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ABSTRACT

Uncertainties in spatial data associated with basin topography, drainage networks, and land cover

characteristics may affect the performance of runoff simulation. Such uncertainties are mainly

derived from selection of digital elevation model (DEM) resolution and basin subdivision level. This

study focuses on assessing the effects of DEM resolution and basin subdivision level on runoff

simulation with a semi-distributed land use-based runoff process model. Twenty-four scenarios

based on various DEM resolutions and subdivision levels are analyzed for the Kaidu River Basin.

Results can be used for quantifying the uncertainty of input data about spatial information on model

simulation, disclosing the interaction between DEM resolution and subdivision level, as well as

identifying the optimal system inputs. Results show that the model performance could be enhanced

with the increased subdivision level. Results also reveal that the interaction of DEM resolution and

subdivision level has slight effects on modeling outputs. Multi-objective fuzzy evaluation is used to

further examine the uncertainty in DEM resolution and basin subdivision level on model

performance. The results indicate an optimal combination of input parameters is suitable for Kaidu

River Basin which could lead to more reliable results of the hydrological simulation.
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INTRODUCTION

Uncertainties in spatial data associated with basin topogra-

phy, drainage network, and land cover characteristics may

affect the performance of runoff simulation in hydrological

models (Du et al. ; Li et al. ; Tan et al. ). Spatial

data in a given basin are usually estimated by digital

elevation models (DEMs). However, DEM resolution, as

well as the number and the manner of subdividing a basin

can impact the quality of spatial data (Pradhanang &

Briggs ; Yan & Zhang ). The quantification of the

uncertainty in the spatial input data associated with DEM

resolution and basin subdivision levels could lead to produ-

cing more reliable results from models’ calibration and

simulation processes (Xu ; Li & Xu ).

DEM is useful for providing necessary input to hydrolo-

gical models and convenient for representing the

continuously varying topographic surface of the earth (Ma

; Blanchard et al. ). Different DEM resolutions

may result in different topographical variations, such as

elevation and slope. Singh et al. () indicated that the

topographical variations in terms of elevation differences

can bring significant changes in the corresponding basin

parameters and resultant runoff processes. The effects of

DEM resolutions on hydrological simulation have attracted

the attention of many researchers. Yu () set a series of

DEMs (varying from 37 m to 1,097 m resolution) for exam-

ining DEM resolution effects on hydrological simulation

via the basin scale hydrologic model for a basin of

1,437 km2; the study suggested that 183 m resolution could

be an appropriate selection in terms of the quality of hydro-

logic simulation and the amount of required computing
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time. Wu et al. () adopted 12 resolutions of DEMs (ran-

ging from 30 m to 3,000 m) for hydrological simulation by

topography-based rainfall–runoff model (TOPMODEL),

and results revealed that decreasing DEM resolution

would deteriorate topographic index distributions and

model simulation; moreover, the basin size does play an

important role in the resolution dependency of TOPMO-

DEL. Zhang et al. () examined the effects of DEM

resolutions ranging from 30 m to 1,000 m on hydrological

simulation by the Soil and Water Assessment Tool

(SWAT) for a basin of 2,995 km2, which found that runoff

is essentially unaffected by the DEM resolutions and resol-

ution higher than 200 m is the optimal DEM resolution for

runoff simulation considering the temporal distribution

uncertainties. Generally, the aforementioned studies

revealed that DEM resolutions have significant influence

on basin delineation and hydrological simulation; however,

the finest resolution could not always produce the best simu-

lation results. Particularly for large-scale river basins, due to

the complexity of model construct and limitation of data

availability, it remains a challenge to select appropriate

DEM resolution for hydrological simulation. Therefore,

these studies are effective for investigating the effects of

DEM resolution on hydrological models.

Subdividing a basin into smaller basic units is also a pre-

liminary and important work for semi-distributed and

distributed hydrological models (Xu & Singh ; Pradha-

nang & Briggs ). The heterogeneity within the basin and

corresponding hydrological processes can be affected by the

size and the number of basic units. In recent years, a number

of research works have been conducted to explore the

effects of basin subdivision level on hydrological simu-

lations. Tripathi et al. () compared the simulated

water balance components among different basin subdivi-

sion levels using the SWAT; results revealed that a marked

variation in individual components of water balance is

observed under different subdivision levels. Using the

SWAT model, Rouhani et al. () studied the variation

in slow flow and extreme flow simulation due to different

basin subdivision levels, which revealed that varying the

number of sub-basins can affect the daily total flow com-

ponent, but the model efficiency is less affected by the

variation in basin subdivisions. Han et al. () obtained

the results of the difference in model efficiency becoming

negligible among fine subdivision levels through examining

different levels of basin subdivision. Summarily, detailed

subdivision levels could provide detailed information

about basins; the difference in model performance is slight

among different subdivision levels in basins with small size

and flat terrain. Therefore, it is interesting to explore

whether similar results may be obtained for a large-scale

basin with rough terrain and sparse distribution of gauge

stations.

