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Abstract: The stratospheric airship is taken as the research object, and the motion mode analysis of
the stratospheric airship is carried out. The influence of key parameters such as the center of mass,
the center of buoyance, and the aerodynamic stability moment on the motion mode of stratospheric
airship are analyzed and summarized in detail. According to the simulation and analysis results,
unlike high-speed and high-dynamic aircrafts such as airplanes, the motion modes of the stratospheric
airship are hardly affected by the perturbation of aerodynamic stability moment; the perturbations
of the vertical center of mass and the vertical center of buoyancy have a great influence on the
pitch pendulum motion modes, and their parameter perturbations affect the frequency of the pitch
pendulum motion and also the stability of the pitch pendulum motion; the axial mass center location
perturbation not only changes the damping of pitch pendulum motion but also affects the frequency
of the yaw motion attitude motion mode to a certain extent.

Keywords: stratospheric airship; motion mode; key parameters; perturbation; analysis

1. Introduction

As a new type of aircraft, the stratospheric airship relies on buoyancy to balance the in-
fluence of gravity to realize the long-term flying and stationing in near space at the altitude
of 20 km [1–4]. As a new type of Earth observation and surveillance platform, the strato-
spheric airship, compared with satellites and unmanned aerial vehicles (UAV), has many
outstanding advantages, such as a large task load and long-term stationing in the air [5] The
stratospheric airship is widely used in Earth observation, regional surveillance, navigation
and positioning, comprehensive early warning detection, electronic reconnaissance, con-
frontation, communication, and relay and has high military use and civil value. Therefore,
the development of the stratospheric airship has great strategic value and significance.

The motion mode can well reflect the disturbed motion mode of the aircraft, and modal
analysis uses the corresponding means to analyze the disturbed motion characteristics of
the aircraft [6]. Motion mode analysis plays an important role in aircraft design. It provides
the corresponding theoretical basis for the overall optimization of the aircraft, flight quality
analysis, and flight control system design, and it forms a set of mature analysis methods [7].
As a new type of aircraft, the stratospheric airship has obvious differences in its flight
mechanism and flight characteristics compared to airplanes and other aircrafts. Therefore,
it is necessary to conduct in-depth research on the motion mode of the stratospheric airship
according to its characteristics.

Many scholars have carried out related technical research on the motion mode analysis
of the stratospheric airship. Khoury [8] provided the motion mode analysis method of
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a low-altitude airship according to its motion characteristics; Ouyang et al. [9] took the
“Zhiyuan 1” stratospheric verification airship as the research object, studied the disturbed
motion of the airship in detail, and described the motion mode of the airship. Li et al. [10]
analyzed the motion modes of a Skyship-500 airship through simulations and experiments
and provided the characteristic root distribution at different flight speeds; Liu et al. [11]
took the stratospheric airship with a volume of 500 m3 as the research object, calculated
the eigenvalues of the disturbed motion of the airship, and analyzed the influence of
flight speed on the motion mode and kinetic characteristics of the airship; Yang et al. [12]
systematically studied the motion modes of the stratospheric airship and provided the
modal characteristics of longitudinal motion and lateral motion; Wang [13] revealed the
influence of flight speed on the motion mode of an airship through analyzing the pole
distribution and frequency characteristics of the airship at typical flight speeds. Liu [14]
described the process of stratospheric airship mode calculation in detail and provided the
correlation mechanism of flight speed change on airship motion mode; Miao [15] took
the 1000 m3 stratospheric verification airship as the research object, introduced the free
motion characteristics of the airship at typical flight speeds, and simulated and analyzed
the control response characteristics of the airship; Wang [16] introduced the motion mode
characteristics of the V-shaped new concept stratospheric airship and calculated the motion
mode of the airship under typical working conditions; Wang et al. [17] analyzed the charac-
teristics of the longitudinal motion modes of the stratospheric airship from the perspective
of stability and provided the modes sensitive to the longitudinal motion; Anshul et al. [18]
conducted the trim and stability analysis of an airship with bifurcation techniques and
provided the pole distribution diagram in different motion states; Wu et al. [19] analyzed
and calculated the motion mode and dynamic characteristics of an airship driven by a
new type of driving system with Matlab according to the characteristics of the “buoyant-
slider” driven airship; Zhang [20] took GoodYear ZP4K as the research object, analyzed the
characteristics of the longitudinal and lateral mode motion of the airship, and provided
the generation mechanism of the pendulum motion mode; Liu [21] analyzed the influ-
ence of different motion models on the motion modes of airship under the conditions of
straight and level flight at a constant speed and pointed out the root cause of the difference
of motion modes. Yuan [22] proposed a control strategy combining model prediction,
sliding mode control, and extended state observer for the space trajectory tracking of a
stratospheric airship under state constraints, input saturation, and position disturbance
and carried out a corresponding simulation analysis; Huang [23] analyzed the impact of
external environmental changes on buoyant gas, airship mass, and internal and external
pressure differences; Liu [24] proposed the corresponding dynamic model of a stratospheric
airship according to the different description methods of aerodynamic parameters; Li [25]
carried out dynamic modeling and a longitudinal stability analysis for a stratospheric air-
ship with a double-hull configuration and gave the simulation results of pole distribution
and handling characteristics; Gobiha [26] carried out dynamic modeling for an autonomous
flying airship and used the established nonlinear 6 DOF model to simulate and evaluate
the motion characteristics of the airship.

