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Analysis of Iterated Hard Decision Decoding of
Product Codes with Reed-Solomon Component
Codes

Jorn Justesen
COM
Technical University of Denmark
DK-2800 Kgs.Lyngby, Denmark
Email: jju@com.dtu.dk

Abstract— Products of Reed-Solomon codes are important in
applications because they offer a combination of large blocks, low
decoding complexity, and good performance. A recent result on
random graphs can be used to show that with high probability a
large number of errors can be corrected by iterating minimum
distance decoding. We present an analysis related to density
evolution which gives the exact asymptotic value of the decoding
threshold and also provides a closed form approximation to the
distribution of errors in each step of the decoding of finite length
codes.

I. INTRODUCTION

Product codes are important in applications that require
low redundancy, large block length, and high data rate. In
an example we consider a code that is similar to the one
used for video on DVDs. Other product codes are being
considered for transmission on optical cables. In spite of their
low minimum distance, these codes are known to provide
good performance by correcting a much larger number of
errors. The performance can be improved significantly if the
decoding of row and column codes is iterated, and a recent
result in graph theory is an important tool for the analysis of
such algorithms. For products of Reed-Solomon (RS) codes
we obtain an explicit asymptotic bound for the number of
errors that can be corrected.

In Section II codes and error patterns are described as
bipartite graphs. We then characterize the error patterns that
cause decoding failure as cores in the error graph. In Section
Il a theorem about random graphs is used to relate the
existence of such a core to the total number of errors. The
product codes are decoded by iterating between decoding
rows and columns. The distribution of the remaining errors is
described as truncated Poisson distributions in Section IV, and
it is proved that this description is consistent with the random
graph result. In Section V we consider improved rates related
to using two different codes for rows and columns, and Section
VI extends the analysis to graph codes with RS component
codes.
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II. ERROR PATTERNS IN PRODUCT CODES AS RANDOM
GRAPHS

We describe the product of two RS codes of length N as
a complete bipartite graph. The right vertices represent row
codes and the left vertices column codes. The code symbols
are labels on the branches, and symbols on the branches that
connect to a given vertex, taken in some specified order, have
to satisfy the parity checks of the corresponding code.

The row codes correct all error patterns of weight at most
T1, the column codes correct T errors. Initially we let T =
Ty =T. A total of W errors are assumed to occur at randomly
chosen positions. Since the decoding is independent of the
codeword and the error values, it is sufficient to consider the
error graph, a bipartite graph with N + N vertices and W
randomly chosen branches.

In the present analysis we make the simplifying assumption
that the decoder of the component code corrects 1" or fewer
errors, and in other cases the symbols are left unchanged. If T’
is not too small, the probability of decoding errors when more
than T errors occur, approximately 1/T'! [1], is insignificant.
The analysis clearly also applies exactly to the case of erasure
correction.

III. CORES IN RANDOM GRAPHS

If the decoding of the component codes is repeated until a
stable result is obtained, decoding failure is described by the
following concept:

Definition: A k-core in a graph is a subgraph with the
property that all vertices have degree at least k.

Lemma 1: Tterative decoding of the product code fails if
and only if the error graph contains a 7"+ 1 core.

The well-known procedure for finding a core in a graph
consists in successively removing any vertex of degree less
than k and all branches connected to it. In terms of the product
code, this procedure clearly amounts to decoding component
codes and correcting all error patterns of weight at most 7.

The existence of cores in random graphs has been a subject
of considerable interest in graph theory. In particularly the
following result due to Pittel et al. is important [2]: Let G
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be a random graph with n vertices and w edges. With high
probability a k connected core exists when w > c¢in/2, but
not for smaller w. The core includes a large fraction of the
vertices. Here c;, is defined in terms of the Poisson distribution

a(j) = e *N/j!
me(A) = ijk_1 o(j)
= minx[A/m(AN)],A >0

Thus ¢3 = 3.35, ¢4 = 5.14, ¢5 = 6.80, cg = 8.37, cg = 12.78.
Asymptotically ¢, ~ /k + klog k.

The result applies without change to random bipartite
graphs. This can be proved by making a small modification
in the simplified proof of the basic result, which was given in
[3]. Here the initial distribution of the degrees of the vertices
is first considered, for finite n the sum of the degrees is 2w,
but asymptotically the distribution is Poisson. For the bipartite
graph, the sum of the degrees is W on each side for finite V.
The degree of a vertex is initially interpreted as the number
of half-edges associated with the vertex. These half-edges are
later combined in pairs to make the actual edges of the graph.
The following algorithm simultaneously specifies the random
graph and removes edges connected to vertices of low degree:

C

Ed

- Remove a half-edge from a light vertex (degree < k)

- Remove a randomly selected half-edge (which becomes
the other part of the complete edge)

- Repeat the process as long as there are light vertices

The proof in [3] goes on from here to analyze the evolution
of the degree distribution as a stochastic process. For the
complete bipartite graph, the only modification is that the steps
are:

- Remove a half-edge from a light vertex on the right

- Remove a randomly selected half-edge from the left (to
complete the edge)

- Repeat these steps with right and left reversed

- Repeat as long as there are light vertices

Clearly the distribution of the half-edges on the two sides
is the same, and each side follows the same stochastic process
as for the original graph.

