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ANALYSIS OF IMPINGEMENT HEAT TRANSFER FOR

TWO PARALLEL LIQUID-METAL SLOT JETS

by Robert Siegel

Lewis Research Center

SUMMARY

An effective means for providing local cooling of a heated surface is to impinge
single or multiple jets of coolant at the location to be cooled. Liquid metals are very
effective heat-transfer fluids so it is worthwhile considering the use of liquid-metal jets.
In this report an analytical method is developed for analyzing heat transfer of impinging
single or multiple two-dimensional liquid-metal jets. Results are obtained for two par-
allel liquid-metal slot jets impinging normally against a flat plate that is uniformly
heated. Wall temperature distributions along the plate are obtained as a function of the
spacing between the jets and the jet Peclet number. For the Peclet number range cov-
ered here, turbulence is small so that the large molecular conduction of the liquid metal
is dominating the diffusion of heat. As a consequence of the low Prandtl number of liq-
uid metals, the fluid is assumed inviscid. The solution is obtained by first mapping the
jet region into a potential plane wherein it becomes a uniform flow in a channel of uni-
form width. The energy equation is transformed into potential plane coordinates and
solved analytically in the simple channel geometry. Conformal mapping is then used to
transform the solution back into the physical plane so that the temperature distribution
along the impingement plate is obtained.

INTRODUCTION

A technique for localized cooling of a heated surface is to direct a single jet or mul-
tiple jets of coolant fluid against the surface. Liquid metals are very effective heat-
transfer fluids and hence liquid-metal jet impingement may provide a useful technique
for critical localized cooling applications. When multiple parallel jets are directed
against a surface, there is an interaction which is a function of the spacing between ad-
jacent jets. It is desired to know the heat-transfer characteristics along the impinge-



r
ment plate and in what manner these characteristics are influenced by the interaction of

the jets with each other.

Liquid metals have very small Prandtl numbers so that the molecular diffusion of

heat in them is much larger than the molecular diffusion of momentum. As a result,

for a situation where the viscous and thermal boundary layers are developing simultane-

ously within the flow, the viscous boundary layers are much thinner than the thermal

boundary layers. Because of this, the assumption is often made that the viscous-layer

development can be neglected in heat-transfer computations, and this assumption will be

used here. Then the velocity field within the jet region can be obtained by an inviscid

free jet analysis. For two parallel impinging inviscid slot jets the flow field has been

obtained by use of conformal mapping in reference 1.

The present analysis is an extension of that in reference 2 where the heat transfer

for a single impinging slot jet was considered. The solution is obtained by first mapping

the two-dimensional jet flow region into a potential plane. In this plane the flow region

becomes a uniform flow in a channel with parallel walls. The convective energy equa-

tion and its boundary conditions are transformed into the potential plane. , The problem

is thereby reduced to a heat conduction type of solution for the temperature distribution

in a slab of uniform thickness moving across a plane of distributed heat sources. Re-

sults are obtained by generalizing a solution in reference 3. After the solution is ob-

tained for the temperatures along the boundary representing the heated wall in the poten-

tial plane, a conformal transformation is used to obtain the corresponding distribution

in the physical plane. Results are given as a function of the spacing between the jets and

the Peclet number of one of the incident jets.

SYMBOLS

A parameter in mapping of jet flow

b half-width of undisturbed incident jet

C specific heat of fluid

F temperature response to unit step in heat flux

h local heat-transfer coefficient

h dimensionless jet widths (n = 1 or 2)

k thermal conductivity of fluid

m integer

Nu local Nusselt number, h2b/k



n unit normal vector

Pe Peclet number, | v^ | 2b/a

q heat flux specified at wall

S half spacing between centerlines of incident jets

T dimensionless temperature, tk/2bq
iV

t temperature

F mixed mean convective fluid temperature

U dimensionless fluid velocity vector, iT/jv^ |

vf fluid velocity vector

u, v velocities in x and y directions

X,Y dimensionless coordinates, x/2b, y/2b

x, y rectangular coordinates along and normal to plate

x' value of x equal to either x~ or 0

a thermal diffusivity,

/3 quantity related to A in jet mapping

TJ dummy variable of integration

£ intermediate variable in jet mapping

p fluid density

$ dimensionless potential, ^ / Iv^^b

$Q the value of * at X = 0, Y = 0

(p potential function

\fr dimensionless stream function,

#.. ^ff. free streamlines
!> ^

\l/ stream function

V gradient, i — + j JL
3x. 9y

V dimensionless gradient, 2bV

Subscripts :

D end of dividing streamline

s at free streamline



r
w at wall
00 undisturbed fluid condition

ANALYSIS

The analysis here is an extension of that in reference 2. For ease in following, the

present development some of the details in reference 2 will be repeated with the neces-

sary modifications for the present situation.

