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Abstract 

The desire to use materials with high strength/weight or stiffness/weight ratio is 

increased the importance of composite materials nowadays. Due to this, much 

attention has been devoted to the numerical analysis of composite plates. The 

performance of well-known numerical methods, Finite Element Method (FEM) 

and Boundary Element Method (BEM), are based on the quality mesh structures. 

Meshfree methods are free from the meshes and the drawbacks of mesh-based 

interpolation techniques. Because of its high convergence rate, Element-Free 

Galerkin Method (EFGM) is one of the most widely used meshfree method in 

solid body mechanics and it is a promising candidate for the analysis of 

composite materials. In this study; deflection analysis of laminated composite 

plates are studied using EFGM. Several laminated composite plate problems are 

solved using EFGM and the displacement results of EFGM solutions are 

compared with the results of exact and FEM solutions at the critical points. 
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1. INTRODUCTION 

Nowadays, composite materials have played an important role in the engineering applications that require high 

strength/weight or stiffness/weight ratios. Because of that, analysis of composite materials have gained great 

significance. Several plate theories are present for the bending analysis of composite plates in the literature such as are 

Classical Plate Theory (CLPT) [1], First Order Shear Deformation Theory (FSDT) [1], Higher Order Shear 

Deformation Theory (HSDT) [1] etc. The FSDT, also known as Mindlin-Reissner plate theory, is widely used since it 

includes transverse shear effects and its simplicity. 

Due to the complex structure of composite materials, several numerical methods, such as FEM, BEM and meshfree 

methods, have been used for the analyses of composite laminates in the literature. Sheikh et al. [2] used FEM on the 

solution of composite plates having different shapes. Moments and stresses using BEM were examined by 

Albuquerque and his friends [3]. Haddad et al. [4] applied to Finite Difference Method (FDM) for free vibration 

analysis of composite plates. 

The performances of FEM and BEM depend on mesh quality of the problem model. Meshfree methods have been 

developed to overcome this limitation. Element-Free Galerkin Method (EFGM), which was originally developed by 

Belytschko [5], is one of the most widely used meshfree method in solid mechanics due to its simplicity and high 

convergence rate. Also, many scientists propose that EFGM has good solution accuracy in solid mechanics [6]. The 

EFGM is seen as a promising candidate for the analysis of composite materials. It was used by Belinha and Dinis for 

the analysis of anisotropic plates and laminates [7]. Also, EFGM has been preferred for the various analysis of 
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composite plates such as buckling problems [8], vibration problems [9], bending problems [7], crack analysis [10], 

fracture analysis [11], etc.  

In this study, EFGM and FEM programs, based on FSDT, have been written on MATLAB programming environment 

for the deflection analysis of laminated composite plates. Several numerical examples are solved using particular 

number of nodes in the problem domain. The displacement results of EFGM are presented and compared with the 

results of FEM and exact solution in terms of accuracy. 

 

2. FIRST SHEAR DEFORMATION THEORY (FSDT) FOR THE LAMINATED COMPOSITE 

PLATES 

A typical Mindlin-Reissner plate with mid-plane lying in the x-y plane of Cartesian coordinate system is depicted in 

Fig 1. The displacement field of a point at a distance z to the mid-plane can be written as 

                                                                                                                                                                        (1) 

where (     ) are the displacements of the plate in the       directions.    and    are the rotations of cross-section of 

the plate about y and x axes, respectively. The linear strains in the Mindlin-Reissner plate are the strains resulting 

from bending are obtained in terms of the rotations,   ,    and of the mid-surface displacement,  , as 

     
                    

   
    
  
                                                                                           

  
   

                                                                                                                 (2) 

Using the generalized Hooke’s law for orthotropic linear elastic materials, the stresses for the     layer is given as,                                                     (3) 

where                                                                                                                                              (4)                                                               (5) 

where     is the material matrix of the     layer. It includes six independent material properties that are   ,   ,    ,    ,     and    ,. The material matrix of the orthotropic materials can be written as  

   
   
   
                                                                             

   
 
                                                                                                          (6) 

and   is the transformation matrix, which has lay-up of the laminae, can be given as 

     
                                                                                               

  
                                       (7) 

where the   is the lay-up or orientation of fiber on the     lamina.  
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Figure 1. A typical laminate plate 

Considering the                                      the stresses on the top face of layer (i) are                                                                                                                                                                                                          
                            (8) 

