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ANALYSIS OF LANDING-GEAR BEHAVIOR'

By Bexsamis, Minwitzky and Fraxcis E. Cook

SUMMARY

This report presents a theoretical study of the behavior of the
conventional type of oleo-pnewmatic landing gear during the
process of landing impact.  The baxic analysix is prexented in
a general form and treats the motions of the landing gear prior

*to and subsequent to the beginning of shock-strut deflection.  In
the analysis of the first phase of the impact the landing gear is
treated as a single<degree-of-freedom system in order to deter-
mine the couditions of motion at the instant of initial shoek-strut
deflection, after which instant the landing gear is considered as
a system with two degrees of freedom, The equations for the
two-degree-of-freedom  system  conxider such factors as the
hydraulic (velocity square) resistance of the orifice, the forces
due to air compression and internal friction in the shock struf,
the nonlinear force-deflection characteristies of the tire, the wing
lift, the inclination of the landing gear, and the effects of wheel
spin-up drag loads.

The applicability of the analysis to actual landing gears has
been investignted for the particular case of a vertical landing
gear in the absence of drag loads by comparing caleuluated
results with experimental drop-test data for impacts with and
without tire bottoming. The ealeulated behavior of the landing
gear was found to be in good agreement with the drop-test data.

 Studies hace also been made to determine the effects of raria-
tions in such parameters as the dynamic force-deflection
characteristics of the tire, the orifice discharge coefficient, and the
polytropic exponent for the air-compression process, which
might not be known accurately in practical design problems.

The study of the effeets of variations tn the tire characteristics
indicates that in the case of a normal impacl without tire
bottoming reasonable variations in the force-deflection character-
ixtics have only a relatively small effect on the ealculated beharior

of the landing gear. Approrimating the rather complicated

Fforce-deflection characteristics of the actual tire by simplified

erponential or linear-segment variations appears to be adequate
for practical purposes.  Tire hysteresis was found fo be
relatively unimportant.  In the caxe of @ xevere impact involeing
tire bottomivyg, the use of simplified erponential and linear-

segment approrimations to the actual tire force-deflection
characteristics, which wneglect the effects of tire bottoming,
although adequate up to the instant of bottoming, fails tv indicute

the pronounced increase in landing-gewr load that results from

bottoming of the tire. The “use of erponential and linear-
segment approrimations to the tire characteristios which take
into account the inereased stiffness of the tive which results from
bottoming, however, yields good results.

The study of the importance of the discharge coefficient of the
orifice indicatex that the magnitude of the discharge corfficicnt
has @ marked effect on the caleulated bekarior of the landing
geur: a decrease in the discharge coefficient (or the product of the
discharge coefficient and the nef orifice wrea) vesulls in an
approrimately proportional ineréase (n the masinoim sppeor-
mass aeceleration. ’

The study of the importance of the air-compression process
in the shock strut indicates that the air springing is of only
minor significance throughout most of the impaet anld that
variations in the effective polytropic erponent w between the
isothermal value of 1.0 and the nenr-adiabatic ralue of 1.3l
only a secondary effect on the ealenlated beliurior of the landing
gear. Erven the assumption of constunt air pressurve o0 the strut
equal to the initial pressure, that ix, n=0, yields fuirly good
results which may be adequate for many practical purposes.

~ In addition to the more exact treatment, an investigation has
been made to delermine the crlent to which the basic equations
of motion can be simplified and still yield acceptable results.
This study indicates that, for many practical purposes, the
air-pressure force in the shock strut can be completely neglected,
the tire force~leflection relationship can be assumed to be Lincar,
and the lower or unsprung mass can be taken equal to zero.
Generalization of the equations of motion for this simplified
system shows that the behavior of the system is completely
determined by the magnitude of one parameter, numdy the
dimensionless initial-velocity parameter. Solutions of thesc
generalized equations are presenfed in terms of dimeasionless
variables for a wide range of landing-gear and impact parameters
which may be wuseful for rapidly estimating landing-gear
performance in preliminary design.

