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Analysis of Joint Angle-Frequency
Estimation Using ESPRIT

Aweke N. Lemma, Alle-Jan van der Veen, Senior Member, IEEE, and Ed F. Deprettere, Fellow, IEEE

Abstract—High-resolution parameter estimation techniques
have recently been applied to jointly estimate multiple signal
parameters. In this work, we consider the problem of determining
the directions and center frequencies of a number of narrowband
sources in a band of interest. We present a joint angle-frequency
estimation method, based on the multidimensional ESPRIT
algorithm. A perturbation error analysis gives bounds on the
parameter estimates and provides optimal values for the temporal
and spatial smoothing parameters. The analysis is shown to be
consistent with simulation results.

Index Terms—Joint diagonalization, joint parameter estimation,
multidimensional ESPRIT, multiresolution ESPRIT, shift-invari-
ance.

I. INTRODUCTION

I
N MANY practical signal processing problems, it is desired
to estimate from measurements a set of parameters upon

which the received signals depend. Optimal techniques based
on maximum likelihood are often applicable but might be com-
putationally prohibitive. Algebraic techniques based on a batch
of data have an edge in terms of computational complexity.
Such techniques make specific use of certain algebraic struc-
tures present in the data matrix.

A prime example of an algebraic technique is the ESPRIT al-
gorithm [1]. Since its formal derivation in 1985, ESPRIT has
been used for direction-of-arrival (DOA) estimation, harmonic
analysis, frequency estimation, delay estimation, and combina-
tions thereof. In essence, the algorithm makes use of the shift
invariance structure present in the array response vector ,
where , and is a phase shift to be estimated. In nar-
rowband DOA estimation, the phase shift is due to the difference
in arrival times of the wavefront at the elements of an antenna
array. For a uniform linear array (ULA), it is well known that
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and , where is
the distance between the elements (in wavelengths), and is
the angle of arrival measured with respect to the normal of the
array axis. A similar situation occurs in frequency estimation
where we have . Here, is the sampling period,
and is the frequency to be estimated.

When ESPRIT is used to estimate multiple signal parameters,
such as angle and frequency, one may solve the problem in one
of the following two ways. In the first approach, the individual
signal parameters are estimated independently, and only then
(using some matching algorithm) are the parameters that belong
to the same signal grouped together. Apart from the computa-
tional overhead, this also leads to a numerically less robust set
of problems as it does not exploit the relation between the indi-
vidual estimation problems.

A second method is to combine the individual estimation
problems into a single joint parameter estimation problem. In
our context, joint parameter estimation is discussed in a number
of papers, including joint azimuth and elevation angle estima-
tion [2], joint frequency and 2-D angle estimation [3], [4], and
joint angle and delay estimation [5]. Basically, these methods
rely on the fact that each parameter is estimated from a cer-
tain eigenvalue problem, where all eigenvalue problems share
the same eigenvectors (which are related to the beamforming
vectors). This allows the posing of the problem as a joint diag-
onalization problem of a collection of data matrices. The prime
advantage of joint estimation is that the individual parameters
are paired for free and show a better robustness to signal and
parameter disturbances.

In the literature, a number of ESPRIT-based joint angle and
frequency estimation methods have been proposed. In partic-
ular, Zoltowski et al. [3] discuss this problem in the context of
radar applications. Because of ambitious goals, however, their
solutions are very much directed by engineering considerations,
which incur a certain sacrifice in elegance and clarity. Haardt
et al. [4] discuss the problem in the context of mobile com-
munications for space division multiple access (SDMA) ap-
plications. Their method is based on Unitary-ESPRIT, which
involves a certain Cayley transformation of the data to real-
valued matrices. This provides a computationally efficient so-
lution scheme but might lead to numerical inaccuracies, partic-
ularly when the eigenvalues are close to . A similar but sim-
pler algorithm called joint angle-frequency estimation (JAFE)
has been proposed by us in [6].

The objective of the paper is to give a comprehensive error
analysis of the JAFE algorithm. The algorithm is a function of
certain stacking (or smoothing) parameters, and the error anal-
ysis provides us with the optimal choices for these parameters.
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A. Outline

We begin our discussion by describing the data model and
the parameter estimation problem. In Section II, we extend the
ESPRIT algorithm to JAFE. Section III looks into different data
extension and processing techniques that influence the robust-
ness and performance of the algorithm. Following this, in Sec-
tions IV–VII, we present a performance analysis of the JAFE
algorithm. Finally, after deriving Cramér–Rao lower bounds on
the parameter estimation errors (Section VIII), we present simu-
lation results that illustrate the various aspects of this work (Sec-
tion IX).

B. Notation

Throughout, row and column vectors are denoted by lower-
case bold-faced letters and matrices with uppercase bold-faced
letters. For any positive integer , denotes a identity ma-
trix. We suppress the index when this does not lead to confusion.
Superscripts and denote transposition and Hermitian
transposition, respectively. Complex conjugation by itself is de-
noted by conj . denotes mathematical expectation.

A vector constructed from a sequence of entries, such as
, or a sequence of function values, such as

, may be written as

or

respectively. Similarly, a diagonal matrix with the above di-
agonal entries may be expressed as

diag or diag

respectively. For two matrices and , the
Kroneker product is defined as

...
...

...

Unless stated otherwise, in the paper, is a Frobenius norm
operator.

II. JOINT ANGLE AND FREQUENCY ESTIMATION

Suppose that we have an antenna array, observe a frequency
band of interest, and want to separate and identify the directions
and carrier frequencies of all sources that are present. For fre-
quency estimation to be meaningful, we assume that the sources
are sufficiently narrowband, typically with different carrier fre-
quencies, but the spectra might be partly overlapping. The ob-
jective is to estimate the parameters and to construct a beam-
former to separate the sources based on differences in angles
or carrier frequencies. We will assume that the sample rates are
much higher than the data rates of each source and that multi-
path is negligible.

A. Model

Suppose that there are sources of interest, with complex
baseband representations , for . Let the band

of interest have a center frequency , and suppose that the th
source has a carrier frequency of . After demodulation to
IF, the signal due to the th source is , and the signal
received at the th antenna is

where is the parameterization of the DOA of the th signal,
with respect to a common phase reference, is the antenna
response of the th antenna to a signal from direction ,
is the amplitude of the th signal, and is noise. It is natural
to stack the antenna outputs into a single vector .

