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Abstract In pharmaco-epidemiology, the use of drugs is

the determinant of interest when studying exposure-out-

come associations. The increased availability of comput-

erized information about drug use on an individual basis

has greatly facilitated analyses of drug effects on a popu-

lation-based scale. It seems likely that many negative

findings in the early days of pharmaco-epidemiology can

be explained by non-differential misclassification because

of too simple (yes/no) exposure measures. In this paper, the

authors discuss the importance of an adequate definition of

drug exposure in pharmaco-epidemiological research and

how this time-varying determinant can be analyzed in

cohort studies. To reduce the risk of non-differential mis-

classification, a precise definition of exposure is mandatory

and it is important to distinguish the complete follow-up

period of a population into mutually exclusive episodes

of non-use, past use and current use for each individual.

By analyzing exposure to drugs as a time-dependent vari-

able in a Cox regression model, cohort studies with com-

plete coverage of all filled prescriptions can provide us

with valid and precise risk estimates of drug-outcome

associations. However, such estimates may be biased in the

presence of time-dependent confounders which are them-

selves affected by prior exposure.
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Introduction

In pharmaco-epidemiology, the use of drugs is the determi-

nant of interest when studying exposure-outcome associa-

tions. The increased availability of computerized information

about drug use on an individual basis has greatly facilitated

analyses of drug effects on a population-based scale. This

stimulated the development of pharmaco-epidemiology as a

branch within epidemiology as can be seen on epidemiolog-

ical congresses [1].

In the last decades of the preceding century, many

pharmaco-epidemiologic studies employed a case–control

design. Case–control studies of the association between

diethylstilboestrol against habitual abortion and vaginal

carcinoma in female offspring [2], and of salicylate-

attributed Reye syndrome [3] have clearly shown the

benefits of this design thanks to their valid and relevant

results despite small numbers of cases in both studies.

However, in hindsight this design may also have risen

spurious associations such as that between use of reserpine

and breast cancer [4].

Because information about drug use in these early

studies had to be obtained from interview, they suffered

from two important potential limitations. First, the suspi-

cion that patients with severe diseases would tend to have a
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better recall than non-diseased controls. This type of

information bias (so-called ‘recall bias’) was suspected to

be partly responsible for the association between X-ray

exposure during pregnancy, and the subsequent occurrence

of congenital malformations in off-spring [5]. In a sub-

sequent similar study with hospital records, the significant

risk increase of 90% found earlier was brought back to

40%, albeit still statistically significant [6]. Unfortunately,

even hospital records may be incomplete when information

of drug use is retrospectively gathered [7]. Second, whereas

recall bias leads to differential (i.e., non-random) mis-

classification of exposure, also non-differential (i.e., ran-

dom) misclassification may jeopardize the validity of drug-

effect estimates as can be seen in Fig. 1. The argument

which is often brought forward that such misclassification

is less serious because it leads to a more conservative

estimate, is questionable as also underestimations are non-

valid and therefore unwanted. It seems likely that many

negative findings in the early days of pharmaco-epidemi-

ology can be explained by non-differential misclassifi-

cation because of too simple (yes/no) exposure measures.

But even with extensive scrutiny of drug history during

interview, long-term exposure such as might be relevant to

development of end-stage renal failure [8] will inevitably

lead to both differential and non-differential exposure

misclassification. It would not be fair to blame researchers

for this, as laborious investigation of serious diseases

should be praised and because most of them do not ignore

the limitations of their data.

In this paper, we discuss the importance of an adequate

definition of drug exposure in pharmaco-epidemiological

research and how this time-varying determinant can be

analyzed in cohort studies.

Drug assessment in populations

The two types of above-mentioned exposure misclassifi-

cation can be effectively circumvented when drug use in

populations is prospectively gathered, i.e., before onset of

the event of interest and consequently unbiased. Prospec-

tive data collection prevents the occurrence of ‘recall bias’

or other types of differential exposure information bias.

Non-differential misclassification, however, can still occur

if the exposure definition is imprecise or if drug use falls

outside the biologically plausible risk window, as can be

seen in Fig. 2. Although we know that prolonged use of

high doses of estrogens is a strong risk factor for liver

adenoma [9], for instance, it is clear that in a woman who

started using the drug 1 month before diagnosis, liver

adenoma can not be caused by the estrogen. Apparently,

exposure status is not merely a matter of using/non-using a

drug before the event occurs but also of timing. In real life

situations, the effect of exposure will depend on dose,

duration of use, timing in relationship to the event, con-

current medication, and adherence to therapy.