Geometry

The geometric configuration is shown in figure 1 and consists of a pair of two-

dimensional slot jets impinging against a plate that is uniformly heated. The undis-

turbed incident jets have their center lines spaced 2S apart, and the width of each jet is

2b. The flow is inviscid and irrotational, and hence the flow configuration can be ob-

tained by conformal mapping. This has been done in reference 1 and specific flow pat-

terns will be given later.

After impingement, each jet turns so that for the two jet system being analyzed,

there is a symmetric flow outward along the impingement plate in the positive and nega-

tive x directions. The portions of the turned flow going toward the y-axis between the

jets form a recirculating jet that moves upward along the y-axis.

When the jets are sufficiently separated so that they do not appreciably influence
each other, the flow moving outward toward larger positive and negative x has an as-

ymptotic height equal to one-half the wj.dth of one of the incident jets. The recirculating

jet moving upward along the y-axis has an asymptotic width equal to the width of one of

the incident jets.

As the jets are moved closer to each other, that is S/2b is decreased, the width of

the recirculating jet is decreased and the portions of the flow moving outward (away

from the y-axis) are increased. As the spacing between the jet centerlines approaches

the incident jet width (2S = 2b), the recirculating jet decreases to zero and the two inci-

dent jets merge to form a single incident jet of width 4b.

Governing Equations

When a flow moves along a heated plate, there is a development of both thermal and

hydrodynamic boundary layers. Liquid metals, which are being considered here, have



very low Prandtl numbers (in the range 0. 005 to 0. 02) indicating that thermal diffusion
is much larger than viscous diffusion. Hence, the thermal boundary layers will be thick
compared with the viscous regions and to a good approximation the flow can be consid-
ered inviscid when computing the heat-transfer characteristics. It is also assumed that
the jet Reynolds number is low enough so that turbulent diffusion of heat can be neglected
compared with the large molecular diffusion of heat characteristic of a liquid metal.

For inviscid irrotational flow the fluid velocity is equal to the gradient of a potential,

(1)

The Cauchy-Riemann equations apply, and these relate the velocity potential to the
stream function,

u = = (2a)
3x 3y

(2b)
3y 3x

Then from the continuity equation 3u/3x + 3v/3y = 0, and by substituting equations (2)
o

for u and v, the velocity potential satisfies Laplace's equation, V (p = 0. Equating

— (— 2.) from equation (2a) to — (•^-) from equation (2b) shows that ^/ also satisfies
3y\3x/ 3x\3y/
the Laplace equation, V i// = 0.

The energy equation for the flow consists of a convection term and a conduction
term,

PC u~- Vt =k V2t (3)

By substituting equation (1) this becomes

pC V(f> . Vt = k V2t (4)

Boundary Conditions

Since the flow solution is already available in reference 1, it is not necessary to
consider the flow boundary conditions, and it is only the thermal boundary conditions
that are of interest here. All of the flow and thermal conditions are symmetric about



the y-axis so it is necessary to only consider the region where x is positive as shown

in figure 2. The symmetry about the axis 6^ yields

— - 0 x = 0, y > 0
dx

(5)

It is assumed that along the free streamlines there are negligible heat losses compared

with the energy convected by the flow so that

n • Vt .= 0 x, y on 12 and 45
o

Along the impingement plate there is an imposed uniform heat flux q so that,

(6)

£L = -_^ 0 <X<

3y k
(7)

Along the cross section of the incoming undisturbed jets the fluid is at a uniform temper-

ature t ,

= t_ x, y on 24 (8)

Equations and Boundary Conditions in Dimensionless Form

The following dimensionless variables are used:

2b

V = 2bV

<P

T =
tk

2bq•w

2b

U =. u

Pe =

|vj2b

a

(9)



The velocity and energy equations (1) and (4) then become

U - V* (10)

Pe V$ • VT = V2T (11)

The boundary condition equations (5), (6), (7), and (8) become

= 0 X = 0, Y > 0 (X, Y on 67) (12)
ax

n • VT =0 X, Y on 12 and 45 (13)s

^
— = -1 0 < X < «, Y = 0 (X, Y on 79) (14)
3Y

T -T^ X,Y on 24 (15)

