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Abstract— Impulsive biological noise produced by snapping
shrimp provides an important contribution to the ambient acous-
tic noise in warm, coastal waters. The challenge is to understand
and model the properties of shrimp noise to reduce its impact
on sonar and underwater acoustic telemetry systems. Shrimp
snaps are impulsive events occurring apparently at random. The
short duration of each snap allows these events to be modeled
as a point process in time. Point processes are used to model
many naturally occurring phenomena including neuron firings,
seismic events, radioactive decay, lightning discharges and shot
noise in semiconductors. In this paper, point process analysis
techniques are applied to real shrimp noise. Inter-snap interval
histogram and Fano-factor analysis provide strong evidence that
the snaps are not homogeneous Poisson distributed in time.
Further analysis based on the rate function suggests that the
data may be more appropriately modeled by a doubly stochastic
Poisson process.

I. INTRODUCTION

Snapping shrimp are commonly found in warm shallow
waters, particularly in reefs or near structures such as piers,
wharfs and rock walls, or where debris covers the sea floor.
Although only a few centimeters in length, the noise they pro-
duce by creating cavitation bubbles with their enlarged claw
[1] makes a significant contribution to underwater acoustic
ambient noise [2], [3], [4]. The snaps are highly impulsive,
with peak-to-peak source levels of up to 189 dB re 1 µPa at 1
m [5], and are broadband with frequencies ranging from 600
Hz up to 250 kHz.

Understanding how shrimp noise contributes to the overall
ambient noise is important for sonar and acoustic telemetry
systems. Statistical models of the ambient noise are particu-
larly useful because of their direct application in optimized
signal processing algorithms [6].

In many signal processing algorithms noise is assumed to
be independent and identically distributed (i.i.d), and this is
often coupled with the assumption that the distribution will be
Gaussian by virtue of the Central Limit theorem. However, it

is known that shrimp noise is non-Gaussian [7], and there is
evidence for snaps to exhibit bursting in time [2].

In this paper we test the assumption that shrimp noise
samples are independent of each other. We start by applying
a simple test for homogeneous Poisson statistics based on the
distribution of intervals. Upon finding that the intervals are not
necessarily distributed as expected, a more revealing analysis
is conducted using the Fano-factor (or Index of Dispersion
of Counts). The Fano-factor analysis reveals that the snaps
are more clustered than expected for a homogeneous Poisson
process. We investigate further by assuming the shrimp snaps
form a doubly-stochastic process, and find that an Ornstein-
Uhlenbeck driven doubly-stochastic Poisson process can be
used to model medium time clustering in the shrimp noise.

II. EVENT TIMESERIES

A. Shrimp noise data

Ambient noise measurements were conducted in Cockburn
Sound, Western Australia. A TC4034-3 reference hydrophone
was suspended from a pontoon at a depth of 5 m and sampled
at 500 kHz. Pre-whitening filters were not used in order to
preserve as much of the original phase information as possible.
The measurements were conducted at times when the weather
was fine and sea states as low as possible. Shipping and
small boat activity was common during measurements, and
at times dolphins came within 100 m of the hydrophone. A
representative time series was selected from the measurements.

Two other time series were sourced from measurements
taken near Feather Reef (Queensland, Australia) and Seal
Island (Western Australia). These measurements were made
using DAT recorders and have low bandwidth relative to the
Cockburn Sound measurements. Details of these measure-
ments can be found in [8].
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Fig. 1. A graphical representation of snap detection. The threshold (dashed
horizontal line at 10σ), threshold exceedance (circle), snap zone (dashed box),
detection points (triangles) and dead-time (square ended bar) are shown.

B. Conversion to event time series

The ambient noise time series were converted to event time
series by a process of filtering and threshold detection. High-
pass filtering with a linear-phase 1 kHz filter was applied to
remove unnecessary low frequency components. A threshold
was set at 10 standard deviations (σ) above zero pressure to
keep false alarms low. Samples that exceeded the threshold had
a snap zone identified about them, as shown in Fig. 1, and the
maximum amplitude in the zone declared as an event. A fixed
length dead time was inserted after each event detection to
allow any oscillations following the snap impulse to relax to
levels below the threshold. False detections were identified by
visual inspection and removed.

