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Models of human control behaviour have existed since
the 1960s (Krendel and McRuer, 1960; Wasicko et al.,
1966; McRuer and Jex, 1967). Research focused on com-
pensatory tracking, where the human controller (HC) op-
erates a dynamic system, the controlled element (CE),
based on the visually presented tracking error between a
quasi-random target signal and the system output. The
human operator then behaves as a feedback-only controller
which can be accurately modelled and predicted using the
crossover model (McRuer and Jex, 1967).

In many real-life tasks, such as driving or flying, the target
or ‘reference’ signal is directly observable and its future
to some extent predictable, allowing the HC to activate
a versatile feedforward control loop. This is character-
ized in the Successive Organization of Perception (SOP)
theory (Krendel and McRuer, 1960), where humans can
progress from feedback-only compensatory control (level
1) to feedback-feedforward pursuit control (level 2) to
possibly ‘open loop’ (feedforward-only), precognitive con-
trol (level 3), depending on the HC experience (McRuer
and Jex, 1967). Despite their paramount importance in
everyday manual control, these higher levels received only
little attention in the literature (Mulder et al., 2018).

Empirical evidence for human feedforward control has
been found in pursuit tracking, and tasks with predictable
target signals (Wasicko et al., 1966; Magdaleno et al.,
1969; Hess, 1981; Yamashita, 1990; Drop et al., 2016).
Fairly recently, it was found that a combined feedback-
feedforward model accurately describes observed HC be-
haviour on higher SOP levels. In these tasks the HC was
instructed to accurately follow a deterministic, predictable
1 E-mail: m.mulder@tudelft.nl

1. INTRODUCTION

2.1 Successive Organization of Perception

Krendel and McRuer proposed the Successive Organiza-
tion of Perception (SOP) scheme to characterize HC con-
trol strategies (Krendel and McRuer, 1960). It has three
levels, see Fig. 1: compensatory, pursuit and precognitive

ramp-shaped target signal, with a pursuit display. The
feedforward path was found to approximate the inverse
of the CE dynamics, for a range of target and disturbance
signal amplitude variations (Drop et al., 2013) for all com-
mon CE dynamics (Laurense et al., 2015). and becoming
stronger when learning advanced (Zhang et al., 2017).

In this paper, we aim to study the adaptation of hu-
man controllers while learning how to perform a ramp-
tracking task, using the SOP as a theoretical basis. An
experiment will be presented where subjects performed a
combined ramp-tracking disturbance-rejection task, with
single integrator (SI) dynamics, while manipulating the
steepness of the ramp target signal. The experiment had
two parts, one in which the subject performed the same
steepness condition in ten consecutive runs, the ‘ordered’
session, the other in which a different steepness condition
was performed each run, the ‘random’ session. In addition,
after each ordered session a ‘surprise’ run was done with
a different ramp steepness. The HC control models will
be identified using data from single runs, using averaged
data, and data from small time intervals within a run.

The paper is structured as follows: Section 2 summarizes
previous research on ramp-tracking tasks. The experiment
is described in Section 3, its results are discussed in
Section 4, and conclusions are drawn in Section 5.

2. BACKGROUND
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Abstract: Human modelling approaches are typically limited to feedback-only, compensatory
tracking tasks. Advances in system identification techniques allow us to consider more realistic
tasks that involve feedforward and even precognitive control. In this paper we study the human
development of a feedforward control response while learning to accurately follow a ramp-shaped
target signal in the presence of a disturbance acting on the controlled element. An experiment
was conducted in which two groups of eight subjects each tracked ramps of different steepnesses
in a random or ordered fashion. In addition, ordered runs were followed by a ‘surprise’ run with
a random ramp steepness. Results show that operators learn rapidly, continue to learn during
the entire experiment, and can adapt very quickly to surprise situations. Experiments involving
learning operators are challenging, as it is difficult to balance-out all experimental conditions
and control for inevitable differences between (groups of) subjects.
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control. The level at which the HC can exercise control de-
pends on the task variables: the type of visual display, the
CE dynamics Yc and the characteristics of the target ft and
disturbance fd signals acting on the closed loop. Effects of
these task variables on HC tracking behaviour have been
extensively studied (Wasicko et al., 1966; McRuer and Jex,
1967); here, we will also investigate an operator-centered
variable, namely the level of experience.
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Fig. 1. Successive Organization of Perception (SOP).
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Fig. 2. Example of a compensatory and a pursuit display
for a pitch tracking task, with the tracking error e,
the target ft and the output θ indicated.