The bending moments (   ) and the shear forces (   )are                                                                                                                  (9) 

and                                                                                                                                                                                    (10) 

where     is the shear correction factor. Substituting the stress values in Eqs. (8) into moment in Eqs. (9) and shear 

forces in Eqs. (10):                                                                                                                                                                                                                                                                                                                                                                                  
                       (11) 

The Eqs. (11) can be arranged as in the following form: 

                                                                                                                                                      (12) 

where, 
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                                                  (13) 

                                    (14)                                         (15) 

and   and     are the material properties related with bending and shear effects. They can be written in the matrix 

forms, as follows: 

                                                                             (16) 

                                                      (17) 

In the absence of mass forces, the equilibrium equations obtained using the virtual work principle are given as,                                            (18) 

where   is the vector of applied external forces. EFGM is used for the solution of this system equations. 

3. ELEMENT-FREE GALERKIN METHOD 

3.1. Moving-Least Square (MLS) Approximation  

The MLS approximation for the function of a field variable      in a local domain   is defined at a point    as                                                          (19) 

where   is the number of basis terms,                                   is the vector of monomial basis 

functions,                                   is the vector of coefficients, and          is the position vector 

for 2D problems. The monomials are selected from the Pascal triangle with providing minimum completeness to build 

the basis function      . For example, the linear and quadratic basis functions in 2D problems can be given by 

                                                                        (20) 

                                                           (21) 

The difference between the function      and its local approximation       must be minimized by weighted discrete    norm to obtain the vector of coefficients     .                                                       (22) 

where   is the number of nodes in the support domain of point  ,    is the nodal value of   at     ,         is the 

weight function associated with the influence domain of node  . From weight function properties, it must be greater 

than zero for all nodes in the support domain of point  . 

The minimization of weighted residual with respect to      at any arbitrary point   gives                                     (23) 

which can be written as a set of linear equations. 

                                         (24) 

where                     is the vector of nodal values of field function for the nodes of support domain. The 

matrices   and   have the following forms 

                                                                              (25) 

                                                                         (26) 

The matrix   is called as weighted moment matrix of MLS and if it is non-singular      can be written as 
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                                          (27) 

The local approximation       can be rewritten by substituting Eq. (19)                                        (28) 

where   is the vector of MLS shape functions and it can be expressed as                                                   (29) 

The partial derivatives of shape function can be achieved by the following equation.                                                     (30) 

where 

                                             (31) 

The spatial derivative are designated with index   following a comma. The weight functions are one of the most 

important points for derivation of MLS shape functions. The continuity and locality features of the MLS 

approximation are mainly based on weight functions. The weight function must be positive inside the support domain 

by taking its maximum value at the centre of support domain and must be zero outside the support domain using a 

monotonically decrease. There are various weight functions in literature [6]. The cubic spline weight function is used 

in this work and is given by 

                                                                                                      (32) 

For rectangular influence domain in 2-D problems, weight functions can be obtained by                                                   (33)                  and                                             (34) 

where     and     are the size of support domain in the   and   direction. 

3.2. Galerkin Weak Form and Enforcement Boundary Conditions  

The Galerkin weak form for Mindlin-Reissner plates can written as                                                                                          (35) 

The discrete system equation can be written as                                         (36) 

where    is the global stiffness matrix and is obtained by assembling the point stiffness matrices                                            (37) 

in which 

      
                                              

   
                           (38) 

and the   is the matrix of penalty factors defined by                                              (39) 

where    is a diagonal matrix. If the relevant DOF is free, the diagonal elements of    are equal to 0, otherwise equal 

to 1. 

The force vector   in Eq. (35) is the global force vector assembled using the nodal force vector of                                                          (40) 
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where    is a diagonal matrix of shape functions. 

The    vector shows the forces obtained by the implementation of essential boundary conditions and can be obtained 

as follows                                            (41) 

4. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, a few numerical examples have been performed to demonstrate the applicability and the accuracy of 

the EFGM. Plates with boundary conditions, thickness ratios, number of layers, fiber orientations and materials are 

studied. The results are provided in terms of normalized displacements for the convenience of comparison and 

validated by comparing them with analytical results taken from the literature and FEM results. The behaviour of all 

composite materials used is considered as linear elastic. The value of shear correction factor is constant and taken as     for all examples. The properties of materials used in the examples are given in Table 1. The linear polynomial 

basis, cubic spline weight function,     for the dimensionless support domain size and     Gauss quadrature 

integration points are used in all EFGM solutions. 

