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Abstract
Insertion and deletion (indel) mutations, the most common type of structural variance in the human genome, affect
a multitude of human traits and diseases. New sequencing technologies, such as deep sequencing, allow massive
throughput of sequence data and greatly contribute to the field of disease causing mutation detection, in general,
and indel detection, specifically. In order to infer indel presence (indel calling), the deep-sequencing data have to
undergo comprehensive computational analysis. Selecting which indel calling software to use can often skew the re-
sults and inherent tool limitations may affect downstream analysis. In order to better understand these
inter-software differences, we evaluated the performance of several indel calling software for short indel (1^10nt)
detection. We compared the software’s sensitivity and predictive values in the presence of varying parameters
such as read depth (coverage), read length, indel size and frequency.We pinpoint several key features that assist suc-
cessful experimental design and appropriate tool selection.Our study may also serve as a basis for future evaluation
of additional indel calling methods.
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INTRODUCTION
Variation profiling, the detection and localization of

an individual’s single nucleotide polymorphisms

(SNPs), copy number variations (CNV) and struc-

tural variants, is becoming a feasible endeavor owing

to the unprecedented rate of human genome

sequencing and the rapid evolution of computational

variance analysis. Indels (insertions and deletions)

analysis is a growing field in structural variants assess-

ment. Indels are the second most common type of

polymorphism and the most common structural vari-

ant [1]. Their presence contributes to the pathogen-

esis of disease [2], gene expression and functionality

[3], viral disease forms identification [4] and they can

be used as genetic markers in natural populations [5].

Common indel detection methods include micro-

arrays [6], real-time polymerase chain reaction

(PCR) [7], denaturing high-performance liquid

chromatography (DHPLC) [8] and high-throughput

sequencing (Deep sequencing or next-generation

sequencing) [9].

Detection of indels through deep sequencing is

becoming more common due to the decrease in

cost, increase in efficiency and sensitivity improve-

ments demonstrated by the various sequencing plat-

forms and analysis tools [10, 11]. Indels occur in an

estimated rate that is 8-fold lower than SNPs [12].

This rate, which varies extensively between

sequenced individuals, can partially be attributed

to performance variability within mapping and
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detection tools [5]. Sequence reads covering indels

are generally more difficult to map since their correct

alignment either involves complex gapped alignment

or paired-end sequencing inference [13]. The key

computational software tools required during

deep-sequencing indel detection analysis are align-

ment and indel detection tools that interpret the

alignment results in order to infer the presence of

an indel. This analysis process varies between differ-

ent methods and is based on per base quality, map-

ping property, number of supporting reads,

realignment around potential indels, known vari-

ation data and various other probabilistic matrices.

An effective combination of the two will produce

the optimal detection pipeline that will result in

accurate and reliable variation calling (Figure 1).

The effect of different alignment tools on detection

efficiency has been studied and accounted for [11],

recommending the use of single-end reads gapped

alignment enabled mapping tools such as BWA

[13] and Novoalign [14]. However, these studies

did not address the effects and implications of the

software chosen to detect the indels; therefore, fur-

ther knowledge on the effects of these tools is still

required.

The variety of available indel identification soft-

ware is rapidly increasing with better performance,

sensitivity and specificity as the main objectives.

Indel identification becomes more complex when

detection is made using single-end reads shorter

than <100 nt since they lack insert length variance

(the gap between sequences in paired-end reads) that

facilitates indel detection [15]. We set out to

compare four common indel detection software –

VarScan [16], Dindel [17], SAMtools mpileup [18]

and the Genome Analysis Toolkit (GATK) [19].

Using simulated sample data, we compared the

detection software sensitivity and predictive values

while changing initial parameters such as read

depth (coverage), read length, indel size and fre-

quency. We implemented these indel tools on real

experimental data in order to demonstrate concur-

rence to our simulations. In general, our study pin-

points several key features that assist successful

experimental design and appropriate tool selection.

Our study may also serve as a basis for future evalu-

ation of additional indel calling methods.