Further suppose that the narrowband signals have a band-
width of less than so that they can be sampled with a period

to satisfy the Nyquist rate. We normalize to . Let us
say that the bandwidth of the band to be scanned is an integer
number times larger: After demodulation to IF, we have to
sample at a rate [obviously we require
to prevent aliasing]. The data sample at the receiver is

where is the array response vector of the th source, and
is the noise vector collecting the samples of

the noise terms at the output of each antenna element. In matrix
form, this can be written as

(1)

where diag , , diag
is a signal gain matrix, is an matrix collecting the
steering vectors, and the vector is a stack of the signals,
where each signal has a unit amplitude. In the remainder of the
paper, unless it is necessary to write it explicitly, the diagonal
matrix in the data model is absorbed by , in which case,
the amplitude of the th signal is equal to instead of 1. Assume
that we have collected samples of the array output at a
rate into the data matrix , i.e.,

(2)

where is a matrix collecting samples of the
array noise vector.

B. Temporal Smoothing

In this section, we consider a data stacking technique (re-
ferred to as temporal smoothing) that adds structure to the data
model for the implementation of the JAFE algorithm. Apart
from this, temporal smoothing introduces an interesting feature.
That is, the data matrix in (2) is rank deficient when two or more
signals have the same DOA. This is because the array steering
vectors corresponding to signals with the same DOAs are iden-
tical, and therefore, the rank of the data matrix will be less than

, where is the number of signals. It will be shown in this sec-
tion that, under a certain condition, temporal smoothing restores
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the rank of the data matrix. An -factor temporally smoothed
data matrix is constructed by stacking temporally shifted ver-
sions of the original data matrix. This results in the following

matrix [viz. (2)]:

...

(3)

where represents the noise term constructed from in a
similar way as is obtained from . Assume that the signals
are narrow band, i.e.,

In this case, all the block rows in the right-hand term of ((3) are
approximately equal, which means that has the factoriza-
tion

...

(4)

where , throughout the sequel, which is referred to as the
extended array steering matrix, is given by

...
(5)

and

(6)

is a matrix collecting samples of the sources.
Theorem II.1: Consider an element antenna array im-

pinged by narrowband far-field signals. Assume that all
the signals have distinct (different) center frequencies. Suppose
that the signals are divided into groups, such that the signals
from each group have the same DOA. Let , for ,
represent the number of sources in the th group. Then, the

-factor temporally smoothed data matrix of (4) is full
rank if and only if .

Proof: See Appendix A
The above theorem shows that with -factor temporally

smoothed data, the ESPRIT algorithm can resolve up to
signals having the same DOA. Apart from rank restoration,
it enriches the structure of the data matrix, resulting in some

interesting properties. In Section II-C, these properties are
exploited for joint angle and frequency estimation. For now,
it suffices to note that temporal smoothing preserves the shift
invariance structure needed for the DOA estimation. That is,
the extended array steering matrix has the required shift
invariance structure, and the DOAs are estimated in the usual
way.

C. Estimation Algorithm

At this point, we have obtained a model with much the same
structure as in the classical ESPRIT algorithm but with re-
placed by . The estimation of the parameters and the con-
struction of the beamformer can now follow the same strategy
as well. First, note that the rank of is only since this is
the number of rows of . We compute the SVD of , i.e.,

, where has columns, spanning the column
space of . Thus, for some nonsingular matrix

We begin the estimation of the parameters by defining two types
of selection matrices: a pair to select submatrices for estimating

and a pair for estimating diag :

(7)

(8)

To estimate , we take submatrices consisting of the first and
the last rows of , respectively, i.e.,

whereas to estimate , we stack, for each of the blocks, its
first and last rows, respectively

These data matrices have the structures

(9)

where and are both submatrices of . If dimensions are
such that these are low-rank factorizations, then

(10)

It is seen that the data matrices and are jointly diago-
nalizable by the same matrix . There are several algorithms
to compute this joint diagonalization, e.g., by means of it-
eration [7], [8] or Jacobi iterations [2]. For this to work, it is
necessary that each submatrix in (9) has at least rows. After

has been found, we also have estimates of for each
of the sources. This provides us with angle and frequency es-
timates:

asin
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Fig. 1. Spatial smoothing.

III. FACTORS AFFECTING THE PERFORMANCE

OF THE JAFE ALGORITHM

The data matrix given in (3) is the basic JAFE data model.
In this section, we consider some additional data manipulation
techniques and processing stages that have some influence on
the performance of the algorithm.

A. Spatial Smoothing

As discussed above, temporal smoothing enables us to
estimate the underlying parameters correctly even if the DOAs
of more than one signal are the same. Employing a similar tech-
nique in the spatial domain, coherent signals can be separated.
This is called spatial smoothing [9]–[11]. In spatial smoothing,
an array of sensors is subdivided into subarrays. The
number of elements in a subarray depends on the way the
division is made. For instance, in ULA, allowing a maximum
overlap1 as in Fig. 1, the number of elements per subarray is

.
For , let the matrix be a selection

matrix that selects part of the data matrix that corre-
spond to the th subarray. Then, a spatially smoothed
data matrix is constructed as

(11)

Using the structure of in (2), we can re-express (11) as

. . .

where is a noise term that has also been shuffled in a similar
way as . Let contain the rows of that correspond to the
first subarray; then, from the shift-invariance property, we have
the following relation for :

Using these properties, can be written in a compact form as

(12)

Theorem III.1: Consider an element antenna array im-
pinged by narrowband far-field signals. Assume that all the
signals have distinct (different) DOAs. Suppose that the signals

1Note that a maximum overlap of subarrays is obtained by shifting a selected
window over a single antenna as in Fig. 1

are divided into groups, such that the signals from each group
have the same center frequencies. Let, for , rep-
resent the number of sources in the th group. Then, the -factor
spatially smoothed data matrix , with , (4) is full
rank if and only if .