1 Supersedes NACA TN 2753, “Analysis of Landing-ticar Behavior” by Benjamin Milwitzks and Franeis E, Cook, 1932,

287R46—N4—1
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INTRODUCTION

The shock-absorbing characteristics of airplane landing
gears are normally developed largely by means of extensive
trial-and-error drop testing. The desire to reduce the ex-
pense and time required by such methods, as well as to pro-
vide a more rational basis for the prediction of wheel-inertia
drag loads and dynamic stresses in flexible airframes during
landing, emphasizes the need for suitable theoretical methods
for the analysis of landing-gear behavior. Such theoretical
methods should find application in- the design of landing
gears and complete airplane structures by permitting

(a) the determination of the behavior of a given landing-
gear configuration under varying impact conditions (velocity
at contact, weight, wing lift, ete.)

(b) the development of a lamhng-o'ear configuration to
obtain a specified behavior under given impact conditions

(¢) a more rational approach to the determination of wheel
spin-up and spring-back loads which takes into account the
shock-absorbing characteristics of the particular landing gear
under consideration

(d) improved determination of dynamic loads in flexible
airplane structures during landing. This problem may be
treated either by calculating the response of the elastic sys-
tem to landing-gear forcing functions determined under the
assumption that the airplane is a rigid body or by the simul-
taneous solution of the equations of motion for the landing
gear coupled with the equations representing the additional
degreas of freedom of the structure. Inmany cases the former
approach should be sufficiently accurate, but in some
instances, particularly when the landing-gear attachment
points experience large displacements relative to the nodal
points of the flexible system, the latter approach, which takes
into account the interaction between the deformations of the
structure and the landing gear, may be required in order to
represent the svstem adequately.

Since many aspects of the landing-impact problem are so
intimately connected with the mechanics of the landing gear.
the subject of landlng-trear behavior has received analytical
treatment at various times (see bibliography). Many of
the earlier investigations, in order to reduce the mathematical
complexity of the analysis, were limited to consideration of
highly simplified linear systems which have little relation to
practical landing gears. Some of the more recent papers
consider, with different degrees of simplification, more real-
istic nonlinear systems. The present report represents an
attempt at a more complete analysis of the mechanics of
practical landing gears and, in addition, investigates the im-
portance of the various elements which make up the landing
gear, as well as the extent to which the system can be reason-
ably simplified for the purpose of rapid analysis.

The basic analysis is presented in a general form and takes
into account such factors as the hvdraulic (velocity square)
resistance of the orifice, the forces due to air compression and
internal friction in the shock strut, the nonlinear force-
deflection characteristics of the tire, the wing lift, the inelina-
tion of the landing geur and the effects of wheel spin-up drag
lowds.  An evaluation of the applicability of the analysis to
actual landing gears is presented for the case of a vertical
landing gear in the absence of drag loads by comparing cal-
culated results with drop-test dnta.

Since some parameters, such as the dynamic force-
deflection characteristics of the tire, the orifice discharge
coefficient, and the polytropic exponent for theair-compression
process, may not be accurately known in practical design
problems, a study is made to nssess the effects of variations
in these parameters on the calculated landing-gear hehavior.

Studies are ulso presented to evaluate the extent to which
the dvnamical system can be simplified without greatly in-
pairing the validity of the calculated results. In addition to
the investigations for specific cases, generalized solutions for
the behavior of n simplified system are presented for a wide
range of landing-gear and impuct parameters which may be
useful in preliminary design.

SYMBOLS

‘A, pneumatic area

A, hydraulic area .

A, area of opening in orifice plate

A, internal cross-sectional aren of shock-strut inne
cvlinder

A, external cross-sectional arca of shock-strut inne
evlinder

A, cross-sectional area of metering pin or rod o
plane of orifice

A, net orifice area

C, orifice discharge coefficient

d overall diameter of tire

F, pneumatic foree in shock strut

' hydraulic foree in shock strut

F, friction force in shock strut

Fy total axial shock-strut foree

F, “normal force on upper beaving (attacked to inne
cvlinder)

F, normal foree on lower bearing (attached to onte

evlinder)

