIRRE exon junctions confirmed by amplicon

sequencing. All reads were mapped against hg19 without reference to

transcript annotation: Amplicons using convergent primer pairs and

divergent primer pairs (to amplify circRNAs only) are shown separately.

Canonical junctions were mapped using MapSplice [67], circRNA (back-

splice) junctions were mapped using PTESFinder [46]. For details, see

methods. Exon number is according to schema in Fig. 6b. Junction

position (hg19), amplicons of origin, and junction frequencies, are given

for all junctions. Only splices with a frequency of 1% or higher in each

amplicon, identified either by MapSplice or PTESfinder, are reported.

Canonical junctions present within the current FIRRE annotation are show

in blue. All others are not present within current annotation. Off target

junctions (presumed to be generated by illegitimate primer binding) are

also shown. Data is for confirmation of junction presence within

transcripts only: Junction frequency is affected by position relative to

primer, size dependent amplification bias during Nextera indexing,

and size dependent bias in cluster formation/resolution efficiencies

during MiSeq sequencing. (XLSX 71 kb)

Additional file 7: Genomic co-ordinates of all annotated and novel

FIRRE exons. The position of all junctions are shown with respect to hg19,

together with their current annotations where appropriate. Splice acceptor

and donor junctions identified by annotation-free mapping of day 0

samples against hg19 using MapSplice are shown, together with

donor exons and acceptor exons, and junction numbers in brackets.

Supporting evidence for each junction is colour coded. Minor / Others –

additional junctions not involving annotated exons which are present at

low frequency. (XLSX 12 kb)

Additional file 8: Sequence of all primers generated for this study,

together with qPCR probes, amplification efficiencies, and primer/probe

combinations used. Exon content of amplicons used for Northern analyses

is also shown. For additional assays, see [7]. (XLSX 12 kb)
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