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Analysis of Irish Third Level College Applications Data

Isobel Claire Gormley∗ and Thomas Brendan Murphy†

March 16, 2005

Abstract

The Irish college admissions system involves prospective students listing up to ten courses

in order of preference on their application. Places in third level educational institutions are

subsequently offered to the applicants on the basis of both their preferences and their final

second level examination results.

The college applications system is a large area of public debate in Ireland. Detractors

suggest the process creates artificial demand for ‘high profile’ courses, causing applicants to

ignore their vocational callings. Supporters argue that the system is impartial and transpar-

ent.

The Irish college degree applications data from the year 2000 is analyzed using mixture

models based on ranked data models to investigate the types of application behavior exhibited

by college applicants.

The results of this analysis show that applicants form groups according to both the

discipline and geographical location of their course choices. In addition, there is evidence of

the suggested ‘points race’ for high profile courses. Finally, gender emerges as an influential

factor when studying course choice behavior.

Keywords: Higher education; College course choice; Mixture models; Ranked data; EM

algorithm.

1 Introduction

The Irish college applications system involves prospective college students ranking up to ten

degree courses in order of preference prior to sitting their final second level examinations

(Leaving Certificate). Applications are processed by the Central Applications Office (CAO)

who deal with applications for all third level degree programs in Ireland.
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Typically, seven or eight subjects are taken for the Leaving Certificate examination. Once

graded the best six examination results are used to produce a ‘points’ score; each grade A1,

A2, B1, ..., F has an associated number of points.

Subsequent to examination grading, the CAO fixes a universal points requirement for

each degree program. The points requirements are set so that applicants are offered a place

in the highest preference course for which they have achieved the points requirement; in the

case of applicants being tied for the last positions in a course, random allocation is used to

choose which applicant is offered a place.

It is worth emphasizing that applicants do not know the required course points require-

ment prior to completing their application or to taking their examinations. The points

requirement is influenced by the examination results of applicants who applied for the course

and by the number of available positions in the course.

Some courses have minimum entry standards, for example, a sufficient standard of math-

ematics may be required for an engineering degree. However, the actual subjects taken at

Leaving Certificate level does not have an effect on the applicants points score nor do inter-

views or previous examination performance; a few courses have interviews, but these are not

common. The subjects Irish, English and Mathematics taken at Leaving Certificate level

are entry requirements for Irish applicants for many courses but the remaining subjects are

the student’s choice. In addition, the Leaving Certificate can be taken several times without

having any effect on an application.

International applicants are dealt with in a similar manner. For example, the UK A-Level

results are converted into points - these are totalled and subsequently such applicants are

allocated a course by the same method as Irish Leaving Certificate students.

Similar college applications systems are used in Australia, China and, to a degree, there

are some similarities within the UK’s UCAS system. Extensive details of the college appli-

cations system are available on the CAO web page (http://www.cao.ie).

The method of gaining entry to third level education, as managed by the CAO, is a much

debated subject among the Irish media, students, parents and education circles. Many as-

pects of the CAO system appear annually as headlines in the Irish media – national front

pages carry stories of fluctuating points requirements and volatile applicant numbers, par-

ticularly for the weeks surrounding the announcement of who is admitted to each course.

Detractors suggest that applicants are influenced by the annual media hype and rank

courses according to points requirements, ensuring they study a current ‘high profile’ course

and therefore they may ignore their vocational callings. They claim artificial demand is

created for courses deemed to be of high social standing. Supporters insist it is a fair system

where each applicant is dealt with in a consistent and transparent manner. The supporters

claim that the so called ‘points race’ for courses is media generated and has no significant

affect on applications.

If students are actually selecting courses according to their prestige rather than by vo-
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cational callings, then there should exist groups of applicants where the discipline of their

ranked courses are quite different, but the common feature of the courses is that they have

high points requirements. Therefore, if the points race drives applicants’ choices, then groups

of applicants ranking high points requirement courses together (such as Law, Medicine, Phar-

macy, Dentistry and Actuarial Science) should be present, but where the courses are from

different disciplines. On the other hand, if the system does work in its intended manner, then

applicants should belong to groups where the discipline of their ranked courses is consistent.

In 1997, the Minister for Education and Science set up the “Commission on the Points

System” to review the current college applications system. This lead to the publication of

a report (Hyland 1999) which reviews the system and makes a series of recommendations

concerning its future. A series of four research reports were also published in conjunction with

the commission’s final report. Of particular interest is the report of Tuohy (1998) who studies

the college application data using exploratory techniques; this work is the closest to our

analysis. Of some interest is the report of Lynch et al. (1999) who investigates the predictive

performance of the points awarded to applicants in determining overall performance in higher

education. These reports received an enormous amount of coverage in the Irish media and

were discussed at length by the public. The general conclusion of the exercise was although

the current system is not perfect, it works very well in practice. Clancy (1995) studies the

admissions (rather than applications) data for students in Irish third level institutions, but

this work is closely related to our analysis.

