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Abstract

In this paper we describe the complete workflow of an-
alyzing the dynamic behavior of safety-critical embedded
systems with HySAT. HySAT is an arithmetic constraint
solver with a tightly integrated bounded model checker for
hybrid discrete-continuous systems which — in contrast to
many other solvers — is not confined to linear arithmetic,
but can also deal with nonlinear constraints involving tran-
scendental functions. Based on a controller for train sepa-
ration implementing a “moving block” interlocking scheme
in the forthcoming European Train Control System Level 3,
we exemplify the usage of the tool over the whole cycle from
encoding a hybrid system to interpreting the results.

1. Introduction

Automatic verification of hybrid discrete-continuous
systems, even in the restricted form of reachability analysis,
still is a challenging research topic and not as establishedas
other, less comprehensive, analysis methods like, e.g., sim-
ulation. Given the enormous practical importance of hybrid
discrete-continuous models, with fields of application rang-
ing from technical systems (discrete control + continuous
environment, multi-objective scheduling, etc.) over biolog-
ical systems (signaling in cell differentiation, blood clot-
ting, etc.) to economical models, this sad state of affairs has
sparked intensive research worldwide. Aiming at complete
coverage of the infinite set of possible behaviors of these
inherently open systems, state-exploratory verification tech-
niques have gained considerable interest, starting as early as
in the mid-nineties with the tool HyTech [14]. Since then,
these tools have advanced wrt. performance and the classes
of hybrid behavior they can handle. Nevertheless, even re-
cently published tools forunboundedhybrid verification
like PHAVer [12] and HSolver [18] lack a fully symbolic
treatment of the complete discrete-continuous state space,
thus being confined to moderately sized systems due to ex-
plicit state representations for the embedded discrete state
spaces.
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Figure 1. The absolute braking distance d

equals the sum of the braking distance db of
the following train and an additional safety
distance S.

A technique offering good prospects for such a fully
symbolic, homogeneous treatment of hybrid state spaces is
bounded model checking(BMC) for boundedreachability
analysis of systems, as originally proposed for the discrete-
state case in [13, 4] to overcome scalability problems wrt.
very large discrete state spaces. The idea of BMC is to en-
code the next-state relation of a system as a propositional
formula, unroll this to some given finite depthk, and to
augment it with a corresponding finite unravelling of the
tableau of (the negation of) a temporal formula in order to
obtain a propositional SAT problem which is satisfiable iff
an error trace of lengthk exists. Enabled by the impres-
sive gains in performance of propositional SAT checkers in
recent years, BMC can now be applied to very large finite-
state designs.

Though originally formulated for discrete transition sys-
tems only, the basic idea of BMC also applies to hybrid
discrete-continuous systems. However, the BMC formu-
lae arising from such systems are no longer purely propo-
sitional, but comprise complex Boolean combinations of
arithmetic constraints over real-valued variables. Constraint
and BMC solvers for pure linear arithmetic are, e.g., Math-
SAT [1] and HySAT-I [8]. More recently, we changed
the algorithmic basis and thereby extended the scope of
HySAT to non-linear arithmetic involving transcendental
functions.1 The algorithmic core of HySAT now is the
iSAT algorithm [9], a tight integration of the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [6, 5] and interval
constraint propagation (ICP, cf. [3] for an extensive survey),

1A HySAT executable, the tool documentation, and benchmarkscan be
found onhttp://hysat.informatik.uni-oldenburg.de.



a

a

4

v

3

xh

2

xr

1timer

i1

i2

i3

o1

o2

o3

s400

len

200

1
s

x o

1
s

x o

−1

2

xr_l4
a_free3 v_init2 xr_init1

v

h

brake

a_brake

Figure 2. Implementation of the controller and train dynami cs.

enriched by enhancements likeconflict-driven clause learn-
ing andnon-chronological backtracking. We showed that
iSAT outperforms the approach of ABSOLVER [2], which
— to the best of our knowledge— is the only other tool
addressing large Boolean combinations of mixed discrete
and continuous, non-linear arithmetic constraints. The new
version of HySAT also exploits the BMC optimizations
described in [8], such asreusing and shifting of learned
clausesandforward/ backward decision strategies.

Structure of the paper.In Section 2 we explain the use of
HySAT by means of modelling and analyzing a controller
for the European Train Control System (ETCS) Level 3.
The ETCS case study is introduced in Subsection 2.1. Sub-
section 2.2 deals with the input language of HySAT and
presents the idea of encoding the ETCS benchmark into
that language. The interpretation of the analysis results are
given in Subsection 2.3. Section 3 concludes the paper and
lists some directions for future and ongoing work.

