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The timely recognition of sepsis and the prediction of its clinical course are challenging due to the complex molecular mechanisms
leading to organ failure and to the heterogeneity of sepsis patients. Treatment strategies relying on a “one-fits-all” approach have
failed to reduce mortality, suggesting that therapeutic targets differ between patient subgroups and highlighting the need for
accurate analysis of the molecular cascades to assess the highly variable host response. Here, we characterized a panel of 44
inflammatory mediators, including cytokines, chemokines, damage-associated molecular patterns, and coagulation-related
factors, as well as markers of endothelial activation in 30 patients suffering from renal failure in the course of sepsis. All patients
received continuous veno-venous hemodialysis with either high cut-off filters or with standard filters, and mediators were
quantified for all patients at the initiation of dialysis and after 24 h and 48 h. Mediator concentrations in individual patients
ranged widely, demonstrating the heterogeneity of sepsis patients. None of the mediators correlated with SAPS III or TISS
scores. The overall in-hospital mortality of the study population was 56.7% (57.1% vs. 56.3% for high cut-off vs. standard filter).
The two filter groups differed regarding most of the mediator levels at baseline, prohibiting conclusions regarding the effect of
standard filters versus high cut-off filters on mediator depletion. The elevation and correlation of damage-associated molecular
patterns and markers of endothelial activation gave evidence of severe tissue damage. In particular, extracellular histones were
strongly increased and were almost 30-fold higher in nonsurvivors as compared to survivors, indicating their diagnostic and
prognostic potential.

1. Introduction

The definition of sepsis as life-threatening organ dysfunction
caused by a dysregulated host response to infection empha-
sizes the significance of the nonhomeostatic host response
and highlights the need for timely recognition and treatment
of sepsis [1, 2].

The clinical course of sepsis is highly heterogeneous and
is influenced by both pathogen-related factors (type and load

of pathogen, virulence, and site of infection) and host-related
factors (age, gender, genetic background, comorbidities, and
lifestyle) [3–5]. Therapeutic approaches to target individual
mediators, such as lipopolysaccharide (LPS) or proinflam-
matory cytokines, have failed to demonstrate convincing
benefit in clinical trials so far [6–9]. Post hoc analysis
indicated benefits for certain patient subgroups in a number
of studies, but these effects were diluted across the study
population due to its pronounced heterogeneity [10, 11].
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Sepsis is initiated by the recognition of pathogens via
pathogen-associated molecular patterns (PAMPs) on innate
immune cells, triggering the release of cytokines and chemo-
kines [12, 13]. Simultaneously, injured host cells secrete
damage-associated molecular patterns (DAMPs), including
histones, high-mobility group box-1 protein (HMGB-1),
and extracellular matrix components, such as heparan sul-
phate, amplifying the inflammatory response [14]. Activated
neutrophils release neutrophil extracellular traps (NETs),
chromatin-based structures associated with antimicrobial
peptides, histones, myeloperoxidase, and elastase. Excessive
NET formation promotes tissue damage and activation of
coagulation, as well as endothelial activation and loss of
barrier function [15–17]. Furthermore, proinflammatory
mediators may induce leukocyte apoptosis, resulting in
immune suppression and inability to cope with the primary
or with secondary infections [18, 19].

To target this imbalance and to support the restoration of
immune homeostasis, approaches for extracorporeal immu-
nomodulation including continuous veno-venous hemodial-
ysis (CVVHD) with high cut-off hemofilters have been
introduced [20]. In a previous study in 30 patients suffering
from renal failure in the course of sepsis, we compared the
depletion of IL-6, IL-8, IL-10, and TNF-α with high cut-off
versus standard high-flux hemofilters and observed
enhanced clearance of IL-6 and IL-8 by high cut-off vs. stan-
dard filters both in vitro and in vivo. This enhanced clearance
however did not result in persistently reduced cytokine levels,
presumably due to a dynamic release of cytokines over the
course of treatment [21]. We further found that plasma
samples from individual patients differed considerably with
regard to their potential to induce endothelial activation in
a cell culture model [22].

Here, we report on inflammatory mediator profiles in the
study population, comprising a panel of 44 inflammatory
cytokines, chemokines, growth factors, DAMPs, and endo-
thelial activation markers, as well as coagulation-related
parameters, which were analyzed both at the initiation of
dialysis and over the course of treatment.

2. Materials and Methods

2.1. Study Design. Plasma samples from sepsis patients were
obtained within a single-center, randomized, controlled
clinical study with the primary aim of comparing the
depletion of IL-6, IL-8, IL-10, and TNF-α during CVVHD
using the high cut-off filter Ultraflux EMiC2 and the stan-
dard filter Ultraflux AV1000S, both from Fresenius Medi-
cal Care (Bad Homburg, Germany). Both EMiC2 and
AV1000S are polysulfone-based filters with a surface area
of 1.8m2 and an approximate molecular weight cut-off of
40 and 30 kDa, respectively. The study was approved by
the Ethics Committee of the University Clinic St. Pölten,
Austria (GS4-EK-3/082-2012), and was performed in
accordance with the Declaration of Helsinki. Based on
in vitro data on the clearance of IL-6 with the high cut-
off filter vs. the standard filter (4:7 ± 0:2 vs. 0:8 ± 0:4ml/
min) and on literature data showing average IL-6 levels
of 360 ± 116 pg/ml in sepsis patients, a sample size of 15

patients per group was calculated to achieve a power of
80% (α = 0:05), assuming a standardized difference of
Cohen’s d = 0:90 between the two treatment groups. The
results regarding the primary study aim have been pub-
lished elsewhere [21]. Here, we characterized the plasma
concentrations of 44 inflammatory mediators in the study
population over the course of treatment, as detailed below.

