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Abstract

This paper examines the properties of the Iterated Ensemble Smoother (IES) and the Multiple Data Assimilation Ensemble

Smoother (ES–MDA) for solving the history matching problem. The iterative methods are compared with the standard

Ensemble Smoother (ES) to improve the understanding of the similarities and differences between them. We derive the three

smoothers from Bayes’ theorem for a scalar case which allows us to compare the equations solved by the three methods, and

we can better understand which assumptions are applied and their consequences. When working with a scalar model, it is

possible to use a vast ensemble size, and we can construct the sample distributions for both priors and posteriors, as well as

intermediate iterates. For a linear model, all three methods give the same result. For a nonlinear model, the iterative methods

improve on the ES result, but the two iterative methods converge to different solutions, and it is not clear which should be

the preferred choice. It is clear that the ensemble of cost functions used to define the IES solution does not represent an exact

sampling of the posterior-Bayes’ probability density function. Also, the use of an ensemble representation for the gradient in

IES introduces an additional approximation compared to using an exact analytic gradient. For ES–MDA, the convergence,

as a function of increasing number of uniform update steps, is studied for a huge ensemble size. We illustrate that ES–MDA

converges to a solution that differs from the Bayesian posterior. The convergence is also examined using a realistic sample

size to study the impact of the number of realizations relative to the number of update steps. We have run multiple ES–MDA

experiments to examine the impact of using different schemes for choosing the lengths of the update steps, and we have tried

to understand which properties of the inverse problem imply that a non-uniform update step length is beneficial. Finally,

we have examined the smoother methods with a highly nonlinear model to examine their properties and limitations in more

extreme situations.

Keywords Ensemble smoothers · IES · ES–MDA · Data assimilation · History matching

1 Introduction

Ensemble methods for data assimilation and parameter

estimation [9, 11, 12] are now well established as a

standard tool in the reservoir-engineering community for

history matching reservoir models. Following the first

application of Ensemble Kalman Filter (EnKF) with a

reservoir simulation model by Nævdal et al. [19], there

is now a large number of publications that address the

estimation of parameters in reservoir simulation models
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using EnKF. We refer to the review by Aanonsen et al. [1]

and references therein.

Skjervheim et al. [24] introduced the use of Ensemble

Smoother (ES) as an alternative to the sequential EnKF for

history matching reservoir models and showed that similar

performance and results were obtained using ES and EnKF

in a reservoir test case.

van Leeuwen and Evensen [26] initially proposed ES

and also found that EnKF provides superior results to ES

in an application with an ocean circulation model. EnKF

and ES both solve the same Bayesian formulation, which

in the case of EnKF is written as a recursion in time

under the assumption of a Markov reservoir model and

measurements that are independent in time. Thus ES differs

from EnKF by computing a global update of the model

parameters using all the observations simultaneously rather

than using recursive updates in time. For linear dynamical

models and measurement operators, EnKF and ES provide

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-018-9731-y&domain=pdf
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identical solutions as is shown by Evensen [10]. However,

for nonlinear dynamical models, and in particular models

with chaotic dynamics, EnKF is shown to be superior to ES

[13, 26]. The reason is that the recursive updates keep the

model on track and close to the true solution represented

by the measurements. The acceptable performance of ES

with a reservoir model was attributed by Skjervheim et al.

[24] to the relatively “weakly nonlinear” nature of reservoir

models.

In ES one integrates the whole ensemble of model realiza-

tions once to generate a prediction. Then the prior ensemble

of uncertain parameters is updated using the “Kalman Fil-

ter” equations with all data assimilated simultaneously.

Finally, the model is rerun using the updated parameters

to create the final history-matched ensemble of model pre-

dictions. Thus, ES solves a parameter-estimation problem

that is easy to grasp by reservoir engineers since it is very

similar to the concept used in most other software developed

for history matching.

Following the introduction of ES for use in history

matching by Skjervheim et al. [24], two iterative variants

of the smoother formulation were introduced. Chen and

Oliver [4, 5] published Iterative ES (IES) which was initially

named Ensemble Randomized Likelihood (EnRML) [16,

21]. Emerick and Reynolds [7, 8] developed Multiple-Data-

Assimilation ES (ES–MDA). The iterations of the smoother

update turn out to partly resolve issues with nonlinearity

and lead to better results than what is obtained by ES.

There is now a range of new smoother developments and

applications based on the original iterative variants, e.g.,

Bocquet and Sakov [2], Luo et al. [18], Iglesias [14, 15], Le

et al. [17], and Rafiee and Reynolds [22].

In Evensen and Eikrem [Strategies for conditioning

reservoir models on rate data using ensemble smoothers,

under review] ES, ES–MDA, and IES were used with a real

reservoir model. They observed that IES and ES–MDA with

a different number of update steps gave slightly different

results. In particular, the variance obtained from IES was

lower than the one from ES–MDA with 16 MDA steps,

which again was smaller than the one from ES–MDA with

eight MDA steps. It was also challenging to determine

which is the preferred scheme of IES and ES–MDA, the

number of update steps to use in ES–MDA, and whether

there was any point in using non-uniform step lengths in

ES–MDA.

In this paper, we will discuss the data-assimilation

methods ES, ES–MDA, and IES for a simple scalar problem

and try to explain the similarities and differences between

these smoothers to understand better what to expect when

we use them. We start by restating the history matching

problem in the next section and present a set of equations

and their assumptions and illustrate how they can be used

to derive ES, ES–MDA, and IES. Then, in Section 3, we

present a detailed derivation of ES, ES–MDA, and IES

for the scalar case while discussing the approximations

and simplifications used. In Section 4, we run several

experiments with the different smoothers to illustrate and

discuss their properties with a weakly nonlinear and

monotonic scalar model. Finally, in Section 5, we study the

highly nonlinear case to establish limits of applicability of

the methods and to better understand their limitations.

2 History matching problem

We start by formally restating the history matching problem

as usually formulated in the petroleum industry. A first

fundamental assumption is that we have a perfect forward

model

y = g(x). (1)

From evaluating the model operator g(x), given a

realization of the model parameters x ∈ ℜn, we

uniquely determine the predicted measurements y ∈ ℜm

(corresponding to the real measurements d ∈ ℜm). Here

n is the number of parameters and m the number of

measurements. We have measurements d of y, and we want

to use the measurements to estimate the variable x, i.e., we

are solving a standard inverse problem.