Our analysis focuses on analyzing the set of degree course applications made through

the CAO in the year 2000; there is a separate applications system for diploma and nursing

courses. We use mixture models to investigate the presence of groupings in the set of applica-

tions (Section 3.1). The resulting mixture model can be used to complete a clustering of the

applicants using a model-based approach. The idea of using mixture models to cluster data

has been exploited with much success by Banfield & Raftery (1993) and Fraley & Raftery

(2002) amongst others. A motivation for the use of mixture models when clustering data is

given by Aitkin et al. (1981) in the discussion of their paper where they say “when cluster-

ing samples from a population, no cluster method is a priori believable without a statistical

model”.

The mixture models that are employed use the Plackett-Luce model for ranked data

(Section 3.2). This model describes the ranking process as a sequence of choosing the next

most favored course.

The model is fitted by maximum likelihood using the EM algorithm (Dempster et al.

1977). The M-step of the EM algorithm is completed using the MM algorithm (Lange et al.

2000, Hunter 2004) as an optimization technique (Section 3.4).

In order to increase the modelling flexibility of our method, we investigate using a noise

component in the mixture model to allow for applications that are very different from the

majority of the remaining ones.
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The resulting groupings of applicants suggested by the mixture model (Section 4) re-

veal that applicants generally appear to be driven by their vocational interests as discipline

emerges as the defining characteristic of applicant groups. The geographical position of the

institution to which an applicant applies also transpires to have a significant influence on

course choice (Section 4.1). Crucially, in Section 4.2, some weight is added to the CAO

system detractor’s arguments. A deeper analysis of the revealed groups highlights a subtle

influence of the points on the applicants choices.

A separate analysis of the male and female data suggests applicants of different gender

have different course choice behaviors (Section 4.3).

2 CAO Data

The data set used in this analysis was collected in the year 2000 and it consists of the course

choices of 53757 applicants to degree courses offered in Irish third level institutions. A total

of 533 degree courses were selected by the applicants.

A college application made through the CAO allows an applicant to rank up to ten

degree courses in order of their preference. Course places are subsequently offered using

these ordered choices.

The gender of the applicants is also known and this information is only used in the

analysis described in Section 4.3. There were 29338 female and 24419 male applicants in the

year 2000.

A unique feature of these data is that we have a large number of applicants giving prefer-

ences for a large number of courses. In addition the applicants are restricted in the number

of courses that they can rank.

3 Statistical Methodology

The data collected from the Irish college applications contains students from many different

backgrounds and with many different interests. We model the course choices of these students

using a mixture model, so that we can discover groups of students with different choice

behavior.

The finite mixture model provides a sound model-based basis for making rigorous state-

ments about the presence of groups and the structures of these groups. Statements can be

based on sound statistical theory rather than being of a descriptive nature.

3.1 Mixture Models

We assume the course choices made by the CAO applicants form a sample from a hetero-

geneous population. This assumption is justified because of the differing backgrounds and
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interests of the college applicants. Mixture models appropriately model situations where

data is collected from heterogeneous populations. Therefore, we propose using a mixture

model to model the college applications data.

A finite mixture model assumes that the population consists of a finite collection of com-

ponents (or groups). We assume that the (unknown) probability of belonging to component

k is πk. In addition, observations within component k have a probability density f(xi|pk
),

where pk are unknown parameters. Hence, the resulting model for a single observation is

f(xi) =
K∑

k=1

πkf(xi|pk
).

Thus given our data x = (x1,x2, . . . ,xM ) and the assumption of a mixture model the

likelihood is

L(π1, π2, . . . , πK ; p
1
, p

2
, . . . , p

K
|x) =

M∏

i=1

K∑

k=1

πkf(xi|pk
). (1)

Extensive reviews of mixture modelling are given by McLachlan & Peel (2000) and Tit-

terington et al. (1985); in addition, an excellent overview of using mixture models to produce

model-based methods for clustering is given by Fraley & Raftery (2002). Previous applica-

tions of mixture models for analyzing ranked data are given in Marden (1995) and Murphy

& Martin (2003) amongst others.

3.2 The Plackett-Luce Model

We need to specify an appropriate density for each component of the mixture model. Each

applicant’s data consists of a ranking of up to ten courses. Hence, a model that is appropriate

for modelling ranked data is required. Many possible models for ranked data are described in

Marden (1995), Diaconis (1988) and Critchlow (1985). Multi-stage ranking models (Marden

1995, Section 5.6) have a nice interpretation in terms of sequentially choosing items in order

of preference. One parsimonious multi-stage ranking model that is easy to interpret is the

Plackett-Luce model (Plackett 1975). We propose using this model for each component of

the mixture model.

Plackett (1975) motivated the Plackett-Luce model in terms of modelling horse races

where a vector of probabilities for each horse winning is used to construct a probability

model for the finishing order. Similar characteristics can be identified between horse races

and the process of ranking courses; once a course has been chosen it cannot be selected again,

and following a choice being made the probability of any remaining course being selected at

the next stage is altered.

In the Plackett-Luce model with parameter p = (p1, p2, . . . , pN ), the probability of course

c1 being ranked in first position is pc1 . The probability of course c2 being ranked second,

given that course c1 is ranked first, is pc2/
∑

c6=c1
pc. That is, it is equal to the probability

that c2 is ranked first when all courses except course c1, are available for selection. The
5



probability of course c3 being ranked third, given that courses c1 and c2 are selected first and

second, is pc3/
∑

c6∈{c1,c2} pc. The process continues to give the other placing probabilities.