2.2. Inclusion Criteria. Patients suffering from acute renal
failure in the course of sepsis were included in this study
and recruited from November 2013 to October 2015.
Acute renal failure was diagnosed according to RIFLE cri-
teria [23]. The diagnosis of sepsis was established on the
basis of a proven or suspected infection and the presence
of at least two of the following criteria: (i) temperature >
38°C or < 36°C; (ii) heart rate > 90 beats per min; (iii)
respiratory rate > 20 breaths per min or partial pressure of
carbon dioxide in arterial blood ðPaCO2Þ < 32mmHg; and
(iv) white blood cell count > 12 x 109/l, <4 × 109/l, or > 10%
band forms [24]. Patients younger than 18 years, pregnant
patients, and patients with a contraindication for continu-
ous hemodialysis were excluded. Thirty patients were
included and randomized either to the high cut-off
(EMiC2) group (n = 14) or to the standard (AV1000S) fil-
ter group (n = 16) [21].

2.3. Treatment and Sample Collection. In both groups,
CVVHD was performed for 48 h at a blood flow of
200ml/min, and citrate was used as an anticoagulant (Ci-
Ca protocol, Fresenius Medical Care). At admission, SAPS
III (Simplified Acute Physiology Score) and TISS (Therapeu-
tic Intervention Scoring System) scores, leukocyte counts,
comorbidities, and the sites of infection were recorded. Blood
samples were drawn at the onset of the study (0 h) and after
24 h and 48 h into vacuette tubes containing citrate as the
anticoagulant (Greiner Bio-One, Kremsmünster, Austria).
All samples were immediately centrifuged (2,000 g, 15min,
4°C), and the resulting plasma samples were stored at -80°C
until further analysis.

2.4. Quantification of Inflammatory Cytokines, Chemokines,
and Growth Factors. The Bio-Plex Pro™ human cytokine
27-plex bead array (Bio-Rad, Vienna, Austria) was used
to quantify interleukin- (IL-) 1β, IL-1 receptor antagonist
(IL-1ra), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-
12p70, IL-13, IL-15, IL-17A, interferon-gamma (IFN-γ),
tumour necrosis factor-alpha (TNF-α), monocyte chemo-
tactic protein-1 (MCP-1), macrophage inflammatory
protein-1 alpha and beta (MIP-1α, MIP-1β), regulated on
activation, normal T-cell expressed and secreted
(RANTES), eosinophil chemotactic protein (eotaxin),
interferon-inducible protein 10 (IP-10), granulocyte
colony-stimulating factor (G-CSF), granulocyte-
macrophage colony-stimulating factor (GM-CSF), basic
fibroblast growth factor (bFGF), platelet-derived growth
factor (PDGF), and vascular endothelial growth factor
(VEGF). Plasma samples were diluted to 1 : 4 with sample
diluent and analyzed according to the instructions of the
manufacturer. Plasma concentrations of C-reactive protein
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(CRP), soluble CD14 (sCD14), growth arrest-specific gene
6 (Gas6), and soluble suppression of tumorigenicity 2
(sST2) were quantified by the enzyme-linked immunosor-
bent assay (ELISA; R&D Systems Minneapolis, MN).
LPS-binding protein (LBP) was measured by ELISA (Bio-
metec, Greifswald, Germany).

The hybcell antibody microarray (CubeDX, St. Valentin,
Austria) was used to quantify procalcitonin (PCT) and cysta-
tin C. The Bromocresol Green Albumin Assay (Sigma-
Aldrich, St. Louis, MO) was used to quantify albumin.

2.5. Quantification of Endothelial ActivationMarkers. Plasma
concentrations of the endothelial-associated proteoglycan
endothelial cell-specific molecule-1 (ESM-1, endocan) were
determined by ELISA (Lunginnov, Lille, France).
Angiopoietin-1 (Ang-1) and Ang-2 were quantified by
ELISA (R&D Systems).

2.6. Quantification of DAMPs. Extracellular DNA (ecDNA)
was isolated from 100μl of plasma from septic patients using
the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)
according to the recommended protocol, and total ecDNA
was quantified with a Qubit fluorometer and dsDNA HS
Assay Kit (Thermo Fisher Scientific, Waltham, MA). Extra-
cellular histones were determined as components of nucleo-
somes using the cell death detection ELISA (Roche,
Mannheim, Germany), wherein a monoclonal anti-histone
antibody is used as a catching antibody in combination with
a monoclonal anti-DNA antibody conjugate for detection. A

Table 1: Clinical characteristics of study patients at baseline.