Fy, force normal to axis of ~Im« & steat. applied o
axle
Fy, vertieal foree, applied at axle
Fu, horizontal foree, applied at axle
Fp, resultant foree, applied at axle
S force parallel to axis of shock strut, npp]lv(l 1
‘ ©tire at ground
Fy, force normal to axis of shock strut, applied 1
tire at ground
Fy, vertical foree, applied to tire at ground
F,,, horizontal foree, applied to tive at ground
Fg, resultant foree, applied to tive at ground
g gravitational constant
K, . lift factor, LW
L lift force
L axial distance between upper and lower bearing
for fully extended shock strut
ly axinl distance between axle and lower bearir
{(attached to outer evlinder). for fully o
tended shock strat
abom,r constants corresponding to the various regin
of the tire-deflection process
a combined constant, ad
m’ combined constant, md”
n polvtropic exponent {or air-compression proee:

in shock strut
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R Reynolds number

Da air pressure in upper chamber of shock strut

P hydraulic pressure in lower chamber of shock
strut

Q volumetric rate of discharge through orifice
Iy radius of deflected tire

8 shock-strut axial stroke

T wheel inertia torque reaction

¢ time after contact

T time after beginning of shock-strut deflection
v air volume of shock strut

I, polar moment of inertia for wheel assembly
about axle

Ty vertical velocity

U horizontal velocity

W total dropping weight

W, weight of upper mass above strut

", weight of lower mass below strut

Ta horizontal displacement of lower mass from
position at initial contact

b vertical displacement of upper mass from posi-
tion at initinl contact

2 vertical displacement of lower mass from posi-

tion at initia] contact

u, - dimensionless upper-mass displacement from

position at initial contact
Us dimensionless lower-mass displacement from

position at initial contact
7 dimensionless shock-strut stroke, u,—.
] dimensionless time after contact

“angle between shock-strut axis and vertical
Tmar
u,”
1 shock-strut effectiveness, 22,
. UL mazTmar
f‘ ;Z;,; (IU]
Mg landing-gear effectiveness, A
1 muzulmaz

« time interval in numerical integration procedures
u coefficient of friction between tire and runway
™ cocficient of friction for upper bearing {attached

to inner cylinder)
™ coefficient of fiiction for lower bearing (nttaclu-(l

to outer cvlinder)
p mass density of hydraulic fluid
a angular acceleration of wheel
Axcs:
z vertical axis, positive downward
z horizontal axis, positive rearward
Subseripts:
0 at instant of initial contact
T at instant of initial shock-strut deflection
su at instant of wheel spin-up
mar maximum value
Notation:
1O absolute value of ()
()* estimated value of ()

The use of dots over symbols indicates differentiation with
respect to time t or 7.

Prime marks indicate differentiation
dimmensionless time 8.

with respeet to

MECHANICS OF LANDING GEAR
DYNAMICS OF SYSTEM

In view of the fact that landing-gear performance appears
to be relatively unaffected by the elastic deformations of
the airplane structure (see, for example, refs. 1 and 2) par-
ticularly since in many cases the main gears are located
fairly close to the nodal points of the fundumental bending
mode of the wing, that part of the airplane whicli acts on »
given gear can generally be considered as a rigid mass.
As a result, landing-gear drop tests are often conducted in
a jig where the mass of the airplane is represented by a
concentrated weight.  In particular instances, however, such
as in the case of airplanes having large concentrated masses

_disposed in an outboard position in the wings, especially

airplanes equipped with bicyele landing gear. consideration
of the interaction between the deformation of the airplane
structure and the landing gear may be necessary to repre-
sent the system adequately.

Since the present report is concerned primarily with the
mechanies of the landing gear, it is assumed in the analysis
that the landing gear is attached to a rigid mass which has=
freedom only in vertical translation.  The gear is assumed
infinitely rigid in bending. The combination of airplane
and landing gear considered therefore constitutes a system
having two degrees of freedom (see fig. 1)) as defined by
the vertical displacement of the upper mass and the vertical -
displacement of the lower or unsprung mass, which is also
the tire deflection.  The. strut stroke « is determined by
the difference between the displacements 2, and = and, in
the case of inclined gears, by the angle ¢ between” the axis
of the strut and the vertical.  For inclined gears, compression
of the shock strut produces a hovizontal displacement of the
axle ro.  From consideration of the kinematies of the svstem

it can be scen that s="—2% and sy=x~sin ¢={(5,— 2)tan ¢.
cos ¢

In the analysis, external lift forees, corresponding to the
aerodyvnunie Tift, are assumed to act on the system through-
out the impact. In addition to the vertical forees, arbitrary
drag l()mls are considered to act between the tire and the
ground.