To summarize, the analysis of the current literature research on the motion modes
of the stratospheric airship basically focuses on the determination of the overall scheme
of the airship and the motion modes at typical flight speeds. In the actual engineering
practices, except when the flight speed affects the motion mode of the stratospheric airship,
the locations of the center of mass and the center of buoyance, aerodynamic characteristics,
and other parameters of the airship will also have a greater impact on the motion mode
of the stratospheric airship; even the impact is subversive. At the same time, compared
with the airplane, the stratospheric airship has a large volume and a complex structure,
so it is difficult to ensure that all the parameters of the airship in the design, production,
and assembly process are testable and to ensure the closed-loop control of the airship
technology in the full state and the whole process with the existing design means and
process; under the influence of the external environment during the flight, there is great
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uncertainty between the actual flight state and the theoretical design state in terms of the
related parameters of the airship. Therefore, it is necessary to carry out in-depth research
on the influence of the perturbation of the key parameters such as the center of mass,
the center of float, and the aerodynamic characteristics of the stratospheric airship on
the motion mode. Such research can provide corresponding technical support for the
overall optimization, the design of the flight control system, and the stable flight of the
stratospheric airship. Therefore, the main goal of this paper is to focus on the uncertainty
of key parameters such as the center of mass, the center of buoyancy, and the aerodynamic
characteristics during the manufacturing and flight test of the stratospheric airship and
analyze the influence of the perturbation of these key parameters on the motion mode.
The effects of these key parameters on the motion stability, damping characteristics, and
frequency change trend of each motion mode of the airship are investigated to optimize
the overall design of the stratosphere airship flight control system.

The paper is organized as follows: in Section 2, the description of the nonlinear model
and the linearized model of the disturbed motion of the stratospheric airship are given; in
Section 3, the motion modes of the stratospheric airship at a typical flight speed is analyzed;
in Section 4, the influence of the key parameters of the stratospheric airship on motion
modes is analyzed in detail; finally, the influence of the key parameters of the stratospheric
airship on motion modes is summarized.

2. Overall Layout and Structure Parameters of Stratospheric Airship

The stratospheric airship studied in this paper adopts the aerodynamic layout of an
unstreamlined and X-shaped empennage. The empennage is mainly used to enhance the
stability of the airship, as shown in Figure 1. R represents the aerodynamics force vector, B
represents the buoyancy vector, G represents the gravity vector, CV represents the center
of aerodynamics force, CB represents the center of buoyancy, CG represents the center of
gravity, C represents the center of body.
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Figure 1. Aerodynamic Layout Diagram of Stratospheric Airship.

The relevant parameters of the stratospheric airship are shown in the Table 1.

Table 1. Relevant Parameters of Stratospheric Airship.

Parameter Value

Mass [kg] 11,800
Length [m] 138

Diameter [m] 35
Volume [m3] 134,037

Flight altitude [km] 20
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3. Motion Model of Stratospheric Airship
3.1. 6 DOF Nonlinear Model

The kinetic model of the stratospheric airship is the basis and key to studying the
spatial motion characteristics of the airship. According to the Newton–Euler method, the 6
DOF nonlinear model of the airship’s spatial motion can be established as follows [27,28]:

[
mE + λA −mrG×

mrG× I + IA

] .
V

b

.
Ω

b

+

Ωb × (mE + λA)Vb + mΩb ×
(

Ωb × rG

)
Ωb × (I + IA)Ωb + mrG ×

(
Ωb ×Vb

)  =

[
F
M

]
(1)

(1) Kinetic Equation

wherein m represents the airship mass; λA denotes the additional mass matrix of airship; I
represents the moment of inertia matrix; IA represents the additional moment of inertia
matrix of the airship; E denotes the third-order identity matrix; rG represents the projection
of the center of mass of the airship in the hull coordinate system; Vb and Ωb represent the
projection of velocity vector and angular velocity vector in the hull coordinate system; F
and M represent the resultant force and torque in the null coordinate system of the airship.