Of course, the fundamental question is: ‘‘what is expo-

sure ?’’. In an ideal situation, it tells us what the drug

concentration is at the receptor site which is responsible for

the biological effect. Obviously, such a situation can be

achieved at best in small groups of diseased or volunteers

and even there, it is a rather theoretical option and is

approached nearest with the assessment of drugs and their

metabolites in blood or plasma. As blood levels tell us little

about, for instance, the concentration of psychotropic drugs

in brain tissue, the contribution to large-scale population-

based pharmaco-epidemiology is modest although it will

add to interpreting the study results. Instead, large studies

rely on three types of health care data which are currently

becoming more and more readily available: drug exposure

information from health insurance companies or sick funds

Fig. 1 Assume a prospective cohort study with 10% non-differential

misclassification of exposure. Without misclassification, the true

relative risk would be calculated as [30/100]/[10/100] = 3.0 in those

treated with drug A in comparison to those on drug B. However,

because in diseased as well as non-diseased 10% of individuals

switches from A ? B and vice versa, the number of exposed changes

for each cell, i.e. cell a (30 - 3?1 = 28); cell b (70 - 7?9 = 72);

cell c (10 - 1?3 = 12); cell d (90 - 9?7 = 88). Consequently, we

calculate the relative risk as [28/100]/[12/100] = 2.3

Fig. 2 Assume a prospective cohort study on the risk of cancer induction

after long-term exposure to a drug A. To reduce the effect of non-

differential misclassification as much as possible, cumulative exposure

should only be calculated during the induction period (exposure window
2). If use during the latent period is included (exposure window 1), the

measured relative risk (RR) will be diluted from RR = 5 towards

RR = 2. This will be brought down even further to a RR = 1 if

cumulative exposure is only measured during the latent and disease

period (exposure window 3)
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[10]; from general practitioners [11], and from pharmacies.

Data from general practitioners are of great value because

they consist of both drug prescriptions and information on

disease, and can not only show changes in prescribing [11]

but can also be pooled in large-scale collaborative research

[12] to study rare events. However, a limitation is that spe-

cialist prescriptions are incompletely registered in general

practice databases, and that not all of their own prescriptions

are filled at pharmacies. As for health insurance companies,

not all of them register the daily dose of the patient. Conse-

quently, drug filling data from pharmacies come closest to

true exposure of prescription-only drugs. This holds espe-

cially in those who use chronic medication. People who

come back at regular intervals for refills of a drug, usually

have a high compliance to therapy. Dividing the number of

filled tablets or capsules by the daily prescribed number

makes it possible to calculate when a patients is expected to

come for the next vial of medicines. In this way, adherence to

therapy can be assessed reliably. All mentioned data sources,

however, miss over-the-counter (OTC) drugs.

Converting filled prescriptions into exposure variables

For the analysis of drug-event associations, the dose, the

duration, and timing of use are highly important. Unfor-

tunately, individual medication histories may contain a

plethora of different drugs, doses, switching between

drugs, and types of administration. Most western countries

have some 10,000 different marketed drug products and it

is an administrative and pharmacological challenge to

convert this information into an analyzable dataset. Sup-

pose, for instance, that one would be interested to study the

association between long-term use of anti-inflammatory

drugs (NSAIDs) and cancer. Then, use of several different

pharmaceutical products over the years by one person has

to be brought back to the numbers of days of use of each

pharmacological entity, and to a standardized dose to

facilitate comparison between products. For instance, the

recommended daily dose for treatment of arthritic pain is

100 mg for diclofenac and 500 mg for naproxen. Taking

the average dose without standardization would be mean-

ingless. A well-known scheme for dose standardization is

the ATC-DDD scheme of the World Health Organisation

(http://www.whocc.no).