The previous studies mainly focused on the effects of

DEM resolution or basin subdivision level on hydrological

simulation, respectively. However, Kalin et al. () found

that when the study area is low-relief at different elevations,

the basin delineation can be simple; on the contrary, when

the area is abrupt, the number of sub-basins would increase

to clearly delineate the actual basin condition. Thus, subdi-

viding a basin should depend on the local extracted

topographical information. As well, many studies have

shown that the highest resolution data may not perform

best due to the fact that the data resolution may not effec-

tively capture the realistic hydrological processes

(Lassueur et al. ). Difficulties and complexities in prep-

aration of model input, calibration, and computational

evaluation would definitely increase with promotion of

data resolution. Thus, in order to improve hydrological

model efficiency for a large-scale river basin, it is desirable

to identify an optimal combination of DEM resolution and

basin subdivision level.

Therefore, the objective of this study is to analyze the

interactive effects of DEM resolutions and basin subdivi-

sion level on runoff simulation of the Kaidu River Basin,

based on the semi-distributed land use-based runoff pro-

cesses (SLURP) model. The SLURP model is used for

dealing with spatial and temporal variations of hydrologi-

cal elements and accounting for physical mechanisms of

runoff yield and routing in the study basin. Different

DEMs are used to examine the effect of different topo-

graphic data on the model outputs, and different basin

subdivision levels are set to evaluate the uncertainty due

to variation in sub-basin numbers and sizes on model per-

formance. Multi-objective fuzzy analysis technique is also

utilized to analyze the relationship among DEM resolution,

basin subdivision level, and SLURP performance (i.e.,

Nash–Sutcliffe efficiency (NSE), coefficient of determination,
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and deviation of volume (DV)). Results will help to: (1)

quantify the uncertainty of input data about spatial infor-

mation on model simulation, (2) disclose the interaction

between DEM resolution and subdivision level, and (3) gen-

erate the optimal system inputs.

METHODOLOGY

Hydrological model

In this study, the SLURP model is selected to evaluate the

impacts of DEM resolution and basin subdivision level on

runoff simulation. The SLURP model is a continuous,

spatially distributed, daily time step hydrological model

that uses parameters associated with land cover character-

istics to simulate the hydrological processes. SLURP

divides a basin into a number of sub-basins which contain

a number of different land covers, and consequently, each

sub-basin is inner-heterogeneous and closely related to the

features of land covers (Kite ). The vertical water bal-

ance concept is used for each land cover type within a

sub-basin containing four nonlinear tanks, i.e., canopy

storage, snow storage, fast storage, and slow storage, repre-

senting canopy interception, snowpack, aerated soil

storage, and groundwater, respectively (as shown in

Figure 1). The evapotranspiration for each land cover in

each sub-basin is calculated using the Morton CRAE

method:

Ea ¼ αEp (1)

where Ea is areal evapotranspiration, α is a coefficient such

as the Priestley–Taylor and Ep is potential evapotranspira-

tion. The potential evaporation can be calculated by

Penman–Monteith method from the following equation:

Ep ¼
D � 700Tm= 100� ϕð Þ þ u Ta � Tdð Þ

80� Ta
(2)

where Tm¼ Taþ 0.006Am, Ta is the mean daily air tempera-

ture, Am is the elevation (m), φ is the latitude in degrees, u is

a wind factor, D is the number of daylight hours, and Ta – Td

is the difference between air and dew point temperatures

approximated by:

Ta � Td ¼ 0:0023Am þ 0:37Ta þ 0:53Rm þ 0:35Rhc

� 10:9 (3)

where Rm is the mean daily range in temperature and Rhc is

the difference between the mean temperatures of the hottest

and coldest months of the year. Snowmelt is calculated

Figure 1 | Diagram of land cover vertical balance within a sub-basin and storage–discharge between sub-basins.
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using the degree-day method when the temperature in

degrees is above the rain/snow division temperature. Rainfall

and any snowmelt infiltrates through soil surface into the fast

store depending on the current infiltration rate. If precipi-

tation factor exceeds the maximum possible infiltration rate,

surface runoff is generated using the following equation:

Inf ¼ 1�
S1

S1,max

� �

� Infmax (4)

qs ¼ p� ln fð Þ � t (5)

where S1 is the current contents of the rapid store, S1,max is the

maximum capacity of the fast store and Infmax is themaximum

possible infiltration rate,qs is the surface runoff, p is the precipi-

tation factor, and t is the delay of rainfall. The subsurface flow

processes are simulated using two linear reservoirs, the fast

store (an unsaturated soil layer) and the slow store (a ground-

water zone). Generally, the simulation of subsurface flow

processes is based on the following equations:

RPþ RI ¼
1

k1
� S1 (6)

RP

RI
¼

S1=S1,max

S2=S2,max
(7)

RG ¼
1

k2
� S2 (8)

where RP is the amount of percolation, RI is the amount of

interflow, RG is the amount of groundwater flow, k1 is the

retention constant for fast store, k2 is the retention constant

for slow store, S2 is the current contents for slow store and

S2,max is the maximum contents of the slow store.