(2) Kinematical Equation

.
Φ =

[
LI

b 03×3
03×3 ΓI

b

][
Vb

Ωb

]
(2)

LI
b =

cosϑcosψ sinφsinϑcosψ− cosφsinψ cosφsinϑcosψ+ sinφsinψ
cosϑsinψ sinφsinϑsinψ+ cosφcosψ cosφsinϑsinψ− sinφcosψ
−sinϑ sinφcosϑ cosφcosϑ

 (3)

ΓI
b =

1 tanϑsinφ tanϑcosφ
0 cosφ −sinφ
0 secϑsin]φ secϑcosφ

 (4)

wherein ϑ, ψ, and φ denote the pitch, yaw, and roll attitude angles of the airship, respec-
tively;

.
Φ represents the state variable composed of the velocity of the ground coordinate

system and the angular velocity of the attitude.

3.2. Linear Processing of Nonlinear Model

The six-degrees-of-freedom model of aircraft belongs to an equation of nonlinear
motion; a nonlinear model can only be solved by numerical method rather than analytical
method, and therefore, it is not conducive to the analysis of the aircraft’s motion mode
and the design of the flight control system. For this reason, it is necessary to linearize the
equation of the nonlinear motion of the aircraft [29].

The airship motion can be described by six DOFs (degrees of freedom) and 12-order
state variables. From its state transition matrix, it can be seen that the motion mode is
a multi-variable cross-coupled motion process. In order to better describe and control
the airship motion, we can ignore the weak correlation items in the motion in each state
according to the actual flight characteristics of the airship and retain the dominant factors
of the system motion modal; in this way, the motion modes of the airship can be decoupled
into longitudinal motion and lateral motion [30].

(1) Longitudinal Motion Model Linearization

To analyze the motion morphology of the airship’s longitudinal motion channel, the
motion of the horizontal and straight cruise flight on the longitudinal plane is selected as
the reference motion, and trim the nonlinear model according to the speed and altitude of
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the cruise flight, and the nonlinear model is linearized under the trim state to obtain the
linearized model of longitudinal motion [31].


m + m11 0 mzG 0
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wherein m11, m33, and m55 represent the additional mass and additional moment of inertia
of the airship, respectively; Iy represents the moment of inertia of the airship around the
y-axis; xG and zG represent the locations of axial and vertical mass centers of the airship,
respectively; ∆u and ∆

.
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δE

respectively represent the derivatives of pitch control force and torque;
δE represents the angle of elevator deflection.

(2) Horizontal Motion Model Linearization

The motion of the horizontal and straight cruise flight is selected as the reference
motion, the nonlinear model is trimmed according to the speed and altitude of cruise flight,
and the nonlinear model is linearized under the trim state to obtain the linearized model of
horizontal motion [31].
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wherein m22, m44, and m66 represent the additional mass and additional moment of inertia
of the airship, respectively; Ix and Iz respectively represent the moment of inertia of the
airship around the x-axis and z-axis; ∆β and ∆

.
β represent the slideslip angle deviation

and its derivative of disturbed motion, respectively; ∆p and ∆
.
p represent the roll angle

rate deviation and its derivative of disturbed motion, respectively; ∆α and ∆
.
α respectively

represent the angle of attack deviation of disturbed motion and its derivative; ∆r and ∆
.
r

respectively represent the yaw angle deviation of disturbed motion and its derivative;
∆φ and ∆

.
φ respectively represent the roll angle deviation of disturbed motion and its

derivative;
−
Y
β

and
−
N

β

respectively represent the derivatives of lateral aerodynamic force

and yaw aerodynamic stability moment;
−
Y

r
and

−
N

r
respectively represent the derivatives of

yaw damping force and damping force torque;
−
L
β

represent the derivative of the inclined

blowing moment;
−
L

p
represent the derivative of the roll damping force moment;

−
Y
φ

,
−
L
φ

,
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and
−
N

θ

respectively represent the derivatives of the lateral force, roll moment, and yaw

moment related to the roll angle;
−
Y
δR

and
−
N

δR

respectively represent the derivatives of yaw
control force and control force torque; δR represents the angle of rudder deflection.

4. Motion Mode of Stratospheric Airship
4.1. Description of Motion Mode

The so-called mode, namely the vibration mode of motion, is an inherent property of
the time-invariant system. The mode is the most basic independent unit of the motion of
the system, and the total motion of the system is a linear combination of the modes. The
motion mode embodies the free motion characteristics of the airship after being disturbed,
and it is the basic component of the disturbed motion of the airship. The motion mode
reflects the law of motion variables changing with time and the amplitude ratio of variables
and phase relationship between variables. The assignment of the motion parameters in
a certain mode has a fixed proportional relationship, and the phase difference between
motion parameters is also constant [32].

The motion of the airship is the linear combination of different eigenvalues in the cor-
responding motion modes, and the influence of eigenvectors and initial values is reflected
in the weight of different motion modes. Under the condition of the same initial value in
the same mode, the performance of the corresponding motion parameters is determined by
the relative sizes of eigenvectors.