At the lowest SOP level the HC is shown a compensatory
display, Fig. 2(a), and minimizes the error e between
an unpredictable target reference ft and the controlled
element output θ. Compensatory HC behaviour can be
predicted well with McRuer’s crossover model (McRuer
and Jex, 1967) which describes the HC as a feedback-only
servo-controller, Ype

in Fig. 1.

When using a pursuit display, Fig. 2(b), or when the target
signal has characteristics that allow the HC to predict its
(near) future values, the HC can move on to the second
SOP level, pursuit control. Here, the HC can be described
as a multi-loop controller acting on error e, target signal ft
and CE state θ. Wasicko et al. (1966) showed that (because
e = ft − θ) a HC model with two inputs can fully capture
the observed behaviour. Drop et al. (2013) reported that

a combined feedback-feedforward model, with Ype
the HC

feedback response on e and with Ypt
the HC feedforward

response on ft can accurately describe HC behaviour.

At the third level, precognitive control, three possible
‘open-loop’ control modes are defined. The HC is assumed
to adopt one of these modes when becoming very experi-
enced with the task. Ideally, the HC FF response would
be a perfectly timed and scaled response to an expected
feature in the target, requiring a perfect inversion of the
CE dynamics. For some types of (easy) controlled elements
and (predictable) target signals humans can indeed be
trained to the precognitive control level, e.g., in tracking
sinusoids (Yamashita, 1990; Drop et al., 2016).

To limit the degrees of freedom, in this paper we only
consider the control of a single integrator CE with a
pursuit display, and focus on investigating the adaptation
in the HC feedback and feedforward paths when learning
to perform a ramp-tracking task. Besides the ramp-shaped
target signal ft, our analysis requires the insertion of
a second signal into the closed loop, an unpredictable
disturbance fd, to identify the HC behaviour, Fig. 1. This
means that the HC continuously needs to compensate for
effects of fd acting on the controlled element, and the
observed HC behaviour will here never be purely open loop.

2.2 HC model and identification

We use the pursuit HC model of Fig. 1(b), without the
state feedback, Ypθ

= 0. We expect the HC open loop, pre-
cognitive response to the target ramps to become apparent
in the feedforward (FF) path Ypt

, the response to ft.
This is equivalent to considering Fig. 1(c) with the ‘Mode
Selector’ set to ≈ 1/Yc, but with an additional feedback
loop Ype

to compensate for fd and remaining errors in
responding ‘open loop’ to ft. The third component of the
control signal u is the remnant n, which reflects the control
input that is not linearly related to the input of the HC
model (McRuer and Jex, 1967).

With an SI controlled element, Ype
is given by:

Ype
(s) = Kpe

e−sτpeYnms(s), (1)

with Kpe
and τpe

the gain and effective time delay of the
feedback response, and Ynms the neuromuscular (NMS)
dynamics, modeled by a second order system.

The FF dynamics Ypt
are given by (Laurense et al., 2015):

Ypt
(s) = Kpt

s

Kc

1

(1 + TIts)
e−sτptYnms(s), (2)

with Kpt
and τpt

the gain and effective time delay of the
feedforward response. In (2) we see the inversion of the
SI dynamics (s/Kc term). A lag term (time constant TIt)
is included to model the imperfect HC response to the
discrete onset and ending of the ramp segments (Drop
et al., 2013; Laurense et al., 2015).

2.3 Ramp tracking tasks

Ramp signals Ramp-like target signals are representa-
tive for a variety of discrete flight and driving maneuvers
and have been used extensively in previous research (Pool
et al., 2010; Drop et al., 2013; Laurense et al., 2015). In the
ramp-tracking task, the target line on the pursuit display
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starts and stops moving at instances not communicated to
the HC, i.e., no preview is available. Their movement has
a constant velocity q that is typically used for all ramps
occuring in a run, see Fig. 3; higher q’s yield steeper ramps.
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Fig. 3. Typical ramp-like target signal definition.

Phases in ramp tracking In the HC response to a ramp
signal we hypothesize three phases, similar as McRuer
et al. (1968), see Fig. 4. First, in the delay phase (I) the

θ
,
d
e
g

time, s

IIIIIIbIIaI

θ
ft

Fig. 4. Definition of ramp response phases.