Runoffs are accumulated from each land cover within a

sub-basin using a time/contributing area relationship for

each land cover type. To compute travel times for each

land cover it is necessary to estimate velocities for travel

both to-stream and down-stream. SLURP computes an aver-

age velocity (V, m3/s) using Manning’s equation:

V ¼
1:49

n

� �

θ2=3
H

L

� �1=2

(9)

where n is theManning roughness of each land cover, θ is the

hydraulic radius,H is the average change in elevation over the

distance L to-/down-stream. The travel time to-/down-stream

to the sub-basin outlet for each land cover is computed from

the mean distance, the change in elevation and the stream-

velocity to-/down-stream. Total travel times are the sums of

the outlet of the to-stream and down-stream travel times,

which are used in a linear smoothing filter to distribute the

runoff from each land cover over time. The results are

weighted by the percentages of the sub-basin covered by

each land cover, converted to m3/s, and added to the total

flow of the sub-basin. Then, the combined runoffs route to

the next sub-basin in the way of hydrological storage routing:

Q ¼ αRβ (10)

whereQ (m3/s) is the outflow,R is the combined runoffs routed

into the channel in the sub-basin, α and β are parameters speci-

fied to give the degrees of lag and attenuation required.

Calibration and validation

In this study, the SLURP model is calibrated and validated

using two sets (i.e., 1996–2000 and 2001–2002, respectively)

of continuous daily observed meteorological data and stream-

flow. The calibration is conducted by an automatic method

using the Shuffled Complex Evaluation algorithm developed

at the University of Arizona (Duan et al. ). Then, the

model is validated using the values of calibrated parameters.

Table 1 shows themodel parameter ranges used for calibration

in the Kaidu River Basin. The optimal objective functions are

NSE, coefficient of determination (R2), and DV, which are

used to address the goodness-of-fit of the performance of the

hydrological model. They are defined as follows:

NSE ¼ 1�

Pn
i¼1 (Hobs,i �Hsim,i)

2

Pn
i¼1 (Hobs,i � �Hobs)

2
(11)

R2 ¼

n
Pn

i¼1Hobs,iHsim,i�
Pn

i¼1Hobs,i �
Pn

i¼1Hsim,i

� �2

n
Pn

i¼1H
2
obs,i�

Pn
i¼1Hobs,i

� �2
h i

n
Pn

i¼1H
2
sim,i�

Pn
i¼1Hsim,i

� �2
h i

(12)
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DV(%) ¼ 100 �

Pn
i¼1 Hobs,i �

Pn
i¼1 Hsim,i

Pn
i¼1 Hobs,i

(13)

where Hobs,i is the observed streamflow on day i, Hsim,i is the

simulated streamflow on day i, n is the number of simulated

days, and �Hobs is the average measured streamflow.

Multi-objective fuzzy analysis

Multi-objective fuzzy analysis technique is employed to com-

prehensively analyze model performance and find out the

most suitable combination of DEM resolution and basin

subdivision level based on three optimal objectives (i.e.,

NSE, R2, and DV). Fuzzy sets optimization can be extended

to situations involving subjective uncertainty to ranking

alternatives. An optimal choice can be considered as pattern

recognition between a ‘positive ideal alternative’ and ‘nega-

tive ideal alternative’. The value of u (closeness to the

positive ideal alternative) describes the degree of acceptabil-

ity from ‘bad’ to ‘good’ and varies from 0 to 1.

It is supposed that the decision matrix R consists of n

alternatives (i.e., 24 scenarios) expressed as A {A1, A2 . . . ,

An} and m objectives (NSE, R2, and DV) described by C

{C1, C2 . . . , Cm}. The decisionmatrix is represented byV(vij)m×n,

wherevij is the ithobjectivevalueofalternativeAj ( j¼ 1,2, . . . ,n).

In general, the objectives are classified into two types:

benefit and cost. The benefit objective type means that a

higher value is better while for the cost objective type the

opposite is valid (Krohling & Pacheco ). Thus, different

types of objectives can be normalized using the following

formulas:

rij ¼
(vij � vimin)

(vimax � vimin)
(14)

rij ¼
(vimax � vij)

(vimax � vimin)
(15)

where vimax ¼∨
n
j¼1 vij, vimin ¼∧n

j¼1 vij. For the benefit type,

Equation (14) should be adopted, otherwise Equation (15).