The svstem treated in the analysis may therefore be con-
sidered to represent either a landing-gear drop test in a jig
where wing lift and drag loads are simulated, or the landing
impact of a rigid airplanc if rotational motious are neglected.
Rotational freedom of the airplane, where significant, may
be taken into account approximately by use of an appro-
priate effective mass in the analysis.

Figure 1 (b) shows a schematic representation of a typical
oleo-pucumatic shock strut used in American practice.  The
lower chamber of the strut contains hivdraulic fluid and the
upper chamber contains air under pressure.  The outer eyl-
inder of the strut, which is attached to the upper mass,
contains a perforated tube which supports a plate with a

 small orifice, through which the hydraulie fluid is forced to

flow at high velocity as a result of the telescoping of the
strut.  The hydeaulic pressure drop across the orifice thus
produced resists the closure of the strut, and the turbulene.
created provides a powerful means of absorbing and dix-
sipating a large part of the impact energy. In sonwe strats
the ortlice area is constant; whereas, in other eases a metering
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(o)

(a) System with two degrees of freedom.

w (amz) 100 9
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(1) Schematie representation of shock =trut.

Fiavre 1.—Dynamical system considered in analgsis.

pin or rod is used to control the size of the orifice and govern
the performance of the strut. :

The compression of the strut produces an increase in the
air pressure which also resists the closure of the strut.  In
figure 1 (b) p, represents the oil pressure in the lower chamber
and p, represents the air pressure in the upper chamber.

In addition te the hydraulic resistance and air-pressute
forces, internal bearing friction also contributes forees which
cun appreciably affect the behavior of the strat.

The-forees ercated within the strut impart an acceleration
to the upper mass and also produce an aceeleration of the
lower mass and a defleetion of the tire.  Figure 1 (¢) shows
the balanee of forees and reactions for the wheel, the mner
exlinder, and the outer evlinder. Tt is clear that the steut

and the tire mutually influence the behavior of one another
and must be considered simultancously inanalyzing thesystem,
FORCES IN SHOCK STRUT
From consideration of the pressures neting in the shock
strut it can be readily seen from figure 1 (b) that the total
axial foree due to hyvdraulie resistanee, air compression, and
bearing friction can be expressed by

Fo= (i~ )+ p =)+, + Fo

where

A4 intemal eross-seetional aren of inner exlinder

R external eross-sectional arven of inner exlinder

.1, cross-sectional arca of metering pin or vod in plane

of orifice
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74
Moment 1

r -

Hy \

“ y Cne2
N ] S*cos e

Forces on inner cylinder

(c)

oy

[ I N i e

Forces on wheel
(c) Ralance of forees and reactions for landing-gear compouents.

Fratre 1.—Concluded.
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This expression can also be written as
Fs=(pr—pa) (41— A,) +pocds+ F
= (pa—pa)Art pactat+ F

=F)+F.+F, (1)
where
Pn—pa pressure drop across the orifice
Ay hydraulic area (4;—., for the strut shown in fig. 1)
A, pneumatic area (A, for the strut shown in fig. 1)

In this report the terms (py—2.)<1s and p..i, are referred
to as hydraulic force F, and pneumatic force F,, respec-
tively. For the strut shown in figure 1, the hydraulic
and pneumatic areas are related to the strut dimensions as
previously noted. In the case of struts having different
internal configurations, the hydraulic and pneumatic areas
may bear somewhat different relations to the dimensions
of the strut. In such cases, however, consideration of the
pressures acting on the various components of the strut
should permit these areas to be readily defined.

Hydraulic force.—The hydraulic resistance in the shock
strut vesults from the pressure difference associated with the
flow through the orifice. In a landing gear the orifice area
is usually small enough in relation to the diameter of the
strut so that the jet velocities and Reynolds numbers are
sufficiently large that the flow is fully turbulent. As a
result the damping force varies as the square of the tele-
scoping velocity rather than linearly with the velocity.
Since the hydraulic resistance is the major compouent of
‘the total shock-strut force, viscous damping cannot be
reasonably assumed, even though such an assumption
would greatly simplify the analysis.