HC is unaware of the onset of the ramp and is suddenly
confronted with an error which rises with ramp steepness
q. In the rapid response phase (IIa) the HC quickly reacts
to the growing error, possibly in an open-loop fashion.
In the ramp-tracking phase (IIb) the HC aims to match
the velocity of the system to the ramp. It is during this
phase that we hypothesize that the HC has ‘recognized’
the signal as a ramp with steepness q and tries to predict
the remainder of the ramp. In phase III the compensatory
path will again dominate; we focus on phases IIa and IIb
as here we expect most of the feedforward activity.

Previous experiments Pool et al. (2010) used time-
domain identification to parameterize a combined feedback-
feedforward HC model for ramp tracking. A strong FF
response could be identified only, however, when the dis-
turbance fd was small. Drop et al. (2013) investigated
the presence of the HC FF response as a function of a
Steepness to Disturbance Ratio, SDR = q/Kd, with q the
ramp steepness and Kd the disturbance signal scale factor.
Their analysis showed that the FF path is more beneficial
and increases in strength relative to the feedback path for
higher SDR values.

These experiments confirmed that human controllers, with
predictable target signals on a pursuit display, perform
at a higher SOP level than compensatory tracking. These
also showed the promising applicability of time domain
identification methods, which will be applied here.

3. EXPERIMENT

Rationale A target-following disturbance-rejection task
was done, with four ramp steepness conditions: q=0 (no

ramps), 2, 4 and 6 deg/s. To study skill development,
the experiment had two Sessions. In each Session, eight
subjects performed the same condition in ten consecutive
runs, the ‘ordered’ part, the other eight subjects performed
a different condition every run, the ‘random’ part. Then,
we could investigate control adaptations from Session 1 to
Session 2, to study the overall learning process, but also
how this process depends on a situation where subjects
know exactly what to expect in the next run, versus one
where each run may have a different ramp target.

Independent Variables The two independent variables
were the target signal ramp steepness q (4 levels) and the
order of conditions (2 levels: ordered and random).

Participants, Instructions Sixteen subjects participated,
all males, students or staff of TU Delft and experienced in
tracking tasks. Two groups of 8 subjects were comprised:
Group A first performed the ordered session, then the
random session; Group B did it the other way around.
Subjects were instructed to minimize the pitch tracking
error e on the pursuit display.

Controlled Element Single integrator dynamics were
used: Yc = Kc/s, with gain Kc = 1.0 (Drop et al.,
2013), such that subjects would never reach the maximum
deflection limits of the stick and were still able to provide
fine, accurate control inputs.

Forcing Functions For each run, the target signal had 8
identical ramps (3 seconds each) constructed with the four
levels of ramp steepness q, see Fig. 5. Note that in the first
condition, q=0 deg/s, our subjects essentially performed a
disturbance-rejection task (ft = 0).
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Fig. 5. Target and disturbance forcing function time traces.

To make sure that subjects could not predict the start of
the first ramp, a random time τ , varying between 0 and 5
s was added to the 90 s measurement time. Furthermore,
to prevent subjects to use the property that ramps stop
on the horizon, the target signal was off-set by a random
number between 0.1 and 1 degrees each run.

The disturbance signal fd was defined as a multisine, with
gain 0.4, similar as done by Drop et al. (2013).

Dependent Measures We focus on just a few measures:
(i) tracking performance, i.e., the RMS tracking error
RMS(e), and (ii) the HC model parameters representing
the gains in the feedback Kpe

and FF Kpt
channels. The

HC model will be fit to the measurements using MLE
identification (Zaal et al., 2009). For the q=0 condition
only the feedback parameters will be estimated, as this is
essentially a disturbance-rejection compensatory tracking
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Fig. 6. RMS error (top row), error feedback response gain (center) and feedforward response gain (bottom); data
are shown for both sessions and groups. Group A (ordered session first) is shown in white symbols, Group B
(random session first) is shown in colored symbols. Circles and triangles represent ordered and random session
data, respectively.

task where the HC will not be able to develop a FF
response. The model will be fitted on data of entire runs
and on data per ramp.

Data Analysis Data are analyzed in three ways. First,
we consider the data per run, to see how humans learn
to control the ramps in either the ordered or random
condition. Second, we consider the data averaged over
the last five runs, the common approach to measuring
human performance. Third, we consider the surprise run,
for which we will also study the data per ramp.