Characteristics All patients (n = 30)
Age (years) 62:3 ± 18:3 (26-89)
Gender, male 19 (63%)

SAPS III 68:4 ± 12:5 (45-107)
TISS 39:5 ± 7:1 (26-57)
Leukocyte count (×103/μl) 15:0 ± 8:6 (2-35)
Comorbidities, number (% of total)

Cardiovascular 18 (60%)

Pulmonary 7 (23%)

Hepatitis/pancreatitis 1 (3%)

Neurological 9 (30%)

Renal 5 (17%)

Diabetes 9 (30%)

Primary site of infection, number (% of total)

Lung 1 (3%)

Abdomen 10 (33%)

Blood 7 (23%)

Urinary tract 3 (10%)

Other 7 (23%)

Unknown 2 (7%)

Data are represented as mean ± standard deviation (range) or n (%). SAPS
III: Simplified Acute Physiology Score III; TISS: Therapeutic Intervention
Scoring System.

Table 2: Biomarker profiles in sepsis patients at baseline (n = 30).

Parameter Median IQR (25th-75th quartile)

Inflammatory mediators

IL-1β (pg/ml) 6.82 4.37-14.55

IL-1ra (pg/ml) 670.66 266.44-1,231.08

IL-2 (pg/ml) 7.62 1.12-32.42

IL-4 (pg/ml) 6.36 4.82-10.11

IL-5 (pg/ml) 19.94 15.94-35.56

IL-6 (pg/ml) 277.02 103.65-1,091.49

IL-7 (pg/ml) 8.14 4.64-22.54

IL-8 (pg/ml) 104.56 53.26-198.48

IL-9 (pg/ml) 15.76 8.62-34.04

IL-10 (pg/ml) 28.48 10.59-65.04

IL-12 (pg/ml) 19.54 8.71-45.81

IL-13 (pg/ml) 6.68 0.84-11.68

IL-15 (pg/ml) 14.30 1.36-57.00

IL-17 (pg/ml) 49.22 19.65-86.74

IFN-γ (pg/ml) 173.40 112.79-295.45

TNF-α (pg/ml) 84.56 44.98-152.19

CRP (mg/l) 208.15 164.26-283.67

PCT (ng/ml) 3.00 0.78-4.36

LBP (μg/ml) 114.93 77.47-172.14

sCD14 (ng/ml) 3,159.00 2,728.00-3,721.00

sST2 (ng/ml) 372.36 173.64-589.74

Gas6 (ng/ml) 43.15 34.03-55.44

Chemokines

MCP-1 (pg/ml) 125.72 49.97-385.93

MIP-1α (pg/ml) 8.48 5.72-12.92

MIP-1β (pg/ml) 120.94 96.09-200.34

RANTES (pg/ml) 2,014.36 1,088.59-3,285.85

Eotaxin (pg/ml) 95.78 59.67-116.16

IP-10 (pg/ml) 1,375.94 822.83-2,734.51

Growth factors

G-CSF (pg/ml) 161.60 70.82-637.97

GM-CSF (pg/ml) 54.32 13.46-109.47

FGF (pg/ml) 79.94 56.00-116.24

PDGF (pg/ml) 118.70 68.22-218.79

VEGF (pg/ml) 25.98 10.39-60.54

Endothelial activation
markers

ESM-1 (ng/ml) 6.00 3.86-12.95

Ang-1 (ng/ml) 0.59 0.43-1.22

Ang-2 (ng/ml) 13.85 7.85-33.21

Ang-2/Ang-1 22.99 8.96-61.99

Damage-associated molecular patterns

ecDNAa (ng/ml) 545.02 276.11-1,194.48

Histonesa (mg/ml) 6.60 0.45-24.67

HMGB-1b (ng/ml) 3.70 2.6-6.91

Coagulation-related parameters

TF (pg/ml) 66.98 50.64-91.59

TF activity (pM) 38.13 24.57-55.79
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mixture of histones H1, H2A, H2B, H3, and H4 from the calf
thymus (Roche) was used as a standard. High-mobility group
box-1 protein (HMGB-1) was quantified by ELISA (IBL
International, Hamburg, Germany).

2.7. Quantification of Coagulation-Related Parameters.
Plasma concentrations of tissue factor (TF) were measured
by ELISA (R&D Systems). Tissue factor activity was analyzed
with the Actichrome TF assay (Sekisui Diagnostics, Stam-
ford, CT).

2.8. Statistical Analysis.Descriptive results of continuous var-
iables are expressed as median and 25th to 75th quartiles,
except for clinical characteristics at baseline which are indi-
cated as mean ± standard deviation (range). For calculation,
values of mediators that remained below the detection limit
of a given test were set equal to the lower detection limit. Dif-
ferences in inflammatory mediator concentrations among
survivors and nonsurvivors at baseline were analyzed by the
nonparametric Mann-Whitney test. The same test was used
to assess statistical differences in inflammatory mediator
concentrations at baseline and after 48 h between the filter
groups. Repeated measures two-way ANOVA followed by
Bonferroni’s multiple comparison test was performed to
assess the filter (EMiC2 vs. AV1000S) and time effect (0 vs.
24 vs. 48 h). This analysis could not be performed for ecDNA,
histone, sST2, TF, and TF activity due to the lack of data at
24 h and 48 h for these parameters. For correlation analysis,
all parameters were log10-transformed to obtain a propor-
tionally constant variation. Correlations among various bio-
markers were tested for significance using the
nonparametric Spearman correlation test. For all statistical
tests, a value of p < 0:05 was considered to be statistically
significant.