METHODS
The simulated data
In order to evaluate how well the different software

can detect indels, we simulated several genomic

regions that contain indels and SNPs in variable fre-

quencies. In order to construct the simulation data, we

extracted a section of 10 M base pairs in length from

human chromosome 16 (between 10 000 001 and

20 000 000; build GRCh37/hg19) to be used as a ref-

erence sequence. Using a specialized software (inGAP

[20]), SNPs were inserted at a rate coinciding with

observed human genome SNP rate of 1:1000 bases

[21]. Indels were inserted to the simulated read data

according to the specific comparison analysis (speci-

fied below). We then created a set of simulated deep

sequencing single-end reads data using the same soft-

ware, each read data according to the specific variable

Figure 1: Basic indel calling workflow.The initial step is alignment against a reference genome in which all possible
indels are detected. The following step, performed by the indel calling tools, is the collection of these possible
indels, calculating various metrics, depending on the specific tool, that either support or oppose the presence of
each indel. An optimal combination of both alignment and indel calling tools should result in an accurate set of con-
fidently called indels.
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examined (available upon request). As indel lengths

tested in our study (1–10 nt) are lower than the simu-

lated read lengths (36–72 nt), we expect the various

tools to demonstrate high performance even without

the advantages of paired-end reads. We therefore

chose to focus our analysis on the tools’ performance

using simulated single-end data. Base qualities were

assigned using read qualities retrieved from publicly

available Illumina GAII whole-genome sequencing

run, retrieved from the Short Read Archive (http://

www.ncbi.nlm.nih.gov/sra; study accession number:

SRP002535) in order to better simulate the known

inherent decrease in base calling quality. Excluding

the experiment testing the specific variable effect, all

of the simulated read data were set to an indel fre-

quency of 1:10 000, which is similar to the average

indel rate observed in human DNA [22]. The average

coverage was set to 100�with a read length of 72 nt in

order to simulate optimal conditions in which only our

tested parameter is expected to influence performance.

Alignment
We aligned the simulated sequence reads against our

reference using BWA (v0.5.9), an open-source,

popular, publicly available tool that utilizes backward

search with Burrows–Wheeler transform (BWT),

supports gapped alignment and was shown to be

suitable and optimal for both SNP and indel calling

[11]. The alignment was performed using the same

arguments for all comparison types, allowing gap

extensions of up to 10 bases:

bwa aln -e 10 <reference sequence> <reads>

Indel detection
Detected indels were recorded as true positives when

the exact correct position and allele sequence were

identified. We also considered indels that were in

challenging positions (e.g. in a homopolymer

sequence) that result in the same exact post-indel

consensus sequence as our reference indel as true

positives. In the event where the software detects

the wrong allele at the correct position, the indel

was considered a false positive. Our chosen indel

detection software for comparison were as follows:

(i) Dindel (v1.01), (ii) VarScan (v2.2.2), (iii) GATK

(v1.0.5083) and (iv) SAMtools mpileup (v0.1.16).

Dindel [17] is a software developed by the

Wellcome Trust Sanger Institute in the UK, which

utilizes a Bayesian approach for small (<50 nt) indel

calling by basically realigning the sequence reads

against a variety of candidate haplotypes for which

prior probabilities have been assigned. Dindel takes

into account each read’s reference similarity and map-

ping quality. As Dindel sequencing error indel model

was trained using Illumina data, it should only be used

for indel analysis of Illumina sequencing data. We ran

the software using its default arguments, with a max-

imal number of candidate haplotypes of eight, which

according to the developers provides high sensitivity

while maintaining low false discovery rates.

The command workflow:

dindel –analysis getCIGARindels –reads.bam

<reads.bam> –outputFile <outFile.dindel_output>

–ref <reference.fasta> makeWindows.py

–inputVarFile <outFile.dindel_output.variants.txt>

–windowFilePrefix <winFile.realign_windows>

–numWindowsPerFile 1000

Then, for each file created,

dindel –analysis indels –doDiploid –reads.bam

<reads.bam> –ref <reference.fasta> –varFile

<outFile.realign_windows.$i.txt> –libFile

<outFile.dindel_output.libraries.txt> –outputFile

<outFile.dindel_stage2_output_windows.$i>

mergeOutputDiploid.py –inputFiles

<outFile.dindel_stage2_outputfiles.txt> –outputFile

<outFile.variantCalls.VCF> –ref <reference.fasta>

VarScan [16] is an open-source tool that utilizes a

SAMtools (v0.1.16) [18] generated pileup file for

scoring and sorting the sequence alignments in

order to isolate reads that map uniquely to one lo-

cation in the reference sequence. Unmapped and

ambiguous reads are discarded from downstream

analysis and the uniquely mapped reads are scanned

for variants (mismatches and indels). Alleles are then

defined by applying criteria set, including read

coverage, P-value, variant frequency, base quality

and more. We performed our analysis with

VarScan’s default parameters (unfiltered VarScan)