4.2. Characteristics of Motion Mode

According to the corresponding time scale of the six-DOF motion of the airship, the
motion of the airship can be divided into long-term motion and short-term motion. The
long-term motion is used to describe the translation of the center of mass of the airship,
and the short-term motion is used to describe the attitude change process of the airship.
The mode of the short-term motion is more representative for the description of the motion
characteristics of the airship and plays a leading role in the influence of the flight quality of
the airship. Therefore, we further analyze the short-term motion of the airship below.

(1) Pitching Channel

The characteristic equation of the pitching channel of the airship can be derived
according to the linear model of the longitudinal motion:∣∣∣sI−m−1

L AL

∣∣∣ ≈ (s− Zα)
(

s2 −Mqs−Mθ
)

(7)

wherein AL =


−
Z
α −

Z
q −

Z
θ

−
M

α −
M

q −
M

θ

0 1 0

, mL =

(m + m33)s −mxG 0
−mxG

(
Iy + m55

)
s 0

0 0 s


wherein Zα represents the derivative of normal aerodynamic coefficient; Mq represents
the derivative of pitch damping moment coefficient; Mθ represents the derivative of pitch
attitude moment coefficient.

From the characteristic equation, it can be seen that the motion mode of the pitching
channel is composed of a monotone damping mode and a second-order oscillation conver-
gence mode; the frequency of the second-order oscillation mode is determined by Mθ, and
the damping is determined by Mq.

(2) Yaw Channel

The characteristic equation of the yaw channel of the airship can be derived according
to the linear model of the lateral motion:∣∣∣sI−m−1

S AS

∣∣∣ = s2 − (Yβ + Nr)s− (YβNr + NβYr) (8)
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wherein AS =

−Y
β −

Y
r

−
N

β −
N

r

, mS =

[
m + m22 mxG

mxG Iz + m66

]
.

wherein Yβ represents the derivative of lateral aerodynamic coefficient; Nβ represents
the derivative of the yaw aerodynamic stabilization coefficient; Yr and Nr respectively
represent the derivatives of yaw damping force and damping force moment coefficients.

From the characteristic equation above, it can be seen that the motion mode of the yaw
channel for the stratospheric airship is a second-order oscillation convergence mode; the
change of Yβ and Nr affects the damping effect of the motion mode; the change of Yr, Nr,
Yβ, and Nβ affects the frequency of the motion mode; upon the large damping of the mode,
the second-order oscillation mode transforms into two one-order inertia damping modes.

(3) Analysis of Difference between Pitch Motion Mode and Yaw Motion Mode

From the above analysis of the pitch motion mode and yaw motion mode, it can
be seen that the pitch motion mode is quite different from the yaw motion mode of the
airship. The pitch attitude angle motion mode is composed of an inertial damping mode
and a second-order oscillation convergence mode, while the yaw rate motion mode is
composed of a second-order oscillation mode and adds an integration link on the basis of
the second-order oscillation mode, thus resulting in unstable motion modes. According to
the longitudinal motion linearized model, the internal state structure diagram of the pitch
channel can be obtained in order to further analyze the roots, as shown in Figure 2.
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The internal state structure diagram of the yaw channel of airship can be derived
according to the linear model of the lateral motion, as shown in the Figure 3:
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Figure 3. Internal State Structure Diagram of Airship’s Yaw Channel.

Comparing the internal state structure diagrams of the airship’s pitch channel and yaw
channel, it can be found that the attitude angle forms a negative feedback loop through Mθ

in the internal state structure diagram of the pitch channel, but there is no feedback loop of
attitude angle in the internal state structure diagram of the yaw channel. The fundamental
reason for this phenomenon is that the center of mass of the airship is located directly
below the coordinate system of the airship hull and the gravity will produce a moment
to feed the motion information of the pitch angle back to the system during the attitude
motion, while the gravity will not produce any moment in the horizontal plane, so the
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motion information of the yaw angle cannot be fed back to the system. Similarly, when
the center of buoyancy is above the body center and the attitude of the airship changes,
the buoyance force will generate a torque through the center of buoyancy and feed the
information of pitch attitude angle back to the system.

5. Influence of Key Parameter Perturbation on Motion Mode
5.1. Moment of Aerodynamic Stabilization

For high-speed and high-dynamic aircrafts such as missiles and airplanes, the moment
of aerodynamic stability plays a crucial role in the motion modes of the pitch channel and
yaw channel. The value and polarity of the moment determine the frequency of motion
mode and the stability of the motion, and the parameter perturbation has a great influence
on the kinetic characteristics of the system. Since the airship belongs to the category of
low-speed and low-dynamic aircrafts, there is a big difference between the airship and a
high-dynamic aircraft; therefore, it is necessary to study the influence of the aerodynamic
stability moment perturbation on the disturbed motion mode of the airship.