3. Results

3.1. Patient Characteristics. Thirty patients suffering from
sepsis in the course of acute renal failure were included
in the study. The demographic and clinical characteristics
of the study population at baseline are summarized in
Table 1. The predominant comorbidities of the study pop-
ulation were cardiovascular disease (60%), as well as dia-
betes and neurological disorders (30% each). The
abdomen represented the primary site of infection (33%).
The overall in-hospital mortality of the study population
was 56.7% (57.1% vs. 56.3% for high cut-off vs. the stan-
dard filter, respectively). Age, gender, physiological scores
(SAPS III, TISS), and leukocyte counts at admission did

not significantly differ between survivors and nonsurvivors
(Supplementary Table 1).

3.2. Inflammatory Mediator Concentrations. The baseline
median and interquartile range of the 44 inflammatory
parameters analyzed in this study are summarized in
Table 2. Plasma levels of IL-33 remained undetectable for
the majority of patients and were therefore excluded from
statistical analysis.

The baseline median and interquartile range of the
inflammatory mediators for survivors and nonsurvivors are
summarized in Supplementary Table 2. Plasma samples
from nonsurvivors showed 28-fold higher median baseline
levels of histones, 7.6-fold higher median levels of IL-2, and
3.1-fold higher median levels of IL-10 as compared to those
from survivors. MCP-1, IL-15, and GM-CSF were more
than 2-fold elevated in nonsurvivors. Except for histones
(p = 0:025), however, none of these differences reached
statistical significance.

3.3. Correlation of Inflammatory Cytokines, Chemokines, and
Growth Factors. A plot of all parameters obtained by Spear-
man correlation analysis at baseline is shown in Figure 1.
The strong correlation of IL-1β, IL-1ra, IL-4, IL-6, IL-8, IL-
10, IL-15, IFN-γ, TNF-α, MCP-1, G-CSF, and GM-CSF con-
firmed the presence of a systemic, proinflammatory cytokine
and chemokine response in the patient cohort, as detailed in
Table 3. In particular, IL-1β correlated with both IFN-γ
(r = 0:963, p < 0:0001) and TNF-α (r = 0:936, p < 0:0001),
which also correlated with each other (r = 0:934, p < 0:0001
). IL-15 and IL-10 were also strongly correlated (r = 0:912,
p < 0:0001). We failed to detect a correlation between any
of the biomarkers with disease severity, assessed by the SAPS
III and TISS scores, except that SAPS III showed a weak neg-
ative association with IL-12 (r = −0:374, p = 0:042) and FGF
(r = −0:035, p = 0:086).

3.4. Damage-Associated Molecular Patterns and Coagulation-
Related Parameters. To investigate the presence of damage-
associated molecular patterns released from cells following
tissue injury, we quantified extracellular DNA, histones,
and HMGB-1, which significantly correlated with each
other (Figure 2). In particular, the elevated levels of both
extracellular DNA and histones indicated the release of
neutrophil extracellular traps (NETs) [15]. Histones also
significantly correlated with TF activity, providing further
evidence for the presence of an immuno-thrombotic
response (Figure 3).

We refrained from a direct quantification of LPS, since
plasma components can interfere with the Limulus amoebo-
cyte lysate assay. The elevated levels of LPS-binding protein
(LBP) and sCD14, which both act as cofactors for the binding
of LPS by toll-like receptors, however, provided strong evi-
dence for the presence of LPS in the plasma samples. LBP sig-
nificantly correlated with sCD14 and with the acute-phase
protein CRP (Figure 3).

3.5. Markers of Endothelial Activation. To assess endothelial
activation and alterations in vascular integrity, we quanti-
fied the vasoactive factors angiopoietin-1 (Ang-1) and

Table 2: Continued.

Parameter Median IQR (25th-75th quartile)

Others

Cystatin C (μg/ml) 3.75 2.92-4.05

Albumin (g/dl) 3.38 2.83-3.81

Data are represented as median and interquartile range (IQR, 25th-75th

quartile). an = 29; bn = 27.
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Figure 1: Correlation plot of all parameters determined in this study at baseline (0 h). The plot is based on the Spearman correlation between
each pair of biomolecule. On the right, the Spearman correlation coefficient is indicated by the color gradient.

Table 3: Correlation analysis of inflammatory cytokines, chemokines, and growth factors (n = 30).

