
 

Sensors 2015, 15, 14116-14141; doi:10.3390/s150614116 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Analysis of Intelligent Transportation Systems Using  

Model-Driven Simulations 

Alberto Fernández-Isabel and Rubén Fuentes-Fernández * 

Departamento de Ingeniería del Software e Inteligencia Artificial, Facultad de Informática, 

Universidad Complutense de Madrid, 28040 Madrid, Spain; 

E-Mail: afernandezisabel@estumail.ucm.es 

* Author to whom correspondence should be addressed; E-Mail: ruben@fdi.ucm.es;  

Tel.: +34-91-3947548; Fax: +34-91-3947547. 

Academic Editors: Antonio Puliafito, Symeon Papavassiliou and Dario Bruneo 

Received: 4 April 2015 / Accepted: 10 June 2015 / Published: 15 June 2015 

 

Abstract: Intelligent Transportation Systems (ITSs) integrate information, sensor, control, 

and communication technologies to provide transport related services. Their users range 

from everyday commuters to policy makers and urban planners. Given the complexity of 

these systems and their environment, their study in real settings is frequently unfeasible. 

Simulations help to address this problem, but present their own issues: there can be 

unintended mistakes in the transition from models to code; their platforms frequently bias 

modeling; and it is difficult to compare works that use different models and tools. In order 

to overcome these problems, this paper proposes a framework for a model-driven development 

of these simulations. It is based on a specific modeling language that supports the integrated 

specification of the multiple facets of an ITS: people, their vehicles, and the external 

environment; and a network of sensors and actuators conveniently arranged and distributed 

that operates over them. The framework works with a model editor to generate specifications 

compliant with that language, and a code generator to produce code from them using 

platform specifications. There are also guidelines to help researchers in the application of 

this infrastructure. A case study on advanced management of traffic lights with cameras 

illustrates its use. 

  

OPEN ACCESS



Sensors 2015, 15 14117 

 

 

Keywords: intelligent transportation system; smart city; sensor; actuator; traffic lights; 

simulation; model-driven engineering; modeling language; agent-based modeling;  

code generation 

 

1. Introduction  

The concept of smart city appears as an answer to the challenges posed by the management of highly 

interconnected physical and Information Technology (IT) infrastructures in relationship with their 

communities and environment [1]. The goal is to take advantage of the collective intelligence in such 

complex systems to get more efficient, sustainable, and liveable environments [2]. Intelligent (or Smart) 

Transportation Systems (ITSs) [3] play a key role in this context. Their services try to improve traffic 

regarding security, sustainability, and reduced costs in terms of time, money, energy, and environmental 

impact. Examples of these services [4,5] are the timely update of traffic data, the request of the equipment 

needed to assist in emergencies using the data provided by vehicles, or the tracking of freight along its 

journey. For this purpose, these systems make use of the pervasive presence of networks of sensors and 

actuators (Sensor Networks, SNs) deployed in people, vehicles, and the environment of smart places, 

and the high availability of data regarding participants in traffic and their activities [6]. 

The development of these complex systems faces important challenges [3,5,6]. First, their potential 

effects on the environment and living beings make it difficult to set up suitable controlled environments 

for experiments. Second, these systems usually comprehend multiple distributed components (both 

hardware and software), frequently embedded in other elements such as vehicles, phones, traffic lights, 

or roads. This kind of system has high costs of development, testing, and deployment. Third, there are 

many interacting elements in a real traffic setting, what makes difficult to validate hypotheses on the 

behavior of ITSs. 

Simulation appears as a useful tool to deal with the previous issues [7]. It allows controlling the 

relevant variables of the problem, running multiple experiments, and the incremental development of 

ITSs (i.e., gradually replacing models and software implementations by the actual components and 

environment). However, this approach also presents some drawbacks [8], mainly concerned with the 

difficulties to guarantee the alignment between the resulting simulation and the initial abstract model. 

Model-Driven Engineering (MDE) [9] has been proposed as a way to overcome these limitations of 

simulations [10]. In a model-driven development, researchers mainly specify their simulations using 

models compliant with well-defined Modeling Languages (MLs). These models are combined and 

refined (adding new information or modifying it) until it is possible to generate code from them. 

Transformations automate some recurrent modifications of models, code, and other related artifacts. In 

this way, all the information required to produce the simulation is explicitly represented. This facilitates 

validating artifacts with theories and crosschecking among experiments. For instance, the same 

theoretical model of drivers’ behavior can be the basis for simulations in different platforms, different 

models of traffic flows in a city can be compared with implementations in the same platform, and all of 

them can be reused and validated in different projects as long as they keep the same theoretical basis or 

simulation infrastructure. 



Sensors 2015, 15 14118 

 

 

This paper presents a MDE framework to develop simulations of ITSs. This framework comprehends: 

a ML for ITS experts; a model editor and a code generator tools; and guidelines to apply these elements. 

Figure 1 provides an overview of the framework components and the main related works that influence 

their development. All considered frameworks adopt MDE approaches, and all their MLs follow the 

agent paradigm [8,11]. 

 

Figure 1. Main components of the Model-Driven Engineering (MDE) framework for 

Intelligent Transportation System (ITS) simulation (in white) and related works (in yellow). 

Aggregation relationships (with diamonds) represent whole-part relations, and dependency 

relationships (discontinuous lines) different relations of use. 

Our ITS ML (ITSML) builds on the foundation of three MLs that address relevant aspects of the 

problem: the simulation of traffic in [12] (the Traffic ML, TML), and the development of SNs in [13] 

(the SN ML, SNML), which in turn is partly based on the INGENIAS methodology [14] for  

agent-oriented software development and its INGENIAS ML (the INGENIAS-ML). The ITSML 

provides a seamless integration of their concepts (including direct reuse of parts of their MLs) and 

additional elements. The integration is based on the agent paradigm underlying these languages.  

Thus, the ITSML distinguishes between agents (i.e., intentional and social entities) and components  

(i.e., elements of systems that are not agents). 

Components have a state, are able to produce events, and make available interfaces with methods to 

manipulate them. Most concepts from the other MLs become components here, e.g., the devices of SNs 

and the elements of the environment in traffic. The execution of methods can be linked in workflows 

through the production and use of information (e.g., external notifications or internal facts). This ML 

also introduces the concept of spot, as a component that indicates where devices can be placed and what 

they can perceive and act on. For instance, persons, vehicles, and traffic lights are spots. 

Agents represent both people (e.g., person in [12]) and software agents (e.g., managers of devices  

in [13]). They follow a perceive–reflect–act cycle, with specific components for each of these tasks. This 

facilitates decoupling the interaction with the environment and the modification of their  

internal state. 

As general features, the ITSML provides inheritance and instantiation mechanisms. The first one 

supports the specialization of concept types at the model level. The second one allows defining instances 



Sensors 2015, 15 14119 

 

 

of any type in models, which makes possible the full specification of the simulation at that level. There 

is also a general association relationship between concepts that can be stereotyped. 

The tools of the framework are a model editor developed using the meta-editor INGENME [15], and 

the code generator from [12]. The first one supports the specification of models compliant with the 

proposed ML. The second one allows mapping elements in models to code templates that are used to 

generate the source code of simulations. 

The case study that illustrates the use of this infrastructure is the simulation of the management of 

traffic lights in [16]. That work uses the Simulation of Urban MObility (SUMO) open traffic simulation 

suite. The paper considers traffic lights that optimize flows in junctions by perceiving the length of their 

queues and coordinating among them. This case study addresses the development of such simulation 

using the proposed approach. It shows how most of the simulation can be specified with models and then 

to generate code from them, which reduces coding effort and facilitates its understanding and later 

modification. Additional experimentation is also discussed more briefly. 

The rest of the paper is organized as follows. Section 2 reviews the background of this work in MDE 

(see Section 2.1), and the development frameworks for traffic simulations (see Section 2.2)  

and SNs (see Section 2.3). The framework for the model-driven development of ITS simulations  

(see Section 3) is described through its ML (see Section 3.1) and its development guidelines and tools 

(see Section 3.2). Section 4 applies it to the case study of the simulation of intelligent traffic lights  

(see Section 4.1) and presents additional experimentation (see Section 4.2). The results are compared 

with related work in Section 5. Finally, Section 6 discusses some conclusions and future work. 

2. Background 

The approach for the development of simulations of ITSs is based on four main works, which are 

discussed in the following subsections. MDE (see Section 2.1) is the general paradigm for software 

development used in this research. It is focused on models and their semi-automated transformations. 

Three development frameworks adopting this paradigm contribute to our research: those for traffic 

simulations [12] (see Section 2.2) and SNs [13], this extending the INGENIAS methodology [14]  

(see Section 2.3). The proposed framework integrates elements from these works with specific extensions 

for ITSs, both at the levels of ML and tools. 