(1) Pitching Channel

According to the state equation of the pitching channel, the characteristic equation of
short-term motion of pitch channel can be obtained:

D(s) = s[(s−Mq)(s− Zα)−MαZq]−Mθ(s− Zα) (9)

By factoring the equation above, the short-term motion modes of the pitch channel can
be obtained and consist of a first-order inertial damping mode and a second-order oscil-
latory convergence mode. The corresponding characteristic equation is shown as follows:

D(s) = (s−ωw)(s2 − 2ξθωθs−ω2
θ) (10)

whereinωw represents the frequency of the first-order inertial damping mode; ξθ andωθ

respectively denote the damping and frequency of the second-order oscillation convergence
mode.

Then, the calculation formula of pitch aerodynamic stability moment Mα is shown
as follows:

Mα = kα·
−
M

α

·α (11)

wherein α represents the angle of attack; kα represents the perturbation coefficient of pitch
aerodynamic stability moment, kα ∈ [−2, 2].

In the perturbation range of the selected pitch aerodynamic stability moment, the
change curves of the key parameters of the pitching channel in different motion modes with
the perturbation of the pitch aerodynamic stability moment can be calculated, respectively,
as shown in the Figure 4.

Figure 4a depicts the frequency change curves of the first-order inertial damping mode
under the perturbation of the pitch aerodynamic stability moment, while Figure 4b depicts
the damping and frequency change curves of the second-order oscillation convergence
mode under the perturbation of the pitch aerodynamic stability moment. As can be
seen from the above figures, with the increase of the perturbation coefficient of the pitch
aerodynamic stability moment, the frequency of the first-order inertial damping mode
will gradually decrease, while the damping and frequency of the second-order oscillation
convergence mode will increase. However, the change amplitude of the above data shows
that the influence on the disturbed motion mode of the pitching channel is very small and
can be ignored. Therefore, the influence of the pitch aerodynamic stability moment can be
ignored in the analysis of the pitching channel disturbed motion mode.
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Figure 4. Curve of Influence of Moment of Aerodynamic Stabilization on Pitching Channel Motion
Mode: (a) frequency change curves of the first-order inertial damping mode under the pertur-
bation of the pitch aerodynamic stability moment (b) damping and frequency change curves of
the second-order oscillation convergence mode under the perturbation of the pitch aerodynamic
stability moment.

According to the above analysis conclusions, the characteristic equation of the pitch
channel disturbed motion can be simplified as follows:

D(s) = (s− Zα)(s2 −Mqs−Mθ) (12)

To further illustrate the influence of the pitch aerodynamic stability moment perturba-
tion on the pitching motion mode of the stratospheric airship and to verify the rationality
and validity of the assumption that the influence of pitch aerodynamic stability moment
can be ignored in the mode analysis, the Bode plot and deviation curve under the state of
pitch aerodynamic stability moment perturbation are respectively presented in Figure 5.
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Pitching Aerodynamic Stabilization: (a) Bode plot of the pitching channel in the perturbation state of
the pitch aerodynamic stability moment, (b) amplitude frequency and phase frequency deviation
curves of the pitching channel in the perturbation state of the pitch aerodynamic stability moment.

Figure 5a depicts the Bode plot of the pitching channel in the perturbation state of
the pitch aerodynamic stability moment, and Figure 5b depicts the amplitude frequency
and phase frequency deviation curves of the pitching channel in the perturbation state
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of the pitch aerodynamic stability moment. The above figures show that the amplitude-
frequency characteristics and phase-frequency characteristics of the corresponding system
are basically unchanged in the perturbation state of the pitch aerodynamic stability moment;
the amplitude-frequency and phase-frequency deviation in the pitch aerodynamic stability
moment perturbation state are in a small range relative to the nominal state. Therefore, the
influence of the pitch aerodynamic stability moment can be ignored during the analysis of
the motion mode of the pitch channel. This is the huge difference between the stratospheric
airship and the high-speed and high-dynamic aircrafts in terms of pitch disturbed motion.

(2) Yaw Channel

As mentioned above, the short-term motion mode of yaw channel can be described
with a second-order oscillation mode, and the corresponding characteristic equation is
shown as follows:

D(s) = (s2 + 2ξrωrs +ω2
r ) (13)

wherein ξr and ωr denote the damping and frequency of the yaw channel short-term
motion mode, respectively.

Then, the calculation formula of the yaw aerodynamic stability moment Nβ is shown
as follows:

Nβ = kβ·
−
N

β

·β (14)

wherein β represents the angle of slideslip; kβ represents the perturbation coefficient of the
yaw aerodynamic stability moment, kβ ∈ [−2, 2].

In the perturbation range of the selected yaw aerodynamic stability moment, the
change curves of the key parameters of the yaw channel in different motion modes with
the perturbation of the yaw aerodynamic stability moment can be calculated respectively,
as shown in Figure 6.
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Figure 6. Curve of Influence of Moment Perturbation of Yaw Aerodynamic Stabilization on Pitching
Channel Motion Mode: (a) frequency characteristic curve of the yaw channel motion mode under the
perturbation of the yaw aerodynamic stability moment, (b) damping characteristic curve of the yaw
channel motion mode under the perturbation of the yaw aerodynamic stability moment.