and again with more rigorous filtering (filtered

VarScan), analyzing indels with a minimal coverage

of 20� reads and a minimal allele frequency of 0.35:

java -jar VarScan.v2.2.2.jar pileup2indel

<pileup.file> > <outFile.varscan-indel.output>

java -jar VarScan.v2.2.2.jar pileup2indel

<pileup.file> –min-reads2 20 –min-var-freq 0.35 >

<outFile.varscan-indel.output>

GATK [19] is a collection of biodata analysis tools

developed by the Broad Institute at MA, USA,

which allows variant calling with its Unified
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Genotyper (UG) tool. Specifically, UG’s indel call-

ing process is based on Dindel, though as we dem-

onstrate (see below) the tools perform differently

under a variety of conditions. We performed our

analysis using UG’s default arguments, requiring a

minimal indel phred-scaled Qscore of 30, with a

minimal standard emission Qscore of 30. As per

the tool’s recommended workflow, we first realign

the reads around indels before we call variants.

Realignment:

java -jar GenomeAnalysisTK.jar

-T RealignerTargetCreator

-I <sorted.bam>

-R <reference.fasta>

-o <intervals.intervals>

java -Xmx4g -jar GenomeAnalysisTK.jar

-I <sorted.bam>

-R <reference.fasta>

-T IndelRealigner

-targetIntervals <intervals.intervals>

-o <sorted.realigned.bam>

Indel calling:

java -jar GenomeAnalysisTK.jar

-T UnifiedGenotyper

-glm DINDEL

-R <reference.fasta>

-I <realigned.sorted.bam>

-l INFO

-o <output.vcf >

-stand_call_conf 30.0

-stand_emit_conf 30.0

SAMtoolsmpileup [18] is based on a Bayesian model

for indel calling, mpileup is probably one of the most

common tools for variation detection due to its

simple use and various features such as underlying

read mismatch consideration, local realignment and

base quality assessment. We performed the analysis

using the default indel detection parameters, with a

small increase in the coverage threshold (-D 200).

samtools view -bS <input.sam> > <aln.bam>

samtools sort <aln.bam> <aln.sorted>

samtools index <aln.sorted.bam>

samtools mpileup -C50 -uf <referece.fasta>

<aln.sorted.bam> > <aln.mpileup>

bcftools view -bvcg <aln.mpileup> >

<alnvar.raw.bcf>

bcftools view <alnvar.raw.bcf>j vcfutils.pl

varFilter -D200 > <aln.var.flt.vcf>

Statistical analysis
The correlation between the different test parameters

(e.g. indel frequency, read length, indel size and read

depth) and their effect on positive predictive value

(PPV) and sensitivity was tested using Pearson’s cor-

relation tests.

RESULTS
Effect of indel frequency
Indel frequency has been shown to vary across the

genome with lower rate in conserved and functional

regions and an increased rate in hot spots for genetic

variation [22, 23], with an approximate average rate

of 0.7–1.9 indels in 10 kb of DNA [22]. We com-

pared the indel calling software’s performance with

indel frequency ranges of 1:10 –100:10 kb while

maintaining a constant coverage of 100� and read

length of 72 nt. We found that increased indel fre-

quency up to 10:10 kb did not affect the software’s

performance and sensitivity decreased only for

extremely high indel frequency levels (>10:10 kb)

with filtered VarScan demonstrating the highest

decrease in sensitivity (20%). GATK presented a

mild decrease in PPV (0.994–0.979; R2
¼ 0.97;

P< 0.05) as frequency increased.

Effect of read length
Read length varies between platforms and within

each platform [24]. Using Illumina’s most common

range of single-end read length (36–72 nt), we set

out to test the effect on the performance of the

indel calling software while maintaining constant

coverage of 100� and conclude the optimal

number of sequencing cycles for the detection pro-

cess. We found that although the coverage was

maintained, raising the read length greatly improved

performance, increasing sensitivity across all software

and PPV for GATK and Dindel (P< 0.005). Indel

calling using read length of 36 nt resulted in a sensi-

tivity range of 0.64 (mpileup) to 0.76 (VarScan un-

filtered). This decrease in indel detection sensitivity is

mainly due to poor detection of insertions 4–7 nt

long and inability to detect longer (>7) insertions

all together (Figure 2). Raising the read length to

54 nt resulted in a 40% increase in sensitivity reaching

an average of 0.91. In order to test whether this in-

ability to detect long insertions is due to failure to

align covering reads, we compared the average

coverage for each type and length of variation. We

observed a notable decrease in the number of
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covering reads as indel length increased for both vari-

ant types (98.6–28.3; 95.7–44.1 for insertions and

deletions, respectively). This reduced mapping of

reads covering longer insertions results in decreased

detection capability for insertions longer than >3 nt

when utilizing short (�36 nt) reads.