2.1. MDE 

MDE [9] organizes software development around models. These gather most of the information 

required to produce systems and their related artifacts. The development process is mainly conceived as 

an iterative refinement of models, where information is added to them and modified. Transformations 

automate some of these modifications, and also generate from models artifacts such as documentation, 

code, or tests. Examples of transformations can be mapping abstract theoretical models to design ones 

for a given simulation platform, or adding a default goal of path-following to a driver agent. There are 

alternatives to work with these elements. 

In order to enable the automated processing of models by tools, MDE needs to define formally their 

MLs. Metamodels are the most widely accepted means for this task regarding graphical graph-oriented 



Sensors 2015, 15 14120 

 

 

MLs, which are the most used [9]. A metamodel defines the primitives available in the language,  

as well as the constraints applicable to them. 

Metamodels are specified using meta-modeling languages. The Meta-Object Facility (MOF) [17] is 

the standard defined by the Object-Management Group (OMG). It is used to define popular standard 

MLs, such as the Unified-Modeling Language (UML) [18]. However, tool support for MOF is limited, 

so researchers and engineers frequently resort to better supported alternatives. Ecore [19], from the 

Eclipse modeling projects, has extensive tool support and is aligned with the subset of  

MOF known as Essential MOF (EMOF) [20]. MOF-based MLs use references to relate concepts. These 

references are directed binary links with only a few properties (e.g., super-type and containment). This 

makes them cumbersome sometimes to specify complex relationships with attributes. The  

Graph-Object-Property-Role-Relationship (GOPRR) [21] meta-modeling language considers a richer 

set of primitives for this task. Its languages are organized around graphs that contain objects connected 

by relationships. Relationship ends are roles, and they can appear in any number. All the previous 

elements can have properties. Some tools based on GOPRR are Metaedit+ [21] and INGENME [15]. 

MDE approaches process information automatically using transformations. Most times, their inputs and 

outputs are models compliant with metamodels, or text-based artifacts (e.g., code or documentation) 

compliant with grammars [22]. There are multiple ways of implementing these transformations [23], 

from modules written in mainstream imperative programming languages, to mappings written in specific 

declarative transformation languages and executed by engines. Examples of the first approach are 

wizards in [12] and modules in INGENME [15]; JET [24] and ATL [25] are popular Eclipse-supported 

examples of the second approach. 

The organization of the overall development process also has multiple alternatives. One of the best 

known is the Model-Driven Architecture (MDA) [26] of OMG. It defines three levels of abstraction for 

its MLs. Computation Independent Models (CIMs) are intended for domain-specific information, here 

traffic and very abstract views of ITSs. Platform Independent Models (PIMs) describe general 

computational abstractions, not depending on specific architectures, e.g., sensors, actuators, and controllers 

of ITSs. Platform Specific Models (PSMs) include technology-related information, e.g., the target 

simulation platform. INGENIAS proposes two MDE processes, one based on the Unified Process [27] 

and another on Scrum [28]. They are oriented to different types of project and team. Both use almost the 

same kinds of diagram over the entire development, independently of the level of abstraction of the 

stage. In all the considered processes, designers manually modify development artifacts or run automated 

transformations on them. 

Transformations can also be used to translate information among models of MLs compliant with 

different meta-modeling languages [29]. This is a less frequent type of transformation, and its 

specification is quite complex. 

2.2. The Traffic Simulation Framework 

The traffic simulation framework [12] proposes a MDE approach to develop this kind of simulation. 

It comprehends the TML to describe theories of traffic, and tools to work with it. 

The TML is based on Agent-Based Modeling (ABM) [8]. Its agents are intentional entities that 

represent persons. They are modeled in terms of the goals they pursue and the tasks they can execute to 



Sensors 2015, 15 14121 

 

 

achieve the former. Internally, these agents follow a perceive–reflect–act cycle [11]. An agent perceives 

its external environment, uses this information to update its internal state, and then to select a suitable 

goal and a related task according to it, executes this task, and starts again the cycle. This cycle is modeled 

using evaluators (which perform all these activities but the execution of tasks), and actuators (that 

execute the selected tasks). 

Regarding traffic, the TML adopts the Driver–Vehicle–Environment (DVE) [30] model. This considers 

the dynamic interactions among drivers moving in an environment using their vehicles. In these 

interactions, the mutual influences among the different components affect their features and behaviors. 

For instance, the mental workload of a driver largely depends on the weather conditions, which are part 

of the environment. The TML modifies this basic model to be able to integrate different theories of 

traffic. Its participants are persons (that are also the agents), who can drive vehicles or not. Persons are 

characterized in terms of the knowledge they have and the features of their profile. 

The ML uses methods to specify the actual effects of the interactions among the previous elements. 

Methods act as placeholders where indications can be provided on how to update dynamically features. 

There are default methods for several types of entity. An alternative to model these effects is to use the 

inheritance mechanisms to provide new types of relationship (e.g., affect or impede), but this can be 

difficult to specify and semantics not being clear. 

Most of the previous concepts can be decomposed in parts (i.e., components). For instance, Profile 

has PComponents, and Environment EComponents. They can also be extended through inheritance. 

The implementation of this framework is based on Eclipse projects. An Ecore metamodel defines the 

TML, and related tools are based on the Eclipse Modeling Framework (EMF) [19] and the Graphical 

Editing Framework (GEF) [31]. The two main tools are a model editor and a code generator. 

The model editor allows generating graphically instances of the metamodel, i.e., models. These are 

drawn as graphs of the concepts and relationships included in the metamodel. This editor is directly 

generated from the metamodel using the EMF and GEF functionality. 

The code generator integrates information from different sources to output the source code of 

simulations. Its inputs include, among others: the traffic metamodel; models compliant with it; the 

classes EMF generates from the metamodel; libraries describing the target simulation platforms; code 

templates for specific parts of the generated code; and mappings from model entities to those templates. 

A template includes text and placeholders that indicate where and what information from models needs 

to be inserted. The generator manages all this information with graphical wizards. It is implemented 

using Java with additional libraries. 

2.3. The SN Development Framework 

The SN development framework [13] introduces a MDE approach to develop SNs. It is based on the 

INGENIAS methodology [14] and its tools for model editing [15], and Eclipse transformations [24,25]. 

INGENIAS is a MDE methodology to develop Multi-Agent Systems (MASs). MASs are a general 

paradigm (not only for simulations) where the basic abstraction is the agent. As it happens in ABM, 

INGENIAS agents are intentional and social entities. They execute tasks pursuing certain goals.  

These tasks can change the internal state of the agent or its external environment, or trigger interactions. 



Sensors 2015, 15 14122 

 

 

The environment is modeled using environment applications, which produce events and have methods 

to act on them. Sometimes, these events trigger tasks. Interactions exchange information among agents. 

The INGENIAS-ML supports limited forms of inheritance and instantiation relationships for agents. 

The latter defines the actual agent instances that exist in the system from their types. This is used, for 

example, to specify the system deployment. 

The INGENIAS tools are currently based on the INGENME framework [15] for MDE. INGENME 

supports the definition of MLs based on its implementation of GOPRR [21]. Its meta-editor allows 

generating functioning model editors from metamodels. These editors are similar to those of GEF [31], 

but simpler to describe, as they involve less intermediate models. Additional modules can be integrated 

in the basic version of these editors. These modules are implemented in Java, and have access to 

programming interfaces provided by the framework to manipulate both metamodels and their models. 

Among other tasks, they implement transformations. Text-generation modules are based on templates, 

as in the traffic simulation framework (see Section 2.2). 

The SN development framework extends the INGENIAS-ML to model SNs with the SNML. Its 

models are organized around containers. Containers are computational devices where other resources 

run. Resources can be pure software utilities or devices with hardware components (i.e., sensors and 

actuators). Communication channels linking containers are considered a particular type of resource. 

The control of these resources is the responsibility of managers, which is a role that actor agents play. 

These managers can be passive or active controllers. The first group only listens to notifications from 

resources, while the second group can also invoke their modification methods. 

The framework includes basic guidelines on how to model with the SNML and translate these 

specifications to the INGENIAS-ML. The rest of its development follows an INGENIAS process [27]. 

3. The MDE Framework for ITS Simulation 

The framework for the development of ITS simulations comprehends the following elements: a ML 

(see Section 3.1), and guidelines to apply it with a model editor and a code generator (see Section 3.2). 