Drug-event analyses

Epidemiologists usually underline the importance of

awareness of potential confounding in study designs to

prevent non-validity [13]. For obvious reasons, appropriate

epidemiologic methods are a prerequisite for valid study

results. This includes the validation of exposure measure-

ment tools [14]. An adequate assessment of the role of

drug exposure requires knowledge of the biologically rel-

evant period during which the drug must be used to induce

or modify the event of interest, and of the pharmacokinetic

and pharmacodynamic properties of the drug. If we are

interested in the question whether a drug may cause an

event, we should only assess the exposure status during the

induction period as any assessment outside this period will

introduce non-differential misclassification of exposure

(Fig. 2). On the other hand, if we investigate whether a

drug is not a cause but modifies the disease process, we

will only assess the exposure status during the latent and/or

disease period. The pharmacodynamic effects of the drug

should be compatible with causation, although this may

not always be clear. The pharmacokinetic properties of a

drug are very important for assessing the duration of

exposure. For instance, a drug against cystitis such as

nitrofurantoin is excreted completely within hours while

the notorious carcinogenic diagnostic agent thorium diox-

ide which was used between the 30 and 50 s of the 20th

century has a biological half-life of 400 years and a

physical half-life of 5,000 years. Drugs such as the anti-

arrhythmic agent amiodaron and the anxiolytic diazepam

have prolonged carry-over effects because of their long

half-life. Apparently, the exposure period is not merely the

time during which the drug was actually taken but may

have to be extended with a carry-over period of 1–2

half-lives.

Analysis of drug exposure as a time-varying

determinant in prospective population-based cohort

studies

As mentioned above, the prospective gathering of drug use

facilitates unbiased risk estimates provided exposure is

precisely defined by reference to a well-defined event

with a clearly recognizable onset. Thanks to prospectively

gathered and complete medication histories, exposure

status can be assessed on every day of the follow-up. This

is a great advantage over population-based studies where

drug use is assessed on the basis of interview during

repeated rounds of cross-sectional measuring. Although the

analyses in this paper pertain to cohort studies, this

includes nested case–control studies where the prospective

exposure data come from the cohort but there are effi-

ciency reasons to perform a case–control analysis. This

may occur, for instance, when tissue samples have to be

taken or when additional data gathering from medical

records makes it unfeasible to perform this in the whole

study cohort.
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Unlike constant features such as sex and certain genetic

traits, drug use is essentially a time-varying determinant. In

a traditional Cox regression model [15], the hazard func-

tion in the total population at time point t is defined as:

k tð Þ ¼ k0 tð Þ � exp bxð Þ ð1Þ

in which k(t) represents the event rate at time t conditional on

being still event free before time t. In this model the event

rate is assumed to be equal to a baseline risk k0(t), which is

the same for everybody in the population, i.e., independent of

the determinants. This baseline risk is multiplied by a term

exp(bx), dependent on the determinants x, which are

different between individuals. The parameters b quantify

the effect of the determinants on the event rate. They have to

be estimated from the data, together with the baseline risk

k0(t). There are different choices possible for the time scale t,

for instance, t = age (when age is strongly and exponentially

associated with event occurrence), t = time since entry in

the cohort, or t = calendar time. In the simplest case, x

represents only one determinant x1, for instance sex, with

x1 = 1 (males) and x1 = 0 (females). Then k(t) gives the

hazard function for developing the event at time point t in

males or females. For females, the hazard is k0(t) and for

males the hazard is k0(t) multiplied by exp(b1). In this model,

the determinants x are not necessarily constant during

follow-up, but may vary in time, such as drug use. In a study

sample, the unknown hazards are then estimated from the

data as:

h tð Þ ¼ h0 tð Þ � exp b1x1ð Þ ð2Þ

Suppose that we performed a study in which m

individuals developed the event of interest during follow-

up. The follow-up times at which the events (the ‘‘cases’’)

occurred are denoted with t1,…, tm. (for simplicity, we

assume that events do not coincide). In a Cox proportional

hazards regression analysis with drug exposure as a time-

varying determinant [16], the exposure status x1[tj] on the

index day tj of the case number j, is compared to the

exposure status of all other cohort members on the same

day of the follow-up. In this way, j = 1,…, m strata are

formed of one case each and the other cohort members who

were still in the follow-up and event free at time tj as

controls. In an earlier analysis in The Rotterdam Study

[17], for instance, it was investigated whether thiazide

diuretics protect against hip fracture, thanks to their

calcium-retaining effect [18]. An analytical matrix would

look like the ones given in Table 1a and b. On the index

date tj, all cohort members have a history of thiazide use up

to that time. In its simplest form, we can characterize this

history as use on the index date as 1 (‘yes’) or 0 (‘no’) like

in Table 1a. If i denotes the number of an arbitrary cohort

member that is under follow-up at the index date tj, the

model states for this individual i

h tið Þ ¼ h0 tj

� �
� exp b1x1i tj

� �� �
ð3Þ

in which the time-varying determinant x1i[tj] has the

numerical value ‘1’ (exposed) or ‘0’ (unexposed) depend-

ing on whether cohort member i is exposed or non-exposed at

time point tj. For each event time tj, there is a set Rj (the ‘‘risk

set’’) containing all individuals who were under observation

at tj. So, Rj contains case number j and its corresponding

controls. Given the event at tj, the conditional probability that

out of all cohort members in Rj the cohort member with

number j (the one who was observed to develop the event)