Proof: Consider the -factor spatially smoothed data ma-
trix of (12). As we have assumed that all the sources have dif-
ferent DOAs, the rank of is . Thus, since has only
rows, it is sufficient to show that these are linearly independent.
The proof is similar to that given for Theorem II.1. First, note
that has the same structure as , with playing the role
of . Thus, with the same argument, it follows that is full
rank if

B. Forward-Backward Averaging

Another way of extending the data matrix is termed as for-
ward-backward averaging [12]–[15]. It uses the fact that the
eigenvalues lie on a unit circle and that the structure
of is centro-symmetric.2 A forward-backward averaged data
matrix is constructed from the data given in (2) as

conj (13)

where is an anti-diagonal exchange matrix that reverses the
ordering of the rows of . It can be shown [5], [18] that if the
centro-symmetric property is satisfied, the forward-backward
averaged data has the required shift-invariant structure. We
can, therefore, apply ESPRIT to solve for the underlying param-
eters. Note that with this data extension, the number of available
temporal samples per antenna element has essentially doubled
from to , which gives a significant improvement in accu-
racy. It also provides some protection against loss of rank in the
case of coherent sources, i.e., even if (see above), we can
tolerate coherent signals with multiplicity 2.

C. Spatio-Temporally Smoothed and Forward–Backward

Averaged Data Model

In this section, we derive a generalized data model that in-
corporates the above three data extension procedures. We start
with the temporally smoothed data given in (3). Let be
the number of antenna elements in the subarrays of the spatially
smoothed data, and let, for , the selection matrix

select part of the data matrix that corre-
sponds to the th subarray. Then, an factor spatio-tem-
porally smoothed data matrix is constructed as

(14)

Using the structure of from (3), this can be factored as

. . .

2An antenna array is said to be centro-symmetric if the element locations of
the array are symmetric with respect to the centroid and the complex radiation
characteristics of paired elements are the same (viz. [16]–[18]).
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where is a noise term that has also been shuffled in a
similar way as . Let . Then,
from the shift invariance structure of , it follows
that for

Thus, can be written in a compact form as

(15)

Finally, performing forward-backward averaging on the above
(spatio-temporally smoothed) data, we get the

data matrix

conj (16)

where is an exchange matrix that reverses the ordering of the
rows of . All of the above data models contain the shift
invariance properties needed by the JAFE algorithm (viz. [5] and
[18]). Thus, the angle-frequency pairs may be estimated in the
usual way (by considering shift invariance pairs).

D. Identifiability

The extended data of (16) is the generalized data
model we want to work with. It incorporates three processes:

1) temporal smoothing;
2) spatial smoothing
3) forward-backward averaging.

To derive identifiability conditions we assume that initially, a
total of samples per antenna element are present. Thus, after
temporal smoothing, spatial smoothing, and forward-backward
averaging, the extended data matrix has the dimen-
sions . Let be a full rank
matrix that spans the column space of .

Condition 1: To correctly estimate , must have
at least rows and columns.

Once is determined, the next step in JAFE is to construct
submatrices with the required shift invariance properties using
selection matrices. To this end, let the four selection matrices

, , , and be such that

(17)

form shift invariant pairs.

Condition 2: To estimate the DOAs and frequencies prop-
erly, these matrices must have at least rows.

The actual number of rows in these matrices depend on the way
the selection matrices are defined. For a ULA for instance, with
the subarrays chosen as shown in Fig. 1, the selection matrices
are given by

(18)

Putting these into (17) and noting that , it
follows that and are both

matrices, whereas and are both
matrices. Thus, for ULA, combining conditions 1 and 2, we get
the following identifiability criteria:

a)

b)

c) (19)

Given the number of sensors and the number of snapshots
, we want to find the pair that maximizes the number

of signals that can be identified. In analogy to a similar problem
considered in [5], we obtain as the solution to this maximization
problem:

if

(20)

if

(21)

The first set of equations corresponds to a region where con-
ditions a) and c) are satisfied with equality and the second set
corresponds to a region where conditions b) and c) are satisfied
with equality. The actual maxima are slightly smaller because

and can take integer values only.
For identifiability in addition to the above conditions, the

submatrices , , , and in (9) must also be full
rank . If the impinging wavefronts have distinct frequencies
and DOAs, the Vandermonde structures of the matrices ensures
that this is the case. Under conditions where there are multiple
DOAs or multiple center frequencies, the matrices may still be
full ranked if, in addition to (20) and (21), the following are also
satisfied (viz. [5]):

and

where and are the multiplicity of the DOAs and center fre-
quencies, respectively. These inequalities are derived by consid-
ering the results of Theorems II.1 and III.1.

E. Whitening as the JAFE Processing Stage

The spatio-temporal smoothing procedure introduces corre-
lation between the noise terms in the different rows of the data
matrix. In many cases, this correlation causes degradation as it
tends to reduce the degree of averaging that could have been
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Fig. 2. Whitening the spatio-temporally smoothed data.

obtained had the noise been white. In this context, the JAFE al-
gorithm can be preceded with a whitening filter, as shown in
Fig. 2. Consider the noise part of spatio-temporally smoothed
data matrix given in (14). Let the singular value decomposition
of the noise covariance matrix be given by

Then, the whitened data matrix is derived as (viz. [19])

(22)

Thus, in Fig. 2, the transformation matrix is equal to
. Let the SVD of be given by

and let be the dominant columns of corresponding to
the largest singular values; then, the JAFE algorithm is imple-
mented in the usual way by considering shift invariance proper-
ties of . In Section IX, we present simula-
tion results comparing the performances of the JAFE algorithm
implemented with and without whitening.

F. Multiresolution ESPRIT Algorithm

Recall that the data sampling rate used in constructing the
data matrix of (1) is times the Nyquist rate of the baseband
signals. Since can be quite large, it would be very expensive
to construct a full data matrix of all samples. In fact, it is suf-
ficient to subsample: Collect 2 subsequent samples at a rate
followed by samples at a rate , where is an integer
greater than one. This leads to the so-called multiresolution ES-
PRIT (MR-ESPRIT) [6], [20], [21] based JAFE algorithm. In
the MR-based JAFE algorithm, multiple spatio-temporal sam-
pling rates are used to improve the parameter estimation accu-
racy without raising the estimation complexity. In the above ex-
ample, for instance, if the size of the data matrix is preserved,
the MR approach provides a -times accuracy improvement.
On the other hand, if we perform downsampling on the original
number of samples (effectively reducing the number of samples
by the factor ), we obtain a significant reduction in complexity
for the same estimation accuracy. In the simulation results of
Section IX, we give quantitative analysis of this effect. See the
above papers for further understanding.

