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Abstract

A method for analyzing an interface crack problem is proposed based on

Body Force Method. In order to treat the so-called oscillatory stress and

displacement field in the vicinity of the crack tip strictly, a new basic density

function for an interface crack is introduced. In addition to the formulae for

an interface crack problem, many problems of the elastic bi-material con-

taining arbitrary cracks are solved numerically by using a personal computer

and the results are demonstrated in tables and graphs.

1 Introduction

The Body Force Method (BFM)* is one of the indirect boundary element

methods for stress analysis and has been produced a lot of highly accurate

solutions which are important in practice since its original proposition in

1967 by H. Nisitani. The most characteristic point of BFM is to express the

elastic boundary value problems in the form of integral equation based on

the principle of superposition. Therefore, as compared with the ordinary

boundary element method whose base is Somegliana's equality, BFM has

the strong flexibility for introducing various types of inventions considering

the physical characteristics of the target problem. For instance, in the case

of analyzing a two-dimensional crack problem, the crack is replaced by the
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continuously distributed pair of point forces (Body Force Doublet, BFD)̂

acting in an infinite plate along a contour to be a crack. As the magnitude

of BFD at a point corresponds to the discrepancy of displacement at the

point where BFD acts, crack problems are always reduced to a singular

integral equation whose unknown is the density of BFD. In another words,

according to the BFM, the crack problem is reduced to a boundary integral

equation whose unknown is the relative displacement distribution between

upper and lower crack surfaces.

In order to treat the singularity near the crack tip strictly, the unknown

density of BFD is expressed by the product of the basic density function^

for a crack and the weight function. The basic density function is a charac-

teristic function which represents the feature of crack surface relative dis-

placement near the crack tip, and as the basic density function we usually

take the relative displacement between crack surfaces subject to constant

pressure or shear stress in the problem of an infinite plate containing an

isolated crack.

According to the elastic solution of crack problem, the gradient of rel-

ative displacement between crack surfaces becomes infinite at the crack

tip, and therefore, we can not obtain highly accurate distributions of BFD

without using the basic density function in numerical analysis. Moreover,

by introducing the basic density function, we can not only calculate the sin-

gular stress field near a crack tip exactly but also obtain the value of stress

intensity factor directly from the value of weight function at the crack tip.

2 Elastic field around an interface crack

Figure 1 shows an interface crack in a bi-material subject to uniform normal
and shear stresses at infinity. If we use the Koisov-Mushkelisivili's notation
for complex stress functions, the solutions for material "m",(m = 1,2) in

Fig.l can be expressed as follows'*.

,_o._ /._ _\ ^

, _ v
(2)

where c stands for the half crack length, e denotes a bi-material constant

defined as e — l/27rln ((Ĝ i -h l)/(Gi/C2 + 1)} in which G™ is shear mod-

ulus, I/™ is Poisson's ratio, K^ is equal to (3 — û )/(l -f ̂ m) for plane stress

and 3 - 4^ for plane strain, Ci(e) = Dgfe) = e"̂ , €2(5) = Di(s) = e"\

and "m" (m — 1,2) is the number of materials.

From the condition for single valued ness of solution, the following equa-

tion between stress components at infinity is obtained.

                                                             Transactions on Modelling and Simulation vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-355X 



Boundary Element Method XVI 463

Substituting Eqs.(l) and (2) into the following equations, we can obtain the

elastic field such as displacement (%,%), resultant force over an arc (Pz,̂ )

and stress components (ov, <Jy in Fig.l.

= % / H(z)dz - /

_p^_^P^= /n(z)dz+ /w(

(3)

(4)

(5)

Especially, the crack surface relative displacement becomes,

in which, superscript +,- denote the limiting value from the upper and

lower surfaces and £ stands for the local coordinate on an interface crack

(Fig.l). Eq.(6) shows the displacement distribution with the oscillatory fea-

ture in the form of V̂  - (% x cos [s In (0)] or \/c% - (% x sin [g In (0)]

along a crack, and we must express this complex feature strictly to accom-

plish our analysis with high accuracy.