Effect of indel size
Previous studies show that the majority of naturally

occurring short indels (<60 nt) are 1–10 nt long

[1, 25]. We set out to compare the effect of these

indel sizes on indel calling software performance by

simulating reads with constant indel sizes ranging

from 1 to 10 nt with 1 additional simulation contain-

ing variable sizes of 1–10 nt. All the simulated runs

were designed with a read length of 72 nt and con-

stant high coverage of 100 nt. We found higher indel

length to be correlated with a mild but significant

decrease in PPV (0.997–0.982; 1–0.987; P< 0.005)

in GATK and Dindel and a more prominent de-

crease in unfiltered VarScan (0.72–0.4; P< 0.005).

Though some of these changes in PPV are mild,

they become more significant when covering large

genomic sequences that include many indels. Indel

size did not affect sensitivity in any of the software,

but filtered VarScan, which in addition to demon-

strating high sensitivity across indel size second only

to the unfiltered version, also demonstrated a mild

sensitivity decrease with indel size increase

(0.95–0.919; R2
¼ 0.82; P< 0.001) (Figure 3). The

other software did not display any difference in per-

formance due to changes in indel sizes, though as

mentioned above, higher indel sizes could affect in-

sertion calling efficiency in lower read lengths.

Effect of read depth (coverage)
Previous studies demonstrated positive correlation

between variant calling sensitivity and increased

read depth [11]. Since higher read depth requires

the researcher to either reduce the selected target

region in which indels are called or perform a

higher number of sequencing cycles to produce

longer reads to cover the target region, demonstrat-

ing the minimal effective read depth for indel calling

can potentially extend our target area or save

resources. We set out to test the coverage effect on

indel calling software performance. As expected, we

found coverage to be significantly positively corre-

lated with sensitivity (P< 0.001). We observed that

the software most affected by coverage was VarScan,

with a 93% increase in sensitivity (0.516–0.994) in

the unfiltered version when raising the average

coverage from 10� to 30� and a 73% increase

(0.498–0.86) in the filtered version when coverage

is raised from 30� to 50�. GATK also had a signifi-

cant increase in sensitivity when coverage was

Figure 2: Indel length versus false negative rate (FNR), describing the average FNR across all software as indel
length increases. It is noticeable that insertions and deletions are detected in a similar rate across lengths, with
the exception of increased rate of missed insertions of >3nt long, when read length is 36nt.
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increased from 10� to 30�, discovering 15% more

indels (0.759–0.875). Since GATK presents a high

PPV (>0.998), it is advised to lower the minimal

quality threshold when detecting indels with cover-

age lower than 30 in order to increase sensitivity.

Dindel presented high sensitivity across coverage

range, detecting 84% of the indels in the lowest

tested coverage (5�). It was interesting to find that

the majority of indels undetected by GATK,

SAMtools mpileup and Dindel in low coverage

(�10%) remained undetected even when coverage

was 10 times higher. The majority of these elusive

indels were inside a nonunique region in the refer-

ence (a sequence that is present in more than one

location in the reference genome). We also noticed

that Dindel, SAMtools mpileup and unfiltered

VarScan reach a plateau of true indel calls when

coverage rises over 30, whereas GATK and filtered

VarScan show a steady mild increase in true indel

calls as average coverage increases. All the software

besides SAMtools mpileup demonstrated a decrease

in PPV as the coverage increased (P< 0.005) with

unfiltered VarScan reaching a PPV rate of �40%

when average coverage was 150 (Figure 4).

Real data analysis
In order to further estimate the performance of each

indel detection tool, we utilized data produced by

Hillier et al. [26], which include whole-genome

sequencing of Caenorhabditis elegans and a data set of

202 validated single-base indels across the genome.