IV. PERFORMANCE ANALYSIS

As described in Section II-C, the JAFE algorithm involves
three main steps, namely

1) singular value decomposition (SVD) of the data matrix;

2) diagonalization of a set of eigenvalue decomposition
(EVD) problems;

3) transformation of the eigenvalues into signal parameters.

The first step, which is equivalent to finding the EVD of the
data covariance matrix, is well studied in the literature [22]–[26]
for the case of white Gaussian noise contaminated data model.
In our case, however, since some data stacking techniques have
been employed, the noise is no longer white. Thus, in this sec-
tion, we will first derive the eigenvalue estimation error for the
JAFE data model and show how this can be applied to derive
errors on shift invariance parameters. In Section V, we make
use of the results of this section to derive more specific error
expressions for the parameterized DOA and frequency estima-
tions. Similar analyses, in the context of white Gaussian noise,
have been presented in [27] and [28]. The results obtained here
could be seen as the generalization of these results.

When we assume that prewhitening has been applied to the
data before the application of the JAFE algorithm, as discussed
in Section III-E, the analysis reduces to the forms similar to
those described in [27] and [28]. However, the results in [27] are
derived considering a ULA only. Their final result does not give
explicit relations between the parameter estimation errors and
the noise. In [28], the results of [27] are extended to more gen-
eral array geometries, and the analysis there is fairly complete.
However, the results are derived for DOA estimation only, and
they consider a data model without any extension or stacking.
Here, we give derivations for both angle and frequency estima-
tions, and we also show how the different data extension proce-
dures affect the estimation performances.

A. Eigenvectors of the Data Covariance Matrix

The following theorem, whose proof is given in Appendix-B,
gives the eigenvectors estimation errors for the JAFE data model
given in (15).

Theorem IV.1: Consider an -element antenna array
impinged by far-field narrowband signals. Let the

factor spatio-temporally smoothed data ma-
trix be as given in (14),

be the finite sample data covari-
ance matrix, and and be
such that the eigenvalue decomposition of
is given by

Let be the first columns of . In Section II-C, it has been
shown that for some invertible matrix

(23)

Now, let be the th eigenvector of , where .
Moreover, let represent a noise-caused perturbation on ,

be the th eigenvalue of , where is the
th noise free eigenvalue, and let is the noise contribution.

Let diag , and let diag be the parame-
terizations of the center frequencies and DOAs of the signals.
Moreover, let
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• be a Toeplitz matrix with all the elements equal to zero,
except for those unity valued entries on the th parallel to
the main diagonal;

• and
• , and be the th row and column of the

matrices and , respectively. (Note that , for
and for .)

•

•

•

Assuming that has distinct eigenvalues, the covariance of
the eigenvector estimation error is given by

(24)

Lemma IV.1: For the whitened spatio-temporally smoothed
data matrix, the covariance of the eigenvector estimation error
reduces to for , and

(25)

for .
Proof: See Appendix C.

B. Shift Invariance Parameters

Let and
be as defined in Theorem IV.1. In Section II-B it has been shown
that the angle and frequency estimation is attained by consid-
ering the dual shift invariance structure present in . In this
section, we take a close look at the behavior of this computa-
tion. To this end, as before, define two selection matrices
and , such that the two full column ranked matrices and

defined as

(26)

are such that the matrix has the eigenvalue
decomposition

. . . (27)

... (28)

where , and is as in (23). In the above model, coin-
ciding eigenvalues are allowed, as long as the eigenvectors (the
corresponding columns of ) are linearly independent. In fact,
we require that the eigenvectors be sufficiently distinct3 such
that after small perturbation they remain linearly independent.
This assumption is needed because appears in the deriva-
tions, and thus, we want to be invertible. From (28), it follows
that

(29)

where and are the left and right eigenvectors of , re-
spectively, i.e., and . Moreover, for

, and satisfy

if

otherwise.
(30)

Let and represent noise caused pertur-
bations on and , respectively. We assume that the
eigenvectors are sufficiently separated and remain distinct after
these small variations. Thus, under noisy situations, (29) may
be rewritten as

Taking only the linear terms in the above equation, and after
some rearrangement of the terms, we obtain

(31)

Since , the noise terms and are not indepen-
dent. Their relation is derived by noting that (30) is valid under
noisy conditions as well, i.e.,

if

otherwise.

Taking the first-order terms only, this simplifies to

3Note that the eigensubspaces belonging to such a multiple eigenvalue do
not have unique eigenvectors. Thus, an orthogonal basis of eigenvectors in that
subspace can be chosen.
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This means that the second term in (31) is approximately zero,
and the first-order approximations of the errors on the eigen-
values are given by (viz. [27])

(32)

Let represent the noise perturbation on and similarly
for and ; then, an expression for is derived by
noting that

(33)

If the perturbation is small enough, the first term in the above
equation can be approximated (up to first order) as

Putting this into (33) and taking the linear terms only, we get the
following approximation for

Using this relation, and noting that ,
and , the expression for in (32) becomes

Note that and the selection matrices have dimensions
that are functions of the spatio-temporal smoothing fac-
tors and . In the following, these dependencies are
made explicit using indexed references. Thus, putting

, the error may then be
written as and its mean square value as

Let and be such that and
. With these definitions, is given as

where is the th entry of the column vector defined earlier.
Noting that is noise independent, the above can be rewritten
as

(34)

Note that a similar term to has been derived in [28].
Later, we will make use of some interesting properties of this
term derived in [28] to get simplified expressions for .

One further simplification of (34) is conveniently obtained for
a whitened data matrix. In the remainder of this section, we will
assume that a whitening has been applied to the data matrix prior
to the application of the algorithm. In this case, the eigenvector

estimation error is as given in (25). Let be
defined as

and then, putting (25) into (34), it follows that

(35)

Let the left eigenvectors of the data covariance matrix be parti-
tioned into and , such that spans the signal subspace,
and spans the noise subspace. Let the (punctured) diagonal
matrix , with a zero at the th position, be defined as

diag

diag

Then, we can rewrite (35) in a simplified way as

(36)

Note that in the above discussions, we have made no assumption
on the array geometry. The geometry information is contained
in , which is referred to as the
array geometry parameter. Let , , and
be the th row of ; then, noting that , where is
as given in (27), the array geometry parameter may be expressed
as

(37)

A further simplification of (36) is obtained by noting
and the following fact (viz. [28]):
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From this, it follows that the first term in (36) vanishes, and with
the parameter defined as

(38)

we get the following expression for :