IL-1β IL-1ra IL-4 IL-6 IL-8 IL-10 IL-15 IFN-γ TNF-α MCP-1 G-CSF GM-CSF

IL-1β 0.787 0.835 0.788 0.581 0.692 0.771 0.963 0.936 0.719 0.687 0.775

IL-1ra 0.660 0.757 0.689 0.844 0.820 0.818 0.825 0.759 0.641 0.714

IL-4 0.723 0.630 0.696 0.721 0.852 0.824 0.652 0.682 0.802

IL-6 0.770 0.626 0.686 0.755 0.686 0.806 0.747 0.753

IL-8 0.591 0.607 0.581 0.539 0.782 0.762 0.666

IL-10 0.912 0.771 0.756 0.750 0.575 0.805

IL-15 0.817 0.807 0.780 0.650 0.849

IFN-γ 0.934 0.687 0.699 0.813

TNF-α 0.677 0.652 0.783

MCP-1 0.715 0.784

G-CSF 0.728

GM-CSF
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Ang-2 as well as endothelial cell-specific molecule-1 (ESM-
1, endocan), a proteoglycan mainly expressed by lung
endothelial cells, whose secretion into the bloodstream is
upregulated by proinflammatory cytokines and LPS [25].
ESM-1 levels were elevated as compared to reference
values (Table 2) but did not correlate with any of the
inflammatory parameters (Figure 1) [26, 27]. Both Ang-2
levels and the ratio of Ang-2/Ang-1 were substantially
increased in our patient cohort, indicating increased vascu-
lar permeability. The Ang-2/Ang-1 ratio of 22 was very
high as compared to previously published studies, which
reported Ang-2/Ang-1 ratios of 5 for septic shock patients
[28–30]. Moreover, we have found moderate positive cor-
relations for Ang-2 and HMGB-1 (r = 0:551, p = 0:003).
Extracellular DNA correlated with Ang-2 (r = 0:491, p =
0:007) and VEGF (r = 0:419, p = 0:024). VEGF also
showed a positive correlation with HMGB-1 (r = 0:484, p
= 0:011).

3.6. Depletion of Inflammatory Mediators by High Cut-Off vs.
Standard Dialysis. The clinical characteristics of sepsis
patients randomized to the treatment groups EMiC2 and
AV1000S at baseline are shown in Table 4. Inflammatory
mediator profiles in sepsis patients at baseline and after
48 h for EMiC2 and AV1000S are summarized in Table 5.
Except for Gas6, Ang-2, TF, and TF activity, the baseline
levels of inflammatory parameters were higher for patients

randomized to the AV1000S group than to the EMiC2 group.
This difference reached significance for IL-1β, IL-1ra, IL-6,
IL-8, IL-15, IL-17, GM-CSF, PDGF, VEGF, and cystatin C
(Table 5).

Treatment with AV1000S was associated with a signifi-
cant decrease in IL-1β, IL-1ra, IL-2, IL-15, IL-17, TNF-α,
eotaxin, GM-CSF, and VEGF over time (0 h vs. 24 h and 0h
vs. 48 h). Additionally, a significant reduction at 48 h was
found for IL-4, IL-6, IFN-γ, PCT, MCP-1, MIP-1α, RANTES,
IP-10, FGF, PDGF, and Ang-2. None of the inflammatory
parameters decreased significantly over time for EMiC2,
except for PCT (Figure 4). Despite the increased cut-off of
the EMiC2 filter, albumin concentrations remained unaf-
fected over time (data not shown).

4. Discussion

The characterization of inflammatory mediator profiles
and their dynamic alterations can provide a basis for the
timely prediction of the clinical course of sepsis and for
the improved management of sepsis patients [5, 31, 32].

Here, we characterized a panel of 44 parameters in
septic plasma samples, including cytokines, chemokines,
growth factors, damage-associated molecular patterns,
endothelial activation markers, and coagulation-related
factors to depict the molecular mechanisms underlying
sepsis on multiple levels. The study population included
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Figure 2: Correlation analysis of damage-associated molecular patterns in septic plasma samples. (a) Histones vs. extracellular DNA
(ecDNA), (b) histones vs. high-mobility group box-1 protein (HMGB-1), (c) ecDNA vs. HMGB-1. The Spearman correlation test was
used to calculate linear relationship between variables at baseline (0 h). Histones (n = 29), ecDNA (n = 29), and HMGB-1 (n = 27).
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30 patients suffering from acute renal failure in the course
of sepsis, who received CVVHD with either high cut-off or
standard filters. In line with previous studies, mediator
concentrations in the study population at baseline (initia-
tion of dialysis) ranged widely, despite thoroughly defined
inclusion criteria [33–36]. The overall mortality was
56.7%, which was high compared to previously published
studies [34, 36, 37]. Together with several other parame-
ters, particularly the extremely high ratio of Ang-2/Ang-1
(see below), this indicated the severity of sepsis in our
study population.

The strong correlations between IL-1β, IL-1ra, IL-4, IL-6,
IL-8, IL-10, IL-15, IFN-γ, TNF-α, MCP-1, G-CSF, and GM-
CSF provided evidence for the recruitment of innate immune
cells (IL-8, IL-15, MCP-1, G-CSF, and GM-CSF). In line with
previous studies [38, 39], they further indicated the presence
of a proinflammatory immune response (IL-1β, IL-6, TNF-α,
and IFN-γ), with a coexisting anti-inflammatory reaction
(IL-1ra, IL-4, and IL-10). In particular, positive correlations
between IL-6, IL-8, IL-10, MCP-1, MIP-1β, IFN-γ, and
GM-CSF support previous findings [39].