That is, the course choices are modelled as the product of the probabilities of each chosen

course being ranked first where, at each preference level, the probabilities are appropriately

normalized.

In the mixture model used in this study, we let pkc(i,t) denote the probability of the course

chosen in tth position by applicant i being selected first, given that the applicant belongs

to the kth component (t ≤ ni). The Plackett-Luce model then suggests the probability of

applicant i’s ranking conditional on coming from component k is

P{xi|pk
} =

pkc(i,1)∑N
s=1 pkc(i,s)

· pkc(i,2)∑N
s=2 pkc(i,s)

· · · pkc(i,ni)∑N
s=ni

pkc(i,s)

=
ni∏

t=1

pkc(i,t)∑N
s=t pkc(i,s)

where, for s ≥ t, the values of c(i, t) are any arbitrary ordering of the unselected courses.

3.3 The EM Algorithm

The EM algorithm (Dempster et al. 1977) is a widely used tool for obtaining maximum like-

lihood estimates in missing data problems; mixture models can be formulated as having the

component membership of each observation as missing data. Maximization of the likelihood

function is simplified by augmenting the data to include the missing membership variables.

Furthermore, the EM algorithm provides estimates not only of the model parameters but

also of the unknown component memberships of the observations.

We denote the complete data by (x, z) = ((x1, z1), . . . , (xM , zM )), where xi is applicant

i’s application and

zi = (zi1, zi2, . . . , ziK) ∀ i = 1, . . . ,M

with

zik =

{
1 if applicant i belongs to component k

0 otherwise
.

The missing data z can be interpreted as an indicator of component membership. On con-

vergence of the EM algorithm, the estimated values of zik are the conditional probabilities

of applicant i belonging to component k.

Hence, the complete data log-likelihood is given as

M∑

i=1

K∑

k=1

zik

{
log πk +

ni∑

t=1

log pkc(i,t) −
ni∑

t=1

log
N∑

s=t

pkc(i,s)

}
(2)

The EM algorithm involves two steps, an expectation step (E-step) followed by a max-

imization step (M-step). In the context of finite mixture models, the expectation step es-

timates the unknown values of zik. The maximization step then proceeds to maximize the

complete data log likelihood (2) to estimate the model parameters.
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The EM algorithm is an iterative technique and continually repeats the E and M-steps

until convergence to stable estimates and/or a predetermined criterion is achieved. Aitken’s

Acceleration Criterion (McLachlan & Peel 2000, Section 2.11) was employed in this applica-

tion as a convergence criterion.

Specifically, the EM algorithm proceeds as follows:

0. Initialize: Choose starting values for p
(0)
1 , p

(0)
2 , . . . , p

(0)
K and π

(0)
1 , π

(0)
2 , . . . , π

(0)
K . Let

l = 0.

1. E-step: Compute the values

ẑik =
π

(l)
k f(xi|p(l)

k )
∑K

k′=1 π
(l)
k′ f(xi|p(l)

k′ )
,

where the value ẑik is the estimated posterior probability of observation i belonging to

group k.

2. M-step: Maximize the function

M∑

i=1

K∑

k=1

ẑik

{
log πk +

ni∑

t=1

log pkc(i,t) −
ni∑

t=1

log
N∑

s=t

pkc(i,s)

}

to yield new parameter estimates p
(l+1)
1 , p

(l+1)
2 , . . . , p

(l+1)
K and π

(l+1)
1 , π

(l+1)
2 , . . . , π

(l+1)
K .

Increment l by 1.

3. Convergence: Repeat the E-step and M-step until convergence. The final parameter

values are the maximum likelihood estimates p̂
1
, p̂

2
, . . . , p̂

K
and π̂1, π̂2, . . . , π̂K .

The E-step is relatively straightforward when fitting a mixture of Plackett-Luce mod-

els. The optimization with respect to π1, π2, . . . , πK in the M-step is also straightforward.

However, optimization with respect to p
1
, p

2
, . . . , p

K
in the M-step is problematic; this opti-

mization is discussed in Section 3.4.

3.4 MM Algorithm

The M-step of the EM algorithm aims to maximize

Q(p) =
M∑

i=1

K∑

k=1

ẑik

{
log πk +

ni∑

t=1

log pkc(i,t) −
ni∑

t=1

log
N∑

s=t

pkc(i,s)

}
, (3)

where p = (p
1
, p

2
, . . . , p

K
).

The
∑ni

t=1 log
∑N

s=t pkc(i,s) term makes maximization of (3) difficult. However, Lange

et al. (2000) provide a summary of a method called optimization transfer using surrogate

objective functions which was later renamed as the MM algorithm. The MM algorithm is a

prescription for constructing optimization algorithms more so than a directly implementable

algorithm.
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In order to maximize the function Q(p), the MM algorithm forms a surrogate function

that minorizes the objective function. A particular minorizing function for Q(p) is given by

q(p), which is of the form (up to a constant)

Q(p) ≥ q(p) =
K∑

k=1

M∑

i=1

ẑik log πk +
K∑

k=1

M∑

i=1

ni∑

t=1

ẑik


log pkc(i,t) −

∑N
s=t pkc(i,s)∑N
s=t p

(l)
kc(i,s)


 , (4)

where the p
(l)
kj values are parameter estimates.