Solution of the Flow Problem

The inviscid irrotational impinging jet configuration in figure 1 has been analyzed by
conformal mapping in reference 1. In figure 2 one- half the symmetric configuration is
shown with various points numbered. The mapping into the potential plane is shown in
figure 3. In figure 3 (and in the equations that follow) there is a parameter A that oc-
curs in the conformal mapping solution and is related to the dimensionless spacing be-
tween the jet centerlines. The location of point 7 in figures 2 and 3 depends on whether

A is positive or negative; for the former, Xj^ is on the heated plate and for the latter
it is on the symmetry line (Y-axis). The nature of the flow (and its relation to A) is
better understood by examining the streamline configurations in figure 4. In figure 4(a)
the jet centerlines are spaced 4. 42 slot widths apart and the stagnation point where the
dividing streamline of each jet strikes the plate is only very slightly closer to the y-axis
in comparison with the centerline of that jet; this corresponds to A = 0. 9. For infinite
spacing between the jets (A — 1) the flow from each jet divides equally to the right and
left which is approximately the situation for the spacing in figure 4(a). From symmetry
there is a second stagnation point on the plate at X = 0.

A decrease in spacing between the jets causes the stagnation point where the divid-
ing streamline strikes the plate to shift toward X = 0, and in figure 4(b), 60 percent of
the flow is turned toward the right. When the spacing S/2b = 1.38 (A = 0), the stag-



nation point at the end of the dividing streamline has shifted to the origin (fig. 4(c)). A

further decrease in spacing as shown in figure 4(d) (A < 0) causes the end of the dividing

streamline to move upward along the Y-axis, and there is still a stagnation point on the

plate at X = 0. In figure 4(e) (A - -1.0), the spacing between the jets has been reduced

to the extent that a single jet has been formed.

The mapping of the flow from the physical plane into the potential plane, as given in

reference 1, yields the configuration in figure 3 which is a parallel plate channel with a

uniform flow moving from left to right. The upper and lower boundaries of the channel

correspond to the jet free streamlines. The dividing streamline 38 is not in the center

of the channel as there are unequal flows on either side of this streamline in the physi-

cal geometry. The folded line 689 is the streamline consisting of the heated plate and

the y-axis. The heated plate ^ occupies a different location in figures 3 (a) and (b)

depending on whether the dividing streamline terminates at the plate or at the Y-axis as

discussed in relation to figure 4.

The flow quantities that are needed in the heat-transfer solution are the velocity

along the heated plate, and the correspondence between the potential $ along the plate

and the physical X coordinate. From reference 1 the velocity in the X direction along

the plate is given by the following expression in terms of the parameter A and an inter-

mediate variable £ that is related to X (as will be given by eq. (18)),

1/2
u = — — =£—yLiA) o ^ £ = = i (16)

|v j 1 - £ A

As indicated in figure 4 and discussed previously, the parameter A is related to the

spacing between the jet centerlines; the relation is given by

S _A + 3 , 3 - A ̂ f l t cos (0/2)| (17)

2b 4 4n Li - cos (0/2 )J

where

Along the heated plate the £ is related to X and $ by

i / A . 1 \ 1 1 /O

(18)X - ^ tan"^
77

"(1.A)4l/2~

i - r
3 -A

277



2w

A+ 1 In - 2A - 1)+

A2 + A(A2 - 2A - 1) + 1
(19)

For the positive values of A there are two ranges of variables in the equations relating

4>, £, and X depending on whether the location being considered along the impingement

plate is to the left or to the right of the stagnation point XD at the end of the dividing

streamline as shown in figure 2,

0 < X < 0 < £ < A (20)

X D ^ X <

From the mapping relations, the XD is found from equation (18) by letting

negative A the X~ is zero and there is only one range

0 < X < $(£=0) < $ < 0 < £ < 1

(21)

= A. For

(22)

Formulation for Heat-Transfer Solution by Means of Potential Plane

The channel type of region in figure 3 offers a convenient geometry in which to solve

the energy equation. The energy equation (11) has the same form as equation (16) in

reference 4. The details of the transformation of the energy equation from the physical

plane (X, Y coordinates) to the potential plane (<£, * coordinates) are given in refer-

ence 4 and there is no need to repeat them here. Using equation (26) of reference 4

yields the energy equation as

(23)

3$

This is the same equation as for forced convection heat transfer to a uniform flow in a
2 2

parallel plate channel. The flow in the channel is in the $ direction so the 3 T/3$

corresponds to the axial conduction term. This term is usually small compared with the

Pe 3T/9<£ term which corresponds to axial convection.