Figure 6a depicts the frequency characteristic curve of the yaw channel motion mode
under the perturbation of the yaw aerodynamic stability moment, while Figure 6b depicts
the damping characteristic curve of the yaw channel motion mode under the perturbation
of the yaw aerodynamic stability moment. As can be seen from the above figures, the
yaw disturbed motion is stable when the yaw aerodynamic stability moment is perturbed
within the specified range; with the increase of the perturbation coefficient of the yaw
aerodynamic stability moment, the frequency of the yaw disturbed motion mode will also



Aerospace 2023, 10, 329 11 of 18

increase; in the whole change process, however, the damping of the yaw disturbed motion
is always one, indicating that the disturbed motion is overdamped, and the second-order
oscillation convergence mode transforms into two inertia damping modes. The comparison
result of the change amplitude of the above data shows that the frequency of the yaw
disturbed motion mode increases with a small amplitude when the pitch aerodynamic
stability moment is perturbed, and therefore, the influence of the yaw aerodynamic stability
moment on the yaw disturbed motion is minimal and can be ignored.

According to the above analysis conclusions, the characteristic equation of the yaw
channel disturbed motion can be simplified as follows:

D(s) ≈ (s− Yv)(s−Nr) (15)

The above equation shows that the yaw motion mode can be simplified into two
first-order inertial damping modes, whose characteristics are related to the derivative Yv

of the lateral aerodynamic coefficient and the derivative Nr of the yaw damping moment
coefficient, respectively.

To further illustrate the influence of the yaw aerodynamic stability moment perturba-
tion on the yaw motion mode of the stratospheric airship and to verify the rationality and
validity of the assumption that the influence of yaw aerodynamic stability moment can be
ignored in the mode analysis, the Bode plot and deviation curve under the state of yaw
aerodynamic stability moment perturbation are respectively presented in Figure 7.
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yaw channel in the perturbation state of the yaw aerodynamic stability moment.

Figure 7a depicts the Bode plot of the yaw channel in the perturbation state of the
yaw aerodynamic stability moment, and Figure 7b depicts the amplitude frequency and
phase frequency deviation curves of the yaw channel in the perturbation state of the yaw
aerodynamic stability moment. The above figures show that the amplitude-frequency
characteristics and phase-frequency characteristics of the corresponding system are basi-
cally unchanged in the perturbation state of the yaw aerodynamic stability moment; the
amplitude-frequency and phase-frequency deviation in the yaw aerodynamic stability
moment perturbation state are in a small range relative to the nominal state. Therefore, the
influence of the yaw aerodynamic stability moment can be ignored during the analysis of
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the motion mode of the yaw channel. This is the huge difference between the stratospheric
airship and the high-speed and high-dynamic aircrafts in terms of yaw disturbed motion.

5.2. Location of Mass Center

The mass centers of aircrafts such as missiles and airplanes are basically distributed
uniformly inside the aircrafts around the carrier coordinate systems. Therefore, the mass
center of the aircraft can be well-configured to the origin of the carrier coordinate system so
that the gravity only has an effect on the motion of the mass center of the aircraft and will
not have any effect on the attitude motion. Due to the special structure layout, the mass
center of the airship does not overlap with its center of body; its gravity will have a great
influence on the attitude motion of the airship with the change in the location of the mass
center, resulting in the great differences of the airship’s pitching motion mode from that of
missiles and airplanes.

5.2.1. Axial Location

(1) Pitching Channel

According to the linearized model, the perturbation in the axial location of the mass

center mainly affects
−
M

q
in the state transition matrix, as shown in the equation below:

−
M

q
= Mq

YqiSrLr − xGmU0 (16)

wherein Mq
Y represents the derivative of the pitch aerodynamic damping moment coeffi-

cient; qi represents the dynamic pressure; Sr represents the characteristic area; Lr represents
the characteristic length; xG represents the axial of the airship’s mass center; U0 represents
the airship’s trim axial velocity.

It can be seen from the above equation that when other parameters are unchanged and
the axial location of the airship’s mass center is perturbed in a positive way, the damping
of the second-order oscillation convergence mode will increase; otherwise, the damping of
the second-order oscillation convergence mode will decrease.