Optimizing the surrogate function q(p) yields new parameter values p(l+1) which give a

higher value for Q(p); that is Q(p(l+1)) ≥ Q(p(l)). Explicit details of the steps involved in

deriving and maximizing (4) are given in Appendix A.

Note that the EM algorithm itself is an MM algorithm where the maximization of the

log likelihood function (2) is transferred to a surrogate function (3); the relationship between

the EM and MM algorithms is discussed in Lange et al. (2000) and Hunter & Lange (2004).

3.5 Noise Component

We investigate the inclusion of a “noise” component in the mixture with

(pk1, pk2, . . . , pkN ) = (1/N, 1/N, . . . , 1/N).

This component “soaks up” observations that have low probability of belonging to the other

components. The net result is that outlying observations have less of an effect on the overall

results. This component is analogous to the Poisson noise component introduced in model-

based clustering (Fraley and Raftery, 2002).

When choosing the appropriate number of components in the mixture model, we also

investigate if a noise component should be included in the model.

3.6 Model choice

A fundamental issue in mixture modelling is the choice of an appropriate number of com-

ponents. We use the Bayesian Information Criterion (BIC) (Schwarz 1978, Kass & Raftery

1995) to choose the number of components in the mixture model.

BIC is based an approximation of the logarithm of the Bayes factor for choosing the num-

ber of components (Kass & Raftery 1995). In the case of mixture models the approximation

is not valid. However, BIC has been shown to give good results (Fraley & Raftery 2002) and

is theoretically supported by Leroux (1992) and Keribin (1998, 2000).

The value of the BIC is calculated as

BIC = 2(Maximized log-likelihood)− r log M

where r is the number of parameters estimated in the model.
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The log likelihood will increase with the number of fitted components, as will the number

of estimated parameters. Thus the BIC strikes a compromise between model fit and model

complexity by penalizing for large r.

BIC was also used to determine if a noise component (Section 3.5) should be included in

the mixture model. Interestingly, we found that for the CAO data, the use of BIC suggested

including a noise component in the mixture.

4 Results

Mixtures of Plackett-Luce models were fitted by maximum likelihood to the CAO data with

the number of components ranging from K = 1 to K = 30. In addition, the option for

allowing one of the components to be a noise component (Section 3.5) was also investigated.

The mixture model with the highest BIC value was chosen and the resulting model was

carefully examined.

The maximum likelihood estimates of the choice probabilities p̂
k

= (p̂k1, p̂k2, . . . , p̂kN ) for

each component were examined and sorted into decreasing order. From these probabilities it

is possible to determine which types of courses have highest probability of being selected by

applicants from the component. By examining these probabilities, the component was given

a summarizing label. Clearly, we would expect that the courses with high probability values

will occur with high frequency in the rankings of applicants that belong to this component.

In addition, for each component, the estimated probability of applicants coming from

each component π̂k was recorded and examined.

When the full set of all CAO applicants from is examined, the BIC values suggest that a

twenty-two component mixture model should be used. The selected model had a noise com-

ponent as one of the components. The mixing proportions πk describe the percentage of the

population assigned to each component. Table 1 gives the resulting twenty-two components

in decreasing order of their mixing proportions.

An evaluation of Table 1 verifies the argument of supporters of the CAO system — the

defining characteristic of the mixture components is the common discipline of the courses

with high probabilities, as opposed to courses’ common entry requirements. For example, the

mixture model contains a component reflecting applicants who chose engineering courses, a

component describing applicants who chose educational courses and one for applicants who

chose health science courses. There is no evidence, from the examination of the probabilities,

of a component representing applicants who appear to apply for high status (usually high

points standard) courses. The resulting components suggest that CAO applicants do follow

their vocational interests when applying to Irish institutions of third level education.

Interestingly, science based applicants are very distinctly partitioned. Applicants to bio-

logical sciences, engineering, mathematical sciences and health sciences are well segregated

rather than constituting a single science component.
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Table 1: The names and proportions of the twenty-two components detected when the set of all applicants were

analyzed.

Component Name Proportion

Business & Marketing 0.08

Hospitality Management 0.08

Arts & Humanities 0.07

Biological Sciences 0.06

Business & Commerce 0.06

Communications & Media 0.06

Construction Studies 0.06

Computer Science (Ex-Dublin) 0.05

Social Science 0.05

Munster Based Courses 0.05

Computer Science (Dublin) 0.05

Engineering 0.04

Cork Based Courses 0.04

Galway & Limerick Based Courses 0.04

Education 0.03

Health Sciences 0.03

Art & Design 0.03

Law 0.03

Mathematical & Physical Sciences 0.03

Business & Languages 0.03

Music 0.02

Noise Component 0.002
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Also of note are the mixing proportion values. Ranking the components in order of mixing

proportions indicates more applicants have a tendency to apply for humanities and business

degrees than for more science based programs.