After transformation, the normalizedmatrix can be expressed

asR(rij)m×n. For the multi-objective decision-making problem

with limited alternatives, the optimal alternative is relative

and thus the m positive ideal alternative is defined as:

G (g1, g2, . . . , gm)
T and the negative ideal alternative is defined

as B (b1, b2, . . . , bm)
T, where gi ¼∨

n
j¼1 vij, bi ¼∧

n
j¼1 vij, i¼ 1,2,

…,n. The optimal relative closeness of each alternative can be

obtained by minimizing the sum of its squared distances to

ranking centers. The weighted distance is used to represent

the distance from G and B of each alternative, and can be

respectively defined as:

dþ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

[wi(gi � rij)]
2

v

u

u

t (16)

d�
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

i¼1

[wi(rij � bj)]
2

v

u

u

t (17)

In Equations (16) and (17), w is a weight vector and w¼

(w1, w2, …, wm)
T,
Pm

i¼1 wi ¼ 1, wi> 0, and i¼ 1, 2, . . . , m. If

the closeness of alternative Aj relative to G is denoted by uj

and the one relative to B is 1�uj, the synthetically weighted

distance is given as:

Fj(uj) ¼ u2
j

X

m

i¼1

[wi(gi � rij)]
2 þ (1� uj)

2
X

m

i¼1

[wi(rij � bi)]
2

(18)

To obtain the optimal solution, the syntheticallyweighted

distance is minimized: Min{Fj(uj)}, where j¼ 1, 2, . . . , n. Let

Table 1 | Parameters used in calibration and assigned values for the Kaidu River Basin

Parameters

Lower

bound

Upper

bound Sensitivity

Initial contents of snow store (mm) 1 1,000 Medium

Initial contents of slow store (%) 0 100 Low

Maximum infiltration rate (mm/d) 10 1,000 Low

Manning roughness (n) 0.0001 0.1 Low

Retention constant for fast store (d) 1 50 High

Maximum capacity for fast store (mm) 10 500 High

Retention constant for slow store (d) 10 500 High

Maximum capacity for slow store (mm) 100 1,000 Medium

Precipitation factor 0.8 15 High

Rain/snow division temperature (
W

C) �2 0 Medium
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dF(uj)/duj¼ 0, uj can be obtained according to the following

equation:

uj ¼
(d�

j )
2

[(dþ
j )

2
þ (d�

j )
2]

(19)

According to the definition of relative closeness, the

bigger uj is, the better the alternative is. Thus, the relatively

optimal DEM resolutions and number of sub-basins of

SLURP can be obtained by ranking the closeness effi-

ciency. A flowchart for analyzing DEM resolution and

basin subdivision impacts on runoff simulation is presented

in Figure 2.

STUDY AREA AND DATA

The Kaidu River Basin (42
W

140N–43
W

210N, 82
W

580E–

86
W

050E) is located on the south slope of the Tianshan

Mountains in Xinjiang Uyghur Autonomous Region of

China. The study basin is an alpine cold-arid region with a

complex topography. As shown in Figure 3, the basin has

a total area of 18,827 km2 with elevation varying from

1,400 m to 4,780 m, and the mainstream length is about

500 km. The channel density of the river basin is about

0.28 km/km2 and the average slope is about 12.21%. The

land covers in this basin include grassland (60.6%), bare

land (20.9%), wetland (8.9%), snow/ice (5.1%), water

(3.8%), sand (0.5%), and forest (0.2%). The average annual

Figure 2 | Flowchart for analyzing DEM resolution and basin subdivision impacting on runoff simulation.
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temperature is �4.26
W

C and the minimum temperature is

about �48.1
W

C. It has an average annual pan evaporation

of 1,100 mm and precipitation of 273 mm (Wang et al.

). The spatial and temporal distribution of temperature

precipitation is uneven in this basin, and the basin is covered

with snow and perennial glacier on high altitude mountains.

The annual snow-cover days are as many as 139.3 days and

the largest average annual snow depth is 12 cm. The hydro-

logic flow in the Kaidu River Basin is driven by snowmelt in

the spring, rainfall/snowmelt in the summer and perennial

glacier melting, which contributes to channel generation in

high mountains. The importance of the river basin lies in

the fact that the Kaidu River is one of the critical tributaries

of the Tarim River (i.e., the largest inland river in China) and

plays a role of the utmost importance in protecting the

Bosten Lake. Moreover, understanding the hydrological pro-

cesses, which are closely related to runoff generation and

water resources volume, is critical to the sustainable devel-

opment of this area. However, in the Kaidu River Basin,

due to the large size and complicated topography associated

with a difference of about 3,400 m in elevation, DEM resol-

ution and basin subdivision level have important impacts on

the accuracy of hydrological modeling simulation.

Spatial data used in this study include meteorological

and hydrometric data, DEM, land cover type, and soil

type. General meteorological data, including air tempera-

ture, precipitation, wind speed, and relative humidity,

were obtained from four meteorological stations (i.e.,

Bayanbulak, Luotuobozi, Shenglidaoban, and Shuidianz-

han) in the basin (Zhang et al. ). The streamflow

data (from 1957 to 2011) for the Kaidu River were col-

lected from Dashankou hydrometric station. The

temperature input for elevation differences is derived

with a lapse rate of 0.75
W

C per 100 m, and precipitation

data are increased by 1% per 100 m based on the data

obtained from the monitoring stations following some

other studies (Jing & Chen ; Wang et al. ). Land

cover types and soil data in the year 2000 were prepared

by the Resource and Environmental Sciences Data Centre

Chinese Academy of Sciences (http://www.resdc.cn). Due

to the data integrity and consistency with the land cover

data, the period of 1996–2000 was selected to calibrate

the model.