The result in [2] is asymptotic, i.e. k is fixed while the size
of the graph increases. Thus the result for product codes is
exact for codes of increasing length and fixed error-correcting
capacity. This approach gives a better approximation to the
performance of practical codes than the fixed-rate analysis in
[4], since the codes of interest usually have high rate and
moderate values of T, while NNV is relatively large. Iterating the
decoding an unlimited number of times is also quite realistic,
since a number of errors close to the limit can be corrected
with a moderate number of decoding steps.

IV. ALTERNATING BETWEEN DECODING ROWS AND
COLUMNS

In the analysis of random graphs one branch is removed in
each step. In this section we give a description that follows the
actual decoding of product codes by removing all light vertices

on one side in each step. Initially the number of errors in each
row follows a Poisson distribution since N is large compared
to T'. The average number of errors that are decoded in a row
when all row codes are decoded can then be found from this
distribution as

ngT je~mmi /!

We now introduce the simplifying assumption that these
decoded positions are randomly distributed in the columns.
Clearly this is not exactly the case for finite NN, since T’
errors in a particular row must be located in different columns.
However, the effect vanishes asymptotically, and as long as the
total number of errors is large, the approximation is extremely
close. Thus the first decoding of the column codes operates
on a Poisson distribution with a reduced mean value. We shall
prove that after each decoding step the degree distribution
follows a truncated Poisson distribution

Plo=j]l=bm’/jl,j>T

and O otherwise, where b is chosen to make the terms sum
to 1. The parameter m, which we refer to as the Poisson
parameter, is clearly no longer the mean value.

Lemma 2: 1f the degrees of the vertices on one side of
the graph follow a truncated Poisson distribution, a randomly
chosen subset of the branches are removed, and all resulting
light vertices are removed, the degree distribution of the
remaining vertices is again a truncated Poisson distribution.

Proof: If the degrees had followed a full Poisson distribu-
tion, and a certain fraction, d of the branches were removed
at random, the result would be a Poisson distribution with a
reduced mean value. From each vertex with degree T' + 7,
an average of (T + j)d branches are removed, and the result
does not depend on the distribution in other vertices. These
contributions would then be added to give the new Poisson
distribution. However, since vertices that have degree more
than 7T after the decoding of the rows are obtained from
columns which had more than T errors before the decoding,
it is sufficient that this part of the distribution was Poisson.

Thus when a fraction of the remaining errors are corrected in
the rows, the part of the column distribution above 7' becomes
a truncated column distribution with a reduced mean value,
and some columns with 7" or fewer errors are created. These
columns are then decoded in the next step.

The calculation of the mean value of a truncated Poisson
distribution is facilitated by the following identity, which is a
standard result in traffic theory.

Lemma 3: ijTje*mmj/j! = mnrri1(m)

Proof: The result follows when the summation index is
changed from j to j — 1.

This lemma explains why the summation in the definition
of m starts at k — 1 rather than k. We omit the subscript in the
rest of this section.

We can now describe the evolution of the degree distribu-
tion:

Theorem 1: If the total number of errors in initially W =
MN, the number of errors in each row follows a Poisson
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distribution with mean M. After the first decoding, the number
of errors per column follows a Poisson distribution with mean
m(l) = Mnx(M)
The degree distribution after each of the following stages of
decoding follow a truncated Poisson distribution with param-
eters
m(j) = Mm(m(j —1))

Proof: The expected number of errors after the first decoding

is
szsze_MMj/j! = NMn(M)

using Lemma 3. We make the approximation that these errors
are randomly distributed in the columns, and starting from
these initial values we prove the result by induction. At stage
j the degree distribution of rows (columns) is a truncated
Poisson distribution with parameter m(j) after all rows with
at most 7' errors have been decoded. Thus using Lemma
3, the average number of errors in each row or column is
m(j)m(m(j)). Going back to the columns (rows), the distribu-
tion of columns with more than 7" errors was unchanged in the
last decoding of columns, but using Lemma 3, the decoding of
the rows reduced the parameter of the distribution by a factor

m(j)m(m(5))/m(j — V)m(m(j —1)) = Mx(m(j))/m(j —1)

by the induction hypothesis. Thus we find the new parameter
to be

m(j +1) = Mn(m(j))

completing the proof.

If the initial value, M, is less than min{m/m(m)}, m(j)
converges to zero, while for M less than this threshold, m
converges to the largest value such that m’ = Mm(m’).We
then have

Theorem 2: In the limit of large N, a product of RS codes
of length N correcting a fixed number of errors, 7', can
be decoded by iterated decoding of the component codes to
correct W = N M errors, when

M < ming{m/m(m)}

The results of this analysis coincide with the properties of
random graphs found in [2].