The hydraulic resistance can be readily derived by making
use of the well-known equation for the discharge through
an orifice, namely,

Q= CdA»\/% (Pr—P0)
where

€ volumetric rate of discharge
C;  coefficieat of discharge
A, netorifice area '
p»  hydraulic pressure in lower chamber -
Pe  aiv pressure in upper chamber
P mass density of hydraulic fluid
From cousiderations of continuity, the volumetrice rate of
discharge can also be expressed-as the product of the tele-
scoping veloeity § and the hydraulic area 3,

Q=Ayi

Equating the preceding expressions for the discharge per-
mits writing the following simple equation for the pressure
drop across the orifice

‘o

_ pebils
L (% W

The hydraulic resistanee F, due to the telescoping of the
strut is given by the product of the differential pressure

Pr—pa 8nd the area A, which is subjected to the hydraulic
pressure, as previously noted. Thus
A3,

FA=J—"—2 &2 )

2(Cacdn)
Equation (2) can be made applicable to both the compres-
sion and elongation strokes by introducing the factor ——:—
to indicate the sign of the hydraulic resistanee; thus

Al __"9_ p Ay’ L2 by
=R BHCAY (2}

The net orifice aven A, may be either n constant or, when a
metering pin is used, can vary with strut stroke; that is,
A,=d,—A,=4,(s), where 4, is the area of the opening in
the orifice plate and A, is the area of the metering pin in the
plane of the orifice. At the present time there appears to be
some tendency to eliminate the metering pift and use a con-
stant orifice arca, particularly for Jarge airplanes, in which
case A,=A, In the general case, the orifice discharge
coefficient might be expecied to vary somewhat during an
impact because of changes in the size and configuration of
the net orifice area, changes in the exit conditions on the
downstream face of the orifice due to variations in the amount
of hydraulie fluid above the orifice plate. changes in the entry
conditions due to variations in the length of the flow chamber
upstream of the orifice, and because of variations in the

- Revnolds number of the flow, so that, in general, Co=Cyix, ).

Although the individual effeets of these Tactors on the dis-
charge cocfficients for orifices in shock struts have not been

“evaluated, there is some experimental evidence to indicate

appreciable variations of the discharge coeflicient during
impact, particularly in the case of struts with metering pins,
It might be expected that such variations would be con-
siderably smaller for gears having n constant orifice area.

In order to evaluate the precision with ahich the orifice
discharge cocflicient has to be known. a brief study is
presented in a subsequent seetion which shows the effeet of
the discharge ceefficient on thie caleulated behavior of a
landing gear with a constant orifice arca. under the assump-
tion that the discharge cocfficient is constant during the
impact.

The foregoing discussion has been concerned primarily with
the compression stroke of the shock strut. Most struts
incorporate some form of pressure-operated rebound cheek
valve, sometimes ealled a snubber valve, which comes into
action aftor the maximum stroke has been attained anul eloses
off the main orifiee as soon as the strut begins to clongate, so
that the fluid is foreed to return to the lower chamber through
small passages.  The action of the snubber valve introduces
greatly inereased hvdraulie resistanee to dissipate the energy
stored in the strat in the form of air pressure and to prevent
excessive rebound.  The produet €, to be used i equation
(22) during the clongation stroke is gonerally uneertain, - The
exact area A, during clongation is usually somewhat diffienlt
to define from the geometry of the strut sinee in many eases
the number of conneeting passages varies with stroke and the
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leakage area around the piston may be of the same order of
magnitude as the area of the return passages. Furthermore,
the magnitude of the orifice discharge coefficient, and even
possibly the nature of the resistance, are questionable due to
the foaming state of the returning fluid. Fortunately, the
primary interest is in the compression process rather than
the elongation process since the maximum load always occurs
before the maximum strut stroke is reached.

Pneumatic force.—The air-pressure force in the upper
chamber is determined by the initial strut inflation pres-
sure, the area subjected to the air pressure (pneumatic area),
and the instantaneous compression ratio in accordance

with the polvtropic law for compression of gases, namely .

p.o"=Constant, or

P a.= pao(gvﬂ)
where

p.  air pressure in upper chamber of shock strut

Peo  8ir pressure in upper chamber for fully extended strut
v gir volume of shock strut :

) air volume for fully extended strut

Since the instantaneous air volume is equal to the difference
between the initial air volume and the product of the stroke

"
and pneumatic area A, Pa= D v—g%l.?) . The force due
anc —

/

to the air pressure is simply the product of the pressure and
the pneumatic area:

Fo=pe,Aa (ﬁﬁ) (3)

In the preceding equations, the effective polytropic
exponent n depends on the rate of compression and the rate
of heat transfer from the air to the surrounding environment.
Low rates of compression would be expected to result in
values of n approaching the isothermal value of 1.0; whereas
higher values of n, limited by the adiubatic value of 1.4,
would be expected for higher rates of compression. The
actual thermodynamic process is complicated by the violent
~ mixing of the highly turbulent efflux of hydraulic fluid and
the air in the upper chamber during impact. On the one
hand, the dissipation of energy in the production of turbu-
lence generates heat; on the other hand, heat is absorbed by
the aeration and vaporization of the fluid. The effect of this
mixing phenomenon on’ the polytropic exponent or on the
equivalent air volume is not clear. A limited amount of
experimental data obtained in drop tests (refs. 3 and 4),
however, indicates that the effective polytropic exponent
may be in the neighborhood of 1.1 for practical cases. A
brief study of the importance of the air-compression process
and the effeets which different values of # may have on the
caleulated behavior of the landing gear is presented in a
subsequent seetion.

Internal friction force.—In the literature on machine de-
sign the wide range of conditions under which frictional
resistance can ocenr between sliding surfaces is generally
classificd in three major categories, namely, frietion between
dry surfaces, friction between imperfeetly lubrieated surfaces,
and friction between perfectly lubrieated surfaces. In the

case of dry friction, the resistance depends on the physical
characteristics of the sliding surfaces, is essentially propor-
tional to the normal force, and is approximately independent
of the surface area. The coefficient of friction g, defined as
the ratio of the frictional resistance to the normal force. is
generally somewhat greater under conditions of rest (static
friction) than under conditions of sliding (kinetic friction).
Although the coefficient of kinetie friction generally de-
creases slightly with increasing velocity, it is usually con-
sidered, in first approximation, to be independent of velocity.
If, on the other hand, the surfaces are completely separated
by a fluid film of lubricant, perfect lubrication is said to exist.
Under these conditions the resistance to relative motion
depends primarily on the magnitude of the relative velocity.
the physical characteristics of the lubricant, the area, and

_the film thickness, and is essentially independent of the

normal force and the characteristics of the sliding surfaces.
Perfect lubrication is rarely found in practice but is most
likely under conditions of high velocity and relatively small
normal pressure, where the shape of the sliding surfaces is
conducive to the generation of fluid pressure by hydro-
dynamic action. In most practical applications involving
lubrication, a state of imperfect lubrication exists and the
resistance phenomenon is intermediate between that of dry
friction and perfect lubrication. -

In the case of landing-gear shock struts. the conditions
under whicl internal friction is of concern ugually invelve
relatively high normal pressures and relatively small sliding
velocities. Moreover, the usual types of hydraulic fluid
used in shock struts have rather poor lubricating properties,
and the shape of the bearing surfaces is generally not con-
ducive to the generation of hydrodynamic pressures. Tt
would therefore appear that the lubrication of shoek strut
bearings is, at best, imperfeet; in fact, the conditions appear
to approach closcly those for dry friction. In the present
analysis, therefore, it is assumed. in first approximation, that
the interial friction between the bearings and the evlinder
walls follows laws similar to those for dry friction; that is,
the friction foree is given by the product of the normal foree
and a suitably chosen coefficient of friction.

With these assumptions the internal friction forces pro-
duced in the strut depend on the magnitude of the forces on
the axle, the inclination of the gear, the spacing of the bear-
ings, and the coefficient of friction between the bearings and
the eylinder walls. ~ Figure 1(e) schematically illustrates the

halance of forces acting on the various components of the

landing gear. The total axial friction in the shock strat is

the sum of the friction forces contributed by ench of the

bearings: ]

Fr=rgg Gl Fil 4wl Fa)

where

F, axial friction force

w cocflicient of friction for upper bearing (attached to
inner evlinder)

F,  normal foree on upper hearing (attached to” inner
eviinder)

pe  cooflicient of friction for lower bearing (attached to
outer evlinder)
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F. normal force on lower bearing (attached to outer
evlinder)

factor to indicate sign of friction force

@*-

l
During the interval prior to the beginning of shock-strut
motion the friction forces depend on the cocflicients of static
friction; after the strut begins to telescope the coefficients of
kinetie friction apply.