will develop the event is:

h0 tj

� �
� exp b1x1j tj

� �� �
=
X

i from Rj

h0 tj

� �
� exp b1x1i tj

� �� �� �

ð4Þ
Notice that the baseline hazard rate h0(tj) is present in

numerator and denominator and cancels out. Therefore, the

conditional likelihood function of all the data, defined as

the product of the probabilities as given in (4) over all

event times tj, is equal to:

L bð Þ ¼ P
m

j¼1
fexp b1x1j tj

� �� �
=
X

i from Rj

exp b1x1i tj
� �� �
g

However, this straightforward but simple analysis with

only the status exposed/unexposed would mean that we use

only a very limited part of the information that is contained in

the thiazide use history and thereby introduce non-

differential misclassification. As can be seen in Table 1a,

knowing the numbers of days of continuous use on the index

date of each cohort member facilitates calculation of more

valid risk estimates as it is unlikely that only 1 day of thiazide

use would already be protective while the model would

consider even those people as exposed who started thiazides

1 day before the index date. There are pharmacological

reasons to assume that a protective effect on hip fracture may

become visible only after at least 6 weeks of calcium

retention by thiazide treatment and reaches a maximum after

*1 year. Hence, more information, and consequently less

non-differential misclassification, is obtained with the

introduction of extra determinants x2, and x3, where the

cumulative continuous exposure to thiazides at the index

date is categorized as: x1 = 1 through 42 days; x2 = 42

through 365 days; x3 [ 365 days.

h tð Þ ¼ h0 tð Þ � exp b1x1 t½ � þ b2x2 t½ � þ b3x3 t½ �ð Þ ð5Þ

In this way, the risk for these two exposure categories is

expressed in comparison to non-use and yields a more valid

representation of the drug-event association than in (3) or

when thiazide exposure in days would be introduced as a

continuous exposure determinant.

Even more information, and therefore less non-differ-

ential misclassification, may follow from the introduction
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of determinants for ‘past use’ when one expects that a carry-

over period should be taken into account. For instance, if

thiazide use for more than 1 year results in a higher calci-

fication of the hip, it will take a certain time period before

discontinuation of thiazides results in returning to the

situation before starting treatment. This can be done by

introducing determinants for past exposure, defined as the

number of days since last intake of thiazides (Table 1b). In

the previously mentioned study, additional categorical

determinants were created as extra determinants x4, x5, and

Table 1 Apart from unique patient number, sex and age in years, the

columns respectively represent: case status (1 = ‘yes’; 0 = ‘no’);

stratum; follow-up in days; cumulative number of days of current use;

number of days since last intake in past users; defined daily dose

(DDD) [for hydrochlorothiazide: 25 mg and for chlorothiazide:

500 mg]; and total numbers of days of use since study entry

Patient Sex Age Case Stratum Follow-up Current use

(a)

4417001 V 82 1 1 961 0

6593001 V 88 0 1 961 0

1101001 V 93 0 1 961 0

3000001 M 81 0 1 961 0

5135001 V 86 0 1 961 0

1720215 V 88 0 1 961 1

6367517 V 86 0 1 961 0

2191001 V 74 0 1 961 1

1033001 V 87 0 1 961 0

7112001 F 88 1 2 1,253 1

1376809 M 94 0 2 1,253 0

Patient Sex Age Case Stratum Follow-up Current use Past use

(b)

4417001 V 82 1 1 961 0 0

6593001 V 88 0 1 961 0 0

1101001 V 93 0 1 961 0 90

3000001 M 81 0 1 961 0 0

5135001 V 86 0 1 961 0 0

1720215 V 88 0 1 961 154 0

6367517 V 86 0 1 961 0 0

2191001 V 74 0 1 961 83 0

1033001 V 87 0 1 961 0 0

7112001 F 88 1 2 1,253 34 0

1376809 M 94 0 2 1,253 0 0

Patient Sex Age Case Stratum Follow-up Current use Past use DDD Total use

(c)