In reference 2 solutions were obtained for impingement heat transfer of a single jet
2 2with and without the 3 T/3$ term included. For Pe > 20 the two solutions differed

2 2negligibly. For Pe = 10 there was a few percent error when 3 T/3$ was neglected,
and for Pe = 5 the error was several percent. Hence, in most instances it is reason-

9



2 2able to neglect the 3 T/33> term; this will offer considerable simplification for the

present situation which is geometrically more complex than that in reference 2. The
solution will break down in the vicinity of x = 0 for large spacings between the jets
where there is a back flow region around x = 0. In this type of flow region the simpli-
fied solution will lead to a zero convective heat-transfer coefficient, whereas including

2 2the term 3 T/3$ would cause the heat transfer to be finite. This type of analytical
prediction is analogous to the infinite heat-transfer coefficient calculated at the entrance

2 2
of a heated channel as a result of neglecting axial conduction. With 3 T/3$ neglected,
the energy equation (23) that is to be solved reduces to

= pe (24)

This equation has the same form as the transient heat conduction equation.
To solve equation (24), the thermal boundary conditions equations (12) to (15) must

also be transformed into the potential plane. The symmetry condition equation (12) be-
comes

— -0 $,* on 6^7 (25)

The free streamlines 12 and 45 are lines of constant ^ so that the condition equa-

tion (13) becomes

aT •• — •> •• — s
— = 0 $,* on 12 and 45 (26)
3*

To transform equation (14), the relation is used that at a fixed X

_3T _ 3T 3* 3T 3$

3Y 3* 3Y 3$ 3Y

Since 3$/3Y is the V velocity component which is zero along the heated plate, this
relation becomes the following with the aid of equation (14) along the plate:

- 1 = 3 T 3* ^ Qn ft

3* 3Y

10



From equation (2a) 3*/8Y = U so the boundary condition further reduces to

— = - —!— $, * on 79 (27)
a* u($)

The U(<f>) is obtained from equations (16) and (19). The final boundary condition (15)
becomes

T = T^ $,^ on 24 (28)

The boundary conditions are summarized in figure 3 for the two possible situations
where the dividing streamline terminates at either the heated plate or along the y-axis.

Solution for Temperature Distribution Along Heated Plate

In the potential plane the flow becomes a channel flow with a uniform velocity
throughout as shown in figure 3; this will be called a moving slab to distinguish it from
the flow in the physical plane. The dividing streamline 38 and the mapping of boundary
6§ divide the channel into two portions with widths hj and hg. From the mapping
solution in reference 1 these are given by

h, = - - — — (29a)
1 2 4

(29b)
4

where it is recalled from equation (17) that A is only a function of the dimensionless
spacing between the jet center lines. The upper and lower boundaries of the entire chan-
nel are insulated. With axial conduction neglected there is no propagation of energy in
the negative •$> direction and as a consequence the moving slab is not heated until it
reaches the most leftward portion of the heated area 79 as mapped into the potential
plane. As a result of the coordinate transformation, the uniform heat addition along 79
in the physical plane becomes a nonuniform heat source distribution along the corre-
sponding area in the potential plane. Since the flow velocity is uniform in the potential
plane, the flow in each of the portions of the channel of width hj or hg is a solid slab
moving past a nonuniform heat source along one boundary.

In the physical plane the problem is one of uniform heat transfer into a fluid with

11



nonuniform velocity; under transformation to the potential plane this becomes a problem

with, a nonuniform heat transfer to a uniform (slab) flow. The solution is already avail-

able for this latter situation. If we take the viewpoint of an observer at a fixed axial

location on the slab, then the slab appears stationary with a heat flux at the surface at

that axial location that is varying with time. Thus because equation (24) has the same

form as the transient heat conduction equation, the solution is the same as for a slab of

thickness h* or hu that is initially at uniform temperature, has one boundary that is

kept insulated, and has on the other boundary a heat input that varies with time. The

solution can be found by using a superposition in time of the uniform heat flux solution in

equation (4) on page 112 of reference 3. The details of the derivation are in appendix A,

and the solution for the wall temperature along the heated plate is as follows:

For spacings between jets such that the dividing streamline ends on the heated plate,

S/2b > 1.38 (0 < A < 1), the TW($) is found from

w

2bq.•w

= T (*) - T =•w V ' OOWv

1/21InPeJa T^IU^-T?))

L—/m=0

+ e
-(m+l)2PehJ/Ti

(30)

There are two ranges corresponding to X values on either side of the stagnation point

XD in figure 2.