From considerations of the balance of moments it can be
seen from figure 1(c) that

l

_ 12-—3
Fi="Fy, 11+3>
and
F= I3 -i-s+ l)
so that ’
F=2|F I[(u ) F @)
=gy vl [t g
where :
Fy,=Fy, sin ¢—Fy, cos ¢ (4a)
and

Fy, force normal to strut applied at axle
Fy, vertical force applied at axle
Fy, horizontal force applied at axle

¢ angle between strut axis and vertieal .

A axial distance between upper and lower bearings, {or
- fully extended strut

la axial distance between.axle and lower bearing (uttn( hed

to outer cylinder), for fully extended strut

The quantities Fy,, Fy,, and Fy, are forces applied at the
axle and differ from “the gxound reactions by damounts equal
to the inertia forces corresponding to the respective aceelera-
tion component of the lower mass.  Sinee the inner evlinder
generally represents only a relatively small fraction of the
lower mass, the lower mass may reasonably be assumed to b
concentrated at the axle. With this assumption, the rela-

tionships between the forces at the axle and the forees at the

ground are given by

‘ = M - "’ .
Iy —(Fv ? 23—” 2) FH,‘=([’"‘—‘~;-: .l‘g)

The normal foree at the axle can therefore be expressed in
terms of the ground reactions and the component accelera-
tions of the Tower mass by

rv —(rv +L‘j 23—]‘ )Sl" ¢—‘(P” Z’j -2) o3 ¢ (4[))
where ‘
Iy, vertical force applied to tire at ground

F, horizontal force upplicd to tire at ground
LK .
Wy effective mass below shoek strut, assumed coneentrated

g at axle
#a  horizontal geceleration of axle
2, vertical aceeleration of axle

In the case of an inclined landing gear having infinite stiff-
ness in bending, the horizontal displacement of the lower mass
sisrelated to the vertical displacements of the upperand lower

masses by the kinematic relationship r:=(z,—2)tan . as
previously noted. Double differentiation of this relation-
ship gives z,=(2,—2,) tan ¢. Substitution of this expression
into equation (4b) gives

F'N,,=Fv' sin ¢— Fy  cos ¢+Hg—2 #sin e—Wasing (40

In equation (4c) the quantity 2, sin ¢ represents the ac-
celeration of the lower mass normal to the strut axis when the
gear is rigid in bending. In the case of a gear flexible in
bending, the normal acceleration of the lower mass is not
completely determined by the vertical acceleration of the
upper mass and the angle of inclination of the gear. 1If it
should be necessary (o take into account. in particular caszes,
the effects of gear flexibility on the relatiouship between the
normal force on the axle and-the ground reactions, the gquan-
tity %, sin ¢ in equation (4c) may be replaced by estimated
values of the actual normal acecleration of the lower mass as
determined from consideration of the bending response of the
gear to the applied forces normal to the gear axis.  The effects
of gear flexibility are not considered in more detail in the
present analyvsis.

FORCES ON TIRE

Figure 2 (a) shows dynamic foree-deflection -charneteris-
tics for & 27-inch smooth-contour (type D) tire inflated to 32
pounds per square inch. These characteristics were deter-
mined from time-history meastrements of vertical ground
force and tire deflection in landing-gear drop tests with o
nonrotating wheel at several vertical velocities.  As can be
seen, the tire compresses along one curve and nnloads along
another, the hysteresis loop m(h('ntnw appreciable energy
dissipation in the tire. There is some question as to whether
the amount of hysteresis would be as great if the tire were
rotating, as in a landing with forward speed.  The foree-
deflection curve for a velority of 11.63 feet per second is for
a severe impact in which tire bottoming occurs and shows
the sharp increase in foree with deflection subsequent to
bottoming. . .