3.1. Modeling Language 

The ITSML is organized around the main concepts that appear in this kind of system and its context 

(see Figure 2). There are persons who interact with vehicles and an external environment, which is 

composed of things. All these elements are places that can contain multiple spots. A spot is an element 

that can be observed and/or where containers can be located. Containers are computational nodes, linked 

by communication channels. In them, software managers control the deployed sensors and actuators. All 

the previous concepts share some features (e.g., they are modeled with a state and an access interface with 

methods, and generate events). A common abstract super-concept named component gathers these features. 

That conceptual basis is the result of integrating and extending multiple researches related to the 

domain. The ML follows an ABM approach [8], so it makes of agents, and their interactions among 

them and with external objects, the core of modeling. This perspective is common to several MLs that 

provide concepts for the ITSML. The TML [12] is the main one, given the close relationship between 

the domains of traffic and ITS simulations. The INGENIAS-ML [14] offers a rich set of primitives for 



Sensors 2015, 15 14123 

 

 

ABM and basic extension mechanisms of limited inheritance and composition. It is also the foundation 

of the SNML [13], which models concepts of devices and their controllers in SNs. 

 

Figure 2. Main concepts (in italics) of the ITS Modeling Language (ITSML) in context. 

The ITSML specifies that conceptual framework using a metamodel. Working with metamodels 

allows reusing parts of the other MLs. For instance, it supports introducing and modifying concepts and 

relationships as specializations of those present in the different base metamodels. There are also 

extensions that mechanisms in the base MLs do not support, but those of metamodels do. For instance, 

the ITSML has to allow defining instances of arbitrary types in its models. 

The meta-modeling language used for the ITSML is the implementation of GOPRR [21] in the 

INGENME framework [15]. In next diagrams of this section, nodes and relationships, respectively, 

represent meta-entities and meta-relationships. The ends of these meta-relationships are the meta-roles. 

Meta-properties appear as attributes or adornments of the previous elements. Examples of these are the 

numbers in the meta-roles that are cardinality indications. Meta-relationships with triangles represent 

inheritance, and those with diamonds aggregation, with filled diamonds representing composition  

and hollow diamonds mere aggregation. This notation is similar to that of UML [18]. As the ITS 

metamodel integrates concepts from different metamodels, these have been located in packages. Names 

of concepts and relationships from other metamodels appear qualified with the name of its package, i.e., 

traffic [12], SN [13], or INGENIAS [14]. 

The rest of the section discusses in detail the concepts for ITSs in the metamodel. It starts with the 

general component (see Section 3.1.1). Then, it focuses on the places where sensors and actuators can 

be deployed and with which they interact (see Section 3.1.2). Managers control these resources to 

provide services to persons (see Section 3.1.3) moving in an environment (see Section 3.1.4). There are 

also some general mechanisms applicable to all these concepts (see Section 3.1.5). 

  



Sensors 2015, 15 14124 

 

 

3.1.1. The Component Entity 

Figure 3 is focused on the component, which is the base concept in most of the inheritance hierarchies 

of the ITS metamodel. The SN device and the constituents of the traffic person (with the exception of 

the mental entities goal and knowledge), vehicle, and environment, become components. Components 

have an internal state and an interface composed of methods. Methods can be external (when they can 

be invoked from outside their components), or internal otherwise. 

 

Figure 3. Partial ITS metamodel. Component related elements. 

The state and methods are characterized in terms of information. Pieces of information can be of three 

types: facts make up the internal state; events are information that appear in components but they do not 

explicitly produce, and that can be used internally or externally; notifications are information produced 

for external use. Methods output both facts and notifications, but events come from non-specified parts of 

components. Besides their results, methods are defined by the parameters they need and the conditions 

that enable them, which can involve any kind of information. Components can be connected in pipelines 

using the information their methods produce and consume. 

The metamodel defines two convenience meta-relationships for methods and their related information: 

triggers and perceives. The first one relates a component to a notification that one of its methods 

generates. The second one links a component to any information that is input to one of its methods.  

These meta-relationships allow focusing on the considered information and omitting the particular 

methods involved. 

3.1.2. Place and Device Related Entities 

An ITS needs to gather information from its surroundings and act on them. Figure 4 shows the  

high-level structure of this context. It is abstracted as a set of places that contain multiple spots.  

These spots are the components that can be actually monitored and modified, and where devices can be 

placed. Following the DVE model adopted by the TML (see Section 2.2), the participants in the traffic 

phenomena (i.e., persons, their vehicles, and the things in the external environment) are places. Their 

components according to the TML become spots. 



Sensors 2015, 15 14125 

 

 

 

Figure 4. Partial ITS metamodel. Place and Device related elements. 

Following the SNML (see Section 2.3), devices are responsible of sensing and acting in the ITS 

surroundings. The metamodel incorporates the device-related concepts from SNs as components.  

A container is the computational resource physically attached to a spot. Communication channels link 

them. A container runs multiple devices (i.e., sensors, actuators, and utilities). Both sensors and 

actuators can invoke consult methods of spots. Sensors can also perceive their notifications, and 

actuators invoke their external modification methods. Utilities are pure software components without 

access to the surroundings. 

Sensors and actuators are thus related to two spots, which can be (or not) different: the one to which 

their container is attached (i.e., HasAttached meta-relationship); and the one with which they interact. 

For instance, a place vehicle has a spot for a container with a thermometer sensor that measures the air 

temperature, being that air a spot in the place weather conditions of the environment. The perceives and 

actuates meta-relationships are convenience meta-relationships for these interactions. They link sensors 

and actuators with the spots they manipulate without considering the involved methods. 

The control of devices can be modeled in their methods or using manager agents. The activation of a 

method happens when its inputs (e.g., external notifications and internal events or facts) and the internal 

state of its device meet some conditions. As a consequence, it generates new information, either internal 

to the device (as facts) or external for other components (as notifications). For instance, a timer sensor 

in a traffic light has a method activated by a time-consumed event. When this happens, this method 

produces a change notification for the actuator in charge of changing lights, which processes it with 

another method. This method changes to a target light that depends on a fact that represents the current 

light, and which is part of the internal state of that actuator. On the other hand, manager agents (see 

more on them in Section 3.1.3) control devices when complex algorithms are needed (as they have a rich 

model for decision-making) or there is communication among containers (which is one of the specific 

responsibilities of agents). 

3.1.3. The Person and Manager Entities 

The ITS metamodel models with agents complex intentional and social components. These include 

persons and managers that control devices (see Figure 5). The specification of agents includes the 

information they have, their goals and capabilities, and the process to manage the previous elements. 



Sensors 2015, 15 14126 

 

 

 

Figure 5. Partial ITS metamodel. Person and Manager related elements. 

Knowledge specifies the internal state. It includes facts (i.e., any statement about the world) and goals 

(i.e., states of the world that an agent wants to keep or to achieve). 

Tasks are the high-level actions of agents. They are implemented using methods or other tasks. When 

using methods, a task is eligible for execution depending on the condition of the method.  

In this case, the task can change the agent’s knowledge, use devices, or act on the environment  

through notifications. Communication among agents is modeled as a particular use of notifications. The 

alternative to define the execution of a task is as a workflow of interconnected tasks to set up complex 

activities. These workflows follow the INGENIAS-ML [14]. 

Agents work in a perceive–reflect–act cycle that defines its dynamic behavior. This cycle is modeled 

with three types of components (i.e., sense, reflection, and acting) that operate over their own and their 

agent internal state. The sense meta-class models perception as an interaction with observed devices that 

adds or modifies facts in the state of the agent or the sense. The instances of the reflection meta-class 

are responsible of the reflection stage. They analyze available knowledge (both facts and goals), and 

produce new one or modify the existing. Then, they check non-satisfied goals, and identify the tasks 

related to them and suitable for execution in the current context. Finally, the acting meta-class represents 

the actual execution of one of the executable tasks. 

The agent concept is suitable to represent directly control managers. For persons involved in traffic, 

there are some modifications. A person has specific person sense and person acting components that 

allow interacting directly with spots without the need of intermediate devices. 

The previous definitions allow aligning concepts from the ITSML with those of its base languages. 

The ITSML agent, fact, and goal are sub-types of the INGENIAS-ML meta-classes agent, frame fact, 

and goal. Both the TML knowledge and profile are modeled as ITSML knowledge, and the TML goal is 

a super-type of the ITSML goal. The person sub-type of agent is also a subtype of the TML person. 

3.1.4. The Environment Entity 

Regarding the environment, it represents the elements participating in traffic that are not people, their 

vehicles, or the ITS components (e.g., devices and their managers). Examples of its elements  

are the roads, the traffic signals, the weather conditions, or obstacles. It is an extension of the TML 

environment (see Figure 6). It is modeled as an aggregation of things, which are located over a map. 