4417001 V 82 1 1 1,061 0 0 – 0

6593001 V 88 0 1 1,061 0 0 – 0

1101001 V 93 0 1 1,061 0 90 – 387

3000001 M 81 0 1 1,061 0 0 – 0

5135001 V 86 0 1 1,061 0 0 – 0

1720215 V 88 0 1 1,061 154 0 1.2 234

6367517 V 86 0 1 1,061 0 0 – 0

2191001 V 74 0 1 1,061 83 0 0.9 83

1033001 V 87 0 1 1,061 0 0 – 0

7112001 F 88 1 2 1,253 34 0 1.7 731

1376809 M 94 0 2 1,253 0 0 – 0

Note that the total use is mostly higher than current use because patients may have used thiazides intermittently
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x6 where the number of days since last intake of thiazides,

counting back from the index date, was categorized as:

x4 = 1 through 60 days; x5 = 61 through 365 days; and

x6 [ 365 days.

For obvious reasons, the determinants x1 through x6

should be introduced in one model. After all, it is important

that the complete follow-up time of each study member is

expressed in mutually exclusive episodes of non-use, past

use, and current use to decrease the degree of non-differ-

ential misclassification as much as possible. Then, the full

model is:

h tð Þ ¼ h0 tð Þ � expðb1x1 t½ � þ b2x2 t½ � þ b3x3 t½ � þ b4x4 t½ �
þ b5x5 t½ � þ b6x6 t½ �Þ

ð6Þ

This model can be extended with the inclusion of other

non-time-varying determinants such as gender and baseline

age xa, xb, …, xj, …, xz, provided usual precautions against

overfitting of the model are taken into account. Adjusting

for dosage may be performed by including it as a

continuous determinant in mg/day or categorized, for

instance by splitting current use as: current use with [1

defined daily dose (DDD); current use with B1 DDD.

The analytical matrix in Table 1c facilitates different

type of analyses. For instance, would we be interested to

find out whether cumulative use of nonsteroidal antiin-

flammatory drugs (NSAID) are associated with an

increased risk of cancer, we might prefer to use the

determinant ‘total use’. However, if we would be interested

in induction, rather than promotion, we might subtract a

theoretical episode of 5 years from the index date of cancer

diagnosis and calculate total use in days until that date, or

in dose as cumulative DDDs. We would do this to avoid

non-differential misclassification by restricting ourselves to

the induction period. Would we only be interested in pro-

motion, we would treat NSAID as an effect modifier and

restrict our analysis to total use in the 5 years before cancer

diagnosis because we would expect that malignant cells

would already be present during that latent period.

Limitations

The method described above facilitates a clear insight into

the data structure but may have some practical limitations.

First, in patients who use drugs very irregularly, it may be

difficult to calculate the cumulative period of continuous

current use at the index date as in such patients these

periods will usually be short and irregular. However, this

can often be circumvented by combining current and total

use. Second, because for every case the remainder of non-

censored cohort members serves as a reference, huge strata

may lead to substantial computational time to run analyses.

For instance, with 1000 cases in a cohort of 50,000 people,

each stratum would have slightly less than 50,000 obser-

vations at the index date of that stratum, leading to a data

file of *50,000,000 records. As there are techniques to

deal with such a problem, however, this may only be rel-

evant to the less well-equipped researcher.

A methodological limitation may arise when the model

is adjusted for a time-dependent co-variable which is a risk

factor for the event of interest and may be influenced by the

drug exposure [19]. Standard methods for estimating the

effect of a time-varying exposure on survival may be

biased in the presence of time-dependent confounders

which are themselves affected by prior exposure. This

problem can be overcome by inverse probability weighted

estimation of Marginal Structural Cox Models (Cox MSM)

or G-estimation of Structural Nested Cumulative Failure

Time Models (SNCFTM). For this situation, the reader is

referred to recent literature about such a scenario [20].