According to the requirements of the overall scheme, the change range of the axial
location of mass center shall be from −10 m to 10 m; then, the Bode plot and deviation
curve of the perturbation boundary of the airship’s pitch angle motion in the axial location
and that in nominal state are shown in the Figure 8.
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Figure 8. Bode Plot and Deviation Curve of Axial Mass Center Perturbation for Pitching Channel:
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(b) amplitude frequency and phase frequency error curves of the pitch channel under the state of
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The influence of the change in axial location of mass center on the pitching channel
disturbed motion modes of the stratospheric airship is shown in Figure 9.
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Figure 8a depicts the Bode plot of the pitching channel with axial location perturba-
tion of the mass center; Figure 8b depicts the amplitude frequency and phase frequency
deviation curves of the pitching channel with axial location perturbation of the mass center;
Figure 9a depicts the curve of the influence of the axial location perturbation of the mass
center on the frequency of the first-order inertia damping motion mode of the pitching chan-
nel; Figure 9b depicts the damping and frequency characteristic curves of the second-order
oscillatory convergence mode of the pitching channel under the axial location perturbation
of the mass center. It can be seen from Figures 8 and 9 that the axial location perturbation
of the mass center has a great influence on the damping of the pendulum motion mode
but has little influence on the frequency of the pendulum motion and the frequency of the
first-order inertia damping mode. Moreover, the damping increases linearly with the axial
location of the mass center.

(2) Yaw Channel

According to the yaw channel linear model, Nr can be described as:

Nr = Mr
ZqiSrLr − xGmU0 (17)

wherein Mr
Z represents the derivative of yaw aerodynamic damping moment.

It can be seen from the above equation that the axial location perturbation of mass
center will affect Nr. When the axial location of the airship’s mass center is perturbed in a
positive way, Nr will increase; otherwise, Nr will decrease. As mentioned earlier, the yaw
motion mode of the airship can be described as two first-order inertia damping modes,
which determines the frequency of one of the modes so that the axial location perturbation
of the mass center will directly affect the moment-dependent motion mode.

The Bode plot of the corresponding yaw motion in the perturbation boundary of the
axial location of the mass center is shown in Figure 10.

It can be seen from the Bode plot that the influence of the axial location of the mass
center on the motion mode of the yaw channel is consistent with the results of the previous
analysis: the axial location of the mass center mainly affects the dominant motion mode of
the yaw motion and has a relatively obvious influence on the motion characteristics of the
yaw motion within the middle- and low-frequency bands.
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5.2.2. Vertical Location

The main flight mode of the stratospheric airship is horizontal flight. Due to the
inherent characteristics of gravity, the vertical location perturbation of the mass center
mainly affects the motion mode of pitching channel in the disturbed motion. As mentioned
earlier, the motion mode of the stratospheric airship’s pitch channel can be composed of an
inertia damping mode and an oscillation convergence mode, the latter of which is usually
referred to as the “pendulum effect” mode. The fundamental cause of the stratospheric
airship pendulum effect mode is that the mass center of the airship does not overlap with
the body center, and the mass center of the airship that lies under the system so that the
attitude disturbance of the airship in the pitch and roll direction can quickly converge.
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Figure 10. Yaw Channel Bode Plot of Axial Mass Center Perturbation.

When the overall aerodynamic layout is determined, the key parameter affecting the
pendulum motion mode is Mθ, and such a parameter not only determines the frequency
of the pendulum motion but also has a certain impact on the damping of the pendulum
motion. According to the linearized model, we can see that:

Mθ = zBB− zGG (18)

wherein zB and zG respectively represent the vertical projections of the center of buoyancy
and the center of mass of the airship; B and G respectively denote the buoyancy and gravity
of the airship.

In order to better analyze the influence of the center of mass on the pendulum motion,
it can be assumed that the center of buoyancy coincides with the body center; in this case,
both the weight and the mass center location of the airship will not only affect the frequency
of the pendulum motion, but the mass center location of the airship will also affect the
stability of the pendulum motion. In order to ensure the stability of the pitch motion
mode, the center of mass of the airship shall be generally required to be located below the
body center.

The vertical location of mass center is selected to vary in the range of 0 m to 10 m.
The influence of the change in the vertical location of mass center on the disturbed motion
mode of the stratospheric airship’s pitch channel is shown in Figure 11.

Figure 11a depicts the frequency characteristic curve of the first-order inertia damping
mode of the pitching channel affected by the vertical perturbation of the mass center;
Figure 11b depicts the damping and frequency characteristic curves of the second-order
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oscillation convergence mode of the pitching channel affected by the vertical perturbation of
the mass center. The left figure above depicts the frequency change curve of the first-order
inertia damping mode of the pitching channel with the vertical location perturbation, and
the right figure above depicts the parameter change curve of the second-order oscillation
convergence mode of the pitching channel with the vertical location perturbation. As can
be seen from the left figure, when the vertical location of the mass center is less than 3 m,
the frequency of the first-order inertia damping mode increases linearly with the increase
of the vertical location; after the vertical location is larger than 3 m, the frequency of the
first-order inertia damping mode remains essentially the same. As can be seen from the
right figure, when the vertical location is larger than 3 m, the second-order oscillation
convergence mode will linearly increase with the increase of the vertical location, while the
damping will decrease with the increase of vertical location.
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Figure 11. Curve of Influence of Vertical Mass Center Perturbation on Motion Mode of Pitching
Channel: (a) frequency characteristic curve of the first-order inertia damping mode of the pitching
channel affected by the vertical perturbation of the mass center, (b) damping and frequency charac-
teristic curves of the second-order oscillation convergence mode of the pitching channel affected by
the vertical perturbation of the mass center.