However, the results do require further examination and discussion; this is done in Sec-

tions 4.1–4.3.

4.1 The Geographical Effect

The components reported in Table 1 reveal important traits within the population of appli-

cants. Most obvious are the presence of a components that highlight a geographical effect

on applications.

Interestingly, five of the twenty-two components identified have a geographical basis. The

Munster based courses and Cork based course components are epitomized by applicants who

predominantly apply to institutions situated within the province of Munster or to institutions

located in County Cork, respectively. The Galway and Limerick based component emerges

from similarly motivated applicants. While possibly surprising that a geographical effect

would be so well defined in such a relatively small island, readers acquainted with Irish

society will be familiar with such a phenomenon. Firstly, many Irish students opt to live

at home during their college studies; this differs from the situation in many other countries.

Also, Irish people are very parochial and show strong affinity to their home region. People

from Munster, and Cork in particular, have a very strong affinity to their region and tend

to avoid travelling for their studies unless the course that they wish to study is not available

in the region. Galway and Limerick are the main cities on the west coast of Ireland and a

similar impetus is revealed by this component.

Also of note with regard to the geographical effect is the frequent distinction between

sets of applicants who apply for degrees of similar discipline but are deemed separate based

on whether or not the institutions to which they apply are located in Dublin (the capital

of Ireland). Of Ireland’s 3.92 million population, 1.12 million reside in County Dublin, and

2.11 million in the province of Leinster (area around Dublin). Dublin is the center of Irish

governmental, financial and business dealings. Therefore some applicants are drawn to living

there, while others prefer to stay away to avoid living in a large city. This goes some way in

explaining why applicants view courses of a similar type as different, based on whether the

location of the institution is in Dublin or not. This effect is clear on the groups of applicants

applying for computer science courses, and to a lesser extent on the applicants for business,

marketing and commerce degrees.

4.2 The ‘Points Race’

On the surface the components determined by our model-based clustering verify the argu-

ments of the supporters of the CAO system. Detractors insist that applicants are influenced
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by media hype and by the perceived social standing of some courses (revealed through their

high points requirements). Examination of the reported components and their associated

parameters provides deeper insight into the behavior of the CAO applicants.

We take two approaches at examining this phenomenon. We examine those courses

according to the probability of the course being chosen within a component, that is using the

P{Course j|Component k} = pkj values (estimated by p̂kj). We also examine the posterior

probability of belonging to a component given that a particular course is chosen, that is using

the P{Component k|Course j} ∝ πkpkj values (estimated by π̂kp̂kj).

To demonstrate that there may actually be a points race, we examine the results for the

health sciences component using the two approaches described above. The results of this

deeper analysis is given in Sections 4.2.1-4.2.2.

4.2.1 Examination Of Component Parameters

Table 2 shows the 30 courses with the highest probability of selection (listed in decreasing

order) given that an applicant belongs to the health sciences component (see Table 1). Table 2

illustrates how components were assigned a summarizing label – from a glance it is clear that

applicants belonging to this component have high probability of choosing courses leading

to a degree in the health sciences sector. Many health science degree programs have high

entry requirements, due to demand, a limited supply of places and the fact that these courses

attract highly achieving second level students. Medicine, pharmacy, dentistry and veterinary

medicine are annually reported as degree programs with higher points requirements than

other courses and the resulting careers are highly esteemed within Irish society. They also

are vocationally driven careers, and thus we would expect applicants to have a tendency to

apply for many courses within a discipline for which they feel that they have a vocation.

Within the top 30 courses in Table 2 four have been highlighted. Arts as offered by

University College Dublin, law as offered by University College Dublin and Trinity College

Dublin and engineering as offered by University College Dublin. In fact applicants are almost

equally likely to rank medicinal chemistry, law or therapeutic radiography given that they

belong to the health sciences group. While some would, perhaps correctly, argue that a career

in law is also a vocation, it could also be argued that equally so are careers such as those in

the education sector. The difference between law and education degrees, in Ireland at least, is

their points requirements. Law would be considered a consistently high requirement degree,

whereas an education degree would have lower points requirements. There is little evidence

of health science applicants choosing education programs with high probability. Therefore,

some weight has been added to the assertions of CAO detractors assertion that the CAO

system influences applicants to apply for courses that are prestigious (in terms of points).

Another explanation is that the applicants are attracted to courses that tend to lead to high

salaried professions. In any case, this implies that courses are being chosen by their status

in society rather than by the discipline. How otherwise would health science applicants be
12



Table 2: The thirty most probable courses to be ranked on an application form, given that an applicant belongs to

the health sciences component. Clearly health science degrees dominate, but the presence of high status law degrees

adds some weight to the argument that applicants are influenced by the “prestige” course’s points requirements.