For

To obtain |u(*)| for any argument <£, it is necessary to first obtain £ at that

From the flow mapping, the £ is double valued for part of the 4> range,

for 0 ^ X < XD: 0 2 & < A

for < X ^ ° ° : A < £ < 1 0 ^ * ^ ° °

12



where <£Q is found by letting £ = 0 in equation (19). The U is evaluated from equa-

tion (16).

For spacings between jets such that the dividing streamline ends on the plane of

symmetry between the jets S/2b < 1. 38 (-1 < A < 0), the TW($) is found from

2bq,Lw - 7])

-m2Peh2/7]
z

I J L
m=0

-(m+l)2Peh2/Tj
*? (31)

There is only one range,

0 < X < «>: 0 < £ < «

This is because in this instance, as shown by figure 3(b), the heated boundary 79 is in

contact with only one portion of the moving slab (the portion having width ho).

For a given value of the jet spacing S/2b the parameter A is found from equa-

tion (17). Then for a given X value, the corresponding * to be used in equations (30)

and (31) is found from equations (18) and (19).

As X approaches zero (which corresponds to <I> approaching <£«) equation (31) can

be evaluated analytically. The analysis is given in appendix B with the result

T (X - 0) - T =W

vl/2

A Pe/
. S/2b < 1.38 (32)

For large X the flow has turned along the plate, and for the inviscid solution the

velocity becomes uniform and equal to v^ (fig. 5). The heat-transfer situation at

large X consists of a channel flow with the lower boundary being a flat plate with uni-

form heat addition. The upper boundary is a free streamline which is assumed to act

as an insulated boundary. This situation is analyzed in appendix C and the result for the

wall temperature at large X is

-

T - T = - -
w °° Peh

tin

-1
3 2b

(33a)

13



T-T =—£— + — — < 1.38 (33b)
w Pe h 3 2b

Results from these relations are shown in figure 6. As X increases, this limiting

solution can approach the actual solution from above or below. The limiting solution is

for a uniform velocity distribution and a fully developed temperature distribution. The

nature of the asymptotic approach at large X then depends on the relative rates at

which the velocity distribution approaches uniform flow and the thermal boundary layer

development becomes a fully developed distribution. This is a function of the Peclet

number on which the thermal boundary layer growth depends.

DISCUSSION

For spacings between the jets such that the dividing streamline ends at the heated

plate (S/2b > 1.38), equation (30) was used to calculate the temperature distribution

along the impingement plate, and results for various values of the Peclet number are

given in figures 6(a) to (c). For close spacings (S/2b < 1.38), equations (31) and (32)

were used to obtain the results in figures 6(d) to (g). The condition analyzed here is for

the impingement plate being uniformly heated and hence it is the wall temperature dis-

tribution that is of interest. The results on the figures can also be expressed in terms

of a heat-transfer coefficient or Nusselt number. The local heat-transfer coefficient

along the plate is h - qw/(tw - t^) or h = [2bqw/(tw - t^ )k](k/2b). Hence the local h

is k/2b divided by the ordinate of the curves. If the Nusselt number is defined as

Nu - h2b/k, then the local Nusselt number is the reciprocal of the ordinate in figure 6.

From symmetry only half of the flow configuration need be considered, so this dis-

cussion will be concerned with the positive X region only. Also from symmetry there

is no flow of fluid or heat across the Y-axis, so this axis can be regarded as a solid wall

that is perfectly insulated; thus the results also apply to the case of an inviscid jet im-

pinging on a heated wall that is adjacent to a 90° corner formed with an insulated wall.

In figure 6(a) the jets are spaced fairly far apart, S/2b = 2. 5, so that the flow con-

figuration is similar to that in figure 4(a). The jet divides about equally to the right and

left, and as shown in figure 6(a) the stagnation point XD at the end of the dividing

streamline is close to the centerline of the incident jet. For comparison, curves are

given for a single jet impinging on an infinite plate as analyzed in reference 2 (the re-

sults taken from ref. 2 are for the case with axial conduction neglected as in the present

case). At the stagnation point and to the right of the stagnation point the results for the

present case are essentially like that for a single jet. The flow to the left, however, is

interfered with by the flow moving toward the Y-axis from the symmetrically placed jet

14



at negative X. The turning of the flow away from the plate reduces the ability of the

flow to transfer heat in this region which results in an increase in local wall tempera-

ture. Also shown on the figure are the results for large X as predicted by equation (33).