2. Reachability analysis with HySAT

We demonstrate the reachability analysis with HySAT
by introducing a concrete application benchmark from the
transportation domain. The model was generated using
the Matlab/Simulink tool. A structure-driven and compo-
sitional, currently manually applied translation — of which
we show the most interesting aspects in the second sub-
section — then allows for fully automatic bounded model
checking. The retrieved error trace is subsequently shown
in a side-by-side comparison with a simulation run of the
Simulink model.

2.1. ETCS benchmark

The benchmark deals with analyzing the safety of a rail-
way system when operated under a “moving block” prin-
ciple of operation. In contrast to conventional interlocking
schemes in the railway domain, where static track segments

are locked in full, the moving block principle applies head-
way control as required by the braking distance, reserving a
“moving block” ahead of the train depending on speed and
braking capabilities. There are two variants of this prin-
ciple, namely train separation in relative braking distance,
where the spacing of two following trains depends on the
current speeds and braking capabilities of both trains, and
train separation in absolute braking distance, where the dis-
tance of two following trains equals the braking distance
of the second train plus an additional safety distance (Fig-
ure 1). Within this case study we apply the second variant
which will also be used in the forthcoming European Train
Control System (ETCS) Level 3.

We consider an abstract model of ETCS Level 3. Within
this simplified version, all trains operate in obedience of the
following procedures and regulations:

1. All trains on the track travel in the same direction, i.e.
no train may ever change its direction.

2. The train sequence is fixed (no overtaking).

3. Each train broadcasts the position of its end to the fol-
lowing train every 8 seconds via radio.

4. Whenever a train receives an update of the position of
the train running ahead, it computes itsmovement au-
thority m, i.e. the stopping point it must not cross,
and the decelerationa which is required to meet that
stopping point. These are computed according to the
formulae

m = xr − (xh + S) and a =
v2

2m

wherexr is the position of the rear end of the first train,
xh is the position of the head of the second train, and
v is its velocity.

Braking is automatically applied whenever the value of
a exceeds a certain thresholdbon. Automatic braking
ends ifa falls belowboff .
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Figure 3. Top-level view of the Mat-
lab/Simulink model.

5. When a train is not in automatic braking mode, accel-
eration and deceleration are freely controlled by the
train operator within the physical bounds of the train.

We chose the parameters of the model to roughly match the
characteristics of an ICE 3 half-train:

Parameter Value

length of the train [m] 200
maximum speed [m/s] 83.4

maximum acceleration [m/s2] 0.7
maximum deceleration [m/s2] -1.4

bon [m/s2] -0.7
boff [m/s2] -0.3

safety distanceS [m] 400

Figure 3 shows the top-level view of the Mat-
lab/Simulink implementation of our model in a version with
two trains. Inputs of a train block are the initial position of
the train, its initial speed, the acceleration applied in free-
running mode and the position of the rear end of the train
which is running ahead. Outputs are the positions of the
rear and of the head of the train, its velocity and current ac-
celeration. The implementation of a train block is shown in
Fig. 2.

A sample trace of the model, showing position, speed,
acceleration and distance of the two trains (see Figure 4 (a)),
seems to suggest that the controller works correctly: The
trains are started with an initial distance of 5000 m, the sec-
ond train being 20 m/s faster than the first train, which is
braking with a deceleration of -0.7 m/s2. The second train
automatically starts braking, adjusting its decelerationin in-
tervals of 8 seconds, and comes to stop exactly 400 m be-
hind the first train.

Instead of performing a potentially unlimited number of
simulations to cover all possible traces of the system, we
encode the model for HySAT. This allows us to check all

traces (up to a certain unwinding depth) for collisions of the
trains without having to guess scenarios for the open inputs
that may lead to these unsafe states.

2.2. Encoding into HySAT

In order to encode the model described in Subsec. 2.1,
we first introduce the input language of the HySAT tool.
The input file format consists of four parts:

• DECL: This part contains declarations of all variables.
Types supported by HySAT arefloat, int and
boole. When declaring a float or an integer vari-
able you have to specify a bounded range of this vari-
able, e.g.float [0, 1000] x; boole jump;.
Boolean variables are identified with integer variables
of range[0, 1]. Furthermore, you can define symbolic
constants here, e.g.define f = 2.0;.