The genome was sequenced using Solexa sequence

analyzer, producing >37 million reads with an aver-

age length of 31 nt that resulted in 9x depth of

coverage across the genome. As the read length,

coverage and validated indel lengths resemble our

simulated data, it serves as an appropriate set for test-

ing and validation our simulations. We aligned the

sequenced data against the C. elegans WS170 refer-

ence sequence using BWA and analyzed the results

using each of the tested software. Consistent with

our low coverage simulations, Dindel demonstrated

the highest sensitivity, detecting 175 (87%) of the

indels, whereas mpileup and GATK detected 153

and 145 of the indels, respectively (due to minimal

quality thresholds that reduce their sensitivity for

indels with low coverage). VarScan detected 103

indels supporting our previous observation that

VarScan requires higher coverage in order to reach

its optimal sensitivity rate (Table 1).

DISCUSSION
Accurate indel detection is imperative for variant

profiling. Deep sequencing is producing vast

amounts of sequence data that require precise and

comprehensive interpretation to infer the presence

of SNPs, CNVs and other structural variants.

Correct interpretation of the data depends on a com-

bination of exact sequence mapping and valid reli-

able variance inference software. This work tested

the latter paying particular attention to the different

features and the performance variability between

publicly available software for indel calling.

Figure 3: Indels found versus indel size shows the similar sensitivity of GATK, mpileup and Dindel and the higher
sensitivity of VarScan and filtered VarScan across all indel sizes.Only filtered VarScan demonstrated a significant de-
crease in sensitivity as indel size increases.
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In order to produce an evaluation model for

future indel calling tools, we examined both tech-

nical and biological parameters that affect detection

capabilities across software. We demonstrated a sig-

nificant correlation between these parameters and a

variety of performance indicators such as sensitivity

and precision.

Variable effects
We presented a model for indel calling performance-

associated variables testing, describing each variable’s

predicted effect on various elements of the detection

process. Increased coverage and read length were

shown to be significantly correlated with increased

sensitivity. We conclude that when one aims to

increase coverage, increasing the sequenced reads’

length rather than amount of reads should be favored

in order to increase sensitivity while maintaining a

high PPV. Our data also demonstrate that raising the

coverage by increasing the number of sequenced

reads beyond 30� only mildly improves sensitivity

and even when extremely high coverage was imple-

mented, there were still indels that could not be ac-

counted for due to their location within genomic

repetitive regions. Only when other measures such

as increased read length or software combination

were implemented we could detect some of these

indels. We also showed that working with short read

lengths (36 nt), insertions longer than >3 nt, are sig-

nificantly more likely to remain undetected and

proper consideration should be taken when search-

ing for the presence of such insertions.

Figure 4: Performance versus coverage, both detected indels (bars) and PPV (lines) against coverage.Our set par-
ameters for the filtered VarScan do not permit indel calling with coverage <20�, so it did not detect any indels in
coverage �10�. The figure depicts the combined increase in detected indels and decrease in PPV as coverage in-
creases. Unfiltered VarScan’s PPV is not presented in this figure since it is much lower (0.77^0.41) than the rest of
the software.

Table 1: Indel calling performance for each of the tested tools implemented on sequencing data

Tool name Indels found Indels missed Insertions found Insertions missed Deletions found Deletions missed

Dindel 175 27 97 16 78 11
GATK 145 57 84 29 61 28
mpileup 153 49 90 23 63 26
VarScan 103 99 62 51 41 48

Source: Ref. [26]; also see text.
These results support our simulation-based observations in which Dindel presents the highest sensitivity in low coverage experiments, whereas
GATK and VarScan require additional parametermodification in order to reach their optimal sensitivity values.
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Software effects
Our comparative study demonstrated the importance

of software-specific parameter settings. In order to

exemplify this, VarScan was run naively with its de-

fault parameters and then again with a more strict

indel inclusion parameters setting. This resulted in

an extensive decrease in the number of false positive

calls across all tests and only a mild decrease in sen-

sitivity. We should state that VarScan outputs several

different variations of a detected indel; this accounts

for a large portion of its low PPV demonstrated in

our tests and the decrease in PPV as indel length

increases. When comparing the different software’s

performance (Table 2), VarScan’s performance was

highly affected by coverage, presenting a significant

rise in sensitivity for coverage higher than 30� and

the highest sensitivity for coverage > 70�. When

dealing with low coverage (<30�), Dindel and

SAMtools mpileup presented the highest sensitivity.