These results agree quite well with the curves when X is greater than about 5. For

the inviscid approximation, and as is typical for liquid metals, the results depend on the

Peclet number (| v^ |2b/at) which is independent of viscosity. This dependence shows

that an increase in, for example, the flow velocity increases the Peclet number and is

associated with lower wall temperatures and improved heat transfer.

Figures 6(b) and (c) show wall temperature curves similar to those in figure 6(a)

except for decreased spacings of S/2b - 2 and 1. 5. For both of these spacings the stag-

nation point at the end of the dividing streamline is along the heated plate and part of the

energy is being convected away to the left and then upward along the Y-axis. This pro-

vides poor heat transfer at small X values. The singularity at X = 0 results from the

neglect of axial conduction; this is the same type of singularity that provides an infinite

heat-transfer coefficient at the origin of a developing thermal boundary layer.

In figure 6(d) the spacing has been decreased such that S/2b = 1. 25. This spacing

is less than the value S/2b = 1.38 at which there is a shift in the end point of the divid-

ing streamline from being on the heated plate to being on the Y-axis. Now all the energy

is being convected away by the flow to the right, and at X = 0 the flow is toward the

plate. At X = 0 there is a stagnation point for incident flow rather than a stagnation
point for flow moving away from the plate which was the situation for S/2b > 1.38. For

each Peclet number the wall temperature then approaches a finite value as X.— 0 as is

typical for an impinging jet stagnation region. From figures 4(c) and (d) it is noted that

near X = 0 there is a large spacing between the heated plate and the adjacent stream-

line so that there is a low velocity region near X• = 0 for S/2b between 1.38 and 1. 00.

The resulting poor heat transfer causes the wall temperature to be high in the region of

X = 0 as shown in figure 6(d).

As S/2b is further decreased, the two jets begin to merge into one. In figures 6(e)

and (f) the peak temperature at X = 0 diminishes as S/2b decreases. Figure 6(g)

gives the limiting case of S/2b = 0.5 for which the two impinging jets have merged into

a single impinging jet of width 4b as shown in figure 4(e). The results approach the

single jet solution in reference 2 as S/2b approaches 0.5.

To better examine the effect of spacing between the impinging jets, the results are

given in figure 7 for the fixed Peclet numbers 5 and 20 and for various spacings at each

Peclet number. To follow the trends of a typical set of curves on either figure 7(a) or

(b), start with the curve for S/2b = 0.5 which corresponds to the two jets being merged

into a single jet. When S/2b is increased to 0. 75, part of the flow is recirculated up-

ward along the y-axis, but since the dividing streamline terminates along the y-axis,

none of this recirculating flow moves along the heated plate. Hence, increasing the

15



spacing in this range serves only to direct some of the flow from the plate which reduces
the heat-transfer ability and raises the wall temperature curve. This trend continues
as S/2b is further increased until S/2b exceeds 1.38. For any larger spacings the
dividing streamline terminates at the impingement plate and both portions of the flow go
along the plate. The fluid is thus utilized more efficiently for convective heat transfer
and the plate temperatures are decreased. This trend continues as the spacing is fur-
ther increased and the two impinging jets interfere less with each other. When S/2b is
greater than about 2.5, the two jets are acting independently except for the region near

the y-axis where the flows collide and form an upward flow along the y-axis.

CONCLUSIONS

An analytical method has been devised for determining the heat-transfer behavior of
impinging two-dimensional liquid-metal jets. The method combines free jet theory and
a transformation of the energy equation into the potential plane. In the potential plane
the transformed jet flow region occupies a parallel plate channel. The energy equation
is solved in this geometrically convenient region, and the resulting temperature distri-
butions along the heated plate are then transformed into the physical plane. To demon-
strate the method, the heat-transfer behavior has been analyzed for two parallel slot
jets impinging on a uniformly heated wall. The analysis can also be used for a nonuni-
formly heated wall as this only requires the heat source distribution to be changed in
equations (30) and (31).

When the jets impinge on the plate, the flow from each of them divides with one
portion flowing along the plate away from both of the jets, and the other portion flowing
toward the centerplane between the jets. The latter portions collide and re circulate in
the region between the jets. The half spacing between the centerlines of the incident jets
is S and the width of each incident jet is 2b. When the spacing between the jets is
small, S/2b < 1.38, a portion of the flow recirculates between the jets without flowing
along the heated plate. This decreases the effectiveness of the impingement heat trans-

fer.
As S/2b is increased beyond 1.38 the interference of the jets is reduced and the

flow on either side of each jet stagnation point flows along the heated plate. Each jet
begins to act more as an isolated jet with the impingement region heat transfer improv-
ing as the spacing is increased (i.e., as the mutual interference of the jets is further
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decreased). When S/2b is increased to approximately 2. 5, the stagnation region heat
transfer has increased to that for an isolated jet.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, May 26, 1974,
502-04.