III. STATISTICAL METHODS

A. Homogeneous and doubly-stochastic Poisson processes

The homogeneous Poisson process (HPP) is a mathematical
concept used to describe a completely random series of
events [9]. When considering events occurring in time, the
process has the following descriptive properties (for a more
mathematical treatment see [9], [10] or [11]):

1) There is no trend in the series;
2) Two or more events cannot occur at exactly the same

instant of time and;
3) What happens in one time window is completely inde-

pendent of what happens in any other non-overlapping
time window, irrespective of the window length or the
interval of time between them.

Two important distributions that arise from a Poisson pro-
cess are the distribution of the number of events (Nt) in
a given time window, and the distribution of time intervals

(∆) between events. For a homogeneous Poisson process the
probability density of Nt is defined by

Pr{Nt = x} =
(λt)x exp (−λt)

x!
(1)

and the mean and variance are equal

E[x] = var(x) = λt (2)

where E[·] are var(·) are respectively expectation and variance
operators. The name rate of occurrence is given to the param-
eter λ because Nt/t converges in probability to λ in the limit
t → ∞ [9]. For the same process, the distribution of ∆ is

F(∆) = 1 − exp(−λ∆) (3)

so that the probability density of intervals is

f(∆) =
∂F(∆)

∂∆
= λ exp(−λ∆) (4)

which is an exponential distribution. This density of intervals
provides the basis for the simple HPP test using inter-snap
interval histograms.

A process is doubly stochastic if λ(t) is not a deterministic
function but rather a realization of a stationary, time varying
stochastic process {Λ(t)} [9].

B. Inter-snap interval histograms

A simple test for the homogeneous Poisson process is
to compare the inter-snap interval histogram (IIH) with the
theoretical distribution. The theoretical distribution for events
detected using a dead-time is the dead-time modified expo-
nential density function [12]

f(∆) = λ exp(−λ(∆ − τ)). (5)

Testing can be conducted using visual and statistical methods.
For visual comparison the IIH was computed using empirical
probability density functions [13]. Left and right censure
corrections were applied to account for the dead-time, and
the duration limit of the event time series. These results are
presented in the next section.

Test statistics were computed to provide an objective test
to use in conjunction with visual comparison. Kolmogorov-
Smirnov (D), Cramér-von Mises (W 2), and Anderson-Darling
(A2) statistics were computed according to [14]. Of these
statistics, the Anderson-Darling (A2) gave the most consistent
result. The consistency of A2 was attributed to the information
contained in the tail of the distributions. The statistic was
computed using

A2 = −n− 1
n

(
n∑

k=1

{(2k − 1)(ln(Zk) + ln(1 − Zn+1−k))}
)

(6)
where n was the number of observations, and the Zk values
were ordered (ascending) observations transformed using

Zk = 1 − exp(−λ(∆k − τ)) (7)

where parameter τ is the known dead-time (in seconds) and
λ is estimated from the observations using the method of
moments.



C. Fano-factor analysis

The Fano-factor (or Index of Dispersion of Counts) is
defined as the variance to mean ratio of the counting process
N� [15], [16]. An equivalent definition, that is useful for
analytic solutions, is the ratio of the variance-time function
to its value for a homogeneous Poisson process [9]. In these
definitions time refers to counting time (�). The counting
time is the time over which the process is observed and the
events counted, sometimes referred to as a counting window
or window of observation. For all Fano-factor computations
the windows of observation were non overlapping.

For a homogeneous Poisson process the variance and mean
are equal and independent of time. Using the variance to mean
ratio definition, the Fano-factor (FF) is equal to

FFhpp(�) =
var(N�)
E[N�]

= 1 (8)

where the subscript hpp indicates that the result is for a
homogeneous Poisson process only.