A Shuttle Radar Topography Mission 90 m DEM for the

Kaidu River Basin was acquired from the Geospatial Data

Cloud Website (http://www.gscloud.cn). Comprehensively

based on basin size and topographic characteristics as well

as model complexity, four DEMs of 150 m, 200 m, 300 m,

and 500 m resolutions were adopted. As well, the nearest

neighbor method was used to resample the DEM due to

its accuracy and simplicity (Tan et al. ). Topographic

parameterization (TOPAZ) was used to process a raster

DEM into topographic and topologic variables (e.g., sub-

basin areas, channel length, and distance to-/down-stream

for each land cover within each sub-basin) that are phys-

ically meaningful to basin runoff processes (Lacroix et al.

). By manually specifying two parameters, the critical

source area (CSA) and the minimum source channel

length (MSCL), TOPAZ can delineate the channel network

and segment the landscape into sub-basins at varying levels

of detail. In this study, six basin subdivision levels (i.e., 15,

33, 65, 109, 183, and 285 sub-basins) were determined by

TOPAZ according to different randomly generated sets of

CSA and MSCL values with consideration of basin

characteristics.

The basin subdivisions and main channel segments are

depicted in Figure 4. As shown in Table 2, detailed basin

Figure 3 | Kaidu River Basin.
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subdivision would produce accurate basin elevation range;

for example, under 150 m DEM, sub-basin average

elevation changes from 2,380 m to 3,390 m in 15 sub-

basins, but it varies from 1,720 m to 3,750 m in 285 sub-

basins. However, when the basin is subdivided more

finely, the minimum sub-basin area nearly approaches

zero, indicating that over-detailed subdivision would con-

tain an increased percentage of spurious sub-basins. It

also revealed the channel density would increase with an

increase of the number of sub-basins. For instance, under

200 m DEM, the extracted channel densities are 0.057,

0.077, 0.110, 0.157, 0.203, and 0.253 km/km2 from 15 to

285 sub-basins, respectively. It is shown that coarse DEM

resolution would result in low sub-basin slopes. For

example, under 285 sub-basins, the average slopes of sub-

basin are 9.68%, 9.01%, 8.24%, and 6.12% from 150 to

500 m DEM, respectively.

RESULTS AND DISCUSSION

Results of runoff simulation

In this study, 24 scenarios (i.e., 24 combinations of four res-

olutions and six subdivision levels) were examined to

evaluate the effects of different scenarios on runoff simu-

lation. Figure 5 depicts the observed and simulated

streamflows under all scenarios. The trends of simulated

streamflow are consistent with that of observed streamflow.

Table 3 lists the efficiencies of model simulations. Results

show that different scenarios produced changed model effi-

ciencies. In detail, the value of NSE tends to increase as

subdivision level increases; however, after 109 sub-basins,

the increasing trend would become slight. For instance,

under 200 m DEM, the values of NSE change only from

0.687 to 0.692 under 109 sub-basins to 285 sub-basins;

Figure 4 | Basin subdivisions and main channel segments in different scenarios (color areas represent sub-basins). Please refer to the online version of this paper to see this figure in color:

http://dx.doi.org/10.2166/nh.2016.332.
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however, the values of NSE change from 0.561 to 0.671

under 15 sub-basins to 65 sub-basins. Also, as shown in

Figure 6, the fitting results between observed and simulated

streamflows during calibration and validation periods

further validate that increasing subdivision levels could

improve the model performance. This is due to the fact

that finer subdivision levels would preserve the more natural

flow paths, boundaries and channels, providing more

detailed and accurate input information. When the

number of sub-basins is more than 109, the slight increase

of NSE value is due to the increased spurious area that the

hydrological model could not identify; the obtained results

have a consistent tendency with the results of Rouhani

et al. () and Han et al. ().

Moreover, results also show that an optimum DEM res-

olution exists for hydrological model applications. In detail,

200 m DEM resolution produces better model efficiency

compared to other resolutions. However, the NSE values

obtained under 150 m DEM resolution are slightly less

than those under 200 m DEM. For example, under 285

sub-basins, the NSE values are 0.677 and 0.692 under

150 m and 200 m DEM, respectively. The streamflow fitting

results further reveal that the simulated streamflow under

200 m DEM are closer to observed ones (as shown in

Figure 7). This can be attributed to the fact that more grids

and input information are produced under 150 m DEM;

there are more cumulative sampling errors and more

obvious faults in higher resolutions of DEM which can be

eliminated when resampled to proper low resolutions due

to the elimination of the amount of sampling points and

increase of grid size. On the other hand, the DEM-based

hydrological model is established on the assumption that

the local river slope is equal to the local terrain gradient,

which may not fit well with the realistic river slope. Besides,

Table 2 | Key characteristics of sub-basins and model performance under different scenarios