Sensors 2015, 15 14127 

 

 

 

Figure 6. Partial ITS metamodel. Environment related elements. 

The map represents the distribution of the physical space. It is a kind of graph composed by a set of 

section, each one linking two junctions (at least one) and having a given length. This length can be 

measured in different units, e.g., kilometers or number of vehicle along it. A section is a set of lanes that 

can be direct (from the origin to the destination junction) or reverse (the other way). A lane has an 

occupants list of references to the vehicles or persons in it ordered according to their position. 

The other elements of the environment (the equivalent of the TML EComponent) are things.  

They can be placed in specific map locations, but also being considered global for the environment, e.g., 

the weather conditions or the sun position. 

Vehicles and persons, being places, can have a location. In the case of instances of vehicle, this is 

mandatory. Persons can have a location, when they are pedestrians, or being attached to a vehicle. 

3.1.5. General Features 

The ITS metamodel also includes general instantiation, inheritance, and association mechanisms. For 

each meta-class of name name, there is another meta-class of name Iname that represents its instances 

at the model level. An instance of the later can be linked to an instance of the former with an instance of 

the meta-relationship instanceOf. For example, there is a meta-class IPerson linked by a  

meta-relationship instanceOf to the meta-class Person, so in a model, a specific driver IPerson can be 

defined as an instance of a specific type of Person. The inheritance mechanism extends those available 

in the traffic, SN, and INGENIAS MLs. It can be applied to most of concepts in the ITS metamodel, 

with the semantics that the sub-concept inheriting from the super-concept has all its features, but it can 

extend or constrain them with additional elements. Default constraints establish that an animated concept 

(i.e., an instance of the meta-class person) cannot inherit from a non-animated concept (i.e., an instance 

of a meta-class that is not person), and vice versa. Regarding association, there is a general  

meta-relationship relatedTo between instances of component. It has a stereotype property to establish 

arbitrary types of it. 

3.2. Development Guidelines and Tools 

Figure 7 shows the development guideline for the framework. The process has two different stages. 

The first one (see nodes 1–20) is specific of this work and focused on modeling with the ITSML.  

The definition of its metamodel (see Section 3.1) provides hints to identify the different concepts.  

The results of this stage are models that provide an abstract representation of the ITS and its environment. 

They are independent of specific target simulation platforms. The second stage takes these models as 



Sensors 2015, 15 14128 

 

 

input and runs transformations to get models with the INGENIAS-ML (see activity 21), and then applies 

an INGENIAS development processes [27,28] to get the simulation code (see activity 22). 

 

Figure 7. Activity diagram of the development process with the ITSML. Concepts starting 

with uppercase belong to this ML. 

The process starts identifying places in decision 1. These establish the context of the system and the 

elements over which the ITS must work. If there is any place, activity 2 assigns it a name and identifies 

its spots. Next activities in this path specify the place as a component (starting with decision 3) and its 

spots (see decision 14). If there are not more places to identify, the abstract modeling of the ITS has 

finished, and the process starts the INGENIAS development (see activities 21 and 22). 

The description of a place depends on its type (see decision 3): thing, vehicle, or person. All of them 

have to be specified as components (see activities 4–6). This specification indicates the information 

available from these elements, and the means to interact directly with them. Instances of person should 

not usually include any external method to modify its internal knowledge, as it would violate their 

autonomy according to the agent paradigm. Other of their features can be modified from the 

environment, for instance to reflect that they have suffered some injury. If needed, these places must 

also be located in the environment map (see activity 13), which also implies specifying this. 

The specification of a person also comprehends its behavioral cycle. This is specified in terms of its 

sense (see activity 10), reflection (see activity 11), and acting (see activity 12) components. Sense 

instances use their methods to get notifications from external sources (i.e., spots and devices),  

and include it as facts that are part of the internal state of the person. Reflection instances model several 



Sensors 2015, 15 14129 

 

 

activities: generation of new derived knowledge from that already available; checking goal satisfaction 

according to the current internal state; selection of potential tasks to execute according to the state of 

goals and other knowledge. Acting instances represent the actual execution of tasks. Activity 7 is used 

to specify those goals, activity 8 the facts, and activity 9 the tasks. These elements are linked among 

them: tasks are potentially able to satisfy some goals; goals are satisfied according to conditions 

specified in terms of knowledge; and tasks are eligible depending on the state of associated goals. 

After specifying a place, the process continues with its spots. These spots are elements where devices 

can be located, or that devices can observe and act on. The specification of spots starts identifying them 

(see decision 14). Every spot must be defined as a component to determine its related information and 

methods (see activity 15). Spots are also the elements that can have attached containers (see decision 

16). Activity 17 identifies the containers attached to a spot and the devices running in it. Containers are 

connected through the channels identified in activity 19. Among devices, sensors observe spots and 

actuators act on them. These spots can be or not the same to which their containers are attached. Activity 

18 links sensors and actuators to their target spot. Finally, activity 20 specifies the container devices as 

components and their managers as agents, if they exist. Although not included in the figure, the 

specification of managers should follow a similar workflow to that of person (see activities 6–12), as 

both entities are sub-types of agent. 

Activities 21 and 22 correspond to the transition and the development with an INGENIAS  

process [27,28]. The first activity develops, if not available, and runs an automated transformation with 

input ITSML specifications and output INGENIAS-ML models. Then it follows an INGENIAS 

development process to generate the simulation source code. The main issue here has to deal with code 

generation. It relies on platform-specific templates (see Section 2.3), which must be available from other 

projects or need to be developed from scratch. 

This approach is in line with MDA [26]. The ITSML models are CIMs and PIMs, and the INGENIAS-

ML models are PIMs and PSMs, in both cases depending on their level of abstraction. 

Figure 7 shows only a sequential perspective of the process. In fact, its actual application needs to be 

iterative in its different paths. For instance, in the path from nodes 3 to 13, activities 4–6 can be done in 

the first iterations to give a high-level description of the system context, while the other activities 

correspond to a later and more detailed specification. In that path also, when modeling the person tasks 

(see activity 9), it is possible to find out that their execution requires additional internal methods of 

person, so activity 6 must be revisited. Moreover, when in activity 18 designers link sensors and 

actuators to the spots they work on, this can lead to modifications in the definition of those spots (made 

at some moment in activity 15), or even of their places (starting in decision 3). 

The previous process is supported by two main tools. A graphical model editor allows generating 

model instances compliant with the ITS metamodel. This editor has been developed using the 

infrastructure of INGENME [15]. A code generator takes as input the metamodel and the model instances 

to generate the source code of the simulation for a target platform. Researchers only need to provide the 

code templates for that platform, and give the correspondences between those templates and the concepts 

of the ITS metamodel. The code generator has been developed for the traffic simulation framework [12]. 

It replaces here the modules used in INGENIAS, which offer less assistance in this process. 

  



Sensors 2015, 15 14130 

 

 

4. Experimentation 

This section illustrates the application of the previous framework (see Section 3). It includes a case 

study (see Section 4.1) and a report on additional experiments (see Section 4.2). 

4.1. Case Study: A Control System for Traffic Lights 

The availability of affordable sensors and actuators for ITSs has made traffic experts reconsider some 

of the traditional designs of traffic facilities. In particular, traffic signals can be made more intelligent, 

in the sense of being aware of the state of traffic in their areas and coordinate with other signals to 

improve the overall state in wider areas. The use of intelligent traffic lights to control junctions in streets 

is part of this approach [16]. In that work, the intelligence comes from two main features of these signals. 

First, they are able to perceive the number of cars in the lanes that join in their junctions. They achieve 

this using Optical Information System (OIS) sensors. Second, they exchange information to adapt their 

behavior to the overall traffic state in the area with the goal of maximizing the throughput of cars from 

it. In order to evaluate the benefits of the use of these intelligent traffic lights over traditional ones, the 

work in [16] simulates both situations using the SUMO platform and real data of traffic. This case study 

reproduces this experiment using the ITS simulation framework. 

The process starts with the identification of potential places in the problem (see decision 1 and activity 2). 

According to its definition (see Section 3.1), a place is the component that contains spots, which are the 

elements where containers can be attached or that sensors can monitor and actuators act upon. The 

presentation of the problem introduces several of these places. Junctions contain intelligent traffic lights 

where OIS sensors are located. These sensors perceive lanes from streets. 

At this point, the process can continue by specifying those places (starting in decision 3) or the spots 

and related devices (starting in decision 14) (see Figure 7). As the original work pays particular attention 

to the system devices, this case study continues in the second path. Figure 8 shows the model instance 

resulting of it. 

 

Figure 8. Intelligent traffic lights. Container related elements. 