Higher coverage resulted in similar performance for

GATK and Dindel. Dindel’s performance can be due

to its inherent testing of each aligner-detected indel,

which also results in longer processing times, making

it the most time consuming of the tested tools. We

found that the majority of undetected indels were

shared across software, concluding that the benefit

from summing two indel calling methods (accepting

indels called in any of the two) results in only a mild

increase in sensitivity, at the cost of a similar mild

decrease in PPV (Figure 5). However, including

indels supported by at least two software did not

change the sensitivity, although the PPV was signifi-

cantly higher. This is highly important when dealing

with high coverage data, in which our data demon-

strated a mild decrease in PPV for each of the tools

(average PPV excluding unfiltered VarScan¼ 0.972).

In this high coverage data, including only the indels

supported by at least two software, resulted in a PPV

of 0.991.

We emphasize two important factors for improv-

ing performance: tool selection and parameter set-

ting. The latter was demonstrated using the indel

calling tool VarScan and was shown to affect per-

formance to a greater extent. Since VarScan calls

Figure 5: Venn diagram depicting the number of indels found for each software with 30� and 150� coverage and
read length 72. Inclusion of indels called in any of the software results in a decrease in PPV with only a mild sensitiv-
ity improvement. Inclusion of indels supported by at least two software results in a sensitivity improvement for
some of the software and a significant increase in PPV, crucial in high coverage data.

Table 2: Advantages and limitations for each of the tested indel detection tools

Tool name Advantages Limitations

GATK Highly supported with good overall performance Low sensitivity at very low coverage (<10�; can be
improved by less stringent parameters)

Dindel Best performance at low coverage Only suitable for Illumina data analysis and has long
running time

SAMtools mpileup High PPV and simple use Lowest sensitivity at high coverage (>50�)
VarScan High sensitivity at intermediate/high coverage (>30�) and

simple use
Low PPV at default parameter settings and low sensitivity
at low coverage (<30�)
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indels even when supported only by low mapping

quality reads, it demonstrated not only the highest

sensitivity rate across tests but also the lowest PPV.

We proved that the performance variability could be

greatly accounted for by a more rigorous indel call-

ing settings. We strongly recommend researchers to

be aware of this performance variability and consider

the appropriate parameters, allowing higher sensitiv-

ity where additional indel confirmation tests are

available. Applying a strict setting is important in

particular when relying solely on one specific detec-

tion tool. GATK, the variant detection tool from the

Broad Institute, is constantly evolving, with a variety

of calling parameters for performance optimization.

Since testing each parameter setting effect was

beyond the scope of this analysis, we tested

GATK’s performance with its default suggested par-

ameters, demonstrating high PPV across tests, with

only mild performance variability, that could possibly

be alleviated utilizing a different, more specific set-

ting. Such is the case with our low coverage simu-

lations in which the decrease in GATK’s sensitivity

can be attributed to high quality thresholds for

inclusion. GATK’s online support (http://www

.broadinstitute.org/gsa/wiki/index.php/The_Geno

me_Analysis_Toolkit; http://getsatisfaction.com/

gsa) is very helpful for such parameter setting con-

siderations. We urge researchers to consult these re-

sources for call optimization. Dindel, developed by

the Wellcome Trust Sanger Institute, was also run

using its default parameters, maintaining a consistent

high sensitivity and high PPV, even in demanding

settings, making it a suitable tool for low coverage

experiments and tool combination possibilities.

CONCLUSION
Our analysis demonstrated the performance of sev-

eral currently available indel calling software. We

show that insertions longer than 3 nt will be challen-

ging to identify when working with short read

lengths (�36 nt); using at least two indel calling

methods resulted in only a mild increase in sensitiv-

ity; however, accepting indels detected by at least

two indel calling methods significantly increases the

PPV without a major effect on sensitivity; for

increasing PPV and reducing the false positive calls,

coverage should be increased by extending the read

length rather than the amount of reads. Finally,

appropriate management of these features will

result in improved accuracy and comprehensive

and reliable indel calling.

Key Points

� In order to infer indel presence, deep sequencing data have to
undergo comprehensive computational analysis.

� Selecting which indel calling software to use can often skew the
results andmay affect downstream analysis.

� We evaluated the performance of several indel calling software
for short indel detection.

� We pinpoint key features that assist successful experimental
design and appropriate tool selection.

� Our study serves as a basis for future evaluation of additional
indel callingmethods.
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