In history matching, it is common to define a prior for

the parameters since we usually will have more degrees

of freedom in the parameters than we have independent

information in the measurements. Bayes’ theorem with a

perfect model gives the joint posterior pdf for x and y as

f (x, y|d) ∝ f (x, y)f (d|y)

= f (x)f (y|x)f (d|y)

= f (x)δ(y − g(x))f (d|y),

(2)

where the transition density f (y|x) becomes the Dirac delta

function in the case with no model errors. We are interested

in the marginal pdf for x, which we obtain by integrating

Eq. 2 over y, giving

f (x|d) ∝
∫

f (x)δ(y − g(x))f (d|y)dy

= f (x)f (d|g(x)).
(3)

To be able to solve for the posterior pdf of x, we need

to impose another assumption. In the ensemble methods,

the approach is to assume a Gaussian prior f (x) and

likelihood f (d|g(x)). The marginal posterior pdf in Eq. 3

then becomes

f (x|d) ∝ exp − 1
2

(

(

x − xf
)T

C−1
xx

(

x − xf
)

+
(

g(x) − d
)T

C−1
dd

(

g(x) − d
)

)

,
(4)

where xf is the prior estimate for x, Cxx ∈ ℜn×n is the error

covariance of xf, and Cdd ∈ ℜm×m is the error covariance

of the measurements d. We have dropped a superscript
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“f” which is often used on Cxx . Maximizing f (x|d) is

equivalent to minimizing the cost function

J (x) =
(

x − xf
)T

C−1
xx

(

x − xf
)

+
(

g(x) − d
)T

C−1
dd

(

g(x) − d
)

.
(5)

Most methods for history matching are based on the

assumptions of a perfect model and Gaussian priors. The

posterior is still nonlinear and non-Gaussian due to the

non-linear model g(x). In cases with, e.g., channelized

reservoirs, the prior for x becomes non-Gaussian; however,

in most cases we can represent non-Gaussian parameters

by underlying Gaussian parameters, so the assumption of

Gaussian priors holds.

In the case of a linear model y = Gx, we can derive a

direct solution for the minimum of the cost function (5), and

this corresponds to the Kalman-Filter update equations

xa = xf + K(d − Gx), (6)

Ca
xx = (I − KG)Cxx, (7)

K = CxxG
(

GCxxGT + Cdd

)−1
, (8)

where the superscript “a” denote the analysis update. Here

K is the standard Kalman gain matrix.

Continuing in the linear case, we can use an ensemble

representation of the error covariances Ce
xx = AAT/(ne−1)

as in the EnKF where A ∈ ℜn×ne contains the ensemble

anomalies (ensemble members with the ensemble average

subtracted), and ne is the number of ensemble members. We

can then rewrite the Kalman-Filter equations as

xa
j = xf

j + Ke(dj − Gxj ), (9)

Ke = Ce
xxG

(

GCe
xxGT + Cdd

)−1
, (10)

and it is shown by Evensen [11] that with an infinite

ensemble size, the update in Eq. 9 implies Eq. 7. Here,

dj = d + ǫj denotes perturbed observations [3]. It is also

easy to show that Eqs. 9 and 10 can be derived by minimi-

zing the following cost function for each of xj , i.e.,

J (xj ) =
(

xj − xf
j

)T
C−1

xx

(

xj − xf
j

)

+
(

Gxj − dj

)T
C−1

dd

(

Gxj − dj

)

.
(11)

In the linear case, ES and any method that minimizes

the cost function (11) will correctly sample the posterior

Gaussian pdf f (x|d).

In the nonlinear case, we may write the cost function (11)

as

J (xj ) =
(

xj − xf
j

)T
C−1

xx

(

xj − xf
j

)

+
(

g(xj ) − dj

)T
C−1

dd

(

g(xj ) − dj

)

,
(12)

which is the cost function being approximately minimized

using the IES, but as will be seen below, the minimizing

solutions will no longer exactly sample the posterior non-

Gaussian distribution.

The ES update equations can in the nonlinear case be

derived from Eq. 5 to get the nonlinear analogs of Eqs. 6–8.

Then, we introduce the ensemble approximation to obtain

xa
j = xf

j + Ke
(

dj − g
(

xf
j

)

)

, (13)

Ke = Ce
xxg′(xf)

(

g′(xf)Ce
xxg′(xf)T + Cdd

)−1
, (14)

where the tangent-linear operator g′ is evaluated at the mean

of the prior ensemble. Note that these equations can also be

derived directly from the cost function (12), which is the

starting point for IES. We will show how to obtain these

equations in the scalar case, and how we in the ensemble

formulation can replace the tangent-linear operator g′(xf)

with an ensemble representation.

The purpose of this discussion is to show that ES, and

also ES–MDA, can be derived from the same cost function

that is minimized using IES. Furthermore, we formally link

ES and ES–MDA to Bayes. We have also established a link

between ES, ES–MDA, and IES that can be used to explain

the methods. For now, we note that they all sample the

posterior distribution in the Gauss-linear case.

Direct minimization of the cost function (5) is possible

using a gradient method where we usually compute the

gradient from an adjoint model. Alternatively, genetic

sampling algorithms can be used to sample the posterior

pdf in Eq. 4. However, a problem with such methods is that

they require very many model predictions to converge, and

they can only be used to estimate a few, O(10), parameters

due to the size of the parameter space. It will be shown

below how the ensemble methods replace the tangent-linear

operator or gradient with an ensemble representation and

thereby eliminate the need for adjoint calculations.

Note also that the Iterative EnKF (IEnKF) as discussed

by Sakov et al. [23] and Bocquet and Sakov [2] solves the

same kind of problem as given by the marginal conditional

pdf in Eq. 3 or the cost function in Eq. 5. Sakov et al. [23]

derived IEnKF for state estimation where the model state

at the time ti is updated using measurements of the state at

time ti+1. The purpose was to handle nonlinear dynamical

models and observation operators better. However, the

approach used in IEnKF is similar to IES and ES–MDA

where we estimate parameters x using measurements of the

nonlinear model prediction in Eq. 1. IEnKF solves for the

update of the mean in the ensemble subspace spanned by

the ensemble anomalies as

xa = xf + Aw. (15)

Thus, the problem is reduced to compute a vector of

coefficients w ∈ ℜne by minimizing the cost function (5)

where Eq. 15 is used to write it as a cost function for w.

Finally, one computes the updated ensemble anomalies by

sampling perturbations utilizing an estimate of the error

covariance of the analysis obtained from approximating the
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inverse of the Hessian of the cost function. The IEnKF is an

exciting method for solving the history matching problem,

but it is not practical in its standard form with the vast

ensemble size used in this paper.

3 Derivation of the smoothers

We will from now on, for clarity, consider a scalar case with

a single measurement. The posterior marginal pdf in Eq. 3

is written as

f (x|d) ∝ f (x)f (d|g(x))

∝ exp − 1
2

(

(

x − xf
)

C−1
xx

(

x − xf
)

)

× exp − 1
2

(

(

g(x) − d
)

C−1
dd

(

g(x) − d
)

)

.