(39)

Let be defined as

(40)

Then, noting that
, (39) simplifies to

(41)

Theorem IV.2: Suppose that an -element antenna
array that is split into subarrays each with ele-
ments, is impinged by narrowband signals. Let

be an -factor spatio-temporally
smoothed data matrix collected at the output of the array,

be the power of the noise, and be the
dominant eigenvectors of the data covariance matrix. Now,
let and be two submatrices of such that, for some
nonsingular matrix and a nonsingular diagonal
matrix , . Let be the th entry of and

be the variance of the estimation error on . Then,
the dependence of on the array geometry and the
spatio-temporal smoothing factors is completely described by
the factor

Proof: For the condition stated in the theorem, it has al-
ready been shown that is given by (41). Thus, for the
proof, it is sufficient to show that defined in (38) is indepen-
dent of the array geometry and the factors and . To this end,
let the matrix be the extended array steering matrix
associated with a data matrix with a temporal smoothing factor
of , be a unitary matrix that spans the column space of
the extended data matrix, and be a diagonal matrix that con-
tains the largest singular values of the extended data matrix.
Then, there exists a nonsingular matrix such that the
data covariance matrix may be
expressed as

where is the signal covariance matrix. Solving for , we
obtain

and thus, with equal to the th entry of

where is the th entry of the diagonal matrix . Note that
the signal covariance matrix (the left-hand expression) is inde-
pendent of the array geometry. This means that the right-hand
summation and, therefore, is also independent of the array
geometry and of . In a similar way, one can show that is
also independent of the spatial smoothing factor . Note that
for good SNR, for all , in which case,

and, hence, is independent of and .
This result is useful when we consider the effects of and

on the estimation errors because the dependency of
on these parameters is completely described by the less com-
plex factor . To emphasize the fact that the geometry
information is fully described by , in the sequel, it will
be referred to as the geometric factor. Moreover, since is de-
pendent purely on the signal covariance matrix and on the SNR,
it is referred to as the signal factor, and the ratio SNR
is termed as the effective SNR.

V. PARAMETERIZED DOA AND FREQUENCY ESTIMATION

In the foregoing discussions, we have made no reference to
the parameter to be estimated. The analysis up to now, there-
fore, applies for both the parameterized DOA and frequency es-
timations alike. The distinction comes in the way the selection
matrices are defined. In the following, we derive more specific
results by separately considering the parameterized DOA and
the parameterized frequency estimations.

A. Parameterized DOA Estimation

In line with the discussions in Section IV-B, the parameter-
ized DOA estimation error is obtained from (41) by
replacing with and with :

(42)

Here, is the th parameterized DOA defined in Section II-A,
and is the corresponding array factor constructed
using the selection matrices and . In this section,
we present the analysis where4 and , in which
case, the column span of the data matrix is given by

(43)

Here, represents the array steering matrix. For a ULA and
, the selection matrices and select

the first and, respectively, the last rows from each of the
two block entries of . Thus

4Note that for JAFE, the minimum possible value ofm is 2, and that ofL is 1.
Behaviors corresponding to largerm andL values are considered in Section IV.
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where

. . .
. . .

(44)

Let denote the first rows of and be defined
as

It follows that is a left inverse of
, and if we let represent the

th row of , then the th row of is given by
. Thus, using (37) and (40), it follows

that

(45)

For a single source, , and thus,
. Moreover, SNR SNR .

Combining these and using (42), we get the following approxi-
mation for the estimation error:

SNR
(46)

If we have started by setting , we get the expression

SNR
(47)

which agrees with those described in [27] and [28] for a single
source scenario. It is seen that the DOA estimation error is pro-
portional to the inverse of the square of the number of antennas.
This means that the algorithm, for large , fails to achieve the
Cramér–Rao Lower Bound (CRB)5 (i.e., it is inefficient). How-
ever, in Section VI, it will be shown that by choosing an ap-
propriate value for , the DOA estimation error can be made to
decay in proportion to .

B. Parameterized Frequency Estimation

For the frequency estimation, with reference to the discus-
sions in Section IV-B, the parameterized frequency estimation
error is obtained from (41) by replacing with
and the geometric factor with :

(48)

where is defined using the selection matrices
and . For a ULA, these selection matrices are given in
(7). In the following, we give a performance analysis for the

5In CRB, the angle estimation error is proportional toM

case and . The effects of other values
is considered in Section VI. For , the column
span of the data matrix is given by (43). For the parameterized
frequency estimation, the selection matrix selects the first

rows of (which is ) and its last rows. Thus

Let be the th row of ; then, using (37), it follows that
,6 and hence

and

For a single source, , and SNR
SNR ; thus

SNR

It is seen that the estimation error, for , decays only in
linear proportion with . This is, of course, an extremely poor
result. However, it is important to note that for , the effec-
tive number of temporal samples used in actual phase computa-
tion is 2. This means that by choosing larger values, the per-
formance can be improved significantly. In fact, in the following
section, it will be shown that by choosing an appropriate value
for , the frequency estimation error can be made to decay in
proportion to .

VI. EFFECTS OF DATA EXTENSIONS

The performance analysis outlined in the above section con-
siders the data model of (14), with a spatial smoothing factor

and a temporal smoothing factor . In this section,
we give analysis of how the data extension procedures affect
the estimation performances. Moreover, we derive the optimum
values of and ( ) that minimize the angle, frequency,
and joint estimation errors.

Consider an antenna array with an arbitrary geometry. Let,
for an spatio-temporally smoothed data matrix, the pairs

and be the selection matrices
that produce the shift invariance pairs for the parameterized fre-
quency and DOA estimations, respectively; then

(49)

(50)

where and are the selection matrices for the
case and are array geometry dependent. For a
ULA, they are given by

6Note that in contrast to JJJ (�) and JJJ (�), the structures of the selection
matrices JJJ (�) and JJJ (�) are independent of array geometry, and thus, this
result applies to an arbitrary array geometry.
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Now, let be a unitary matrix that spans the column space
of the extended data matrix; then, for some invertible matrix ,
the matrices and are
given by

...
and ...

respectively, where is the array steering matrix corre-
sponding to the -factor spatially smoothed data matrix, and

is a submatrix of , whose row dimension depends
on how the spatial smoothing is performed.

Let and be the th rows of and ,
respectively, and let the bi-diagonal matrix be defined as

. . .
. . .