The iteration can be illustrated graphically as a sequence
of points on the line m = x and the graph of M7 (z). The
graphic also indicates how the expected number of iterations
increases as the number of errors approaches the threshold.

Example 1: For N = 256 and T' = 8, we get from
Theorem 2 that approximately W = Ncg = 3270 errors can
be corrected with high probability. Simulations of decoding
with 7" = 8 indicate that the number of errors that can be
reliably corrected is about 3100. The simulations also confirm
that the truncated Poisson distribution is a good approximation
the actual values for most of the decoding process. A single
RS code with the same length and rate, using 16 bit symbols
but shortened to N = 25, would correct 1984 errors.

V. DIFFERENT RATES OF THE ROW AND COL.UMN CODES

For small values of 7', experiments indicate that the best
performance (highest rate for a given fraction of corrected

errors), is obtained with different values of 7', T} and 15 on
the right and left respectively. For small values of T} + 75, the
difference between the optimal rates is small, but it increases
with the value of the sum. Thus the choice of 8 and 5 errors
in the DVD code is good also for iterated decoding.

The original proof of cores in random graphs is not easily
modified to work with different values of 7' in subsets of
the vertices. However, in our analysis such a change is easily
made. If the definition of the function 7 is modified to alternate
between 17 and T5, the parameters are still updated by

m(j+1) = Mm(m(j))

The errors are corrected if the initial number of errors is
below a certain threshold, but for larger values the decoding
process reaches a stationary point with a pair of parameters,
(m/,m”).

Example 2: For N = 256, T1 = 8, and T, = 5, the maximal
number of errors is about 2725. With 2560 errors, typically
9-10 decoding stages are required. Table I gives the number
of errors corrected in each stage. The left column gives the
average as computed from the expression above. The other
columns provide the results of 5 simulations. Clearly there is
some variation, in particular towards the end of the decoding.
However, even for this small example, the asymptotic average
gives a useful indication of the expected properties. Moreover,
if similar numbers are computed for a total number of errors
50 greater or smaller (about the standard deviation), the
differences between the averages are significantly greater than
between the simulated cases for the same total number. Thus
we can get a quite accurate picture of the expected decoding
by considering the asymptotic results within the typical range
of total errors.

TABLE 1
SIMULATIONS OF DECODING OF PRODUCT CODE WITH T = 8,72 =5

Aver. | Sim.1 | Sim.2 | Sim.3 | Sim4 | Sim. 5
564 584 576 608 558 563
223 236 260 227 183 234
268 291 311 301 205 239
167 198 181 174 139 156
262 297 314 227 199 262
239 302 310 241 150 221
403 470 407 391 282 392
331 176 193 340 328 332
103 6 8 51 381 161

0 0 0 0 135 0

The iteration can be illustrated graphically (in the form well-
known from EXIT graphs) as a staircase line between the
graph of 7(x) for T} and a reflected version of the graph of
m(z) for T5. The graphic indicates that the decoding threshold
is reached when these two curves touch.

VI. GRAPH CODES

For a more general graph, consider the bipartite graph
derived from a projective plane [5]. Here a given vertex on
the right is connected to ¢ + 1 vertices on the left, and these
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have edges connecting to the remaining ¢(g+1) right vertices.
The connections from the right and left sides have the same
properties. The initial distribution of degrees is the same as in
the original graph with the modification that very large degrees
do not occur. This difference is negligible. In this case the steps
of the random process are

- Remove a light half-edge from the right
- Remove a random half-edge from the subset of g+l
vertices on the left (to complete the edge)
- Remove a light edge chosen from the same subset of
vertices on the left
- Remove a random edge from the relevant subset on the
right.
- Continue as long as there are light vertices
Since the process is the same in the two sides, we consider
only vertices on the right. Here all edges have the same
probability of being removed in the last step, and thus the
distribution evolves as in the original graph. In this way the
performance depends on the good expansion properties of the
graph as one would intuitively expect.

VII. ASYMPTOTICS AND CAPACITY

Formally the results of this paper are derived by keeping
T fixed and letting N increase. As mentioned earlier, we are
mostly interested in finite cases where 7' is fairly small, and
N is a moderately large number typical of applications.

However, it would not be unrealistic to consider much larger
values of 1" and for such a fixed value to let N become very
large. RS codes with 16 or 32 bit symbols are long enough
to be analyzed in this way. To get a good performance for
such a code, 77 should be close to the expected number of
errors in a row, and 75 should be much smaller, providing a
construction similar to Forney’s original concatenated codes.
Clearly the rate approaches 1 for N going to infinity, but
the codes have close to optimal rates in the sense that long
RS codes correcting a fixed number of errors approach the
Hamming bound.
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