(16)

The prior pdf and likelihood are assumed to be Gaussian,

and we represent the Gaussian priors by ensembles of

realizations

f (x) = N
(

xf, Cxx

)

→
{

xf
j

}

,

f (d|g(x)) = N
(

d, Cdd

)

→
{

dj

}

.
(17)

Then, corresponding to each pair of realizations xf
j and

dj we can compute a posterior realization xj by minimizing

the cost function

J (xj ) =
(

xj − xf
j

)

C−1
xx

(

xj − xf
j

)

+
(

g(xj ) − dj

)

C−1
dd

(

g(xj ) − dj

)

,
(18)

which measures the distance between xj and a prior value

xf
j and the distance between the prediction yj = g(xj )

and a measurement dj . The two terms are weighted by the

variances of the prior and the measurement, respectively,

and Eq. 18 defines a least-squares solution for xj .

In the nonlinear case, the posterior ensemble obtained by

minimizing the cost function (18) for xj , j = 1, ne, will

not precisely sample the posterior, but it will provide an

approximation of it. ES, ES–MDA, and IES will then lead to

three different answers: IES attempts to give the distribution

of minima of the cost functions as long as the method

converges and there are no local minima (although we will

see below that the use of an ensemble representation for

the gradient introduces an approximation). ES uses a single

linear update step and only finds an estimate of the minima

of the cost function, but ES also solves for an approximate

variance minimizing solution of the marginal pdf. ES–MDA

has a similar interpretation as ES, but we will show how ES–

MDA uses a sequence of linear steps, that leads to a more

accurate solution than ES.

To minimize J (xj ), we need the gradient of J (xj ), i.e.,

∂J (xj )

∂xj
= 2C−1

xx

(

xj − xf
j

)

+2g′(xj )C
−1
dd

(

g(xj ) − dj

)

.
(19)

In iterative schemes, we also need the second derivative,

or Hessian, of J (xj ) which becomes

∂2J (xj )

∂xj
2 = 2C−1

xx + 2g′(xj )C
−1
dd g′(xj )

+2g′′(xj )C
−1
dd

(

g(xj ) − dj

)

.
(20)

3.1 ES

We can easily derive ES from the cost function (18). By

setting the gradient (19) equal to zero, we obtain an equation

for each updated (or analyzed) ensemble member xa
j as

C−1
xx

(

xa
j − xf

j

)

+ g′(xa
j

)

C−1
dd

(

g
(

xa
j

)

− dj

)

= 0. (21)

We start by defining the linearizations around xf
j

g
(

xa
j

)

≈ g
(

xf
j

)

+ g′(xf
j

)(

xa
j − xf

j

)

, (22)

g′(xa
j

)

≈ g′(xf
j

)

+ g′′(xf
j

)(

xa
j − xf

j

)

, (23)

where we will neglect the second derivative g′′(xf
j )

restricting our self to modest nonlinearity. We use these

linearizations in the gradient (21) and multiply with CxxCdd

to get

Cdd

(

xa
j − xf

j

)

+Cxx

(

g
(

xf
j

)

+ g′(xf
j

)(

xa
j − xf

j

)

− dj

)

g′(xf
j

)

= 0.
(24)

Rearranging gives

(

g′(xf
j

)

Cxxg
′(xf

j

)

+ Cdd

) (

xa
j − xf

j

)

= g′(xf
j

)

Cxx

(

dj − g
(

xf
j

)

)

,
(25)

and we can now solve for xa
j to get

ES with analytic gradient

xa
j = xf

j + g′(xf
j

)

Cxx

×
(

g′(xf
j

)

Cxxg
′(xf

j

)

+ Cdd

)−1 (

dj − g
(

xf
j

)

)

,

ya
j = g

(

xa
j

)

. (26)

The covariances Cxx , Cyy , and Cyx , are defined as the

covariances around an ensemble means xf = xf
j and yf =

yf
j , with the overline denoting ensemble average, and we can

write

Ce
xx =

(

xf
j − xf

)2
. (27)

We will also need to use an expansion of g(x) around the

ensemble mean

g
(

xf
j

)

≈ g
(

xf
)

+ g′(xf
)(

xf
j − xf

)

. (28)
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We can then write the following

Ce
xy =

(

xf
j − xf

)(

yf
j − yf

)

=
(

xf
j − xf

)(

g
(

xf
j

)

− g
(

xf
j

)

)

≈
(

xf
j − xf

)(

g
(

xf
)

+ g′
(

xf
)(

xf
j − xf

)

)

−
(

xf
j − xf

)(

g
(

xf
)

+ g′
(

xf
)(

xf
j − xf

)

)

= g′(xf
)

(

xf
j − xf

)2

= g′(xf
)

Ce
xx,

(29)

and

Ce
yy =

(

yf
j − yf

)2

=
(

g
(

xf
j

)

− g
(

xf
j

)

)2

≈
(

g
(

xf
)

+ g′
(

xf
)(

xf
j − xf

)

−g
(

xf
)

+ g′
(

xf
)

(xf
j − xf)

)2

= g′(xf
)

(

xf
j − xf

)2
g′(xf

)

= g′(xf
)

Ce
xxg

′(xf
)

.

(30)

When using these expressions, the update equation (26)

becomes

ES with ensemble gradient

xa
j = xf

j + Ce
xy

(

Ce
yy + Ce

dd

)−1(

dj − g
(

xf
j

)

)

,

ya
j = g

(

xa
j

)

.

(31)

Note that dj = d + ǫj , where we sample ǫj from

the Gaussian distribution N (0, Cdd), and we can use ǫj to

compute and represent Ce
dd .

3.2 IES

We can write a simple Gauss-Newton iteration as

xi+1 = xi − γ

∂J (x)
∂x

∣

∣

∣

x=xi

∂2J (x)

∂x2

∣

∣

∣

x=xi

. (32)

Now we can use the gradient and Hessian from Eqs. 19

and 20 in this iteration. Note that the g′′(x) is normally

assumed to be zero, since the term is anyway small when the

nonlinearity is not too large and it does not impact the value

of the gradient. Thus, we solve the quasi-Newton iteration

xj,i+1 = xj,i

− γ
C−1

xx

(

xj,i − xf
j

)

+ g′(xj,i)C
−1
dd

(

g(xj,i) − dj

)

C−1
xx + g′(xj,i)C

−1
dd g′(xj,i)

.

(33)

In the scalar case, we obtain a simler form by multiplying

Eq. 33 with 1 = (CxxCdd)/(CxxCdd), and by replacing the

covariances with their ensemble representations, i.e.,

IES with analytic gradient

xj,i+1 = xj,i

−γ
Ce

dd

(

xj,i −xf
j

)

+g′(xj,i)C
e
xx

(

g(xj,i)− dj

)

g′(xj,i)Ce
xxg

′(xj,i) + Ce
dd

,

yj,i+1 = g(xj,i+1). (34)

The IES minimization problem as defined in Eq. 34

correctly minimizes the cost functions (18) as long as

the iterations converge to the global minimum for each

realization.