Scenarios

Sub-basin average

elevation (m) Sub-basin area (km2) Slope of sub-basin (%)

DEM Subdivisions CSA (ha) MSCL (m) Minimum Maximum Minimum Maximum Drainage density (km/km2) Average Maximum

150 m 15 40,000 9,000 2,380 3,390 216 3,300 0.057 10.07 35.35

33 22,000 6,000 2,380 3,450 16.54 2,280 0.080 11.25 41.85

65 12,500 5,000 1,980 3,750 2.72 1,630 0.113 8.33 57.74

109 6,000 4,000 1,980 3,750 0.14 1,210 0.163 8.41 57.74

183 4,500 3,400 1,980 3,810 0.02 414 0.200 8.94 57.74

285 2,600 2,900 1,720 3,900 0.02 317 0.263 9.68 57.69

200 15 38,500 9,000 2,380 3,410 56.50 3,310 0.057 10.70 39.41

33 22,000 6,000 2,380 3,450 32.33 2,270 0.077 12.79 39.43

65 14,000 4,500 1,980 3,760 0.04 1,630 0.110 7.91 39.43

109 6,800 4,000 1,980 3,760 0.04 1,390 0.157 8.34 54.79

183 4,000 3,500 1,870 3,840 0.04 501 0.203 8.38 54.79

285 2,700 3,000 1,710 3,910 0.04 417 0.253 9.01 54.79

300 15 40,000 9,000 2,390 3,390 280 3,540 0.053 9.36 46.69

33 20,000 6,000 2,350 3,760 2.88 2,280 0.080 11.02 48.79

65 15,500 1,500 2,350 3,760 2.88 1,890 0.097 7.73 48.79

109 6,500 3,800 2,070 3,760 1.08 1,450 0.153 7.52 48.79

183 4,000 3,500 2,000 3,760 1.08 452 0.200 8.12 48.79

285 2,700 3,000 1,720 3,810 0.09 291 0.247 8.24 48.79

500 15 41,000 9,000 2,420 3,390 102 3,140 0.050 9.08 26.05

33 22,000 6,000 2,420 3,440 11.51 1,860 0.073 9.95 27.92

65 12,000 5,000 2,000 3,750 5.52 1,570 0.113 7.57 38.67

109 6,450 4,300 2,050 3,750 0.25 1,410 0.147 5.96 38.67

183 4,000 3,500 1,720 3,820 0.25 465 0.197 6.03 38.67

285 2,700 3,000 1,720 3,900 0.25 284 0.240 6.12 38.67

CSA, critical source area.

MSCL, minimum source channel length.
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when the DEM resolution is coarser than 200 m, NSE

values decrease due to the fact that lower resolution reduces

the variation in altitude and slopes. Therefore, appropriate

DEM should be balanced before model preparation in

order to obtain the best model efficiency and save operating

time.

Furthermore, results also demonstrate that in coarse

subdivision levels, the NSE values would have a negligible

variation with the change of DEM resolutions. For instance,

when the basin is subdivided into 15 sub-basins, the NSE

values are around 0.550 with a fluctuation of 4% of the mini-

mum value (i.e., 0.543). It is indicated that in 15 sub-basins,

the effect of DEM resolutions can be neglected during the

calibration processes. Among all scenarios, the combination

of 200 m DEM and 285 sub-basins produces the best model

performance. The NSE values are 0.692 (in the calibration

period) and 0.60 (in the validation period); the DVs (%)

are 10.70 and 6.22 respectively; the values of R2 for cali-

bration and validation are 0.72 and 0.60, respectively,

indicating a good consistency between observed streamflow

and simulated streamflow. Compared with the value of NSE

(i.e., 0.65) acquired in Wang et al. (), the obtained results

further indicated that high DEM resolution is not always

necessary in Kaidu River Basin for pursuing the optimal

combination of DEM resolution and subdivision level.

Figure 8 presents the monthly simulated streamflow

error (i.e., average monthly simulated streamflow minus

monthly observed streamflow) in the calibration period

(1996–2000) and validation period (2001–2002), respect-

ively. Results show that a higher streamflow error occurs

during April, May, and June than the other months. This

is mainly because the streamflow in those 3 months is

Figure 5 | Simulated and observed streamflows during calibration period (Ob represents the observed streamflow).
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contributed to by both snowmelt and rainfall. Figure 8(a)

reveals that 200 m DEM resolution would produce the

best matched simulated streamflow to the observed stream-

flow, further implying that the model output would be

promoted by the appropriate DEMs as they could provide

more realistic input. Figure 8(b) shows that coarse subdivi-

sion levels have a higher streamflow error than fine ones.

This is because coarse subdivision levels lead to a reduction

of drainage density and simplification of channel descrip-

tion, which can decrease the accuracy of runoff

simulations. The obtained results suggest providing a scien-

tific support for decision-makers to decide which scenario

is suitable for seasonal water resources management.