Hypotheses First, we grouped our subjects such that
both groups were assumed to perform about the same, our
first hypothesis (H.I). Second, we hypothesize that in the
ordered session, human control behavior develops more to-
wards the highest level, precognitive control, because after
a few runs subjects are familiar with and can anticipate
for the ramp steepness (H.II). Third, we hypothesize the
effects of the surprise run to be largest in the first ramps
of the surprise runs (H.III), as we expect our subjects to
have ‘perfectly tuned’ their response to the repeated ramp
conditions in the ordered session.

4. RESULTS AND DISCUSSION

4.1 Data per run

Fig. 6 shows the performance RMS(e) and the HC model
feedback gain Kpe

and FF gain Kpt
, for all ten runs in

the first and second sessions. To compute or estimate each
variable, the entire run (i.e., all 8 ramps) was used.

Tracking performance Figs. 6(a)-6(d) show that perfor-
mance worsens when ramps come into play, and for steeper
ramps. It improves rapidly in the first runs, and continues

to improve especially for the more difficult conditions.
That is, the learning curve becomes less steep towards the
end of the experiment, but its gradient is still non-zero for
the harder runs (q = 4, 6 deg/s).

When considering the q = 0 condition, purely disturbance
rejection, we see that our subjects rapidly show a more or
less constant performance, with Group A slightly better
in Session 1, a performance difference which disappears in
the second session. From this we can safely say that, at
least for this condition, our two groups of subjects had –
on average – comparable tracking skills, supporting H.I.

Considering the q = 2 deg/s condition, Fig. 6(b), we see
that Group A, starting with the ordered runs, performs
better than Group B, who started with the random runs 2 .
In Session 2 the performance of both groups improves,
where Group A continues to become better trackers in the
random session, and Group B stablizes to the performance
of Group A in Session 1 while tracking the ordered runs.
Tentatively, the ordered runs help subjects to increase
their skills very rapidly, and when then confronted with
the random runs, they are able to keep up with this
performance and even slightly improve further.

Regarding the q = 4 and q = 6 deg/s conditions, Fig. 6(c)-
6(d) reveal that here a similar benefit exists for learning
with ordered ramp conditions (Group A in Session 1), but
tracking performance of Group B in Session 2, i.e., moving
to the ordered conditions while coming from the random
ones, improves quite remarkably, even outperforming sub-
jects in Group A. This will be elaborated on further below.

2 Note that here the runs were not performed in a sequential 1-2-3-...
way, but were all taken from randomized conditions. I.e., although
run 2 was done after run 1, there was at least one other run (different
q) in between.
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Fig. 7. RMS error (top), error feedback response gain (center) and feedforward response gain (bottom); data are averaged
over last five runs per session.

HC feedback gain Figs. 6(e)-6(h) show estimates of the
feedback gain Kpe

, and reveal that for all runs and sessions
these gains were markedly lower for Group B compared to
Group A. Only for the more difficult conditions (q = 6
deg/s) we see some evidence of a learning curve (increas-
ing gain towards the end), but overall learning effects
are small. Note that the feedback path operates on the
disturbance signal fd, which is the same for all runs, and
on what is left after the feedforward operation on ft.
Apparently, Group A subjects were better ‘disturbance-
rejectors’, and/or Group B subjects were slightly better
at following the ramp targets.

When regarding ordering effects, it is clear that for Group
B the ordered runs led to markedly higher feedback gains
as the random runs, which could be attributed to the
ordering effect, but may also have had a strong component
from a continuing learning effect, as for all groups the gains
were higher in Session 2 as compared to Session 1.

Overall, our subjects continued to improve throughout
the experiment, and whereas performance more or less
stabilizes towards the end, the HC model parameters still
show slight changes towards improvement.

HC feedforward gain The feedforward gainsKpt
, Figs. 6(i)-

6(k), slowly creep towards a higher value (ideally: Kpt
=

1.0) towards the end of the experiment. Gains are higher
for the steeper ramps (q = 4, q = 6 deg/s), confirming the
SDR analysis of Drop et al. (2013) as steeper ramps have
a higher SDR value with a constant disturbance signal
power. Especially for the steeper ramps the increase in
feedforward gain for Group B in Session 2 is substantial.
That is, when confronted with a randomized ramp sig-
nal to be tracked, gains are more or less constant and
lower with respect to the case the ramp conditions are
ordered. Subjects rapidly increase their feedforward gains
when they see that the ramps are identical every run.
The subjects who go from the ordered runs towards the
random runs (Group A) appear to slightly lower their
gains, especially for the two more difficult ramp conditions.