• INIT: This part is a formula describing the initial
state(s) of the system to be investigated. Such a for-
mula is an arbitrary Boolean combination of arithmetic
constraints2, e.g.x = 0.6; !jump;. Integer and
float variables can be mixed within the same arithmetic
constraint. The semicolon which terminates each con-
straint can be read as an AND-operator. Hence,INIT
is a conjunction of both constraints.

• TRANS: This formula describes the transition re-
lation of the system. Variables may occur in
primed or unprimed form. A primed variable rep-
resents the value of that variable in the successor
step, i.e. after the transition has taken place. E.g.,
jump’ <-> !jump; jump -> f * x’ = x;
!jump -> x’ = x + 2;.

• TARGET: This formula characterizes the state(s)
whose reachability is to be checked, e.g.x > 3.5;.

When calling HySAT with the input described above, it
successively unwinds the transition relationk = 0, 1, 2, . . .

times, conjoins the resulting formula with the formulae de-
scribing the initial state and the target states, and thereafter
solves the formula thus obtained. Fork = 0, 1, 2, 3, 4, the
formulae are all unsatisfiable, fork = 5 however, a solution
is found. The output of HySAT fork = 4 and fork = 5 is
as follows:

1 SOLVING:
2 k = 4
3

4 RESULT:
5 unsatisfiable
6

7 SOLVING:

2For a detailed list of all supported Boolean and arithmetic operators
consult the user manual on the HySAT website.



8 k = 5
9

10 RESULT:
11 candidate solution box found
12

13 SOLUTION:
14 jump (boole):
15 @0: [0, 0]
16 @1: [1, 1]
17 @2: [0, 0]
18 @3: [1, 1]
19 @4: [0, 0]
20 @5: [1, 1]
21

22 x (float):
23 @0: [0.6, 0.6]
24 @1: [2.6, 2.6]
25 @2: [1.3, 1.3]
26 @3: [3.3, 3.3]
27 @4: [1.65, 1.65]
28 @5: [3.65, 3.65]

HySAT reports the values ofjump andx for each stepk of
the system. After the last transition, as required,x > 3.5
holds.

If HySAT terminates with the result
‘unsatisfiable’, then the formula is actually un-
satisfiable. If the solver stops with the result ‘candidate
solution box found’, then the solver could not
detect any conflicts within the reported intervals which,
however, doesnot mean that the intervals are guaranteed to
actually contain a solution (cf. [9]). Nevertheless, the sizes
of the returned intervals do not exceed a user-specified
parameterε, which can be set by the command-line option
--msw. From a practical point of view, this means that the
solver returns a solution with precisionε.

For encoding the Matlab/Simulink model of the ETCS
case study (cf. Fig. 2 and 3) we first introduce a variable (of
a corresponding type and domain) for each connecting line
of the Simulink model and declare them in theDECL part.
(Please note that by substituting the input-output functions
of some blocks for occurrences of their outputs, we can re-
duce the total number of variables.) In theINIT part we
require that the trains are stopped and their distance is1000
meters. Contrary to the initial state of the simulation, the
initial values of the accelerations are not fixed but may be
chosen freely from their domain[−1.4, 0.7]. For the transla-
tion of the Simulink blocks into theTRANS part of HySAT
we illustrate the encodings of the most interesting blocks
of Fig. 2, i.e. the relay, switch, and integrator blocks. Sim-
pler blocks, e.g. the sum block, can be encoded straightfor-
wardly, e.g. byo = i1 + i2 whereo is the output and
i1,i2 are the inputs of the sum block. The predicative en-
codings of all blocks are conjoined by logical conjunction,
represented by a semicolon in concrete HySAT syntax.

Relay block. When the relay is ‘on’ (indicated
by the Boolean variableis_on), it remains ‘on’ un-
til the input drops below the value of the switch-
off-point parameterparam_off. When the relay is
‘off’ (i.e. not is_on or !is_on holds), it remains

‘off’ until the input exceeds the value of the switch-
on-point parameterparam_on. The switch-on/off-
point parameters are defined as symbolic constants in
the DECL part, i.e.define param_on = 0.7; and
define param_off = 0.3;.