17



APPENDIX A

SOLUTION OF ENERGY EQUATION

The analysis showed that the energy equation in the potential plane was reduced to

an equation in the same form as the one-dimensional transient heat conduction equation

(eq. (24)). The $ in the present analysis is analogous to time in the corresponding

transient problem. Since the heating along the boundary ^ varies with <$ as shown

in figure 3, the problem is equivalent to transient heat conduction with time variable

heating at the boundary. The other boundary of the heated region, that is either f£ or

45 in figure 3, is insulated. In reference 3 (p. 112), the transient solution is given for

a heat flux suddenly applied at time zero at one surface of a slab with the other surface

of the slab insulated. Let the wall temperature response (relative to the initial fluid

temperature T^) to a unit heat flux be called F. Then by superposition, since the

energy equation is linear, the response to an applied variable flux 3T/8*($) can be ob-

tained. The superposition integral is obtained from reference 5 (p. 404) by a change in

variable as,

- T =rJQ 3T

da]
(Al)

The absolute value is to account for the heat addition being at either the upper or lower

surface of the channel hj or h2 in figure 3(a), that is, along 78 or 6§. From the

solution in reference 4 the response to a unit heat flux on one side of a slab of thickness

hn is

= 2 - - ierfc

m=0

mh.n

J*/Pe
,1/2

+ ierfc
"(m + l)hn

(*/Pe)

(A2)

where the function ierfc £ is defined as

ierfc £ = erfc

As shown by appendix B of reference 2, equation (A2) can be differentiated to obtain
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' > Y/2 Vi /
L-J
m=0

-m2h2Pe/$ -(m+l)2h2Pe/*
(A3)

Substituting equation (A3) into equation (Al) yields the relation

T...(*) - T_ =

1/2

x

00I
m=0

-m2h2Pe/rj -(m+l)2h2Pe/7j
+ e (A4)

Case I S/2b > 1.38

As discussed in the ANALYSIS when S/2b > 1. 38 (0 < A < 1), equation (A4) has to

be applied in two regions depending on whether X is greater or less than XD. As

shown in figure 3(a) for S/2b > 1. 38 the heated region of the boundary starts at * = 0

(point 8 in fig. 3(a)) and within this region | 3T/3j//1 = 11/UJ. Hence equation (A4) be-

comes

- T -O-V

X
-m2h2Pe/Tj -(m+l)2h2Pe/7j

e + e drj (A5)
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Case H S/2b < 1.38

For this range figure 3(b) applies, and the heated portion of the boundary 79 begins

at $ = $Q. Thus for any argument $', 3T/9*($')=0 for 0 < $'< $Q. Let the argu-

ment be $' = $ - 7j. Then 3T/a*($ - TJ) = 0 for 0 < $ - TJ < $0 or for

< £ > ? ] > $ - $Q. Thus the integral in equation (A4) is zero for the range of 77 from

$ - 3>0 to $ and the remaining portion of the integral is for the range from TJ = 0 to

$ - 3>0. The wall temperature distribution is then (U is positive in the region of inte-

gration so the absolute value sign is omitted)

Tm(*) - TCO =
/

./O
U(4>-

+ e
-(m+l)Vpe/T,

(A6)
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APPENDIX B

LIMITING VALUE AT X = 0 FOR S/2b < 1.38 (-1 < A < 0)

For spacings such that S/2b < 1.38, the two incident jets are beginning to merge
into a single jet and the wall temperature at X = 0 is finite even with the neglect of
axial conduction. The wall temperature distribution as a function of <3> is given by
equation (31)

/ j a/2 /•* -

™ i

1 1

U(*-

x

00I
m=0

-m2h2Pe/Tj -(m+l)2h2Pe/7?
e + e *] (Bl)

From figure 3(b), the point 7 where X = 0 corresponds to $ = $Q. Then for small
X the upper limit in equation (Bl) is very close to zero so that TJ is very small through-
out the integration. For small 77 the exponents in equation (Bl) are large negative num-
bers with the exception of the first exponential term which has a zero exponent when
m = 0. Thus for very small TJ the summation approaches a value of unity and equa-
tion (Bl) reduces to

\7rPe/ U(* - TJ) 1/2
. (B2)

for $ - $Q (that is as X - 0).
From the mapping relation in equation (18), the location X = 0 corresponds to

4 = 0 . Thus when evaluating equation (B2) for small X the values of 4 will be small.
For small £> equation (16) becomes

-0) =-

It is recalled that A is negative for this range of spacings so that U is positive.