We refrained from the quantification of LPS in plasma
samples, since a number of plasma components as well as
anticoagulants can interfere with the Limulus amoebocyte
lysate assay. However, the elevated plasma concentrations

of LBP and sCD14 pointed to the presence of LPS [40],
as LBP and sCD14 are released to reduce or inhibit the
response to LPS by limiting its interaction with Toll-like
receptor- (TLR-) 4 [41, 42]. In addition to its association
with sCD14, LBP also correlated with the acute-phase pro-
tein CRP. There is accumulating evidence that CRP,
beyond its role as a marker for infection, can be actively
involved in the propagation of inflammation, particularly
when bound to extracellular vesicles released from acti-
vated platelets. Moreover, recent data indicate that patients
with high CRP levels, together with elevated IL-6 and
PCT, are more likely to experience severe complications
due to the cytokine storm associated with coronavirus dis-
ease (COVID-19) [43].

We included extracellular DNA, histones, and HMGB-
1 in our analysis, as they represent well-characterized
DAMPs whose release is critical in sepsis [15]. All three
factors were elevated and strongly correlated with each
other, indicating neutrophil activation with NET formation
[44–47], which can induce collateral damage to the host
and potentiate tissue damage and thrombosis. NET-
associated histones, in particular, display direct cytotoxic
effects on eukaryotic cells, exert proinflammatory roles
upon their release into the extracellular environment, and
can contribute to endothelial barrier dysfunction [48–53].
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Figure 3: Correlation analysis of inflammatory mediators in septic plasma samples. (a) LBP vs. soluble CD14 (sCD14), (b)
lipopolysaccharide-binding protein (LBP) vs. C-reactive protein (CRP), and (c) tissue factor (TF) activity vs. histones. The Spearman
correlation test was used to measure the degree of association between variables at baseline (0 h; n = 30 for LBP, sCD14, CRP, and TF
activity; n = 29 for histones).
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They can trigger a procoagulant phenotype in endothelial
cells and stimulate TF expression in a dose-dependent
manner [54, 55], as also evidenced by the correlation of
histone levels and TF activity in our study population.
Our finding that nonsurvivors showed almost 30-fold
higher baseline histone levels than survivors confirmed
the significant contribution of histones to cellular injury
and multiple organ failure and their potential predictive
value for the clinical course of sepsis [56–58].

Next to immunothrombosis, microvascular endothelial
dysfunction is a fundamental mechanism in sepsis. Con-
sidering this, our analysis included ESM-1, Ang-1, Ang-2,
and VEGF as markers of altered endothelial function.
ESM-1, a proteoglycan mainly expressed by lung and kid-
ney endothelial cells, is released in response to proinflam-
matory cytokines [25, 59, 60]. It can block the interaction
of monocytes with activated endothelial cells by impeding
the binding of the monocytic integrin LFA-1 to endothe-
lial ICAM-1 [61]. Accordingly, we have previously shown
that septic plasma samples containing high ESM-1 levels
failed to induce monocytic cell adhesion to endothelial
cells in vitro [22].

Angiopoietins are essential for vasculogenesis and vas-
cular stability and have been implicated in endothelial dys-
function in sepsis. Ang-1 promotes stabilization and
maturation of new blood vessels, whereas Ang-2 can either
promote VEGF-induced angiogenesis or destabilize blood
vessels in a context-dependent fashion. Increased Ang-
2/Ang-1 ratios have been described in sepsis and have

been associated with disease severity and poor outcome
[29, 62], as confirmed by the high mortality and the
extraordinarily high Ang-2/Ang-1 ratio in our study
population.

Patients enrolled in this study received CVVHD with
high cut-off filters or with standard filters [21]. After ran-
domization, baseline levels of most inflammatory media-
tors were higher for the standard filter group vs. the
high cut-off filter group, and this difference was statisti-
cally significant for a number of factors. Clearly, these dif-
ferent baseline mediator levels are linked to the relatively
small sample size of our study and limit conclusions with
regard to differences in mediator depletion in the two filter
groups. As a further limitation, the panel of parameters
evaluated in this study cannot be immediately used for
bedside monitoring, but our findings may contribute to
the identification of smaller mediator panels to support
early diagnosis of sepsis.

In conclusion, the analysis of a panel of inflammation-
related parameters, including cytokines, chemokines,
damage-associated molecular patterns, procoagulant fac-
tors, and markers of endothelial activation, highlights the
high level of heterogeneity in sepsis. The finding that
extracellular histones were significantly elevated in nonsur-
vivors as compared to survivors emphasizes the diagnostic
and prognostic potential of circulating histones and nucle-
osomes. Sepsis patients may benefit from antihistone
agents, such as nonanticoagulant heparin or hemoperfu-
sion devices containing beads functionalized with heparin

Table 4: Clinical characteristics of patients randomized to EMiC2 and AV1000S at baseline.