For the doubly-stochastic Poisson process the variance (V )
varies with counting time (�) according to the variance-time
function

V (�) = λ� + 2σ2

∫ �

0

(� − u)ρ(u) du (9)

where λ, σ2 and ρ(u) are respectively the mean, variance and
autocorrelation function of the stochastic rate process {Λ(t)}
that drives the DSPP. The Fano-factor for a doubly-stochastic
Poisson process can then be found using the variance-time
function definition

FFdspp(�) =
V (�)
λ�

= 1 +
2σ2

λ�

∫ �

0

(� − u)ρ(u) du. (10)

Empirical estimates of the Fano-factor were computed as
follows. For a fixed duration (�) window the number of counts
in each window forms the values ck and these values are
used to compute the Fano-factor for that particular window
duration. The computation is the ratio of the variance of ck

values divided by the mean ck, thus

FF (�) =
var({c1, c2, . . . , cn}�)
E[{c1, c2, . . . , cn}�]

(11)

where there are a unique set of ck = {c1, c2, . . . , cn} values
for each window duration, indicated using the subscript � at
the end of the set. Statistical fluctuations exist in Fano-factor
estimates that become more variable with increasing counting
time. The increase in variability is a direct consequence of
truncation of the period of observation and is present for all
empirical results, including the HPP result. Significance levels
cannot be computed for the Fano-factor because its distribution
is not known exactly [9]. Instead, guide levels are computed
by shuffling (randomly permuting) the order of intervals as
suggested by Lowen and Teich [17]. The shuffling technique
destroys any correlation between events but at the same time
preserves the distribution of inter-snap intervals. By conduct-
ing a number of shuffles of the data and recomputing the Fano-
factors the mean and standard deviation of the shuffled data

can be used as a guide for normal fluctuation. Deviations above
the upper guide level indicate clustering of the events, referred
to as super-Poisson; conversely deviations below the lower
guide level indicate anti-clustering (or increased orderliness)
and are referred to as sub-Poisson.

D. Intensity process and the rate function

For a doubly-stochastic Poisson process, the rate of occur-
rence is a function of time, λ(t), and is a realisation of a
stationary stochastic process {Λ(t)} [9]. It is, therefore, the
properties of {Λ(t)} that are of interest. For real processes it
is difficult to estimate the properties of {Λ(t)}. The difficulty
arises because the observed events are a realization of a
doubly-stochastic Poisson process; they are not a realization of
{Λ(t)}. For this reason the properties of {Λ(t)} are estimated
using smoothed rates computed as a function of time. We
call the smooth, time varying rates the rate function, R(t).
When computing R(t) using window-based estimation, the
time duration of the window becomes important. The window
needs to be concurrently large enough to allow reasonable
estimates of rate, and small enough to capture important
variations with time. Optimum window estimators can be
formed if the autocorrelation function (ρ(u)) of the intensity
process is known [18], [10]. If the autocorrelation function is
not known then a simple histogram estimator can be used [10].

For an Ornstein-Uhlenbeck (O-U) process the distribution
of intensities is Gaussian, with mean λ and variance σ2.
The intensities are correlated in time, with an exponentially
decaying autocorrelation function

ρ(u) = exp(−u/l) (12)

where l is a measure of correlation time (in seconds). We
estimate the parameters λ and σ2 from the rate function R(t)
using the simple histogram method with a reasonably large
window duration. The correlation time (l) is then computed
by assuming that the shrimp snap events are exponentially
correlated. Under this assumption the Fano-factor curve will
have a finite asymptote in the limit of infinite counting time
(� → ∞) given by

FFou(∞) = 1 +
2σ2l

λ
(13)

so that l can be estimated given FFou(∞). The value of
FFou(∞) was estimated as the average value of Fano-factors
over the upper quarter of the counting times.

IV. RESULTS & DISCUSSION

A. Inter-snap interval histograms

Inter-snap interval histograms were computed using 100
bins evenly spaced across the range of intervals. For each
individual data set an estimate of λ was computed using the
method of moments [8] and used to produce the theoretical
curve (5). The results are shown using semilogarithmic plots
in Fig. 2 so that the exponential distribution lies on a straight
line. Visual judgments between the histogram (point markers)
and theoretical curve (solid line) are recorded in Table I.