INSTITUTION COURSE PROBABILITY

UCD Medicine 0.4723

TCD Medicine 0.2413

UCG Medicine 0.2004

UCC Medicine 0.1219

RCSI Medicine 0.0610

UCD Science 0.0351

TCD Science 0.0297

TCD Pharmacy 0.0280

TCD Dentistry 0.0280

UCD Physiotherapy 0.0260

TCD Physiotherapy 0.0241

UCC Dentistry 0.0233

UCD Veterinary Medicine 0.0163

RCSI Medicine with Leaving Certificate Scholarship 0.0153

UCG Science 0.0140

UCC Biological & Chemical Sciences 0.0125

TCD Human Genetics 0.0121

UCG Biomedical Science 0.0116

DIT Optometry 0.0104

UCD Radiography 0.0101

TCD Medicinal Chemistry 0.0099

UCD Arts 0.0092

UCD Law 0.0091

TCD Law 0.0085

UCD Engineering 0.0083

TCD Therapeutic Radiography 0.0081

TCD Psychology 0.0074

RCSI Physiotherapy 0.0069

RCSI Medicine with RCSI Scholarships 0.0065

UCD Psychology 0.0059
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as likely to choose law as therapeutic radiography?

Also of note is the high probability of choosing the arts degree (in University College

Dublin) and engineering (in University College Dublin). As the name partially suggests, in an

arts degree students study one or two subjects from a range of arts and humanities subjects.

Thus the arts degree is a very general degree that provides a broad basis from which many

different career paths can emerge. In fact, it is the most frequently ranked degree program

amongst all CAO applicants and has relatively achievable entry requirements. It’s popularity,

or perhaps it’s reputation as a ‘fail safe’ third level choice, are possible explanations of it’s

high choice probability within the health science component.

The inclusion of engineering as a high probability course is less clear. The required points

for engineering in University College Dublin were much lower than the health science degrees

in Table 2, so the points status would not appear to be a contributing factor. It is clear

health science applicants select a general science degree with high probability and perhaps

are then also attracted to the general science aspects of an engineering degree. The inclusion

of engineering is at least in the same scientific vein as the main thread of the health science

component, whereas law degrees appear to have little in common.

4.2.2 Examination of Posterior Component Membership Probabilities

An alternative approach can be taken in the analysis of the parameter estimates by examining

the posterior probability of belonging to component k given that course j was selected, that

is, P{Component k|Course j}. Table 3 shows the twenty-five courses whose selection gives

highest posterior probability of belonging to the health sciences component.

Examination of the mixture model in this way further highlights the subtle effect the

points race may have on some applicants’ choices. Within the top twenty-five courses that

suggest high probability of belonging to the health sciences component are Mathematics

and Latin and Mathematics and Psychology, both offered by Trinity College Dublin. It

appears strange to have high probability of belonging to a component dominated by health

sciences courses due to the selection of either of these courses. Both are part of Trinity

College’s version of the general arts degree – the Two Subject Moderatorship (TSM) program.

In the TSM program, students choose two modules from a range of arts and humanities

subjects and study them simultaneously. However, each combination is viewed as a separate

course by the CAO and due to the wide range of subjects, and therefore combinations,

their choice is usually quite rare leading to sparse data. Some TSM courses lead to some

strange results when analyzing the CAO data due to the rarity of some course selections

within the TSM program. However the inclusion here of only two of the wide range of TSM

courses suggests a contributing factor other than data sparsity. These two TSM courses both

include mathematics; in that particular year points requirements for TSM courses involving

mathematics were at a similar level to many of the listed health science programs in Table 3.

Therefore, deeper investigation of the posterior probabilities highlights again the possibility
14



Table 3: Twenty-five courses whose selection on a CAO application form gives highest probability of belonging

to the health sciences component.

INSTITUTION COURSE PROBABILITY

UCD Medicine 0.9440

TCD Medicine 0.9392

RCSI Medicine 0.8886

RCSI Medicine with Leaving Certificate Scholarship 0.8813

UCG Medicine 0.8724

RCSI Medicine with RCSI Scholarships 0.8010

UCC Medicine 0.7633

TCD Dentistry 0.5391

UCC Dentistry 0.3674

TCD Pharmacy 0.3110

TCD Medicinal Chemistry 0.2725

TCD Therapeutic Radiography 0.2662

TCD Human Genetics 0.2579

UCD Radiography 0.2230

TCD Physiotherapy 0.2141

RCSI Physiotherapy 0.2035

TCD Mathematics/Latin 0.2013

DIT Optometry 0.1989

UCD Physiotherapy 0.1986

UCD Veterinary Medicine 0.1796

TCD Mathematics/Psychology 0.1642

UCG Biomedical Science 0.1517

UCG Biomedical Engineering 0.1093

TCD Science 0.1053

TCD Occupational therapy 0.0992
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of a subtle effect that a course’s points requirements may have an affect on CAO applicants.

Why the focus on law programs and mathematics programs as examples of the points

race? Other high points courses such as Actuarial and Financial Studies (in UCD) also

appear within the top 50 programs in both views of the model; again, this course appears to

be a strange course to appear amongst a component dominated by the “vocational” health

science sector.

Why the focus on the health sciences component only? It seems natural to also consider

the law component that is also deemed as high points and high status. The points race effect

is also apparent here – psychology in both UCD and TCD, which had high entry requirements

that year, have high probability of being selected given that an applicant belongs to the law

component. While law and psychology have some similarities, they would not be deemed

as members of the same discipline suggesting some element of the points race is present.