Characteristics EMiC2 (n = 14) AV1000S (n = 16)
Age (years) 61:7 ± 16:5 (26-81) 62:8 ± 20:3 (26-89)
Gender, male 6 (43%) 13 (81%)∗

SAPS III 67:7 ± 10:3 (48-85) 69:0 ± 14:4 (45-107)
TISS 40:6 ± 7:8 (30-57) 38:6 ± 6:4 (26-48)
Leukocyte count (×103/μl) 16:2 ± 7:8 (2-34) 14:0 ± 9:4 (2-35)
Nonsurvivors 8 (57.1%) 9 (56.3%)

Comorbidities, number (% of total)

Cardiovascular 8 (57%) 10 (63%)

Pulmonary 1 (7%) 6 (38%)

Hepatitis/pancreatitis 1 (7%) 0 (0%)

Neurological 6 (43%) 3 (19%)

Renal 1 (7%) 4 (25%)

Diabetes 3 (21%) 6 (38%)

Primary site of infection, number (% of total)

Lung 1 (7%) 0 (0%)

Abdomen 5 (36%) 5 (31%)

Blood 3 (21%) 4 (25%)

Urinary tract 1 (7%) 2 (13%)

Other 3 (21%) 4 (25%)

Unknown 1 (7%) 1 (6%)

Data are represented as mean ± standard deviation (range) or n (%). SAPS III: Simplified Acute Physiology Score III; TISS: Therapeutic Intervention Scoring
System. ∗p = 0:030.
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Table 5: Biomarker profiles in sepsis patients at baseline and after 48 h for EMiC2 and AV1000S.

Parameter
0 h 48 h

EMiC2 (n = 14) AV1000S (n = 16) EMiC2 (n = 12) AV1000S (n = 10)
Inflammatory mediators

IL-1β (pg/ml) 5.92 (1.66-9.21)∗ 8.80 (5.60-21.21) 4.12 (81.15-5.64) 4.12 (2.05-8.43)

IL-1ra (pg/ml) 301.44 (112.64-1,082.40)∗ 962.12 (422.33-2,706.33) 259.44 (168.56-383.78) 294.44 (142.33-533.06)

IL-2 (pg/ml) 1.12 (1.12-14.36) 16.88 (1.12-34.91) 1.12 (1.12-1.87) 1.12 (1.12-14.94)

IL-4 (pg/ml) 5.56 (2.53-8.25) 7.58 (5.21-10.62) 4.32 (0.81-5.56) 4.46 (1.72-6.87)

IL-5 (pg/ml) 17.48 (13.25-29.07) 23.22 (15.11-36.60) 16.40 (5.32-25.88) 15.30 (3.02-34.37)

IL-6 (pg/ml) 108.76 (43.38-693.86)∗ 372.14 (256.94-8,914.32) 63.94 (25.22-279.45) 148.04 (36.39-476.18)

IL-7 (pg/ml) 7.12 (3.49-22.74) 10.14 (5.47-25.29) 10.14 (2.56-17.51) 7.04 (2.38-26.49)

IL-8 (pg/ml) 70.06 (35.18-128.29)∗ 181.50 (71.64-309.90) 47.10 (35.52-60.96) 54.66 (45.07-79.99)

IL-9 (pg/ml) 10.58 (5.11-21.22) 24.50 (9.28-40.76) 10.76 (3.67-14.46) 21.60 (4.84-50.33)

IL-10 (pg/ml) 10.76 (3.12-60.99) 44.94 (15.64-90.29) 11.76 (2.70-19.45) 22.58 (2.15-40.24)

IL-12 (pg/ml) 12.90 (5.59-46.92) 24.70 (17.40-45.64) 14.40 (3.67-34.50) 16.82 (4.85-53.85)

IL-13 (pg/ml) 4.58 (0.49-10.39) 7.48 (2.32-13.69) 2.90 (0.49-11.07) 5.34 (0.49-11.41)

IL-15 (pg/ml) 2.18 (1.36-42.09)∗ 30.52 (11.05-69.96) 2.20 (1.36-6.54) 14.92 (1.36-36.92)

IL-17 (pg/ml) 21.98 (1.76-59.59)∗ 61.36 (33.91-95.71) 20.96 (2.29-44.40) 16.22 (5.30-56.03)

IFN-γ (pg/ml) 141.98 (52.02-236.75) 235.00 (132.64-367.44) 106.74 (11.40-175.60) 111.46 (31.02-246.25)

TNF-α (pg/ml) 67.24 (21.35-127.49) 130.36 (66.29-258.62) 40.10 (10.36-69.18) 47.90 (28.27-121.97)

CRP (mg/l) 182.75 (152.39-309.13) 225.20 (170.16-279.81) 194.59 (122.48-259.60) 211.55 (143.30-266.25)

PCT (ng/ml) 2.64 (0.63-4.19) 3.14 (1.22-5.84) 1.26 (0.50-2.63) 1.86 (0.50-4.55)

LBP (μg/ml) 111.70 (71.10-178.66) 117.53 (77.75-175.31) 94.64 (67.16-178.19) 98.13 (59.89-109.24)

sCD14 (ng/ml)
3,141.50 (2,652.75-

3,596.50)
3,256.50 (2,741.00-

4,153.75)
2,835.50 (2,460.75-

3,211.00)
2,812.00 (2,103.25-

3,926.25)

sST2 (ng/ml) 311.56 (137.45-501.29) 460.20 (291.00-616.22)