TABLE I

IIH TEST RESULTS

Data Visual A2 95% test (A2 < 1.321) accept HPP

HPP pass 1.00 pass yes

FR fail 22.9 fail no

CS pass 0.44 pass yes

SEAL fail 107 fail no
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Fig. 2. Inter-snap interval histograms computed from simulated HPP (a),
Feather Reef (b), Cockburn Sound (c) and Seal Island (d) data (point markers)
plotted along with a theoretical dead-time modified exponential curve (solid
line).

Statistical testing using the Anderson-Darling statistic (6)
was conducted at the 95% confidence level. The decision value
for this level of confidence was 1.321 (taken from tables in
[14]). Corrections were applied for unknown scaling parameter
λ. The test results are recorded in Table I.

Decisions based on combined visual and statistical IIH tests
showed that the simulated HPP and Cockburn Sound processes
were consistent with a homogeneous Poisson process, and that
the Feather Reef and Seal Island processes were not consistent
with a homogeneous Poisson process. Although the Cockburn
Sound data passes the HPP test based on histograms, a more
sophisticated Fano-factor analysis (see Section IV-C) reveals
evidence of super-Poisson behavior.

B. Rate functions

Rate functions were computed using a simple histogram
estimator with a five second window duration. Results for
Feather Reef and Seal Island data are shown in Fig. 3.
Cockburn Sound results are not shown because they are very
similar to the Feather Reef results. In the figures the rate as
a function of time is plotted along with a histogram of the
samples. A Gaussian fit to the histogram is also shown.

The Seal Island rate function reveals an abrupt change near
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Fig. 3. Rate functions for Feather Reef (a) and Seal Island (c) computed using
the simple histogram method. A histogram of rates (circles) and a Gaussian
fit (solid line) are shown for Feather Reef (b) and Seal Island (d).

230 s resulting in two peaks in the histogram and a poor fit to
a Gaussian. When data contains such bursts in rate, the O-U
model is clearly inappropriate. In contrast, the Feather Reef
rates are modeled well by a Gaussian distribution. The O-U
model may be suitable for the Feather Reef intensity process
if, in addition to being Gaussian distributed, intensities are
exponentially correlated with time.

In cases where the real shrimp noise is approximately
homogeneous, the variance in the rate function will tend to
zero and the O-U intensity process will reduce to a constant.
Under these conditions the O-U driven DSPP will reduce to a
HPP and therefore continue to model the process correctly.

C. Fano-factor analysis

Empirical Fano-factor curves were computed as a function
of counting time using (11). The minimum counting time was
set equal to the dead-time, which was 0.001 s in all cases.
The maximum counting time was set at 1/10 the duration
of the time series to ensure that the computation of variance
and mean had at least 10 sample points. Counting times were
logarithmically spaced between the minimum and maximum
values using a log base of 1.05. When referring to counting
times we will use the term short time for times less than a
second, and the term medium time for times greater than a
second, and less than 60 seconds.

The empirical Fano-factors for a simulated HPP data set
(circle markers) are shown in Fig. 4. Upper and lower guide
levels (solid lines) were computed using 100 shuffles of the
data and set at two standard deviations beyond the mean. The
guide levels bound 95% of the Fano-factors, indicating that
the process is HPP over all counting times. At short counting
times the value of the Fano-factors tend to a value slightly less
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Fig. 4. Fano-factor versus counting time for simulated HPP events (circles),
with positive and negative guide levels (solid lines).

than unity. The reason that the values do not tend exactly to
unity is because dead-time was used in the detection process
[19]. Inclusion of dead-time in the detection process reduces
the variance, but not the mean, of the counts so that the
count variance to mean ratio is less than unity. At longer
counting times statistical fluctuations become more variable
for the empirical Fano-factor because fewer samples (counting
windows) are available for estimating the count mean and
variance. The guide levels reflect this variability through
increasing separation with increasing counting time. Empirical
results above the upper guide level indicate super-Poisson
behavior and results below the lower guide level indicate sub-
Poisson behavior. Results between the guide levels indicate
HPP behavior.