  



Sensors 2015, 15 14131 

 

 

Decision 14 begins identifying the spots of the previous places. The traffic lights are considered as 

located in the junction posts surveying the main street sections. Both junction posts and street sections 

are spots, as the former represent where devices are located, and the latter what they survey and affect. 

Activity 15 specifies these spots as components. In this case, they do not have any specific state or 

functionality to specify. Only street sections could have it related to the vehicles in them. However, this 

specification is considered later in the environment map. 

The next nodes in the path focus on the devices the simulated ITS uses to perceive and act. The first 

step in decision 16 is discovering the spots with containers for these devices. In this case, there is only 

one of such spots: the junction posts. 

Activity 17 identifies the devices running in the containers. The intelligent traffic lights are modeled 

as containers in junction posts. They have as sensors the OIS sensors that allow them perceiving the 

queues in their lanes (using the street sections); their actuators are their red, green, and yellow lights. 

Activity 18 links OIS sensors to the street sections spots they watch, and lights to the street sections 

spots they are pointing at. 

The containers of ITSs are not isolated. They set up a complete system thanks to its communications 

through channels. Activity 19 identifies these channels. The intelligent traffic lights are connected in 

this way (not shown in the figure) to share the state of the whole area. 

Activity 20 models the sensors and actuators of containers as components, and their managers.  

An OIS sensor has a method to consult the number of vehicles in its lane. A light has a state characterized 

by its current color, the time remaining in it, and the current default time assigned to each color; its 

methods allow checking the previous values and changing the periods assigned to each color and which 

to display. As in the SNML, complex control algorithms are modeled using the managers of devices, 

which are agents. In [16], traffic lights adapt the time assigned to each color according to the information 

from their sensors and from traffic lights in the other junctions. For this problem, a lights manager 

orchestrates work in each intelligent traffic lights container. It obtains information from its OIS sensors 

and sends it to the managers in the other junctions using the channels. It also receives from the channels 

the updates from the other junction posts. Finally, with all of this information, it updates the lights state. 

Figure 8 also shows how to introduce instances of the types identified for a given problem.  

The instance lights 1 of the class lights runs in the instance intelligent traffic lights 1 of the container, 

and it governs the traffic of the instance street section 1 of the class street section. 

After modeling spots, containers, and their devices, the specification needs to consider the persons 

and their vehicles, as well as the environment where all these elements interact. This corresponds in the 

process to the paths for places starting in decision 3 (see Figure 7). 

In [16], only vehicles are modeled, as drivers are implicit in their control. Using data from real places, 

researchers determined the volume of traffic in the different sections of streets and the junction turning 

percentages. In the ITSML, the vehicle is a passive component, and the decision-making is modeled with 

the driver person. 

Activity 5 models the vehicle component. In this case, it has no state. The environment map models 

its position (see later activity 13). Its methods should move the car, change the lane, and check its own 

position, that of other vehicles around it, and the color of the traffic lights in its street section. 

The specification of person is more complex. It includes the elements representing its basic 

knowledge and actions (see activities 6–9), and the perceive–reflect–act cycle (see activities 10–12). 



Sensors 2015, 15 14132 

 

 

Activity 6 specifies the person as a component, mainly regarding the external methods intended to 

check its state. Here, no one is needed. Activities 7–9 model its knowledge and capabilities. The goal of 

the driver is the path to follow in the street. It is characterized by the entry and exit points to the street, 

and the exit to take at each junction. The agent only needs to know the position of the vehicle to make 

decisions. This is a fact that directly translates the information provided by the vehicle methods. The 

tasks of the agent are those to check the environment and manoeuver the vehicle. In the first group are 

checking junction (to know when to turn and in which direction), checking position (to know if there is 

a vehicle in a given position), and checking lights (to know if the vehicle can go into the junction given 

the traffic lights). The second group includes moving forward, turn (left or right and the number of exit), 

and stop the vehicle. 

Activities 10–12 use the previous elements to represent the acting cycle of the driver person. Activity 

10 models sense. It only needs to perceive the vehicle spot to assert the facts regarding its current position, 

whether the surrounding positions are busy, and the color of traffic lights. Activity 11 models reflection. 

It compares the current position with the next turn. If the vehicle has not reached the turning position 

and lights allow it, it chooses the task to move forward; if it has reached the position, it chooses to turn 

when the target position is available; in other case, it waits. Activity 12 models acting, that translates 

one of the potential tasks for execution to person and vehicle methods. 

The last places to describe are things in the environment. Activity 4 specifies them as components. 

The already mentioned junctions and streets are things. Here, their specifications are empty because 

these places are only containers for spots. 

The final step in this modeling is activity 13, where places are located in the environment map.  

In [16], there are three junctions across a street, and each junction connects two sections of the street and 

a transversal section from other streets. The thing street is located over the three junctions and two 

sections. These elements and the transversal sections have direct correspondences in the ITSML as parts 

of the map. The model also needs to specify the number and orientation of lanes in each section. 

Figure 9 shows the model resulting of these activities, omitting lanes of sections and the links between 

the street and junctions. All the elements appear as instances (i.e., stereotypes Iname) of classes (i.e., 

stereotypes name) that are the direct representation of their meta-classes (i.e., name of the meta-class). 

For instance, the metamodel (see Section 3.1) includes a section meta-class. Section 1–2 and section 

transversal 1–3 are instances of a class section that is a direct instance (without any modification) of the 

meta-class section. The reason of this modeling is that specifying these instances only needs using 

existing elements, and not adding new state, methods, or relationships. 

When all the previous modeling has finished, activity 21 runs the transformations to create 

INGENIAS-ML models from these ITSML specifications. Their correspondences follow the inheritance 

relationships of meta-classes in the ITSML to those of the INGENIAS-ML when they exist. For instance, 

the ITSML components in models become INGENIAS-ML environment applications, as component is 

a sub-meta-class of environment application (see Figure 3). In the case of multiple inheritances, the base 

target meta-class is that with the closer semantics. For instance, the ITSML person inherits from the 

INGENIAS-ML agent, and through place and component also of the INGENIAS-ML environment 

application (see Figures 3 and 4). However, its meaning is closer to the INGENIAS-ML agent. Thus, 

the transformation generates for a person an INGENIAS-ML agent, though it also adds additional 

elements corresponding to it being also a place. 



Sensors 2015, 15 14133 

 

 

 

Figure 9. Intelligent traffic lights. Environment related elements. 

Finally, activity 22 follows an INGENIAS process [27,28] to refine those INGENIAS models and 

generate the source code for the simulation in SUMO [16]. In this case, INGENIAS models mainly add 

the description of the interactions among manager agents regarding the exchange of information from 

their intelligent traffic lights. SUMO specifies most of the components of its simulations using XML 

files. The main mappings with the original concepts from the ITSML are the following. The map of the 

environment is represented in SUMO as a network. Its nodes and edges are, respectively, ITSML 

junctions and lanes. The SUMO vehicle merges the ITSML vehicle and driver person. SUMO does not 

allow controlling the movements of its vehicles, as it provides only a limited set of implementations for 

them. Nevertheless, the path vehicles have to follow can be specified, and SUMO controls that traffic 

signals are observed. Regarding traffic lights, SUMO supports actuated traffic lights for the experiments 

described in [16]. They can change the time showing each color according to the number of vehicles in 

the edges they control. 

4.2. Discussion 

The proposed framework has been tested in several experiments with the purpose of assessing its 

components. These experiments considered different contexts in order to evaluate its adaptability to 

multiple needs regarding simulation. In particular, the ITSML has been used to specify different models 

for people and types of ITS, and the process and tools also for several target platforms. 

Regarding decision-making (see Section 3.1.3), there has been work with the goal-model of 

INGENIAS [14] and the reactive model for drivers in [32]. Compared to the ITSML, INGENIAS  

offers additional primitives to model goals with the distinction between hard (with quantitative 

evaluations) and soft (with qualitative evaluations) goals, and different relationships (e.g., affects, 

contributes positively, satisfies, and AND and OR compositions). The work in [32] offers an alternative 

perceive–reflect–act cycle. Its agents consider timed data, and combine for reflection a reactive model 

and a short-time planner. 

The concepts in the previous models are specializations of types already available in the ITSML. For 

instance, hard and soft goals [14] are sub-types of goal, and the short-time planner [32] of reflection. 

Relationships can be represented using instances of the relatedTo meta-relationship. Nevertheless, this 

is a limited approach, as it does not allow introducing constraints. For instance, INGENIAS relations 

between goals can be modeled, but not constrained with graphical primitives to link only goals. 