Conclusion

In pharmaco-epidemiology, the use of drugs is the deter-

minant of interest when studying exposure-effect associa-

tions. It seems likely that many negative findings in the

early days of pharmaco-epidemiology can be explained by

non-differential misclassification because of too simple

(yes/no) exposure measures. To reduce the risk of non-

differential misclassification, a precise definition of expo-

sure is mandatory and it is important to distinguish the

complete follow-up period of a population into mutually

exclusive episodes of non-use, past use and current use for

each individual. By analyzing exposure to drugs as a time-

dependent variable in a Cox regression model, cohort

studies with complete coverage of all filled prescriptions

can provide us with valid and precise risk estimates of

drug-outcome associations. However, such estimates may

be biased in the presence of time-dependent confounders

which are themselves affected by prior exposure.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. IEA-EEF European Congress of Epidemiology 2009 Warsaw,

Poland 26–29 August. Eur J Epidemiol 2009;24 Suppl 1.

2. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the

vagina. Association of maternal stilbestrol therapy with tumor

appearance in young women. N Engl J Med. 1971;284:878–81.

250 B. H. Ch. Stricker, T. Stijnen

123



3. Hurwitz ES, Barrett MJ, Bregman D, et al. Public health service

study of Reye’s syndrome and medications. Report of the main

study. JAMA. 1987;257:1905–11.

4. Heinonen OP, Shapiro S, Tuominen L, Turunen MI. Reserpine

use in relation to breast cancer. Lancet. 1974;2:675–7.

5. Stewart A, Webb J, Hewitt D. A survey of childhood malig-

nancies. Br Med J. 1958;1:1495–508.

6. MacMahon B. Prenatal X-ray exposure and childhood cancer. J

Nat Cancer Inst. 1962;28:1173.

7. Buring JE, Bain CJ, Hennekens CH. Alternative data sources in a

case-control study of conjugated estrogens and cancer. Am J Prev

Med. 1986;2:116–21.

8. Perneger TV, Whelton PK, Klag MJ. Risk of kiney failure

associated with the use of acetaminophen, aspirin, and nonste-

roidal anti-inflammatory drugs. N Eng J Med. 1994;331:1675–9.

9. Rooks JB, Ory HW, Ishak KG, Strauss LT, Greenspan JR, Hill

AP, et al. Epidemiology of hepatocellular adenoma. The role of

oral contraceptive use. JAMA. 1979;242:644–8.

10. Winkelmayer WC, Bucsics AE, Schautzer A, Wieninger P,

Pogantsch M. Use of recommended medications after myocardial

infarction in Austria. Eur J Epidemiol. 2008;23:153–62.

11. Hsia Y, Maclennan K. Rise in psychotropic drug prescribing in

children and adolescents during 1992–2001: a population-based

study in the UK. Eur J Epidemiol. 2009;24:211–6.

12. Thompson A. Thinking big: large-scale collaborative research in

observational epidemiology. Eur J Epidemiol. 2009;24:727–31.

13. Groenwold RHH, Hoes AW, Hak E. Confounding in publications

of observational intervention studies. Eur J Epidemiol. 2008;

22:413–5.

14. Stang A. Appropriate epidemiologic methods as a prerequisite for

valid study results. Eur J Epidemiol. 2008;23:761–5.

15. Cox DR. Regression models and life tables. J R Stat Soc B.

1972;34:187–220.

16. Clayton D, Hills M. Statistical models in epidemiology. New

York: Oxford University Press; 1993.

17. Hofman A, Breteler MMB, van Duijn CM, Janssen HLA, Krestin

GP, Kuipers EJ, et al. The Rotterdam study: 2010 objectives and

design update. Eur J Epideiol. 2009;24:553–72.

18. Schoofs MW, van der Klift M, Hofman A, de Laet CE, Herings

RM, Stijnen T, et al. Thiazide diuretics and the risk for hip

fracture. Ann Intern Med. 2003;139:476–82.

19. Robins JM. Estimation of the time-dependent accelerated failure

time model in the presence of confounding factors. Biometrika.

1992;79:321–34.

20. Young JG, Hernán MA, Picciotto S, Robins JM. Relation

between three classes of structural models for the effect of a time-

varying exposure on survival. Lifetime Data Anal. 2009 Nov 6

(Epub ahead of print).

Analysis of individual drug use 251

123


	Analysis of individual drug use as a time-varying determinant  of exposure in prospective population-based cohort studies
	Abstract
	Introduction
	Drug assessment in populations
	Converting filled prescriptions into exposure variables
	Drug-event analyses
	Analysis of drug exposure as a time-varying determinant in prospective population-based cohort studies
	Limitations
	Conclusion
	Open Access
	References