Fig. 5 shows empirical Fano-factor results computed from
the Cockburn Sound data. Cross markers show the results
when processing was applied to all events detected by the
automatic (threshold) detector. There are two distinct sections
in these results: a short time rise and plateau, and an ascent
for medium counting times. The short time rise and plateau
was considered to be a valid super-Poisson result, most likely
caused by surface reflected snap replicas being included as
events. To investigate further, the events were revisited using
visual inspection and any surface reflected replicas removed
to give a direct-path process. Fano-factor results for the direct-
path process are shown in Fig. 5 using triangle markers. The
short time rise and plateau are not evident in the direct-path
results. An upper guide level (solid line) was computed using
100 shuffles of the direct-path results and set at two standard
deviations above the mean. All of the direct-path results lie
below the upper guide at short counting times. For medium
counting times the direct-path result deviates above the guide
levels, so the ascent for medium counting times remains. It
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Fig. 5. Fano-factor versus counting time for Cockburn Sound with surface
reflected events (cross markers) and with surface reflected events removed
(triangle markers). The guide level shows normal fluctuation levels for the
Cockburn Sound result with surface reflected events removed.

was concluded that the short time rise and plateau was caused
by surface reflected snap replicas being included as events in
the process.

Empirical Fano-factor results for the Feather Reef data are
shown in Fig. 6 (triangle markers). A theoretical curve (solid
line) for an O-U driven DSPP with parameters λ = 6.45,
σ = 1.27 and τ = 3.67, estimated using a nonlinear least
squares regression fit of (10), with autocorrelation function
(12), is also shown. Dead-time was not accounted for in the
theoretical model, which explains the small offset between
the theoretical curve and the dead-time corrected HPP result
(dotted line) at short counting times. To test the effect of dead-
time over medium counting times a simulated O-U driven
DSPP event time series was generated and processes with and
without dead-time detection. The difference between Fano-
factors using the two processing methods was small relative
to statistical fluctuations in the Fano-factors over medium
counting times.

The Feather Reef results show super-Poisson deviations
(clustering) for short and medium counting times. Short time
clustering was due to surface reflected replicas included in
the process, and is not modeled by the O-U driven doubly-
stochastic Poisson process. Good agreement was found be-
tween the empirical Fano-factor curve and the O-U driven
DSPP model at medium counting times. The model predicts
a finite asymptote, shown in Fig. 6 using a long dashed line.
A finite asymptote indicates that a process is not fractal [20].
Unfortunately, the asymptotic value cannot be confirmed for
the empirical values because statistical fluctuations obscure the
behavior of the Fano-factor curve at these counting times.
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Fig. 6. Fano-factor versus counting time for Feather Reef events (triangle
markers). A theoretical curve (solid line) shows the expected values for an
O-U driven DSPP with parameters estimated from the Feather Reef data.
The O-U driven DSPP asymptote for infinite counting time is shown using a
long dashed line. The dotted line (near unity) shows the expected value for a
dead-time modified homogeneous Poisson process.

V. CONCLUSION

We have presented a suite of techniques for analysis of
point processes and demonstrated how they are applied to real
snapping shrimp data. Inter-snap interval histogram analysis
has been conducted with mixed success using visual and
statistical tests. Rate function and Fano-factor analysis have
been used to reveal more detail about the snapping process
and has shown that real shrimp noise may be more clustered
than expected over short and medium counting times. Short
time clustering was caused by the inclusion of surface reflected
events into the process. When snap rates were approximately
Gaussian, the Ornstein-Uhlenbeck driven doubly-stochastic
Poisson process was able to model medium time clustering.
When clustering is minimal, the O-U driven DSPP reduces to
a homogeneous Poisson process and therefore provides a more
complete and appropriate model for describing snap events in
snapping shrimp noise.
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