Sensors 2015, 15 14134 

 

 

There is also work with other types of ITS. Smart roads [33] are ITS which SNs are mainly deployed 

on roads. Their models with the ITSML use specializations of concepts related to devices and managers 

(see Section 3.1.2) and the environment (see Section 3.1.4). In [33], there are eye cats  

(a type of spot) deployed on road borders (which are things). The eye cats hold magnetic trackers  

(as sensors) that perceive vehicles passing near them. Manager agents represent the control of these 

sensors and their communications. 

The framework has also been tested with different target simulation platforms. Besides the already 

mentioned SUMO [16], it has also been tested with MATSim [34] and the platform for traffic simulation 

in [35]. MATSim mainly defines vehicle movement using paths and additional parameters that influence 

it, as SUMO does. Thus, the approach described for SUMO in the case study (see Section 4.1) is 

applicable with minor changes to MATSim. MATSim can also be extended with additional behavioral 

modules, as the platform in [35]. The latter distinguishes between vehicles and drivers, and supports 

complex agent-based models for people. Drivers have a basic behavior of path following that can 

incorporate maneuvers and general constraints on movement as goals. With the ITSML, those constraints 

are also modeled as goals, linked to tasks that represent maneuvers. Tasks are related to conditions that 

represent when those maneuvers can be considered for execution. In all the cases, the first tests with 

these platforms require developing specific code snippets to connect already available code (that for 

abstract models) with the platform. This also happened in the experiment reported in the case study. 

These new fragments could later be reused, or adapted with less effort, when experiments continued, 

and integrated in the code generation tasks. 

In these cases, the process points out the ITSML primitives suitable to model the concepts from those 

models and platforms. However, two aspects remain little described, the choice of relationships and the 

use of inheritance. Relationships are deduced from the context provided by concepts. The process focuses 

on the latter, and these determine the allowed relationships. There are no indications on how to choose when 

several relationships are available beyond their description in the ITSML. There are also sometimes 

difficulties to design inheritance hierarchies, particularly to establish what concepts must be extended. 

5. Qualitative Comparative Analysis 

This work is related to two main aspects of research in ITSs. It deals with the relevant concepts to 

model this kind of system, and the approaches followed in their analysis, development, and simulation. 

ITSs cover a wide variety of needs [3,5,6,36], e.g., reduction of traffic congestions, toll collection, 

parking, collision avoidance, or emergency response. However, their architectures and perspectives on 

the environment present a similar structure. There is a world external to the system that includes,  

for instance, environmental conditions (e.g., weather, sun position, or daytime) [33,37], roads [33,38], 

vehicles [37,39], or pedestrians [39]. ITSs include devices (sensors and actuators), which are their 

“interface” to interact with that environment [6,40]. Using them, ITSs provide their services. These 

services may require computational resources beyond devices, e.g., servers to store information or allow 

users to monitor the system and the environment. 

The previous facets can be effectively integrated using a view of these elements based on external 

interfaces able to manipulate their state. In most cases, their inner structure and behavior can be 

disregarded. For instance, with the exception of works focused on device control (e.g., [39,41]), most of 



Sensors 2015, 15 14135 

 

 

research adopts a high-level view of devices, focused on the data they gather and the services they 

provide (e.g., [33,38,40]). Such perspective is also applied in the models of environment elements when 

needed. The only exception is the map of the environment, which is modeled with some kind of graph, 

e.g., when working with location information from the Global Positioning System (GPS) [38]. 

The point of view of simulation is slightly different. It needs to integrate concepts to model the objects 

in the external reality and their behavior, so it can represent their influence in sensors and actuators [42]. 

For instance, drivers’ behavior is not only an aspect to observe, but also to manipulate in order to test 

the person and system functioning in multiple circumstances. 

Regarding vehicles, simulations need at least to establish partially their path (i.e., origin and 

destination, and sometimes intermediate points). The specific way in which a vehicle meets this objective 

offers variations. There are works that consider an strict adherence to the path (i.e., the path constitutes 

the precise movement instructions) [16], some partially random movements around it (e.g., to decide 

how to move between two points of the target path) [43], path calculation algorithms (e.g., shortest path 

under different cost functions [16,34,43]), and specific maneuvers (e.g., car following, lane change, or 

turns) [43,44] to follow it. Nevertheless, microscopic models (where vehicles are individually modeled) 

such as [16,34,43,44], could allow modeling more complex and flexible behaviors by replacing the 

default ones. However, this is not documented in the reviewed works, and it would probably require 

modifying the code of the considered simulation platforms. 

Most of works discard the explicit modeling of drivers, and only consider vehicle control [16,43]. 

Some references [43,44] include pedestrians, but only as moving objects, similar in their description to 

vehicles. General traffic studies are more prone to consider these issues. Their models can specify  

the mental state and features of people, for instance regarding their goals and ability [30], their  

decision-making [45], or their roles in traffic (i.e., pedestrians, drivers, and passengers) [12]. 

Both in the case of vehicles and people, researchers lack of support to extend the provided default 

implementations. For instance, there is little documentation, libraries, base classes for inheritance,  

or schedulers for multiple tasks, in the platforms to help coding these modifications. 

Our ITSML addresses these issues at several levels. It provides an extensible metamodel able to 

accommodate the different previous modeling approaches. The specification of environment elements 

and vehicles as objects with state and method interfaces is achieved with components. People and vehicle 

movements are modeled through the specification of persons. The case study (see Section 4.1) already 

includes an example of path following with maneuvers. The adoption of agents to represent persons 

goes further and allows describing the wide range of alternative models for people in traffic studies, from 

reactive to deliberative ones. Moreover, managers of devices are also modeled as agents, which 

facilitates representing complex distributed algorithms for ITSs including information management 

(e.g., goals, facts, probabilities, or uncertainty). Many issues usually considered in code are promoted to 

models, so researchers can define their requirements using MLs. Then, standard MDE development 

methodologies translate models to source code. When this translation is done, it provides documentation 

and reusable artifacts (i.e., models and transformations) for similar implementations. Thus, it provides 

the basis to build improved support resources for these tasks. 

The already discussed conceptual frameworks are intended to be the basis for the analysis of ITSs. 

They focus on the external interface of these systems (i.e., behavior perceived by users), the environment, 

and their mutual influences. However, those references do not consider the internal organization of such 



Sensors 2015, 15 14136 

 

 

systems, beyond, for instance, coding constraints imposed by simulation platforms. There are specific 

works focused on the architecture of ITSs. They usually present abstract models and hints for their 

implementation (e.g., [33,37]). Other works address low-level aspects of these systems, e.g., control or 

coordination mechanisms. They are usually focused on specific aspects, e.g., issues of computer vision 

in [41]. When dealing with such details, the use of simulations is common [7,16,42]. 

Works such as SUMO [16], DEUS [43], MATSim [34], the Tokyo Virtual Living Lab [44], the test 

platform in [35], or those reviewed in [42], are traffic simulation platforms. They include libraries to 

develop and run simulations, and sometimes user interfaces to specify them. Although there are 

descriptions of their underlying abstract theoretical models, they are black-boxes. A complete 

understanding of their functioning can require examining their source code when it is available. 

Literature has already pointed out this issue as one of the main limitations in the use of simulations for 

research, as it makes difficult guaranteeing the alignment between abstract models and simulations [8]. 

In most cases, works do not describe the development process followed. There are not explicit 

guidelines to reproduce modeling, design, or coding. This lack of documentation hampers validation and 

sharing experiences on development. Moreover, works focus on solving specific issues at a given level 

of abstraction, e.g., abstract model, architecture, or control of devices. They do not identify ways to 

integrate that research with complementary works to offer a complete solution to develop ITSs. 

The current work adopts MDE to support these tasks. It provides an approach with several abstraction 

levels intended for different backgrounds. Researchers on ITSs work with the ITSML at the levels of 

CIM and PIM. Designers of simulations and programmers work mainly with the INGENIAS-ML at the 

levels of PIM and PSM. In both cases, experts integrate and refine models adding new information and 

using transformations. For the first group of tasks, this work offers modeling guidelines; for the second, 

INGENIAS provides a complete development methodology. The overall approach facilitates the explicit 

representation of all the information involved in the transition from the abstract models to code, which 

facilitates validation and reutilization. 

6. Conclusions 

This paper has presented a MDE approach for the analysis through simulations of ITSs. The complexity 

of these systems and the environments where they act implies high development costs. This kind of 

issues has been addressed in other domains through simulation. However, its application demands means 

to facilitate the transition from the abstract models of systems to the simulation, and its validation. Usually, 

researchers make these tasks manually, what is an additional source of mistakes. Adopting MDE 

approaches, researchers explicitly describe these steps with models and transformations. This facilitates 

their examination, and therefore validation and testing. 