In Eq. 34 we still need to compute g′(xj,i) evaluated at

the current iterate i. However, we can rewrite as follows

g′(xj,i)C
e
xx = g′(xj,i)C

e,i
xx

(

C
e,i
xx

)−1
Ce

xx

≈ g′(xi)C
e,i
xx

(

C
e,i
xx

)−1
Ce

xx

≈ C
e,i
xy

(

C
e,i
xx

)−1
Ce

xx,

(35)

where we assume that the inverse of the covariance C
e,i
xx

exists, and we as in ES evaluate g′ at the ensemble mean.

Then using the definition of the covariance (29) we can

rewrite the “analytic” IES equation utilizing an ensemble

approximation of the gradient.

IES with ensemble gradient

xj,i+1 =xj,i − γ
Ce

dd

(

xj,i − xf
j

)

C
e,i
yy + Ce

dd

− γ
C

e,i
xy

(

C
e,i
xx

)−1
Ce

xx

(

g(xj,i) − dj

)

C
e,i
yy + Ce

dd

yj,i+1 =g(xj,i+1)

(36)

Note that we change the expression for the gradient by

introducing the ensemble representation given by Eq. 35,

and thereby also alter the minimizing solutions defined by

the gradient being equal to zero for each realization.

Here we also used the local iterate of the ensemble C
e,i
yy

in the denominator, but we could equally well use Ce
yy from

the prior ensemble, since these choices do not change the

gradient which defines the final solution, they only impact

the step length used in the quasi-Newton iteration. Note also

that the form of the equation requires the inversion of the

covariance C
e,i
xx , which has a dimension equal to the number

of parameters. However, in practical cases, the ensemble

size is much smaller than the number of parameters and

a pseudo-inversion can be computed from a singular-value

decomposition of the ensemble. We must evaluate the

gradient (and Hessian) in each iteration step. Thus, we
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must also integrate the ensemble in each iteration, and the

total cost becomes equal to Nies + 1 ensemble integrations

with Nies being the required number of iterations to reach

convergence.

3.3 ES–MDA

We can formally derive ES–MDA from the Bayesian

formulation using a tempering procedure by [20, 25]. We

rewrite the likelihood function for the measurements as

f (d|y) = f (d|y)

(

∑Nmda
i=1

1
αi

)

=
Nmda
∏

i=1

f (d|y)
1
αi , (37)

where

Nmda
∑

i=1

1

αi

= 1. (38)

For a Gaussian likelihood, we then get

f (d|y) ∝ exp

(

− 1
2
(y − d)C−1

dd (y − d)

)

=
∏Nmda

i=1 exp

(

− 1
2αi

(y − d)C−1
dd (y − d)

)

.

(39)

Using Eq. 37 in Bayes’ theorem (16), we obtain

f (x|d) ∝ f (x)

Nmda
∏

i=1

f
(

d|g(xi−1)
)

1
αi . (40)

This expression can be rewritten as a recursion starting

with the prior x = x0 leading to the posterior x = xNmda
.

f (x1|d) ∝ f (x0)f (d|g(x0))
1
α1 ,

f (x2|d) ∝ f (x1|d)f (d|g(x1))
1
α2 ,

...

f (xNmda
|d) ∝ f (xNmda−1|d)f (d|g(xNmda−1))

1
αNmda .

(41)

Maximizing each of the recursions corresponds to

minimizing a cost function for each recursive step.

Thus, ES–MDA solves a predefined sequence of Nmda

minimization problems similar to the cost functions (18),

written as

J (xj,i+1) = (xj,i+1 − xj,i)
(

C
e,i
xx

)−1
(xj,i+1 − xj,i)

+
(

g(xj,i+1) − d − √
αiǫ

)

×
(

αiC
e
dd

)−1 (

g(xj,i+1) − d − √
αiǫ

)

,

(42)

where the initial xj,i=1 = xf
j and (Ce

xx)i=1 = Ce
xx . In

each step, we inflate the measurement errors by a factor√
αi , which satisfies Eq. 38. There is no approximation

introduced in this recursion, and this choice of αi ensures

that the Nmda recursive steps become precisely the ES

solution in the linear case.

The sequence of cost functions (42) is in each step solved

using the standard ES equations, which, with the inflated

measurement errors, becomes when using the formulation

with the “analytic gradient,”

ES–MDA with analytic gradient

xj,i+1 = xj,i

+g′(xj,i

)

Ce,i
xx

(

g′(xj,i)C
e,i
xx g′(xj,i) + αiC

e
dd

)−1

×
(

d +
√

αiǫj − g(xj,i)
)

,

yj,i+1 = g(xj,i+1), (43)

and with the ensemble gradient, we obtain

ES–MDA with ensemble gradient

xj,i+1 = xj,i + Ce,i
xy

(

Ce,i
yy + αiC

e
dd

)−1

×
(

d +
√

αiǫj − g(xj,i)
)

,

yj,i+1 = g(xj,i+1).

(44)

The final result after Nmda steps is xa
j = xj,Nmda

.

Note that the error covariances C
e,i
xy and C

e,i
yy are computed

from the ensemble at step i, and are thus being updated

recursively during the sequence of update steps. The benefit

of this stepwise approach is that it uses many short linear

steps with local linearization around xi rather than one long

ES step with linearization around xf. The expectation is that

this stepwise approach will lead to a better result than what

is found using ES.

3.4 Remarks about ES, ES–MDA, and IES

It is clear that the ES, ES–MDA, and IES algorithms are

similar in many aspects. ES is equivalent to ES–MDA with

one step, and in the linear case the methods only differ in

the choice of step lengths and the number of steps, and they

converge to the same solution.

In the nonlinear case, there is, in addition to the use

of different step lengths, also a difference related to a

linearization of the nonlinear model and the evaluation of

ensemble gradients.

– In the IES–analytic, there are no approximations

introduced during the derivation starting from the

cost function (18). Thus, by evaluating the gradient

analytically, the iteration converges exactly to the

minimum of the cost function for each realization.

Unfortunately, as will be illustrated below the posterior

IES ensemble is not sampling the posterior pdf defined

by Bayes’ in Eq. 16.

– In IES–ensemble, we replace the analytic expression for

the gradient with an ensemble approximation. By using
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an approximation for the gradient, we also change the

minimizing solution for each realization. Thus, we will

now sample another posterior pdf than the one obtained

using IES–analytic.

– In the ES update scheme, we linearize the model

around the first guess xf and one single update step

is computed using an approximate ensemble gradient.

Thus, with a large update, it is likely that the solution

will suffer from both an approximate direction and

magnitude of the update. On the other hand, only two

ensemble integrations are needed, one to generate the

prior ensemble prediction, and one to compute the

posterior ensemble.

– It is worth noting that the sequential EnKF computes

many small recursive updates in time and the solution

stays close to the measured state at each update step.

Each local linearization is then likely to have less

impact in EnKF than ES, and this property may explain

the previous success when using non-iterative EnKF for

reservoir history matching.

– In ES–MDA, we use the ES update equation with

inflated measurement errors defined by the choices of

αi . Thus, we apply a local linearization of the update

equations at each step (which is why we need to rerun

the ensemble prediction at each step). The consistency

and convergence to ES are proven for the linear case by

Emerick and Reynolds [8]. However, for the nonlinear

case, there is no proof of the convergence of ES–MDA.