3 Fundamentals for numerical analysis

3.1 Fundamental solutions
3.1.1 Fundamental solution for usual boundary In order to treat prob-

lems with bi-material interface efficiently, the stress field due to a point force

acting in a dissimilar infinite plate was used for a fundamental solution in

the present analysis (Fig.2(a)). Dunders and Hetenyi^ showed the complex

stress functions for Fig.2(a) as,

'x2

xy

x2

Figure 1: Infinite plate of bi-material containing an interface crack
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Material! [G,,/c,]

V

Material 2 LG,,/eJ

(a) point force (fundamental solution for usual boundary)

•tiotv

*. I

(b) Mode I force doublet (c) Mode II force doublet

(f.s. for Mode I crack boundary) (f.s. for Mode II crack boundary)

Figure 2: Fundamental solutions for usual boundary and for crack boundary

ZTT^l -f- h^l
(8)

(4 = = (/, ™ = 1, 2) (9)

where,

F = X + iY: X,Y are components of point force.

/: number of material in which source point ZQ exists (/ = 1,2).

m: number of material in which observing point z exists (m = 1,2).

6im- Kronecker's delta index.

-i H- ^-iKi -f
= 1» 2)

                                                             Transactions on Modelling and Simulation vol 7, © 1994 WIT Press, www.witpress.com, ISSN 1743-355X 



Boundary Element Method XVI 465

3.1.2 Fundamental solution for crack boundary The complex stress

functions for Fig.2(b) and (c) are easily obtained from Eqs.(7), (8) and (9)

by differentiation^.

3.2 Basic density function for interface crack problems

If we assume the densities of distributed force doublets 7i(£)> 7n(0 &s un-

knowns to be determined from boundary conditions, the following complex

stress functions of the material m(m=l,2) are to be used for the problem

shown in Fig.l.

In these expressions, the source point ZQ was replaced by a real variable £

and the angle J3 was set to be zero. The functions with superscript "0" are

associated with the uniform stress field at infinity.

Considering that the crack surface is to be unstressed and using Eqs.(lO),

(11) and (5), we can get the following integral equation with unknowns 7i(£)

r
J-c

= 0 when (-c < x < c) (12)

Because the gradient of unknown functions 7i(£), 7n(£) becomes infinite

at the crack tip, we can not determine the values of 7i(£), 7n(£) by the

numerical calculations using discretizing procedure. This is the reason why

we must use the basic density function in numerical analysis by the BFD.

Considering Eq.(6) and the fact that i/+ — u~ = ^7n and v+ — v~ =

we assume the distribution of Mode I force doublet and Mode IITj- K. )

force doublet 7i(£)> 7n(0

(13)

where VKi(£), Wg(£) are weight functions for Mode I force doublet and Mode

II force doublet to be determined. By using Eq.(13), we can transform

unknowns 7i(£), 7n(0 into unknowns M/i((),M/2(().

Then, the final expressions for complex stress functions correspond to

Eqs.(lO) and (11) become,
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and C%(e) — Di(e] = e™ , andAgain, the notations Ci(e) = D̂ (e] = e

ra = 1, 2 were used.

For the problem shown in Fig.l, the weight functions W\(£] and Ŵ }̂

become constant throughout a crack. Although the weight functions may

vary with local coordinate £ in the actual analysis, the change of weight

functions along crack always much smaller than the fluctuation of 7i(£),

7n(0 themselves. And thus, we can obtain highly accurate solutions of

crack problems even if we use a numerical procedure for determining the

weight functions in Eqs. (14) and (15).

3.3 Determination of the stress intensity factor

The interface crack tip stress intensity factor may be defined as followŝ .

- c

After some calculations, we obtain the following relation.

(16)

(17)

Therefore, from Eq.(17), we can obtain SIFs directory form the value of

weight functions at a crack tip.

4 Examples of numerical analysis

Based on the theory presented in this paper, we introduced a versatile pro-

gram for two-dimensional bi-material problems. In this section, we attempt

to compare some our numerical solutions calculated by using a personal

computer to those obtained by other researchers.