Gas6 (ng/ml) 49.82 (30.53-56.13) 41.37 (37.88-51.81) 39.73 (34.45-53.00) 37.83 (30.14-55.57)

Chemokines

MCP-1 (pg/ml) 77.84 (18.58-196.61) 217.92 (58.49-452.11) 30.30 (20.34-65.31) 98.76 (43.46-169.94)

MIP-1α (pg/ml) 7.40 (3.60-13.36) 9.76 (7.45-12.92) 5.72 (0.06-8.84) 6.44 (1.34-10.68)

MIP-1β (pg/ml) 113.96 (86.25-136.21) 140.10 (99.45-250.56) 87.68 (66.20-118.70) 87.80 (69.61-206.18)

RANTES (pg/ml) 1,761.46 (358.78-2,779.92)
2,034.30 (1,120.56-

4,104.55)
928.68 (436.46-2,185.56) 1,158.44 (408.50-3,027.76)

Eotaxin (pg/ml) 70.56 (49.43-105.12) 101.08 (76.99-190.60) 50.36 (45.00-69.06) 68.12 (36.38-97.11)

IP-10 (pg/ml) 1,256.80 (863.08-2,267.60) 1,572.08 (698.69-3,027.45) 1,230.46 (602.92-2,062.71) 853.12 (530.21-2,442.66)

Growth factors

G-CSF (pg/ml) 96.38 (37.36-441.77) 185.96 (150.13-645.11) 94.88 (72.43-136.79) 109.36 (75.29-137.63)

GM-CSF (pg/ml) 16.54 (0.78-95.23)∗ 83.54 (31.07-159.81) 8.32 (0.78-27.19) 28.84 (4.77-74.65)

FGF (pg/ml) 61.88 (21.93-107.02) 93.12 (66.33-119.76) 49.48 (5.12-82.51) 51.00 (4.09-95.82)

PDGF (pg/ml) 91.70 (45.13-187.68)∗ 152.26 (83.73-266.76) 59.62 (29.91-98.59) 63.66 (15.67-146.77)

VEGF (pg/ml) 9.84 (1.80-51.50)∗ 44.02 (18.84-61.46) 7.48 (1.80-22.88) 20.36 (4.92-36.96)

Endothelial activation
markers

ESM-1 (ng/ml) 4.76 (3.75-7.90) 7.24 (4.11-21.60) 5.86 (2.81-12.89) 16.39 (4.69-44.79)

Ang-1 (ng/ml) 0.56 (0.29-1.02) 0.73 (0.50-1.31) 0.36 (0.14-0.77) 0.62 (0.14-1.26)

Ang-2 (ng/ml) 15.21 (6.42-27.03) 13.03 (8.93-56.98) 10.42 (8.06-18.55) 10.09 (7.96-18.37)

Ang-2/Ang-
1

27.98 (10.92-45.96) 19.10 (8.47-128.80) 37.85 (9.75-133.65) 37.87 (7.01-110.56)

Damage-associated molecular patterns

ecDNA (ng/ml) 441.78 (244.90-690.28)a 657.27 (397.96-1,542.62)
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Table 5: Continued.

Parameter
0 h 48 h

EMiC2 (n = 14) AV1000S (n = 16) EMiC2 (n = 12) AV1000S (n = 10)
Histones (mg/ml) 0.60 (0.46-22.29)a 7.47 (0.40-79.90)

HMGB-1 (ng/ml) 2.99 (2.55-6.63)a 4.53 (2.89-12.53)b 2.99 (2.50-4.56)b,∗ 5.13 (3.26-9.16)c

Coagulation-related parameters

TF (pg/ml) 71.12 (42.24-108.66) 65.90 (50.96-79.93)

TF activity (pM) 46.73 (23.69-66.11) 33.10 (24.63-45.34)

Others

Cystatin C (μg/ml) 3.26 (2.60-4.00)∗ 3.91 (3.61-4.20) 2.68 (2.52-3.21)∗ 3.46 (3.03-3.86)

Albumin (g/dl) 3.42 (2.50-3.86) 3.35 (2.89-3.77) 3.55 (3.11-3.88) 3.13 (2.69-3.34)

Data are represented as median (25th-75th quartile). an = 13; bn = 14; cn = 8. Differences in inflammatory mediator concentrations between filter groups at
baseline and after 48 h were analyzed by the nonparametric Mann-Whitney test (∗p < 0:05).
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Figure 4: Effect of EMiC2 and AV1000S on inflammatory mediator concentrations over time (mean ± standard deviation, repeated measures
two-way ANOVA using Bonferroni’s multiple comparison test; n = 12 for EMiC2 (white bars), n = 10 for AV1000S (hatched bars); ∗p < 0:05,
∗∗p < 0:01, and ∗∗∗p < 0:001).
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(Seraph 100 Microbind Affinity Blood Filter, ExThera
Medical, Martinez, CA).

Finally, the findings of this study, specifically the wide
concentration ranges of mediators in individual patients as
well as the lack of consistency between clinical scores and
biomarker levels, emphasize the current challenge of identi-
fying distinct clinical phenotypes and of trial design and
interpretation in sepsis patients [63].
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