From the examples below, we will see that ES–MDA

reduces the error in the final update compared to ES.

– The similarity of ES, ES–MDA, and IES, can be further

illustrated by considering the IES iteration in Eq. 36,

which for the first step with γ = 1 and xj,1 = xf
j ,

becomes identical to the ES update equation (31).

– Although none of the methods considered in this

paper correctly samples the true posterior pdf from

Bayes’, the posterior ensembles can be used as proposal

densities in a particle filter algorithm, and by assigning

proper weights to the realizations, it is possible to

sample the true posterior pdf.

4 Scalar example

We will use a simple scalar model to illustrate in some more

detail the properties of the ES, ES–MDA, and IES methods.

The example resembles the use of conditioning methods in

history matching, i.e., there is a parameter x that serves as

an input to a forward model to predict y = g(x). We then

observe y and try to estimate x, and then predict an updated

y.

Ensemble methods are known to perform very well

for weakly nonlinear dynamical models. However, it is

more precise to say that the methods perform well with

weakly nonlinear and monotonic models. By monotonic

we mean that the derivative of the model with respect to

the input parameter does not change its sign. Thus, for

a model with a positive derivative, an increase in x will

always lead to an increase in y. A monotonic model cannot

support the multimodal behavior that is often associated

with strongly nonlinear dynamics. Also, as was illustrated

by Evensen [11, Chap. 10, Fig. 7], ES cannot consistently

handle multimodal behavior. Reservoir models often exhibit

a monotonic response, e.g., an increase in permeability leads

to an associated increase in production and this property

is mainly responsible for the success of ensemble methods

in history matching. Thus, the discussion below considers

a monotonic and weakly nonlinear scalar model, while we

will study the highly nonlinear case in Section 5.

4.1 Scalar model

We assume an initial state x and a prediction y given by the

model

y = g(x) + q

= x(1 + βx2) + q.
(45)

Here, β is a parameter that determines the nonlinearity of

the model. In the current example, we have used β = 0.0

for the linear case and β = 0.2 for the nonlinear case.

The model error variance is Cqq and q is a random

variable sampled from N (0, Cqq). We have assumed the

model error to be zero although it would still be interesting

to examine the impact of model errors on the inverse

problem.

We sample the prior ensemble for x from a Gaussian

distribution N (xf = 1, Cxx = 1) and the observation of

y has the distribution N (d = −1, Cdd = 1). Thus, in the

current example, x represents the initial state or the model

parameter, while y is the prediction which is observed. The

goal is to estimate x given an observation of y.

In this example, we use a sufficiently large number

of samples, i.e., 107, to generate accurate estimates of

the probability density functions, and this allows us to

work directly with the pdfs and to examine the sampling

properties of the methods.

The pdf for the model is given by the transition density

f (y|x) ∝ exp

(

−
(y − x(1 + βx2))2

2Cqq

)

, (46)

which in the limit of zero model errors becomes

f (y|x) ∝ δ
(

y − x(1 + βx2)
)

. (47)
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4.2 Base-case experiments

In Fig. 1 we show the joint pdf f (x, y) and joint conditional

pdf f (x, y|d) for the linear case with β = 0 and

nonlinear case with β = 0.2 in the upper and middle plots

respectively. Since we have set the model errors to zero, the

joint pdfs have zero probability outside the curve defined by

the model. In the linear case, the joint pdf has its probability

mapped onto a line, with the highest probability around

x = 1 as defined by the initial pdf for x. The conditioning

on the datum d = −1 shifts the high probability towards

y = −1 and on the same line. The same happens in the

nonlinear case, but now the nonlinearity of the model is

obvious in the mapping. For illustration, we also show the

joint pdfs for the case when we include model errors in the

bottom plots of Fig. 1. Then the joint pdf will be smooth

in the y-direction taking into account that one value of x

may be mapped to different values of y as defined by the

stochastic forcing from the model errors.

4.2.1 ES–MDA scheme for αi

We have defined a scheme for αi , where we start by

selecting any nonzero value for α′
1. Then α′

i is computed as

α′
i+1 = α′

i/αgeo, (48)

where αgeo is a constant defining the change of step lengths

from one step to the next. The final values for αi are

obtained by scaling the values from Eq. (48) as

αi = α′
i

⎛

⎝

Nmda
∑

i=1

1

α′
i

⎞

⎠ . (49)

With this scheme, αgeo = 1.0 results in uniform step

lengths. A positive αgeo < 1.0 leads to increasing values

for αi and decreasing step lengths, and αgeo > 1.0 leads

to decreasing values for αi and increasing step lengths. The

scaling used in Eq. 49 ensures that the constraint on the sum

of 1/αi in Eq. 38 is satisfied.

4.2.2 Definition of line legends

The line legends refer to different cases and are defined

as follows: for ES and IES experiments we use typically

IES L 7 ENS where L denote linear case, 7 defines

the ensemble size as 107, and ANA and ENS defines

respectively an exact analytic gradient and an approximate

ensemble gradient. For ES–MDA experiments we add the

number of MDA steps e.g., 008 and the value used for αgeo,

and an example is MDA L 7 ENS 008 1.0 were we for the

nonlinear cases just drop the L.

4.2.3 Linear-model results

In Fig. 2, we show the marginal pdfs from the linear

case, where we compare ES, ES–MDA, and IES, using the

ensemble gradients, with the exact Bayesian solution. We

have used 8 ES–MDA steps with equal weights α = 8, and

the IES iterations used a step length of γ = 0.5.

The plots should be read as follows:

1. Start in the left plots with the red initial Gaussian pdf

of x. We represent this prior pdf by a large ensemble

of samples. Each realization of the prior ensemble

is used as input to the model (45) and an ensemble

of predictions, representing the distribution of y, is

obtained and plotted as the red Gaussian pdf in the right

plots.

2. We now compute the ES update of x to obtain the

cyan ES posterior pdf for x in the left plots. Using the

updated samples of the ES posterior pdf for x, we can

compute the model prediction of the posterior for y,

which we show in the right plots.

3. We then repeat this process for ES–MDA and IES by

stepwise incremental updates of x followed by updates

of y using the model.

The results from this experiment can be summarized as

follows: In the linear case both ES–MDA and IES converges

precisely to the ES solution, which also equals the true

solution defined by the Bayesian update (black pdf),

illustrating the consistency of the methods in the linear case.

We will next discuss the methods in more detail for the

nonlinear case.

4.3 ES experiments

In Fig. 3, we have plotted the ES solutions from the ES with

an analytic gradient as defined by Eq. 26 and ES with an

ensemble gradient as defined by Eq. 31. From these plots, it

is clear that the use of the gradient to determine the update

will only lead to an approximate solution in the nonlinear

case. The introduction of an ensemble gradient introduces

an additional approximation as seen from the differences

in the two pdfs. Thus, ES is likely to give better results in

cases with nearly linear models or when the updates are

small.