However, examination of the posterior probabilities for the law component gives less of an

indication of the presence of a points race. It seems the points status of courses has more

of an effect in the health science component than in the other components in the mixture

model.

4.3 The Gender Effect

The gender of each CAO applicant in 2000 was available in addition to their course choices;

of the 53757 applicants, 24419 were male. The data was partitioned according to applicant

gender and mixtures of Plackett-Luce models were fitted to the two resulting data sets.

Examination of the resulting parameter estimates, p̂kj , led to the summarizing component

labels as outlined in Table 4.

The resulting mixtures fitted to the partitioned data provide good insight into the different

choice behavior of the male and female applicants. The predominant aspect of the component

labels is subject discipline, thus enhancing the supporting view of the CAO that applicants

are inclined to follow their vocational interests. The geographical effect discussed in Section

4.1 is again apparent, but it is more apparent in the male results. In particular, some male

components reveal a common discipline but at different geographical locations; this occurs

more so than in the female components. For example, the male engineering applicants

are partitioned by the location of the institution in Dublin, as are the computer science

applicants.

Stereotypical differences between the two genders are very apparent in the resulting com-

ponents – there appears to be distinct components for females in social science, art and

design, music and education whereas female applicants with an interest in engineering and

computer science are grouped together. Not only are male the engineering and computer

science components separate, they are further divided within these disciplines by geography.

Further, the largest component (with probability 0.09) in the male results involves construc-

tion studies courses whereas this does not appear as a distinct component in the female
16



Table 4: The resulting 16 components from analysis for the female applicants, and the resulting 17 from the male

applicants.

FEMALE RESULTS MALE RESULTS

Component Label Proportion Component Label Proportion

Hospitality Management 0.11 Construction Studies 0.09

Social Science 0.11 Communications & Journalism 0.09

Business & Marketing (Dublin) 0.09 Business & Marketing (Dublin) 0.09

Biological Sciences 0.08 Computer Science (Ex-Dublin) 0.08

Cork Based Courses 0.08 Hospitality Management 0.07

Applied Computing (Ex-Dublin) 0.07 Computer Science (Dublin) 0.07

Communications & Journalism 0.07 Arts/Humanities 0.06

Business & Commerce (Ex-Dublin) 0.07 Engineering (Ex-Dublin) 0.06

Law & Psychology 0.06 Business & Commerce 0.06

Galway & Limerick Based Courses 0.06 Cork Based Courses 0.06

Education 0.05 Law & Business 0.06

Engineering & Computer Science 0.04 Engineering (Dublin) 0.05

Art/Design & Music 0.04 Sports Science & Education 0.05

Business & Languages 0.04 Science 0.04

Health Sciences 0.04 Limerick Based Courses 0.04

Noise Component 0.003 Health Sciences 0.03

Noise Component 0.004

results.

Other results of interest are the popularity of biological sciences amongst females whereas

males have a general science component in their results, both genders have education com-

ponents but the male education component also has a sports aspect.

In addition, in close similarity to the results for all applicants (see Section 4.2.1), the

male health sciences component contains three law degrees in the top thirty most probable

courses. Similar results are revealed for the females, but the probability of selection of the

law courses is lower within the health sciences component.

4.4 Clustering of Applicants

A major advantage of fitting mixture models via the EM algorithm, as detailed by Fraley

& Raftery (1998), is that the value ẑik at convergence is an estimate of the conditional

probability that observation i belongs to component k; these values can be used to cluster

observations into groups. A clustering of the set of applicants is simply achieved by examining

max
k

P{Component k|Application i} ∀ i and assigning applicants to the group for which the

maximum is achieved.

The clustering of applicants can be scrutinized in different ways. As suggested by Bens-

mail et al. (1997), the uncertainty associated with an applicant’s component membership
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can be measured by Ui = mink=1,...,K(1 − P{Component k|Application i}). When i is very

strongly associated with group k then P{Component k|Application i} will be large and so

Ui will be small. Figure 1 illustrates the uncertainty associated with the clustering of the

male and female applicants.
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Figure 1: Uncertainty in the clustering of female and the male applicants.

Clearly, the clustering uncertainty values tend to be very small, with 61% of females and

59% of males classified with an uncertainty of less than 0.05. Summary statistics for the un-

certainty values further demonstrate how well the model allocates applicants to components;

these are given in Table 5.

Table 5: Summary statistics associated with the clustering uncertainty of male and female applicants.

1st Quartile Mean 3rd Quartile

FEMALE 0.0002 0.1228 0.1866

MALE 0.0002 0.1301 0.2043

5 Discussion

This paper presents a model-based statistical analysis of degree level applicants to Irish

institutions of third level education. The methods seek to find groups of similar applicants,

and to draw conclusions about the merits and failures of the centralized applications system

from the defining characteristics of these groups.