Table 1. Properties of laminated composite plates 

 

M1 M2 M3                                                                                                                                                                

4.1. Simply supported laminated composite plates under uniformly distributed load 

The deformation of a simply supported square laminated plate subjected to a uniformly distributed transverse load              is analysed using different lamination schemes with thickness/span ratios of               05 and         . The laminates used are orthotropic laminate with one layer of      orientation, symmetric 

cross-plies with three, four, five and seven layers of                                               and                            orientations, respectively. The material M1, presented in Table 1, is used in this example. 

 

 

 

 

Figure 2. Simply supported laminated composite square plate 

Due to the symmetry, only a quarter of plate is modelled using 441 nodes in the EFGM and FEM solutions. The 

dimensionless center deflection of plate is presented in Table 2. It can be seen that the accuracy of EFGM solution is 

near to the exact solution and is better than the FEM. 

 

 

 

 

Table 2. Central deflections                under uniform transverse load 
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h/L Lay-up  FEM EFGM Exact [12] 

0.01 0 0.662553 0.659729 0.6528 

 

0/90/0 0.680383 0.677547 0.6697 

 

0/90/90/0 0.694267 0.691600 0.6833 

 

0/90/0/90/0 0.698297 0.695732 0.6874 

 

0/90/90/0/90/90/0 0.701414 0.698928 0.6896 

0.05 0 0.737233 0.734517 0.7262 

 

0/90/0 0.769471 0.766675 0.7572 

 

0/90/90/0 0.781553 0.778914 0.7694 

 

0/90/0/90/0 0.769781 0.767292 0.7581 

 

0/90/90/0/90/90/0 0.767333 0.764929 0.7575 

0.1 0 0.966699 0.963153 0.9519 

 

0/90/0 1.038240 1.034393 1.0219 

 

0/90/90/0 1.040156 1.036504 1.0250 

 

0/90/0/90/0 0.986117 0.982779 0.9727 

  0/90/90/0/90/90/0 0.969344 0.966131 0.9643 

4.2. Simply supported angle-ply square plate under uniformly distributed load 

The deformation of an angle-ply simply supported square plate subjected to a uniformly distributed transverse load     is examined using four layers                  The solutions are presented with a constant thickness-to-span 

ratio,    , of    . The material M2 is used in this example. 

Because of the asymmetry, the whole plate is modelled using 441 nodes in the EFGM and FEM solutions. Table 3 

presents the dimensionless center deflection of plate. It is visible that the accuracy of EFGM solution is more accurate 

than the FEM. Also, it can be achieved to exact results by particular number of nodes used in the solution. 

Table 3. Central deflections                under uniform transverse load 

Arrangement of layers                  FEM EFGM Exact [12] 

-5/+5/-5/+5 6.922555 6.892311 6.741 

-15/+15/-15/+15 6.205659 6.180749 6.086 

-30/+30/-30/+30 4.841598 4.820746 4.825 

-45/+45/-45/+45 4.430046 4.410081 4.426 

 

4.3. Clamped laminated composite plates under uniformly distributed load 
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Clamped laminated square plate with four different aspect ratios of                           and          are analyzed to determine deformations under the uniformly distributed transverse load    . The 

unidirectional laminate of material M3 is used with four layer of                 orientation. Due to the symmetry, 

only a quarter of plate is modelled using 441 nodes in the EFGM and FEM solutions. The dimensionless center 

deflection of plate is presented in Table 4. A close agreement between the results of EFGM and exact solution is 

shown for all thickness ratios examined. Again the results of EFGM is better than the FEM ones. 

Table 4. Central deflections                under uniform transverse load 

h/L FEM EFGM Exact [13] 

0.1 0.465766 0.46542 0.4651 

0.05 0.234185 0.234522 0.2342 

0.02 0.158636 0.159152 0.159 

0.01 0.147079 0.147363 0.1475 

5. CONCLUSIONS 

In this study, the EFGM based on First Order Shear Deformation Theory is successfully implemented in the bending 

analyses of laminated composite plates. The results for the analyzed plates are in good agreement with the results of 

exact solutions. It is also shown that the accuracy of EFGM solutions are better than the FEM ones for the analyzed 

plates. 
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