4.4 IES experiments

In Fig. 4, we have plotted the IES solutions from the IES

with an analytic gradient as defined by Eq. 34, and IES

with an ensemble gradient as defined by Eq. 36. We exit

the iterations for a realization as soon as the ratio between

the gradient and Hessian is less than 0.0001. It is clear

that there is a significant difference between the Bayesian
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nonlinear case with finite model errors drawn from N (0, Cqq = 0.25) (bottom)
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posterior and the approximate solutions found by IES with

both analytic and ensemble gradients. It is unfortunate that

the cost functions we minimize do not sample the Bayesian

posterior in the nonlinear case, which means we are solving

the wrong problem. Still, we observe that the IES estimate is

a rather good approximation to the Bayesian posterior, and

significantly better than ES.

In Fig. 5 we plot the first four moments of the

distributions for x and y, i.e., the mean, variance, skewness,

and kurtosis, as computed from the ensemble. Note that we

plot a kurtosis where we have subtracted the value 3, to

center it around zero. We have also included the results of

an experiment with 100 realizations, to examine the impact

of using a small ensemble size since this leads to a further

approximation of the gradient. It is clear that for the mean

the results from using an ensemble of 100 realizations are

converging to a slightly larger value for x while the use of

an analytic versus ensemble gradient does not make a big

difference.

For the skewness and kurtosis, we observe that the

initial prediction of y indicates strong deviations from

Gaussianity, while during the iterations the skewness and

kurtosis for y is significantly reduced and we converge

towards a more Gaussian distribution. On the other hand,

we also observe that the skewness and kurtosis for x,

which were initially equal to zero, slowly deviate from

the initial value, indicating that the distribution for the

estimate of x is slightly non-Gaussian. This non-Gaussianity

is clearly seen from the plots in Fig. 4. IES seems to

work well for estimation of the posterior mean and variance

even using only 100 realizations, while the plotting of

higher order moments makes less sense with such a small

ensemble.

Compared with ES–MDA, IES is relatively easy to

analyze as long as the method converges to the global

minimum of the cost function (18). The focus has therefore

been more on the parameters of the iteration scheme to

ensure fast convergence, rather than trying to understand

precisely, which distribution IES is sampling.

4.5 ES–MDA experiments

ES–MDA has some parameters that actually will change the

final solution. The solution will depend on the number of

MDA steps used, and the sequence of values used for αi .

Thus, it is not apparent what ES–MDA should converge to,

or how we should determine a converged result.

4.5.1 ES–MDA convergence with number of step lengths

To start, we will examine the convergence of ES–MDA with

the number of MDA steps. We have run ES–MDA with 1,

2, 4, 8, 16, 32, 64 and 128 steps using a constant uniform

value of αi that equals the total number of steps in each

case (αgeo = 1.0). In Fig. 6, we plot the estimates of the

pdfs for x and y. We see how ES–MDA with only one step

(i.e., ES) is rather far from the correct Bayesian posterior.

Then, using ES–MDA with 2, 4, 8, and 16 MDA steps gives

a significant stepwise improvement, while when using 32,

64, and 128 MDA steps we needed to zoom the plots to

see any difference, so we did not plot these results. It is

also amazing how close the converged ES–MDA solution

is to the Bayesian posterior in this case. However, we must

run additional experiments with different nonlinear models,

before we conclude anything about the general quality of

the converged ES–MDA result.

In Fig. 7, we plot the statistical moments for the ES–

MDA steps as a function of the sum
∑

i 1/αi . Thus, we can

analyze how the step lengths and number of steps influence

the convergence of the statistical moments. We see that, as

soon as we use a certain number of steps (above 16 here),

it is difficult to distinguish the results. Thus, we conclude

that 16 or more steps, in this case, may be needed for

ES–MDA to converge with infinite sample size. On the

other hand, even ES–MDA with only two steps provides an

improvement compared to ES.

Like for the IES, we also ran a case using only 100

realizations with ES–MDA, and we plot the results for

mean and variance in Fig. 8. We see that for more than 16

iterations, the estimated means will contain sampling errors

that are larger than the error reduction due to an increase

in the number of steps. Thus, with a small ensemble size,

there is no benefit of running very many steps, which is an

essential result concerning practical use of ES–MDA.

4.5.2 ES–MDA convergence with non-uniform step lengths

Some publications (e.g., [6, 14, 15, 17, 18, 22]) have

suggested the use of small initial steps to regularize the

problem, and have referred to the Discrepancy Principle

when deriving new optimal schemes for the sequence of αi .

We initially believed that the use of small initial steps

in ES–MDA (corresponding to large values of α) would

lead to reduced errors, since the non-Gaussianity of the

distribution for y is the largest in the early steps, and

then the corresponding approximations in the linear update

equations would be the largest. However, from the plots in

Fig. 9, we note that the use of a geometrical reduction of α

where αi+1 = αi/2 does not result in a significant change

of the results.

One could also suggest that the improvement with

reduced step length is an effect of reducing truncation

errors in the ES–MDA scheme, which is based on a

linearization (22) and (23) around the local estimate of x,

and a linearization (28) around the ensemble mean. We

can also interpret the ES–MDA scheme as a time-stepping
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Fig. 5 Here, we illustrate the IES convergence of ensemble mean, variance, skewness, and kurtosis for x (left plots) and y (right plots). For the

mean and variance, we also plot a solution using only 100 realizations. The dashed black lines are the theoretical values computed from the

Bayesian posterior
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Fig. 6 The figure shows the marginal pdfs for x (left) and y (right) when using ES–MDA with 2, 4, 8, 16, and 128 steps

scheme in the pseudo-time Tn =
∑n

i=1 1/αi . Then it is not

clear how to implement a changing step length since it will

depend on the truncated terms in the linearizations as well as

the approximation resulting from introducing the ensemble

covariance between x and y.

The use of a scalar example allowed for running very

many experiments using a different number of update steps

in ES–MDA and different geometrical factors αgeo. In

Fig. 10 we have plotted statistics for cases with two steps

in the left column and four steps in the right column,

comparing geometrical factors αgeo = (0.5, 1.0, . . . , 9.0).

When evaluating the results, it is natural to compare with the

solution that ES–MDA converges to as represented by ES–

MDA with 128 uniform steps. We also plot the moments of

the true Bayesian solution. We expect that an improvement

of using a non-uniform sequence of MDA step lengths is

best visualized using a small number of steps. Thus, we

should probably not conclude from the case with eight steps

shown in Fig. 9.