( is_on and h > param_off) -> ( is_on’ and brake);
( is_on and h <= param_off) -> (!is_on’ and !brake);
(!is_on and h < param_on ) -> (!is_on’ and !brake);
(!is_on and h >= param_on ) -> ( is_on’ and brake);

Theswitch blockpasses through the first inputa_brake
or the third inputa_free based on the value of the second
inputbrake.

brake -> a = a_brake;
!brake -> a = a_free;

Integrator block with saturation.The potentially new
valuev’ of the velocity is determined by an Euler approxi-
mation with sampling timedt= 8, 2, and1 seconds for the
encodings A, B, and C, resp., and stored temporarily in the
auxiliary variableaux. According to the saturation param-
eters,v’ is set to its value as shown below. The lower and
upper saturation limits are0.0 andv_max = 83.4, respec-
tively.

aux = v + dt * a;
aux <= 0.0 -> v’ = 0.0;
aux >= v_max -> v’ = v_max;
(aux > 0.0 and aux < v_max) -> v’ = aux;

Note that other (exact or safe) approximation methods are
applicable here. For the sake of clarity, we opt for the sim-
ple, in general inexact, Euler method. We refer the inter-
ested reader to [15, 16] — just to name two different ap-
proaches to safely approximating the continuous behaviour.

Finally, completing the HySAT input we specify a tar-
get state, i.e. an undesired property of the system to be
checked. In our case study, we want to know whether
the controller is incorrect in the sense that collisions of
the trains are possible. Hence, we add the formula
xr1 - (xr2 + length) <= 0.0; to the TARGET
section, meaning that the distance of the rear position of
the first trainxr1 and the head position of the second train,
i.e. rear positionxr2 plus length of the train, is less than or
equal zero.

Recently, an automatic translation of a subset of Mat-
lab/Simulink models to HySAT has been implemented in
[17]. This translation follows the scheme sketched above.
While not currently being able to translate the full model
from Fig. 2 due to some of its Simulink blocks not being
supported, it will in the near future cover all these blocks as
well as a representative subset of Stateflow statecharts, as
embedded into Simulink (cf. [11]).
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Figure 4. (a) left: simulation run of the system
with fixed parameters, from top to bottom the
charts show the positions, speeds, accelera-
tions and distances of the two trains over the
simulated time; (b) right: error trace found by
HySAT

2.3. Results

Running HySAT on the encoded models yields error
traces of lengths 8 for encoding A, 33 for encoding B, and
66 for encoding C. Bounded model checking thus revealed
a simple bug of the controller that was yet subtle enough
not to be noticed when designing the model: If the moving
authoritym becomes zero or even negative (which may hap-
pen since the controller re-computes the deceleration setting
only every 8 seconds), then instead of applying the max-
imum braking force, the controller switches back to free-
running mode, allowing the operator of the train to accel-
erate and crash into the rear of the train ahead. The error
trace that was yielded for encoding C is shown in Fig. 4 (b)
side-by-side with a simulation run of the system.

The experiments were performed on a 2.5 GHz Opteron
machine with 4 GByte physical memory, running Linux.
The total runtimes for solving all BMC instances up to the
error trace were about 10 seconds for encoding A (with
sampling timedt = 8 seconds), 1.8 minutes for encoding
B (dt = 2 seconds) and 21.5 minutes for encoding C (dt
= 1 second). The runtime largely depends on the solver
settings, e.g. the splitting heuristics chosen, with the run-
times reported above being the best we could obtain for the
respective encoding.

3. Conclusion and ongoing work

Based on a representative case study, we have in this pa-
per described the use of the bounded model checker HySAT

for bounded reachability analysis of safety-critical embed-
ded systems. The workflow was exemplified on a controller
for train seperation in the European Train Control System
Level 3, with the model covering the joint dynamics of
both the embedded controller and its physical environment.
We hope that this paper will help and encourage other re-
searchers to apply the HySAT tool to their respective prob-
lem domains.

HySAT is an ongoing project. On the one hand, we
are continuously improving its algorithmic core iSAT, e.g.
through more efficient internal data-structures, through low-
level code optimizations for improving cache behavior,
through acceleration by parallelization, and through vari-
ous heuristics motivated by the problem structure. On the
other hand, we are currently extending the scope of HySAT
to support reachability analysis of broader classes of hybrid
systems. More precisely, these extensions cover (a) the in-
tegration of safe numerical solving ofordinary differential
equations(ODEs) in order to directly handle ODEs in the
solver without an a priori approximation [7], (b) a gener-
alization of the iSAT algorithm wrt. supportingstochastic
quantificationof discrete variables for the fully symbolic
bounded reachability analysis of probabilistic hybrid sys-
tems [19, 10], and (c) thegeneration of Craig interpolants
for unboundedmodel checking of hybrid systems.
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