Figure 9 depicts the interactive effects of DEM resol-

ution and basin subdivision level on the simulated peak

flow. Results show that the estimated peak flow fluctuation

among the six subdivision levels is larger under high DEM

resolutions than under low ones. Similarly, the fluctuation

among the four DEM resolutions is larger under fine subdi-

vision levels than under coarser ones. For example, in

Figure 9(a), under 500 m DEM, the peak flow would

change from 557 m3/s to 701 m3/s with a standard deviation

of 52 m3/s; under 150 m DEM, the peak flow would range

from 482 m3/s to 1,014 m3/s with a standard deviation of

190 m3/s. The result indicates that basin subdivision does

not almost necessarily influence peak flow, especially

under low DEM resolution. This is because low DEM resol-

ution would smooth the topography, and the difference in

river characteristics among all subdivision levels is smaller

than that in high DEM resolutions. The results indicate

that an interactive effect exists between DEM resolution

and subdivision level. Figure 9(b) visualizes that under 33

sub-basins, the range of peak flow would change from

530 m3/s to 677 m3/s with a standard deviation of 64 m3/s;

under 183 sub-basins, the peak flow would range from

557 m3/s to 1,014 m3/s with a standard deviation of

Table 3 | Daily time series hydrological simulation results

Scenarios NSE R
2

DV (%)

DEM Subdivision C V C V C V

150 15 0.566 0.538 0.62 0.54 16.64 11.38

33 0.625 0.569 0.65 0.53 9.94 3.83

65 0.657 0.586 0.72 0.53 16.88 11.48

109 0.669 0.597 0.72 0.53 13.24 9.87

183 0.673 0.598 0.72 0.54 15.22 4.93

285 0.677 0.588 0.72 0.55 15.38 8.67

200 15 0.561 0.547 0.63 0.57 17.76 10.97

33 0.622 0.563 0.65 0.56 10.01 8.65

65 0.671 0.586 0.72 0.56 10.32 9.77

109 0.687 0.602 0.70 0.59 10.53 9.02

183 0.690 0.597 0.73 0.57 9.46 5.30

285 0.692 0.600 0.72 0.60 10.70 8.22

300 15 0.549 0.524 0.59 0.56 13.62 12.19

33 0.587 0.550 0.67 0.53 12.38 7.86

65 0.631 0.567 0.65 0.56 7.18 9.38

109 0.646 0.573 0.66 0.56 7.00 9.58

183 0.651 0.585 0.69 0.56 8.89 2.71

285 0.655 0.577 0.68 0.57 10.42 6.10

500 15 0.543 0.461 0.64 0.55 20.76 10.66

33 0.587 0.489 0.67 0.55 19.35 12.30

65 0.613 0.516 0.66 0.56 12.11 11.03

109 0.628 0.537 0.69 0.52 12.07 10.89

183 0.634 0.535 0.66 0.56 11.17 8.12

285 0.642 0.542 0.67 0.56 10.32 6.20

C, calibration period.

V, validation period.
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212 m3/s. This is because less dense drainage and less

accumulative errors derived from DEM resampling in

coarse subdivision levels could lead to slighter differences

in peak flow. Results also show that the peak flow increases

with increased number of sub-basins. This is due to the fact

that increasing basin subdivision level results in increment

of the total length of channels, as well as a reduction in over-

land flows. However, further increment in drainage density

does not cause a significant change in peak runoff at the

basin outlet. Merits and demerits should be balanced to

Figure 6 | Scatter plots of observed and simulated discharges during (a) calibration and (b) validation period under 200 m DEM.
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choose the optimum scenario before decision-making

related to flood controlling.

Comparison of parameter transferability

Runoff generation processes are sensitive to the sub-basin

size and topographic slope, variation in runoff yielding, and

flow routing parameters are needed in all scenarios.

Twenty-four scenarios have been calibrated respectively to

pursue the optimal runoff simulation results. Results show

that some parameters have a slight difference among different

scenarios. For example, the maximum retention constant for

grassland changes in a deviation of 8% compared to themini-

mum value (i.e., 72.3 mm). This is due to the fact that several

parameters are determined based on soil and land types

rather than drainage network and sub-basin relief. However,

Figure 7 | Scatter plots of observed and simulated discharges during (a) calibration and (b) validation period under 285 sub-basins.
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to explore whether the parameters under one scenario are

suitable for the others without calibration requires parameter

transferability. After transferring the parameters in the period

of 1996–2002 among different scenarios, results show that

the range of the values ofNSE is wider under parameter trans-

ferability among different subdivision levels (i.e., from 0.411

to 0.640) than that among different DEM resolutions (i.e.,

from 0.421 to 0.602). The obtained results suggest that the

uncertainty due to subdivision levels should give rise to

more attention to hydrological simulation. Moreover,

Figure 10(a) indicates that parameter transferability has less

variable effects on the modeling performance under 500 m

DEM compared to other DEM resolutions. In detail, when

the subdivision is greater than 65 sub-basins, all the NSE

values change from 0.462 to 0.551 under 500 m DEM resol-

ution; however, the NSE values would change from 0.452

Figure 8 | Average monthly simulated streamflow errors (simulated streamflow minus observed streamflow) during (a) calibration and (b) validation period.
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to 0.615 under 150 m DEM resolution. Correspondingly, it