4.1 Interaction of cracks of arbitrary distribution

Plane Strain
A

t

• 22.472

*>, - 0.3

Fig.3: Infinite plate of bi-material

with T type branched crack

Table 1: of Fig.3

c/l

0.0

0.005

0.010

0.015

0.050

0.075

0.100

Present

analysis

O.G240

O.G244

0.6251

O.G258

O.G327

O.G387

O.G447

Goree &

Venezia^

0.6241

O.G245

O.G251

O.G258

0.6328

0.6387

0.6448

Isida &

Noguchi*

0.6240

0.6244

0.6251

0.6258

0.6327

0.6386

0.6448
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4.2 Tension of interface cracked bi-material specimens

'o

*-

< 1_

Material 2

62,^2

Material 1

fe Qi-"i

A

^
2W

i

FO

-

<= — w — >

Material 2

62,^2

^ — w — >
i

' c

Material 1

Gi,^i
-

I
W

i

plane stress

Fig.4 Center cracked specimen

plane stress a <•

Fig.5 Edge cracked specimen

Table 2.1: F\,A — Ki,A/&oV'Kc of Fig.4

= 1.0 for present and L/2W = oo for Isida's.

//i — ̂  = 0.3, plane stress is assumed.)

r

1.0

0.1

0.01

c/lf

Present

Present

Miyazaki^

Present

Miyazaki^

0.1

1.0061

1.0060

0.9677

0.963

0.968

0.9457

0.940

0.946

1.

1.

0.

0

0

0.

0

0

0.2

0249

0246

9865

.985

.986

9644

.962

.964

1.
1.

1.
1

1

0.

0

0

0.3

0583

0577

0181

.018

.018

9947

.994

.994

0.4

1.1102

1.1094

1.0657

1.065

1.066

1.0397

1.038

1.039

0.5

1.1876

1.1867

1.1354

1.134

1.136

1.1049

1.104

1.104

1.

1.

1.

1

1
1.

1

1

0.6

3043

3033

2388

.238

.239

2008

.201

.201

0.7

1.4893

1.4882

1.4005

1.400

1.402

1.3500

1.349

1.351

Table 2.2: -

(F = GI/GI, v\ =

of Fig.4

= 0.3, plane stress is assumed.)

r

0.1

0.01

c/tf

Present 0.
YuukiG 0

Miyazaki™ 0
Present 0.
YuukiG 0

Miyazaki™ 0

0.1

1747
.173

.174

2067

.205

.206

0.
0

0

0.

0

0

0.2

-1716
.170

.171

2025

.201

.201

0.
0

0

0.

0

0

0.3

1713
.171

.170

2013

.201

.200

0.
0

0

0.

0

0

0.4

1745
.174

.173

2039

.203

.203

0.5

0.1828
0.183

0.182

0.2121

0.211

0.210

0.6

0.1994
0.199

0.198

0.2289

0.228

0.228

0.7

0.2306
0.230

0.229

0.2616

0.260

0.260

Table 3: SIFs of Fig.5 (P = i, v\ = v? = 0.3, plane stress)

r

2.0

4.0

10.0

c/iy

0.1

0.2

0.5

0.1

0.2

0.5

0.1

0.2

0.5

FI = KI/CTQ^/TTC

Present Yuuki^ Miyazaki^

1.195 1.188 1.195

1.368 1.366 1.368

2.820 2.820 2.822

1.209 1.201 1.209

1.368 1.387 1.368

2.807 2.807 2.807

1.229 1.220 1.229

1.369 1.367 1.369

2.789 2.788 2.789

F% = K^IGQ^-KC
Present Yuuki^ Miyazaki^

0.129 0.128 0.129

0.137 0.137 0.137

0.267 0.268 0.267

0.239 0.238 0.239

0.250 0.254 0.250

0.483 0.483 0.483

0.340 0.338 0.340

0.349 0.349 0.349
0.663 0.664 0.663
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i i i i i i i
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8

c/W ""
Fig.6 Effect of F on SIFs in Fig.4 Fig.7 Effect of L/2W on SIFs in Fig.4

5 Conclusion

A method for analyzing the two-dimensional interface crack in a bi-material

was investigated based on BFM. Throughout many examples for evaluating

our numerical results, it was found that the present method satisfies both

the conditions of the numerical accuracy and calculation efficiency.
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