In conclusion, the change in the vertical location of the mass center has a large effect
on the motion modes of the pitching channel and a negligible effect on the motion modes
of the yaw channel. The above simulation results show that when the vertical location is
set in the range between 3 and 8 m, the second-order oscillation convergence mode has
better damping characteristics and moderate frequency characteristics, while the first-order
inertia damping mode has a small frequency change.

5.3. Location of Buoyant Center

In the aerodynamic modeling process of airship, it is generally assumed that the center
of buoyancy is located at the body center; in this way, the buoyancy force does not produce
any moment on the airship, and the change of buoyancy force will only affect the motion
characteristics of the airship’s center of mass but has no effect on the attitude motion
characteristics. Therefore, the buoyancy force has no effect on the short-term motion modes.
In the process of engineering implementation, it is difficult to configure the airship’s center
of the buoyancy at its body center, and therefore, it is necessary to study the influence of
the center of the buoyancy on the motion mode of the stratospheric airship when it does
not coincide with the body center.

According to the linear model of the stratospheric airship, the axial location pertur-
bation of the center of the buoyancy has little effect on the airship’s motion modes; this is
because the buoyancy has the same characteristics as gravity, and the vertical location per-
turbation of the center of the buoyancy has a great influence on the pitch disturbed motion
mode of the airship but little influence on the yaw disturbed motion mode. Therefore, we
only need to consider the influence of the vertical location perturbation of the center of
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the buoyancy on the pitching channel of the airship when analyzing the influence of the
buoyant center perturbation.

According to the linearized model, the associated coupling effect of the buoyant center
is shown in the following equation.

Mθ = zBB− zGG (19)

Similar to the vertical center of mass, the vertical perturbation of the buoyant center
affects the frequency of the pendulum motion mode of the airship. The above equation
shows that when the vertical location of the airship’s buoyant center is above the body
center, the vertical location perturbation of the buoyant center will not only increase the
frequency of the pendulum motion but also increase the stability of the pendulum motion;
otherwise, the frequency and stability of pendulum motion will be reduced. When the
vertical location of the buoyant center is below the vertical location of the mass center, the
pendulum motion is unstable.

According to the requirements of the overall scheme, the vertical perturbation bound-
ary of the buoyant center was selected to simulate and analyze the influence of the pertur-
bation on the disturbed motion mode of the pitching channel; the corresponding curves are
shown in Figure 12.
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Channel: (a) frequency characteristic curve of the first-order inertia damping mode of the pitching
channel affected by the vertical perturbation of the buoyant center, (b) damping and frequency
characteristic curves of the pendulum motion mode of the pitching channel affected by the vertical
perturbation of the buoyant center.

Figure 12a depicts the frequency characteristic curve of the first-order inertia damping
mode of the pitching channel affected by the vertical perturbation of the buoyant center;
Figure 12b depicts the damping and frequency characteristic curves of the pendulum
motion mode of the pitching channel affected by the vertical perturbation of the buoyant
center. As can be seen from the figures above, the frequency of the first-order inertia
damping mode increases with an increase in the distance of the buoyant center deviating
from the body center, but the frequency will increase with the decrease of the damping in
the pendulum motion mode. As can be seen from the data change amplitude, the buoyant
center perturbation mainly affects the characteristics of the pendulum motion mode and
has little effect on the first-order inertia damping mode. Moreover, when the buoyant
center perturbation is controlled within 3 m, the pendulum motion has better damping
characteristics and moderate frequency characteristics.

6. Conclusions

The motion mode describes the characteristics of the free motion of the stratospheric
airship. The analysis of motion mode is to obtain the eigenvalues of the stratospheric
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airship’s motion with relevant calculation and analysis methods so as to reveal the kinetic
characteristics of the stratospheric airship under disturbance, which can provide a theo-
retical basis for the optimization of the overall scheme for the airship and the design of
the flight control system. In this paper, the changing trends of the stratospheric airship’s
motion mode under the perturbation of different key parameters are analyzed. According
to the simulation and analysis results, unlike high-speed and high-dynamic aircrafts such as
airplanes, the pitch and yaw motion modes of the stratospheric airship are hardly affected
by the perturbation of aerodynamic stability moment, and therefore, its influence can be
ignored in the calculation and mode analysis process, which is also one of the typical
characteristics of the differences between stratospheric airships and aircrafts. The vertical
center of mass and the vertical center of buoyancy determine the frequency and stability
of the pitch pendulum motion mode, and their parameter perturbation greatly affects the
pitch motion mode of the stratospheric airship, which is another typical characteristic of
the differences between stratospheric airships and aircrafts. The axial location perturbation
of the center of mass not only affects the damping of the pitch pendulum motion but also
affects the frequency of one yaw motion mode.
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