4.2 Data averaged over last five runs

Fig. 7 shows the RMS(e) and the HC model feedback
gain Kpe

and FF gain Kpt
, when averaging over the last

five runs in the two sessions. This is what is commonly
being done in cybernetics-studies, averaging-out learning
and adaptation effects (Mulder et al., 2018).

Performance Fig. 7(a) shows the averaged RMS(e) for
the two groups in the two sessions. Performance for Group
A is slightly better than Group B in the disturbance-
rejection task (q = 0), but differences are very small.
Performance is, on average, better in the second session,
which makes sense as our subjects continued to learn
and improve. Clearly, in Session 1 the performance in
the ordered runs is better, whereas in Session 2 the
performance becomes more or less the same for both
groups. When moving from the random session to the
ordered session, Group B in Session 2, led to quite a
substantial performance improvement, especially for the
steeper ramps (q = 4, 6 deg/s).

HC feedback gain Fig. 7(b) shows the averaged Kpe

gains, again showing higher gains for Group A in almost
all conditions. Gains slightly increase when moving from
the ordered to the random runs (Group A), and more
markedly increase when moving from the random to the
ordered runs (Group B). Our subjects were clearly adapt-
ing and learning to the very end of the experiment, but
changes in the feedback gain are on average very small.

HC feedforward gain The averaged feedforward gains
Kpt

are shown in Fig. 7(c). Here we see that the gains
slightly increase towards the end of the experiment no mat-
ter what groups we consider, indicating learning. When
considering Group A (ordered runs first) the feedforward
gain increases for the steeper ramps, reported in (Drop
et al., 2013). Moving to Session 2 (random runs), the gains
either increase (q = 2) or remain the same. Feedforward
gains for group B are smaller for the steeper runs in
the first, random, session, but then steeply increase when
moving towards the second session. It is clear that this
group benefits the most in the second session, especially for
the steeper and more difficult ramps. These results support
H.II: ordered conditions yield stronger feedforward control.

4.3 Behavioral Changes in Surprise Runs

The surprise runs suddenly exposed subjects to a different
ramp steepness when they had fully adapted their response
characteristics to the ramp signal steepness of the ordered
block. Data were averaged over the final five runs.

Fig. 8 shows the estimates of Kpt
, comparing the gains

applied in the surprise runs to the averages of the gains
applied in the ordered and random sessions, using the full
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run data (left) or using only the data corresponding to the
first ramp (right). Clearly, the differences are much larger
in the latter case. For each ramp steepness, subjects adjust
their gain towards the gain used in the random sessions.

Fig. 9 shows how Kpt
(averaged over all subjects)

progresses throughout the surprise run. Subjects adapt
quickly, within the first four to five ramps towards the
value used in the random session, supporting H.III. For
the surprise run with steepness q=2 deg/s the feedforward
gain is initially too high (> 1.0) as subjects were experi-
encing either a q=4 or q=6 deg/s condition in the previous
ten consecutive runs (requiring a high gain), but quickly
reduce their gain after the first ramps. The opposite is
true for the q=6 deg/s condition where Kpt

is initially
too low, as subjects were experiencing either a q=2 or 4
deg/s condition in the previous ten ordered runs (requiring
a lower gain), and quickly increase their gain. For the
surprise run with steepness 4 deg/s, the gain shows more
variations around an average value, which is likely the
result of averaging, since for this surprise run the previous
runs either had a lower (q=2) or a higher ramp steepness
(q=6). The lower value of Kpt

in the seventh ramp is an
artifact, caused by the disturbance signal fd, which at
that time coincidentally moved the system in the right
direction, requiring a smaller gain.

5. CONCLUSIONS

We investigated human control behavior in ramp track-
ing tasks, and assessed manual control skill development
using a combined feedback/feedforward model. Results
show that: 1) as hypothesized, ordered runs lead to higher
feedforward gains, 2) training with random runs and then
moving to ordered runs yields the strongest performance
benefits, and 3) HCs adapt very quickly to a change in
ramp steepness. In addition, our data show that HCs con-
tinue to learn throughout the experiment, but the extent to
which they do that depends on the individual subject. To

balance-out these individual learning trajectories, a large
number of subjects is mandatory.
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