seems not necessary to calibrate and optimize parameters

for each subdivision, especially for fine subdivision levels

under 500 m DEM resolution. Similarly, in Figure 10(b),

under15 sub-basins, the variation in NSE values derived

from transferability among the four DEM resolutions is smal-

ler than that in other scenarios. The results indicate that in

coarse subdivision levels, the parameters obtained in all

DEM resolutions can be interchangeablewithout further cali-

bration. Results also show that parameters derived from fine

subdivision levels or high DEM resolutions might not per-

form well for coarse subdivision levels or low DEM

resolutions. Generally, the analysis of parameter transferabil-

ity provides a reference for decision-makers to decide

whether the obtained parameters could be used in future

model operation in the Kaidu River Basin.

Uncertainty analysis for model efficiencies

However, the above analyses only focus on one kind of

result to assess the impacts of DEM resolution and basin

subdivision level, which would amplify the uncertainties in

model performance assessment. In order to mitigate such

uncertainty and to select the best fitted DEM resolution

and basin subdivision level, a multi-objective fuzzy evalu-

ation method which integrates multi-results (i.e., NSE, R2,

and DV) is adopted. NSE, R2, and DV are three indices for

representing SLURP efficiency with a weighted vector of

w¼ (1/3, 1/3, 1/3). The high values ofNSE and R2 represent

the high efficiency of the model, and DV the opposite. Thus,

the objectives of NSE and R2 were normalized using the

benefit type, and the objective of DV was normalized

using the cost benefit. The relative closeness of different

scenarios both in the calibration and validation period are

obtained by multi-objective fuzzy evaluation method

(shown in Figure 11). Results show that 15 sub-basins have

the lowest closeness (i.e., the worst model performance)

both in the calibration and validation period. For example,

the closeness is 0.050 under 500 m DEM and 15 sub-

basins in calibration, revealing that 500 m DEM and 15

sub-basins is the worst selection for model simulation.

Among all the scenarios, 200 m DEM resolution coupled

with 183 sub-basins has the highest closeness (i.e., 0.988

and 0.896, respectively) both in the calibration and vali-

dation period, which is different from the result only using

NSE. The reason for this is that R2 and DV possess the

same important role compared with NSE, however, in this

study, R2 and DV do not show an obvious trend like NSE,

and thus the integrated evaluation is different. However,

the results further validate that over-detailed basin subdivi-

sion would not always promote the model performance.

CONCLUSIONS

This study has investigated the interactive effects of DEM

resolution and subdivision level on runoff simulation of

Kaidu River Basin, using the SLURP model. Results show

Figure 9 | Interaction plot for simulated peak flow (m3/s) in calibration period (1996–2000).
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that with the increasing number of sub-basins, the value of

NSE and peak flow would increase, and the monthly stream-

flow error would decrease. However, after 109 sub-basins,

the increasing/decreasing trend becomes slight. For DEM

resolution, it is under 200 m DEM (not the highest resol-

ution) that the model has better simulation results than

those under others. Multi-objective fuzzy evaluation

suggests that at 200 m DEM and 183 sub-basins, the simu-

lation result is better than that at other scenarios,

suggesting that over-detailed sub-basins may not necessarily

promote model performance. Moreover, the results of peak

flows indicate that high DEM resolutions in coarse subdivi-

sion levels or fine subdivision levels in low DEM resolutions

are not necessary. Parameter transferability indicates that

subdivision level has a more obvious effect on the model

efficiency than DEM resolution and more attention should

be paid to uncertainties derived from basin subdivision

levels during the model preparation. The obtained results

will help to provide evidence of the scientific validities of

the model, generate the optimal system inputs, as well as

Figure 10 | Model transferability performances between different (a) subdivision levels and (b) DEM resolutions in the period 1996–2002 under all scenarios.
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provide the basis for predicting the effects of future exogen-

ous factors and policy choices.

However, highDEM resolutions and over-detailed subdivi-

sions are time-consuming and memory-intensive in the model

input preparation and complicated in the model operation.

Therefore, there is a need to weigh merits and demerits before

selecting the input type depending on the basin size, basin topo-

graphic feature, compute efficiency expected, as well as the

level of accuracy required. Furthermore, due to the complexes

in model structure, model parameters and daily input data

also should be considered. It will also be interesting to explore

the effects of numbers and size of raster grids onmodel perform-

ance in future researchworks. Aswell, it is desirable to conduct

investigations into the effects ofDEMresolutions andbasin sub-

divisions for other hydrological models (e.g., SWAT).
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