(51)

Then, using the selection matrices defined in (49) and (50), it
can be shown that

(52)

Note that although is array geometry-dependent,
is independent of geometry. It is seen that for ULA, these ma-
trices have the same structure [compare (51) with (44)]. Now,
let and ; then, it is seen that
the two matrices

and

are left inverses of and , respectively, i.e.,

and

It is well known, however, that the Moore–Penrose inverse (the
pseudo-inverse) gives unique left inverses of these matrices with
minimum (Frobenius) norms. Thus, with and

and

If the underlying sources are sufficiently separated,
and , and the above inequalities are tight. When the
sources are close to each other, on the other hand, while the orig-
inal array steering matrix (the steering matrix with ) is

near singular, the extended steering matrix may be well condi-
tioned. This means that for closely separated sources, the above
inequalities may become loose, and the given approximations
might be too pessimistic. As a rule of thumb, in the case of a
ULA for instance, we say two sources with DOAs and
are sufficiently separated if

where is antenna spacing measured in fractions of signal
wavelength. Note that when this condition is satisfied, the peaks
of the FFT of the columns of the array steering matrix are at
least rad apart, which is equal to the BW of the -point
FFT bins. Thus, this states that if the peaks of the FFT of
are separated at least by an amount equal to the BW of the bins
of the -point FFT, then the sources are said to be sufficiently
separated. Considering the fact that the FFT matrix is a unitary
matrix, this is a justifiable assumption. In the following, we will
assume that the sources under consideration are sufficiently sep-
arated and that the above inequalities are tight. Under this con-
dition, we may write

where and are the th rows of and
, and and are the th rows of and ,

respectively. Putting these into (37) and using (40), it follows
that

and

(53)

The expressions for the parameterized angle and frequency esti-
mation errors are obtained by replacing these into (42) and (48),
respectively. Thus, with

(54)

and

(55)

it follows that

(56)
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The above relations show that the estimation errors are separable
functions in and . This means that the optimum values of the
spatio-temporal smoothing factors are independent of
each other. In the following, we will compute these values, con-
sidering each separately.

A. Optimum Temporal Smoothing Factor

From (56), it is seen that the optimum values of for the
parameterized DOA and frequency estimations are obtained
by minimizing and , respectively.7 Denoting
by and the optimum temporal smoothing fac-
tors for the parameterized DOA and frequency estimations,
respectively, we have

for and

for .

The above value of agrees with a similar result reported
in [29] for the harmonic retrieval problem. The corresponding
variances of the parameterized DOA and frequency estimation
are then

For JAFE, it makes more sense to look for an optimum that
minimizes the joint estimation error. To this end, we define a
joint estimation error as the geometric mean of the variances of
the angle and frequency estimation errors:

(57)

which is equivalent to the arithmetic mean on the logarithmic
scale. This definition has twofold advantages: First, it alleviates
the scaling problems associated with the arithmetic mean, and
second, it preserves the separability of the error function in the
variables and . Minimizing with respect to
and after some elaboration (approximation), we obtain

It is seen that for the joint estimation is approximately equal
to the average of its values obtained considering the angle and
frequency estimations separately.

B. Optimum Spatial Smoothing Factor

Referring to (56), it follows that minimizing the estimation
errors with respect to is equivalent to minimizing and

. To this end, first, we need to derive explicit expressions

7To simplify notations, in the remainder of this section, we omit the signal
number index i, For instance, we write � instead of � .

for these functions. Let and be the number of rows in
and , respectively; then, for sufficiently independent

sources, the following approximations are valid:

and

For a single source, these relations are exact. For more sources,
however, the above approximation is valid only if the steering
vectors are sufficiently independent. This is always (asymptoti-
cally) satisfied for large and values.

From their definitions, it is clear that the values of and
depend on the way the spatial smoothing is performed. For

a ULA, for instance, if we assume a maximum overlap of sub-
arrays as described in Section III-A, , and

. Putting these into the above expressions and
minimizing and with respect to , we obtain

for , and

for .

The corresponding variances of the parameterized DOA and fre-
quency estimation are then

For JAFE, defining a joint estimation error as in (57), we obtain

As in the case of , this value of is approximately equal
to the average of the optimum values obtained considering the
angle and frequency estimations separately.

C. Forward-Backward Averaging

Forward-backward averaging [5], [18] is equivalent to dou-
bling the number of temporal samples, with the rest of the data
parameters remaining unchanged. Thus, for both and , this
data extension provides a factor-of-2 improvement in the esti-
mation accuracies. The important aspect of forward-backward
averaging is that the resulting data matrix can be transformed
into a real matrix of the same size [16]. This provides a substan-
tial reduction in complexity [18] while improving the accuracy.

VII. ERRORS IN COMPUTING THE ACTUAL PARAMETERS

The final step in the JAFE algorithm is to transform the pa-
rameterized DOAs and the parameterized frequencies into their
actual values in radians and hertz, respectively. In this section,
we consider how these transformations affect the error behav-
iors.
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A. Errors in Computing the DOAs

The relation between the parameterized and the physical
DOAs is defined by the array geometry. In the case of the ULA,
for instance, this relation is given by

asin

Assuming the real and imaginary parts of are affected by sta-
tistically independent equal variance noises, the mean square
errors on the angle estimates can be computed as (first-order
approximations) (viz. [27], [30]–[33])

(58)

The final expressions for are obtained by replacing
with the expressions from (42).

B. Errors in Computing the Frequencies

As recalled from Section II-A, the actual signal frequency is
computed from the parameterized frequency using the trans-
formation

The first-order approximation of the perturbation on is

Re Re

and thus, the variance of the frequency estimation error is

(59)

The final expression for is obtained by replacing
with the expression from (48).

VIII. CRAMÉR–RAO LOWER BOUND

Putting a lower bound for any estimator proves to be ex-
tremely useful. It provides a benchmark against which we can
compare the performance of any unbiased estimator. Moreover,
it tells us the impossibility of finding an unbiased estimator
whose variance is less than the bound. One such bound is the
CRB [34]. In this section, we derive the CRB for the JAFE al-
gorithm.