(B3)
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The quantity $Q corresponds to X - 0 where also £ = 0. Hence from equa-

tion (19)

1 - A
A+ 1 In

A+ 1 A2 + A(A2 - 2A - 1) + 1

Thus

(B4)

Using the series expansion of ln( l + x ) = x - — +. . . valid for x < 1 gives for
small £, 2

ft - . 2A .

A

IT

(B5)

Thus for small

A(A - 3)

and it follows from equation (B3) that

/ 7T (^P ™ ^P 1

U(*) - -A -t/ — for X - 0
A(A - 3)

(B6)

Equation (B6) is now substituted into equation (B2) to yield

TW(X - 0) - / M1/2 r~*°_L J A(A - 3)
VPe/ J -A V / r ( * - 7 j - ^Q)^ 1/2

d7]
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Integrating gives

Tm(X - 0) -
Pe

2 tan-1
* - $n - 7?

Noting that A is negative, this reduces to

TW(X - 0) - Te
= [A - 3]1/2

[A PeJ
(B7)

Equation (B7) is the desired result. The parameter A is related to the dimensionless
spacing between the jet centerlines by means of equation (17).
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APPENDIX C

ALTERNATE FORMULATION FOR LARGE X

At large x the flow that has turned along the plate has a uniform velocity (for the

inviscid flow treated here) and has a width 2bh2 as shown in figure 5. The conditions
at large x consist of a channel flow with uniform fluid velocity with one boundary in-

sulated and the other boundary having a uniform heat addition along it. As discussed
earlier, with conduction along the streamlines neglected, there is no energy transport

across the dividing streamline. An overall energy balance can then be formed on the
fluid flowing in the region bounded by the dividing streamline, the free streamline i//,,
and the heated plate. The energy balance yields

qw(x-xO=2bh2v c opCp[F(x)-tJ (Cl)

where x' = XD for figure 5(a) and x' - 0 for figure 5(b). The F(x) is the integrated
mean convective fluid temperature which for a uniform fluid velocity is equal to

1 /"2

=-A_ /
2bh9 /

0

t(x,y)dy (C2)

Since the wall heating qw is specified, and the heated length x - x' is known from the
mapping solution of the flow configuration, the t(x) can be found from equation (Cl).
This fixes the average level of the temperature distribution, and it is then necessary to
solve the energy equation to obtain the temperature distribution about this level. This

distribution will provide the wall temperature variation along the plate.
The energy equation at large x where the fluid velocity is | v^ | has the form

(C3)

From equation (Cl) it is evident that with uniform heat addition along the plate, the mean

fluid temperature rises linearly with x. At large x the temperature profile will be-
come fully developed, that is, the shape of the profile about its mean value will not be
changing with x. Using this behavior along with equation (Cl) gives

at 9F <w (C4)

2bh2 |v00 |pC
P
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' 2 2
Since all quantities on the right side are constants, 3 t/9x = 0. Substituting for 9t/9x

o 9
and 8 t/3x into equation (C3) yields

a't qw

3y2 2bh2

(C5)

Integrate once and apply the condition that 3t/3y = 0 at y = 2bh2 to obtain,

3y 2bh2

(C6)

Integrating again and taking into account the condition in equation (C4) yields

t ft
2bh2k \2

2bh2y
2bh2|vJpC

+ C (C7)

where C is a constant. Because a local heat balance along the wall was used, equa-

tion (C7) already satisfies the boundary condition 3t

y=0

qw

k

The constant C has to be determined so that the solution will satisfy the mean tem-

perature level F(x) as specified according to equation (Cl). From equations (C2) and

(C7),

/

2bh

-^-(y-- 2bh2y) +
L2bh2kV2 *] 2bh2|Voo|pCp

t (x) - - — 2bh9 +
3k 2 2bh2|Voo|pCp

+ C (C8)

Substitute t (x) into equation (Cl) and solve for C to obtain

C =
3k 2bh2|vJpC

(C9)
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Substitute C into equation (C7) to yield

q (x - x') q / 2 \ qw2bh
*co ,

2bh2|vJpCp 2bh2k\2 3k

Evaluating at y = 0 to obtain the wall temperature distribution gives

- 2bh2y U - - . (CIO)
2

qw(x-x')

3k

This becomes in dimensionless form

which is the desired result for large X.
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Figure 1. - Impingement of two liquid-metal slot jets against
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