The proposed framework comprehends a ML, guidelines, and tools to develop ITS specifications and 

simulations. It is intended for the complete development process, focusing effort on the high-level 

design. Its definition reuses previous research in aspects related to ITSs. The ITSML is built over the 

TML [12] and the SNML [13], extending them with ITS-specific concepts. All these languages adopt 

the agent paradigm [11], which facilitates integrating the different perspectives. 

The ITSML conceives all the elements in this domain as components, which are characterized by 

their state and a method-based interface. Flows of control and information among components use these 



Sensors 2015, 15 14137 

 

 

methods. ITSs interact with their external environment using a layer of sensors and actuators, which are 

also components. Complex algorithms are modeled with agents. These include components for 

perception, reflection, and acting that manipulate information and goals. 

For control activities, sensors perceive events from the environment, which they transform in internal 

facts. Their methods generate notifications from those facts that are communicated to other components, 

including manager agents. These use available information to check goals and decide what tasks to 

attempt. The execution of tasks invokes methods, which can generate new notifications. Some of these 

notifications trigger the execution of actuator methods, which act on the environment. 

The concepts related to traffic are organized following an adapted DVE [30] model according to the 

structure of the TML [12]. They include common primitives such as person, vehicle, and thing  

(i.e., environment element). Here, they are linked to the group of concepts corresponding to devices and 

their manager controllers extracted from the SNML. This last group models the interface between ITSs 

and their external environment. 

The ITSML also provides mechanisms of inheritance and instantiation of classes in models.  

The first one allows flexible extensions of the ML without modifying its metamodel. The second one 

supports the complete definition of the components of the simulation at the model level. In this way, 

only algorithms need to be specified with code. 

The development guidelines, along with the definition of concepts in the metamodel, help designers 

to build their specifications. They provide a step-by-step process to look for relevant elements in 

problems, and translate them to modeling primitives. The low-level design and coding follow 

INGENIAS [14], an existing MDE methodology for MASs. The use of agent concepts in the ITSML 

and the INGENIAS-ML facilitates the transition between both stages using automated transformations. 

The final elements of the framework are the support tools. A model editor based on INGENME [15] 

supports specifying models compliant with the ITS metamodel. The code generator of the traffic 

framework [12] is used in the later stages of the INGENIAS process. It replaces the usual INGENIAS 

tools, because it provides more guidance to work jointly with models and code templates. 

This framework has been used in several experiments. The case study developed a simulation of an 

ITS with intelligent traffic lights for the simulation platform SUMO [16]. The models specified most of 

the intended simulation. Only algorithms (e.g., using thresholds and timing to change the color of traffic 

lights, or the methods to interact with SUMO) need to be coded. As most of this code appears in 

templates that can be reused in code generation for different model elements, the actual coding effort is 

highly reduced. Changes in the simulation would only affect the model if they add new instances of 

available classes of entity or relationship. If new classes appear, only the templates for them need to be 

added before regenerating the simulation. Templates could be reused from other simulation projects. 

Similar findings appear in the other reported experiments, which considered simulations with extended 

models of decision-making, other types of ITS, and several simulation platforms. 

This framework is still ongoing work with several open issues, some of them already pointed out in 

experiments in Section 4. First, the metamodel needs to be enriched with additional primitives. 

Primitives to represent tasks ordering or preferences are not available. Also, the specification of vehicle 

parts and their actions is not possible, for instance to represent the angle and acceleration of a vehicle 

turn in a junction as done in [44]. Second, certain constraints on the model, for example in the number 

of instances of a class, inheritance relationships, or values of attributes, cannot be expressed. The use of 



Sensors 2015, 15 14138 

 

 

a constraint language such as the Object Constraint Language (OCL) [46] would reduce here the need 

to resort to code. Third, the development guidelines need to be extended. Now, they indicate a possible 

ordering of steps and leave for the metamodel definition the indications on how to identify the different 

modeling concepts. The identification hints should also be transferred to the process specification. 

Finally, additional experimentation is required to validate the framework. Current experiments are 

limited in number, the types of ITS modeled, and the considered simulation infrastructures. 

Acknowledgments 

This work has been done in the context of the projects “Social Ambient Assisting Living—Methods 

(SociAAL)” (TIN2011-28335-C02-01) supported by the Spanish Ministry for Economy and 

Competitiveness. Also, we acknowledge support from the “Red Científico-Tecnológica en Ciencias de 

los Servicios” (TIN2011-15497-E) and the “Programa de Creación y Consolidación de Grupos de 

Investigación” (UCM-BSCH GR35/10-A). 

Author Contributions 

Alberto Fernández-Isabel developed the framework for the MDE of ITS simulations, and implemented 

the case study. Rubén Fuentes-Fernández adapted the INGENIAS and INGENME infrastructure for the 

framework. All the authors contributed equally to writing the paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.;  

Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the 45th 

Annual Hawaii International Conference on System Sciences (HICSS 2012), Maui, HI, USA,  

4–7 January 2012; Sprague, R.H., Jr., Ed.; IEEE: Washington, DC, USA, 2012; pp. 2289–2297. 

2. Harrison, C.; Donnelly, I.A. A Theory of Smart Cities. In Proceedings of the 55th Annual Meeting 

of the International Society for the Systems Sciences (ISSS 2011), Hull, UK, 17–22 July 2011;  

pp. 1–15. 

3. Tewolde, G.S. Sensor and Network Technology for Intelligent Transportation Systems. In 2012 IEEE 

International Conference on Electro/Information Technology (EIT 2012), Indianapolis, IN, USA, 

6–8 May 2012; IEEE: Washington, DC, USA, 2012; pp. 1–7. 

4. The European Parliament and the Council of the European Union. Directive 2010/40/EU of the 

European Parliament and of the Council of 7 July 2010, on the Framework for the Deployment of 

Intelligent Transport Systems in the Field of Road Transport and for Interfaces with Other Modes 

of Transport. Available online: http://eur-lex.europa.eu/ (accessed on 15 March 2015). 

  



Sensors 2015, 15 14139 

 

 

5. Figueiredo, L.; Jesus, I.; Machado, J.A.T.; Ferreira, J.; de Carvalho, J.L.M. Towards the 

Development of Intelligent Transportation Systems. In Proceedings of the 2001 IEEE Intelligent 

Transportation Systems Conference (ITSC 2001), Oakland, CA, USA, 25–29 August 2001; IEEE: 

Washington, DC, USA, 2001; pp. 1206–1211. 

6. Klein, L.A. Sensor Technologies and Data Requirements for ITS; Artech House Publishers: 

Norwood, MA, USA, 2001. 

7. Pursula, M. Simulation of Traffic Systems—An Overview. J. Geogr. Inf. Decis. Anal. 1999, 3,  

1–8. 

8. Axtell, R.L.; Epstein, J.M. Agent-based modeling: Understanding our creations. Bull. St. Inst. 1994, 

9, 28–32. 

9. Bézivin, J. Model Driven Engineering: An Emerging Technical Space. In Generative and 

Transformational Techniques in Software Engineering; Lecture Notes in Computer Science; 

Lämmel, R., Saraiva, J., Visser, J., Eds.; Springer: Heidelberg, Germany, 2006; Volume 4143,  

pp. 36–64. 

10. Fuentes-Fernández, R.; Hassan, S.; Pavón, J.; Galán, J.M.; López-Paredes, A. Metamodels for  

role-driven agent-based modelling. Comput. Math. Organ. Theory 2012, 18, 91–112. 

11. Müller, J.P.; Pischel, M.; Thiel, M. Modeling Reactive Behaviour in Vertically Layered Agent 

Architectures. In Intelligent Agents; Lecture Notes in Computer Science; Wooldridge, M.J., 

Jennings, N.R., Eds.; Springer: Heidelberg, Germany, 1995; Volume 890, pp. 261–276. 

12. Fernández-Isabel, A.; Fuentes-Fernández, R. A Model-Driven Engineering Process for Agent-Based 

Traffic Simulations. In Proceedings of the 5th International Conference on Simulation and 

Modeling Methodologies, Technologies and Applications (SIMULTECH 2015), Colmar, France, 

21–23 July 2015; SCITEPRESS: Setúbal, Portugal, 2015; pp. 1–10. 

13. Fuentes-Fernández, R.; Guijarro, M.; Pajares, G. A Multi-Agent System Architecture for Sensor 

Networks. Sensors 2009, 9, 10244–10269. 

14. Pavón, J.; Gómez-Sanz, J.J.; Fuentes, R. The INGENIAS Methodology and Tools. In Agent-Oriented 

Methodologies; Henderson-Sellers, B., Giorgini, P., Eds.; Idea Group Publishing: Hershey, PA, 

USA, 2005; Chapter IX, pp. 236–276. 