Let us assume that an deterministic signal vector
with unknown parameter vector

is observed in additive noise

(60)

where is an noise vector. Here, the dependence of
the signal on is made explicit by writing . Assume
that is a white Gaussian noise (WGN) with variance
and that we have collected time samples of the signal .
Then, the log likelihood function of the signal (defined as the
logarithm of the probability density function) is given by

(61)

Let the gradient of the signal vector with respect to be
denoted by , i.e.,

then the so-called Fisher information matrix is given by

Re (62)

The CRB for estimating the th parameter is obtained from
the inverse of the Fisher information matrix (viz. [34]) as

CRB

A. CRB for the JAFE Data Model

Consider a simplified version of the JAFE data model, in
which the modulating signals are set to have

(63)

where we have the following.

• , and is
the array response vector for a signal with a parameterized
DOA of .

• is a vector containing the parameterized
DOA of the signals.

• , where is the parameter-
ized frequency of the th signal.

• diag is a diagonal gain matrix, where
is the amplitude of the th signal as received by the

antenna array.
• is an white Gaussian noise vector.

Let be a vector containing the channel gains;
then, the conditioning parameters that affect the signal likeli-
hood function are collected into the vector :

Define

diag
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Evaluating the derivative of with respect to each param-
eter, we get the following:

Let be defined as

Re (64)

Then, the Fisher information matrix is

Re (65)

where is the number of time samples, and

IX. SIMULATION EXAMPLES

In this simulation example, we consider a four-element ULA
with baseline separation of . We assume that two far
field, equal power signals and are impinging on the an-
tenna array. The DOA and center frequency of are
and MHz, and those of are and
MHz, respectively. The source signals are narrowband (25 kHz)
amplitude-modulated signals. The data is sampled at a rate of
20 MHz, and the processing is done over time samples.
All simulation results are based on 100 Monte Carlo runs. The
behaviors are summarized in Figs. 5–8. In Fig. 6 and 8, while
keeping the rest of the parameters fixed at their original values,
the DOA and center frequency of are varied to generate be-
haviors as functions of angular and frequency separations, re-
spectively.

Fig. 3. Effect of whitening on the frequency estimation error.

Fig. 4. Effect of whitening on the DOA estimation error.

Fig. 5. Parameterized DOA and frequency estimation errors as functions of
temporal smoothing factor m at SNR = 30 dB and L = 2. It is seen that the
theoretical behaviors perfectly agree with the simulation results.

First, results comparing the performances of the JAFE algo-
rithm implemented with and without a pre-whitening filter (viz.
Section III-E) are shown in Figs. 3 and 4 (For clarity, only be-
haviors corresponding to the first source are shown. Similar sit-
uations are observed for the second source as well.). In the sim-
ulation, the temporal and spatial smoothing factors are chosen
to be and , respectively. From the results, one sees
that the whitening has very minor effect on the DOA estimation
error. On the other hand, an appreciable performance improve-
ment is observed in the frequency estimation, particularly at the
low SNR region.

Fig. 5 shows how temporal smoothing affects the parameter
estimation errors. From the plots, it is seen that the DOA es-
timation error is minimum for and that the fre-
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Fig. 6. Behavior of (a) the parameterized DOA and (b) the parameterized
frequency estimation errors as functions of angular separation. Note the
improvement obtained via temporal smoothing, particularly at small angular
separations. (SNR = 20 dB).

quency estimation error is minimum for , as pre-
dicted in Section VI. It is seen that when8 , the fre-
quency/DOA estimation errors increase sharply and that for the
algorithm to attain the CRB, should be close to its optimum
value. Choosing large , however, increases the computational
complexity. This means that one has to find a compromise be-
tween complexity and accuracy. In Fig. 6, it is shown that, apart
from improving the estimation accuracy, temporal smoothing
also provides robustness against rank loss when there exist mul-
tiple signals with the same DOA. This is in agreement with the
identifiability conditions discussed in Section III-D.

The effect of spatial smoothing on the estimation errors is
summarized in Fig. 7. The simulation was run using a ULA with

elements, , , and SNR
dB. The DOAs and the center frequencies of the two sources
under consideration are the same as before. As predicted in Sec-
tion VI, the parameterized DOA and frequency estimation errors
are minimum for and , respectively.
Moreover, in Fig. 8 it is seen that, apart from performance im-
provement, spatial smoothing achieves rank restoration when
several signals have the same center frequencies. In Fig. 8(a),
a seemingly unexpected behavior is seen. That is, for large fre-
quency separation, the DOA estimation error increased when

8Note that the minimum possible value form is 2.

Fig. 7. Parameterized DOA and frequency estimation errors as functions of
spatial smoothing factor L at SNR = 20 dB and m = 2. It is seen that the
theoretical behaviors perfectly agree with the simulation results.

Fig. 8. Behavior of (a) the parameterized DOA and (b) the parameterized
frequency estimation errors as functions of frequency separation. Note the
superior performance of the spatially smoothed data approach at small
frequency separations. (SNR = 20 dB.)

was changed from 1 to 2. This should not be surprising because
for and , the ratio (cf.
Section IV), and thus, , where and are estima-
tion errors corresponding to and , respectively.

As stated above, the JAFE algorithm approaches the CRB
only when and are close to their optimum values. This
is, in most cases, computationally prohibitive. To alleviate this
problem, we can use the MR-ESPRIT algorithm described in
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Fig. 9. MR-ESPRIT-based JAFE improves the performance of the frequency
estimation in the smallm region. (SNR = 30 dB).

Section III-F in the JAFE context. With this approach, it is pos-
sible to improve the estimation accuracy significantly in the
small and regions without raising the computational com-
plexity. For instance, the effect of MR temporal sampling on the
frequency estimation is summarized in Fig. 9,9 where results ob-
tained via the MR-ESPRIT, with a resolution gain factor of 2 are
compared against those of the direct estimation method. The su-
periority of the MR-based approach is obvious, particularly at
small values.

Let represent the resolution gain factor; then, in [6], [20],
and [21], it has been shown that the MR-ESPRIT gives a factor

improvement in accuracy assuming the size of the data matrix
is preserved. If the size of the data matrix is reduced as is the
case here, on the other hand, the gained accuracy will be less
than . More precisely, if we let and represent
the variances of the direct and the multiresolution approaches at
a temporal smoothing factor of , respectively, the above two
effects can be combined to obtain the relation

where is the original number of samples. For ,
this simplifies to

If is comparable to , on the other hand, the MR-ESPRIT
never achieves the best performance obtainable with the direct
estimation approach. This is clearly seen in the plots of Fig. 9.