From the plots in Fig. 10, we observe that the estimate

for the mean is improving with increasing value of the

geometrical factor αgeo, and in particular in the case with

two MDA steps the best result is obtained using αgeo = 9.0

where the estimate is very close to the reference solution

where 128 steps were used. For the case with four MDA

steps, we find that any value of αgeo ≥ 2.0 gives equally

good results. For the variance, we observe that the best

result is obtained using a value of αgeo equal 5.0 in the case

with two MDA steps and a value of 2.0 when we use four

MDA steps. For the skewness the best result is obtained

with αgeo = 4.0 and αgeo = 2.0 respectively for the two

cases, while for the kurtosis the best result is obtained for

αgeo = 2.0, 3.0 in the two-step case and αgeo = 2.0 in the

four-step case.

In Fig. 11 we plot the statistics for the case with eight

update steps. Here it is seen that the optimal step lengths

follow a scheme αgeo = 2.0. In all the cases, starting with

a long step followed by shorter steps always lead to poorer

results.

We also see in Fig. 10, that the change in the statistical

moments is larger in the first step than the second step. By

increasing α1 we take a shorter first step and the relative

changes in steps one and two become approximately the

same. Thus, it seems that adjusting the αi’s such that the

relative magnitude of the updates in the different MDA steps

remains similar, may be beneficial.

To conclude, we are running ES–MDA in a clean setup

for a scalar model using a single datum and using a vast

ensemble size. The only factor that can have an implication

on the choice of step length is then the nonlinearity of

the model and possibly the number of update steps used.

The effect of the nonlinearity is probably influencing ES–

MDA through the linearizations (22) and (23) used in the

derivation of the ES–MDA equations and the linearizaion

(28) used when introducing the ensemble representation of

the covariances. Thus, the impact of these approximations

may be reduced by using smaller step lengths in the initial

update steps. From the examples, we see an improvement of

using a geometrical scheme for α, and the benefit is more

significant the fewer MDA steps are used. For the cases with

four and eight MDA steps, it seems like a value αgeo = 2.0

is close to optimal, but it is likely that this factor is also

model dependent.

5 Iterative smoothers with highly nonlinear
dynamics

We will now study the iterative smoothers with a highly

nonlinear and non-monotonic scalar model. The purpose is

to examine if the iterative methods can handle problems

with multimodal behavior. We use a simple model that leads
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Fig. 7 The plots show the ES–MDA convergence for x (left plots) and y (right plots) of ensemble mean, variance, skewness and kurtosis. We are

using 107 realizations and 2, 4, 8, 16, 32, 64, and 128 uniform steps. The dashed black lines are the theoretical values computed from the Bayesian

posterior. The line legends given in the upper plots also apply for the remainder of the plots in the respective columns
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Fig. 8 The plots show the ES–MDA convergence for x (left plots) and y (right plots) of ensemble mean, variance, skewness and kurtosis. We are

using 100 realizations and 2, 4, 8, 16, 32, 64, and 128 uniform steps. The dashed black lines are the theoretical values computed from the Bayesian

posterior. The line legends given in the upper plots also apply for the lower plots

to inverse problems with arbitrarily many modes dependent

on the width of the prior, i.e.,

y = 1 + sin(πx) + q. (50)

Depending on the prescribed width of the prior for x,

the sampled x values can be mapped to arbitrarily many

wavelengths of the sin(πx) function. We assume in all cases

a measurement of y, d = 1.0, with standard deviation equal

to 0.1. We then run ES, ES–MDA with 32 steps, and IES,

using both the analytic and the ensemble representations

of the gradient. We will consider three cases of increasing

nonlinearity induced by selecting priors of different widths.

In the plots of the joint pdfs in the Figs. 12, 13 and 14, we

have blanked values less than 0.1% of the maximum value

in the plots. To better visualize the joint pdfs, we have added

a small model error q ← N (0.0, Cqq = 0.0009) to the final

prediction of y.

5.1 Case 1: x f
j
← N (0.0, Cxx = 0.01)

The first case has a prior for xf
j sampled from N (0.0, Cxx =

0.01). Thus 99.7% of the samples will be located in the

interval [−0.3 : 0.3], which is 0.6 of a wavelength of the

functional mapping. Thus, the mapping of the prior model is

monotonic, and this example becomes similar to the weakly

nonlinear case studied in the previous section. In Fig. 12

we plot the prior joint pdf in the upper left plot and the

Bayesian posterior pdf in the upper right plot. Additionally,

we show the conditional pdfs from ES, ES–MDA, and IES,

using ensemble gradients in the left column and the analytic

expressions for the gradients in the right column. In this,

almost linear case, all methods provide nearly identical

results in good agreement with the Bayesian posterior,

which we can also see from the marginal pdfs in the upper

plot in Fig. 15. ES ANA and ES ENS match the Bayesian

nearly perfectly. IES ENS and IES ANA provide roughly

the same solutions, and together with ES–MDA ENS they

give slightly too low variance. Finally, ES–MDA ENS and

ES–MDA ANA differ with the analytic formulation being a

little better than the ensemble formulation.

5.2 Case 2: x f
j
← N (0.0, Cxx = 0.09)

When we sample xf
j from N (0.0, Cxx = 0.09), the interval

[−0.9 : 0.9] will contain 99.7% of the samples and covers

almost a full wavelength of the functional mapping. With
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Fig. 9 The figure shows the marginal pdfs for x (left) and y (right) when using ES–MDA–8 with uniform α (upper plots) and geometrical αgeo = 2

(lower plots)

the measurement of y = 1.0, we can expect some issues

related to bimodality as is illustrated by some of the joint

conditional pdfs in Fig. 13 and the marginal pdfs in Fig. 15.

We see that ES–MDA ENS and IES ENS give solutions

very close to the Bayesian posterior. ES ENS and ES ANA

both result in weak updates with too large variance.

Thus, this case is too nonlinear for ES while the iterative

smoothers are capable of resolving the nonlinearity.

IES ANA and ES–MDA ANA over-estimate a probabil-

ity of x at x = ±1 corresponding to the two alternative

modes. The ensemble representations of the smoothers give

better results than the analytical versions, and it seems that

the use of the same ensemble gradient for all realizations

leads to a regularization that helps the methods converge

correctly to the Bayesian posterior. For ES–MDA, we also

made the same observation in the weakly nonlinear case in

the previous section.

It is also interesting to see that ES–MDA ANA does

significantly worse than ES in this case. It appears that

the inflated measurements with large values of α lead to

a diffusion of the updates. Using ES–MDA with 32 steps

and a uniform scheme for α, all measurement perturbations

will be multiplied by
√

32. A measurement perturbation

outside the interval [−1/
√

32 : 1/
√

32] leads to an inflated

measurement located outside the range for the nonlinear

mapping, i.e., y ∈ [0 : 2]. We used a standard deviation

for the measurements of 0.1, so 99.7% of the measurement

perturbations are located within the interval [−0.3 : 0.3].
Thus, with 1/

√
32 ≈ 0.176 a substantial fraction of the

realizations will be located outside the range of y. Also,

in ES–MDA ANA each realization will have its analytic

gradient, and together with the excessive perturbations, this

introduces a diffusion in the updates in the ES–MDA steps.