A top level view of the groups of applicants suggested by the analysis verifies a supporting

view of the CAO system — applicants appear to follow their vocational interests and rank

their third level course choices in a manner which reflects this. The analysis suggests that the

majority of CAO applicants use the system as it is intended and rank courses in view of their

genuine preferences and/or career choice. However, it is apparent that more subtle influences

also contribute to course choice and a detailed examination of the mixture components

indicates the presence of the reported ‘points race’. It appears there are those who choose

courses on the points levels of previous years and therefore on the prestige attached to some

of these courses.
18



While most discussions of the CAO system in Irish education circles focus on the influence

of the ‘points race’ this work highlights other factors which have an influence on an applicant’s

course choice. The geographical location of the institution to which an applicant applies has

a clear affect on the choice process. Whether this is due to a vocational desire to study a

particular course in a specific institution, the desire to live in a certain area or because of

financial viability, it is a striking feature of the groups of applicants. A course’s geographical

location appears to be almost as important as vocational interest in an applicant’s choice

process. Whether this feature is a benefit of the CAO system or not remains to be researched.

Further to the effects of vocation, geography and the points race, the gender of the

applicant also affects course choice. Geography and the points race may have a larger effect

on male applicants than on females. Stereotypical gender differences are also apparent —

only 4% of female applicants are ‘classified’ as engineering and computer science students

compared to 26% of the population of male applicants. Further differences (see Section 4.3)

indicate that males and females need to be targeted in difference ways, with regard to third

level education, and this should be of interest to third level institutions and to governmental

education departments.

In terms of the model employed within components, the Plackett-Luce model performs

well when modelling the rankings of the preferred third level choices of CAO applicants.

The model does suffer from the independence from irrelevant alternatives (IIA) within a

component (see Train 2003). While it can be argued that such models are unrealistic in

some situations, in this application the model appears to provide a realistic representation

of the course choice process. It is worth noting that the Plackett-Luce model leads to choice

probabilities that satisfy Luce’s Choice Axiom (see Marden 1995, Section 5.13.1).

The only covariate available for this analysis is the gender of the applicant – relationships

between course choice and other covariates are very likely to be present. Expanding the

analysis to include other covariates would also be desirable, but further covariates were not

available for this study.
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A MM Algorithm Calculations

We detail the steps involved in the formation of the required surrogate function to which

maximization is transferred in the M-step of the EM algorithm and from which the maximum

likelihood estimates p̂kj are derived. This derivation is closely related to calculations given

in Hunter (2004). The general reviews of the MM algorithm given by Lange et al. (2000)

and Hunter & Lange (2004) are also of interest.

The construction of a surrogate function relies on the exploitation of properties of con-

vex functions. For convex function f(x) with differential df(u), the supporting hyperplane

property of a convex function f ,

f(x) ≥ f(y) + df(y)(x− y) x, y ≥ 0 (5)

provides a linear minorizing function that can be utilized as a surrogate function in an

optimization transfer algorithm. Sometimes it is preferable to form a quadratic or higher

order surrogate function. Expanding (5) using higher order expansions can yield such higher

order functions.

In this application, we wish to construct a minimizing surrogate function to be iter-

atively maximized. This iterative maximization gives a sequence of parameter estimates

with increasing values for the expected complete data log-likelihood function (3). The strict

convexity of the − log(x) function implies that

− log(x) ≥ − log(y) + 1− x

y
.

We let f(x) = − log
∑N

s=t pkc(i,s). Thus,

− log
N∑

s=t

pkc(i,s) ≥ − log
N∑

s=t

p
(l)
kc(i,s) + 1−

∑N
s=t pkc(i,s)∑N
s=t p

(l)
kc(i,s)

.

It follows that, up to a constant,

Q(pkj) ≥ q =
K∑

k=1

M∑

i=1

ẑik log πk +
K∑

k=1

M∑

i=1

ni∑

t=1

ẑik


log pkc(i,t) −

∑N
s=t pkc(i,s)∑N
s=t p

(l)
kc(i,s)


 .

By iterative maximization of the surrogate function q we produce a sequence of pkj (and

of the mixing proportions πk) values which have monotonically increasing Q value. The

values converge to the maximum of Q with respect to pkj and πk.

Differentiation of q with respect to pkj gives

∂q

∂pkj
=

M∑

i=1

ẑik




ni∑

t=1

1
pkc(i,t)

1{j=c(i,t)} −
ni∑

t=1

1
∑N

s=t p
(l)
kc(i,s)

1{j∈{c(i,t),...,c(i,N)}}


 .

We denote

ωkj =
M∑

i=1

ẑik

ni∑

t=1

1{j=c(i,t)}
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and

δijt =

{
1 if j ∈ {c(i, t), . . . , c(i,N)}
0 otherwise

.

Therefore,

ωkj

pkj
=

M∑

i=1

ẑik

ni∑

t=1

[
N∑

s=t

p
(l)
kc(i,s)

]−1

δijt

which implies that

p
(l+1)
kj =

ωkj

M∑

i=1

ni∑

t=1

ẑikδijt

[
N∑

s=t

p
(l)
kc(i,s)

]−1 ,

for k = 1, . . . ,K and j = 1, . . . , N .

Similarly, maximization of q with respect to πk and subject to the constraint
∑K

k=1 πk = 1

yields

πk =

M∑

i=1

ẑik

M

.
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