X. CONCLUSIONS

In this paper, we have presented an analysis of the ESPRIT-
based JAFE algorithm. Using a simple perturbation model, we
were able to derive analytical expressions for the estimation
errors and for the optimum values of the spatial and temporal
smoothing factors.

We have discussed two sets of optimum values for the spa-
tial and temporal smoothing factors: the first set maximizing the
number of identifiable sources and the second set minimizing
the joint parameter estimation error. It has been seen that these

9With an MR spatial sampling, a similar behavior is exhibited in DOA esti-
mation.

optimum values are different, and thus, one cannot satisfy si-
multaneous optimality in both identifiability and accuracy.

Moreover, it has been shown that the JAFE algorithm
achieves the CRB only when the spatio-temporal smoothing
factors are close to their optimum values. However, choosing
the smoothing factors close to their optimum values is com-
putationally too expensive. We have shown that in this case,
the multiresolution concept can elegantly be used in the JAFE
context to solve this problem with an acceptable complexity.

Finally, it should be noted that the performance analysis pre-
sented here is independent of the joint diagonalization tech-
nique that may have been used in solving the joint matrix pencil
problem described in Section II. The analysis assumes that an
optimum joint diagonalization of the matrix pencil problem has
been achieved. The actual performance is therefore dependent
on the quality of the joint diagonalization procedure employed.
Although there are several accounts in the literature on this
problem, it is an open research topic to find a reliable optimal
solution. One way to evaluate the quality of a joint diagonaliza-
tion method is to compare it against the expected performance
derived in this work.

APPENDIX

PROOFS OF THEOREMS

A. Proof of Theorem II.1

Since all the sources are assumed to have distinct frequencies,
in (4) has a full row rank. Thus, for the proof, it is sufficient

to show that is full column ranked matrix. To this end, for
, let represent the DOA of the signals from

the th group, and for , let be the center
frequency of the th signal from the th group. Moreover, let

and be defined as

...
...

...

and diag , then the extended steering matrix
can be expressed as

...
...

...

To prove the theorem, it is sufficient to show that for a given
-vector

Let be partitioned into sub-vectors with dimen-
sions such that

...
(66)
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If is full column rank, the above will be satisfied if and
only if , . For a -vector

, let the function be given by

and let be defined as

...
...

...

Since the are different and that we have assumed ,
from the Vandermonde structure, it follows that has a full
column rank of . Now, using the above definitions, (66) can
equivalently be expressed as

...
...

...

Because is a full rank matrix, it follows that is also full
rank if and only if there does not exists an such that

(67)

Let

...
...

...

then the conditions in (67) can be combined into the single ex-
pression

(68)

Thus, is full rank if and only if there does not exists an
that satisfies (68), or, in other words, is full rank

if and only if is a full rank matrix. Observe that has
a Vandermonde structure. Since all the are assumed to be
distinct, it will have full rank provided that . From this,
it follows that the data matrix is full rank if and only if, for

, all the are all full rank matrices, which is
satisfied if

This concludes the proof.

B. Proof of Theorem IV-1

Consider the Gaussian, circulant noise-contaminated data
model given in (14). Let be
the noise-free data

In the following, we use a perturbation analysis to derive the co-
variance of the errors on the eigenvectors of . In the deriva-
tion, we will make the assumption that the noise-free data
is deterministic, and hence, . Now, let

and

is a perturbation on . From its definition, it is seen that
is Hermitian and . Let be the

EVD of , be the th column of (the th eigenvector
of ), and represent the perturbation on due to . In
[35], it has been sown that for the above model, the first-order
approximation of , ( is the number of signals in the
channel) is given by

From this, it follows that

(69)
Putting into the above and noting that for

, , the above can be rewritten as

(70)
Let be the th column of ; then, we have

Thus, putting this in place of in (70), the numerator term is
expressed as

(71)

It is well known that for nonzero mean Gaussian random vari-
ables and
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Using this property and noting , we get

(72)

The first term may be written as
. However,

. Thus, the first term in (72) can be written more compactly
as . Since and ,
this term reduces to zero.

Consider the second term. Let be the th noise vector
(which is assumed to be Gaussian and circulant) such that

. Putting this into the second term, and noting that all
the odd number moments in the noise are zero and, for all ,

, we obtain

(73)

Rearranging the terms, the above can be compactly written as

(74)

For or , this vanishes. Note that the fourth term in
(72) also reduces to (74). Thus, it also vanishes. This means that
the only remaining term in (72) is the third one; hence

Putting in the above, we get 16 terms. Of these,
all the odd order moments in the noise are zero, and since we
have assumed circulant noise, for all . After
eliminating all these terms, we obtain

(75)

Note that the first term is equal to (74), which is identical
to zero. Thus, we are left with the last three terms only.
Consider the second term (henceforth denoted by ). Let

be the extended array steering matrix, the
-vector be the complex amplitudes of the signals, and

diag . The spatio-temporally smoothed noise free-data
matrix can then be expressed as

For and , let and be written
as

In addition, let diag , and diag .
Then, the th and th columns of , which are denoted by

and , are given by

Let ; then, we have

(76)

From the spatio-temporal smoothing process, we see that the
factor

is a function of only. More precisely, let be a Toeplitz
matrix with all the elements equal to zero, except for those unity-
valued entries on the th parallel to the diagonal, and let be
the variance of the noise. Let and

; then

otherwise.

(77)

Making change of variables and, for and
, setting and , (76) can be

expressed as

(78)

Rearranging the terms, we obtain
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Note that

where is the signal covariance matrix. Thus, we
have

Since and span the same column space, there exists an
invertible matrix such that . Let

; then, noting that , for , it follows
that

where is the th noise-free eigenvalue, and and are the
th row and column of and , respectively. Putting these

in to above, we get

In a similar way, for the third term in (69) (denoted by ), we
get

and the fourth term becomes

Since is independent of , this reduces to

Combining all the three terms, we obtain

(79)

Putting this into (69) and noting that is nonzero only for
, (24) follows. This concludes the proof.

C. Proof of Lemma IV.1

For white noise, in (79) is nonzero only for
and . In this case, , and (79) reduces to

(80)

Note that for , the first term is zero; for ,
, and for , . Putting (80) into

(69), we thus obtain

for or , and

(81)

for and . Since , we may write

Placing these into (81), we obtain (25). This concludes the proof.
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