We noticed that ES-MDA ANA with four and eight update

steps improved on ES, but then with 16 and 32 number of

update steps, the results became worse. In fact, if we solve

for α from 0.3
√

α = 1.0 we obtain α ≈ 11 which is the

threshold where inflated measurements start exceeding the

range of y. We also notice that the methods with analytic

gradients have some realizations located in the secondary

minima.

5.3 Case 3: x f
j
← N (0.0, Cxx = 0.36)

In this final case, we sample xf
j from N (0.0, Cxx = 0.36).

Thus 99.7% of the samples will be located in the interval
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Fig. 10 The plots show the ES–MDA convergence for x with different geometrical schemes for αi . We show results for the ensemble mean, variance,

skewness, and kurtosis from using ES–MDA with two update steps in the left plots and four update steps in the right plots. The dashed black lines

are the theoretical values computed from the Bayesian posterior. The line legends given in the upper plots also apply for the remainder of the plots

in the respective columns
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Fig. 11 The plots show ES–MDA Statistics for x with different geometrical schemes for αi and eight update steps. We show results for ensemble

mean, variance, skewness and kurtosis. The line legends given in the upper left plot applies to all the plots

[−1.8 : 1.8] which covers two wavelengths of the functional

mapping. The results are shown in in Figs. 14 and 15. Due

to the non-monotonic and oscillating behavior of the model,

there are five values of x that lead to a prediction of y = 1.

We see from the Bayesian joint conditional pdf in Fig. 14

that the true solution has five modes corresponding to x =
(−2, −1, 0, 1, 2). We also see the multimodal solution in

the marginal pdfs for x in Fig. 15.

It is clear that neither ES, ES–MDA or IES with ensemble

gradients can reproduce the multimodal posterior solution.

However, the methods with ensemble gradients recover the

mode at x = 0, although in this example ES gives the best

result, followed by ES–MDA and then IES.

On the other hand, IES ANA gives results in very well

agreement with the Bayesian posterior with realizations

sampling the five significant modes of the system. Also,

we noticed that IES ANA had some realizations sampling

additional modes at ±3 (not shown) that are not likely

according to the Bayesian posterior. These realizations were

probably trapped in local minima. We also observe similar

results from ES–MDA ANA although again with a diffusive

behavior as in the previous case.

6 Summary

We have discussed the derivation of the Ensemble Smoother

with Multiple Data Assimilation (ES–MDA) and the

Iterative Ensemble Smoother (IES) and analyzed their

performance with a simple nonlinear scalar model. The

derivation provides insight into the approximations that are

applied when deriving the two methods and this should

help the user to know what to expect from the two iterative

smoothers.

We have illustrated the connection between Bayes’

theorem and the minimization of an ensemble of cost

functions, one for each realization, which is exact in the

linear case, and we have thus proved that for a linear model

ES, ES–MDA, and IES give the same result and exactly

sample the posterior distribution. For a nonlinear model, this

connection is only approximate. We have illustrated that IES

with an analytic gradient exactly minimizes the ensemble

of cost functions and results in a solution that differs from

the posterior Bayes’ pdf. We have also illustrated how IES

is implementing an approximate ensemble-based gradient,

which changes the definition of the minima of the cost
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Fig. 12 The plots show joint pdfs for case 1 in the nearly linear case with a narrow prior
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Fig. 13 The plots show joint pdfs for case 2 in the weakly nonlinear case
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Fig. 14 The plots show joint pdfs for case 3 in the highly nonlinear case with a wide prior that includes multiple modes of the pdf
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Fig. 15 The plots show the marginal pdfs for x from the cases 1–3 with a different priors from top to bottom

functions minimized for each realization. Thus, the further

introduction of an ensemble gradient leads to an additional

approximation of the results, but ES and ES–MDA apply

similar approximations in the update equations.

We can derive ES–MDA as a direct solver for minimizing

the ensemble of cost functions under the assumption of

Gaussianity. In the nonlinear case, these equations will not

solve for the minima of the of cost functions but instead

result in a variance minimizing solution where the prior and

likelihood are both assumed to be Gaussian. On the other

hand, we can also derive ES–MDA as a solution method

for the standard Kalman filter update, which is derived
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directly from Bayes under the assumption of a Gaussian

likelihood.

It was shown that ES–MDA leads to better results with

increasing number of MDA steps. The ES–MDA solution

appears to converge at 16 to 32 MDA steps, furthermore,

with a limited ensemble size of 100 realizations, the

sampling errors are masking the improvement in accuracy

obtained by running more than about 16 MDA steps.

For low number of ES–MDA steps we could show a

benefit of changing the scheme for selecting values of

α. This result supports an interpretation of the ES–MDA

analysis as a time-stepping algorithm in the pseudo-time

defined as Tn =
∑n

i=1 1/αi , where the accuracy of the

pseudo-time stepping is dependent on the nonlinearity of the

model.

An additional highly nonlinear case, which exhibits

multiple modes, was also run to examine the range of

validity of smoother methods with nonlinearity, as well

as to study their properties with non-monotonic mappings.

An overall conclusion is that all the smoothers work well

with weakly nonlinear models. Furthermore, the use of

an ensemble gradient which is the same for all ensemble

members, prevents that different realizations may converge

to different modes of the pdf as is the case when we

use the analytic gradient (see also Section 2.5 in [4]).

For a highly nonlinear model with multiple modes, none

of the smoothers can correctly solve for the conditional

posterior. We noticed that using IES with an exact analytic

representation of the gradient; it is possible to obtain an

accurate representation of the posterior conditional pdf

also in the multimodal case. However, for a practical

implementation, the use of an analytic gradient will require

the use of adjoints models, and the computational problem

becomes immense. Also, when using ES–MDA with models

that map the prior parameters into a bounded range of

values, the method will have difficulties when inflated

measurements exceed this range.

It is clear from the experiments that iterations in IES

or multiple update steps in ES–MDA reduce the impact

of weak nonlinearity and lead to better results than what

can be obtained from ES. So which method to choose?

For numerical efficiency, it is advised to use ES for all

preliminary experiments until a final production simulation

is ready to be run. Thereafter, we can use both ES–MDA

and IES. ES–MDA has the advantage (or disadvantage)

that one can predefine the number of steps, and also reuse

the numerical implementation from ES, and the method is

conceptually easy to understand and implement. However,

a large number of steps may be needed to obtain a con-

verged result. IES may require fewer iterations to converge,

but the method requires a separate implementation, and

convergence issues may show up if we choose poor val-

ues for the step length. For now, we conclude that neither

ES–MDA or IES precisely sample the posterior pdf from

Bayes’, but it appears that the optimal choice of method will

depend on the degree of nonlinearity and the properties of the

model used. We have previously seen several examples of both

methods giving consistent results, e.g., when history match-

ing reservoir simulation models in the study by Evensen

and Eikrem [Strategies for conditioning reservoir models

on rate data using ensemble smoothers, under review].
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