15. Pavón, J.; Gómez-Sanz, J.; Paredes-López, A. The SiCoSSyS approach to SoS engineering.  

In Proceedings of the 6th International Conference on System of Systems Engineering (SoSE 2011), 

Albuquerque, NM, USA, 27–30 June 2011; IEEE: Washington, DC, USA, 2011; pp. 179–184. 

16. Krajzewicz, D.; Brockfeld, E.; Mikat, J.; Ringel, J.; Rössel, C.; Tuchscheerer, W.; Wagner, P.; 

Wösler, R. Simulation of modern Traffic Lights Control Systems using the open source Traffic 

Simulation SUMO. In Proceedings of the 3rd Industrial Simulation Conference (ISC 2005), Berlin, 

Germany, 9–11 June 2005; Krueger, J., Lisounkin, A., Schreck, G., Eds.; EUROSIS-ETI: Ostend, 

Belgium, 2005, pp. 299–302. 

17. Object Management Group. OMG Meta-Object Facility (MOF) Core Specification, Version 2.4.2; 

Object Management Group: 2014. Available online: http://www.omg.org/ (accessed on 15 March 2015). 

18. Object Management Group. OMG Unified Modeling Language (OMG UML), Version 2.5; Object 

Management Group: 2013. Available online: http://www.omg.org/ (accessed on 15 March 2015). 

19. Steinberg, D.; Budinsky, F.; Paternostro, M.; Merks, E. EMF—Eclipse Modeling Framework,  

2nd ed.; Addison-Wesley Professional: Boston, MA, USA, 2008. 



Sensors 2015, 15 14140 

 

 

20. Lopes, D.; Hammoudi, S.; Bézivin, J.; Jouault, F. Mapping Specification in MDA: From Theory to 

Practice. In Interoperability of Enterprise Software and Applications; Konstantas, D., Bourrières, J.-P., 

Léonard, M., Boudjlida, N., Eds.; Springer: Heidelberg, Germany, 2006; pp. 253–264. 

21. Kelly, S.; Lyytinen, K.; Rossi, M. Metaedit+: A fully configurable multi-user and multi-tool CASE 

and CAME environment. In Advanced Information Systems Engineering; Lecture Notes in Computer 

Science; Constantopoulos, P., Mylopoulos, J., Vassiliou, Y., Eds.; Springer: Heidelberg, Germany, 

1996; Volume 1080, pp. 1–21. 

22. Mens, T.; van Gorp, P. A Taxonomy of Model Transformation. Electron. Notes Theor. Comput. Sci. 

2006, 152, 125–142. 

23. Czarnecki, K.; Helsen, S. Feature-Based survey of model transformation approaches. IBM Syst. J. 

2006, 45, 621–645. 

24. Eclipse M2T. Eclipse Modeling-M2T-Home. Available online: https://www.eclipse.org/modeling/ 

m2t/ (accessed on 15 March 2015). 

25. Eclipse MMT. Eclipse Model to Model Transformation. Available online: https://www.eclipse. 

org/mmt/ (accessed on 15 March 2015). 

26. Kleppe, A.G.; Warmer, J.; Bast, B. MDA Explained: The Model Driven Architecture—Practice and 

Promise; Addison-Wesley: Boston, MA, USA, 2003. 

27. Gómez-Rodríguez, A.; Fuentes-Fernández, R.; González-Moreno, J.C.; Rodríguez-Martínez, F.J. 

INGENIAS with the Unified Development Process. In Handbook on Agent-Oriented Design 

Processes; Cossentino, M., Hilaire, V., Molesini, A., Seidita, V., Eds.; Springer: Heidelberg, 

Germany, 2014; pp. 371–405. 

28. González-Moreno, J.C.; Gómez-Rodríguez, A.; Fuentes-Fernández, R.; Ramos-Valcárcel, D. 

INGENIAS-Scrum. In Handbook on Agent-Oriented Design Processes; Cossentino, M., Hilaire, V., 

Molesini, A., Seidita, V., Eds.; Springer: Heidelberg, Germany, 2014; pp. 219–251. 

29. García-Magariño, I.; Fuentes-Fernández, R. A Technique for Defining Metamodel Translations. 

IEICE Trans. Inf. Syst. 2009, 92, 2043–2052. 

30. Amditis, A.; Pagle, K.; Joshi, S.; Bekiaris, E. Driver-Vehicle-Environment monitoring for  

on-board driver support systems: Lessons learned from design and implementation. Appl. Ergon. 

2010, 41, 225–235. 

31. Rubel, D.; Wren, J.; Clayberg, E. The Eclipse Graphical Editing Framework (GEF); Addison-Wesley 

Professional: Boston, MA, USA, 2011. 

32. Ehlert, P.A.M.; Rothkrantz, L.J.M. Microscopic traffic simulation with reactive driving agents.  

In Proceedings of the 2001 IEEE Intelligent Transportation Systems Conference (ITSC 2001), 

Oakland, CA, USA, 25–29 August 2001; IEEE: Washington, DC, USA, 2001; pp. 860–865. 

33. Karpiriski, M.; Senart, A.; Cahill, V. Sensor networks for smart roads. In Proceedings of the 4th 

Annual IEEE International Conference on Pervasive Computing and Communications, Workshops 

(PerComW 2006), Pissa, Italy, 13–17 March 2006; IEEE: Washington, DC, USA, 2006; p. 310. 

34. Transport Systems Planning and Transport Telematics Group (Technische Universität Berlin); 

Transport Planning Group (Swiss Federal Institute of Technology Zurich); Senozon Company. 

MATSim, Multi-Agent Transport Simulation; MATSim: 2015. Available online: http://www.matsim. 

org/ (accessed on 25 May 2015). 



Sensors 2015, 15 14141 

 

 

35. Fernández-Isabel, A.; Fuentes-Fernández, R. An Agent-Based Platform for Traffic Simulation.  

In Soft Computing Models in Industrial and Environmental Applications, 6th International 

Conference SOCO 2011; Advances in Intelligent and Soft Computing; Corchado, E., Snášel, V., 

Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D., Eds.; Springer: Heidelberg, Germany, 2011; 

Volume 87, pp. 505–514. 

36. Pascale, A.; Nicoli, M.; Deflorio, F.; Dalla Chiara, B.; Spagnolini, U. Wireless sensor networks for 

traffic management and road safety. IET Intell. Transp. Syst. 2012, 6, 67–77. 

37. Sun, Z.; Bebis, G.; Miller, R. On-Road vehicle detection: A review. IEEE Trans. Pattern Anal. 

Mach. Intell. 2006, 28, 694–711. 

38. Faouzi, N.-E.E.; Leung, H.; Kurian, A. Data fusion in intelligent transportation systems: Progress 

and challenges—A survey. Inf. Fusion 2011, 12, 4–10. 

39. Gandhi, T.; Trivedi, M.M. Pedestrian protection systems: Issues, survey, and challenges.  

IEEE Trans. Intell. Transp. Syst. 2007, 8, 413–430. 

40. Hancke, G.P.; de Carvalho e Silva, B.; Hancke, G.P., Jr. The Role of Advanced Sensing in Smart 

Cities. Sensors 2012, 13, 393–425. 

41. Trivedi, M.M.; Gandhi, T.; McCall, J. Looking-In and looking-out of a vehicle:  

Computer-Vision-Based enhanced vehicle safety. IEEE Trans. Intell. Transp. Syst. 2007, 8,  

108–120. 

42. Kotusevski, G.; Hawick, K.A. A Review of Traffic Simulation Software. Res. Lett. Inf. Math. Sci. 

2009, 13, 35–54. 

43. Picone, M.; Amoretti, M.; Zanichelli, F. Simulating Smart Cities with DEUS. In Proceedings of the 

5th International ICST Conference on Simulation Tools and Techniques (SIMUTOOLS 2012), 

Desenzano, Italy, 19–23 March 2012; pp. 172–177. 

44. Prendinger, H.; Gajananan, K.; Zaky, A.; Fares, A.; Molenaar, R.; Urbano, D.; van Lint, H.; Gomaa, W. 

Tokyo Virtual Living Lab: Designing Smart Cities Based on the 3D Internet.  

IEEE Internet Comput. 2013, 17, 30–38. 

45. Salvucci, D.D.; Boer, E.R.; Liu, A. Toward an Integrated Model of Driver Behavior in Cognitive 

Architecture. Transp. Res. Rec. J. Transp. Res. Board 2001, 1779, 9–16. 

46. Object Management Group. Object Constraint Language, Version 2.4; Object Management Group: 

2014. Available online: http://www.omg.org/ (accessed on 15 March 2015). 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