In figure 2 (b) the same force-deflection characteristics
are shown plotted on logarithmic coordinates. s can be
scen, the force exhibits an exponential variation with deflee-

‘tion. A systematized representation of the force-deflection

relationiship can therefore be obtained by means of simple
equations having the form

=a\" N
=mz,,=m' (Z_:) 5
2 ([ ( )
where

Fyv, vertical force, applied to tire at ground

Za vertical displacement of lower mass from position at
initial contact (radial deflection of tire)

d overall dinmeter of tire

m,r constants corresponding to the vavious regimes of the
tire-deflection process

’ combined constant, ned”

m
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It may be noted from figure 2 that essentially the same
force-deflection curve holds during compression for all impact
velocities, up to the occurrence of tire bottoming, and that in
figure 2 (b) the slopes of the curves in each of the several
regimes of the tire-deflection process are also indeépendent of
velocity, except in the compression regime following tire
bottoming.

Figure 2 also shows simple approximations to the tire
characteristics which were obtained by fitting straight-line
segments (long-dashed lines) to the actual force-deflection
curves in figure 2 (a) for impacts at 8.86 and 11.63 feet per
second. These approximations, hereinafter referred to as
linear-segment approximations, are included in a study,
presented in a subscquent section, to evaluate the degree of
accuracy required for adequate representation of the tire
characteristics.  The various representations of the tire
characteristics considered and the pertinent constants for
each regime of tire deflection are shown in figure 3.

* EQUATIONS OF MOTION

The internal axial foree Ky produced by the shock strut
was shiown in a previous section to he equal to the sum of the

hydraulic, pncumatic, and friction forees, as given by
equation (1). Since these forees act along the axis of the
strut, which may be inelined to the vertieal by an angle ¢,
the vertieal component of the axial shock-strut foree is given
by Fg cos . The vertical component of the foree normal
to the shock strut is given by Fy. sin ¢. These forces act
in conjunction with the lift force and weight to produce an
acceleration of the upper mass. The cquation of motion
for the upper mass is

Fgcos ¢4 Fi, sin ¢+L—li.'.= ——%' z

(6)

The vertical components of the axial and normal shock-
strut forees also aet, in conjunction with the weight of the
lower mass, to produce a deformation of the tire and an
acceleration of the lower mass.  The equation of motion
for the lower mass is

Fscos ¢+ Fy, sin ¢+u'._,—}12 Zr=Fe () (")

where the vertieal ground reaction l"‘-‘ 15 expressed as n
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Ficure 3.—Tire characteristies considerced in solutions (logarithmic cvordinates).

function of the tire deflection z,. The relationship between
Fv. and z, has been discussed in the previous section on tire
characteristics.

By combining equations (6) and (7), the vertieal ground
force can be written in terms of the inertia reactions of the
upper and lower masses, the lift force, and the total weight.
The overall dynamic equilibrium is given by ‘

W,

Fryed=—"0 520

2,—L4+W 8

B—

: MOTION PRIOR TO 8HOCK-STRUT DEFLECTION

Conventional oleo-pncumatic shock struts are inflated
to some finite pressure in the fully extended position. Thus
the strut does not begin to deflect in an impact until sufficient
force is developed to overcome the initial preloading imposed
by the air pressurc and internal friction. Since the strut is
effectively rigid in compression, as well as in bending,
prior to this instant, the system may be considered to have
only one degree of freedom during the initial stage of

the impact. The equations of motion for the one-degree-o
freedom system are derived in order to permit determinatiol
of the initial conditions required for the analysis of th
landing-gear behavior subsequent to the beginning of shock
strut deflection. ‘

" Since 2,=3,=32 during this first phase of the impact
equation (8) may be written as

Fo (== 3= WK~ )
where

L
KL=‘—‘7

For the general case of an exponential relationship betwee
vertical ground force and tire deflection, cquation (3) applu
and the equation of motion becomes

-‘gl Shma+ WK, —1)=0 (1
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The shock strut begins to telescope when the sum of the inertia, weight, and lift forces becomes equal to the vertical

components of the axial and normal shock-strut forces.

At this instant ¢,, Fs=Fo + F, and equation (6) can be written as

(Fa +F,,)(03¢+F~ sin o+ K, 171

5 7 (11)
V4
where
e, initial air-pressure preload force, po .1,
F,, static friction at instant £,
At the instant #,, s=0 and equation (4) becomes 7
: F,=Fy, K, . {11n)

where

Kﬂ=[(p.+m) 5—?+#::|

Since the strut is assumed essentially rigid in compression (and also ngul in bending), there is no l\mnmntu displace-
ment of the lJower mass in the horizontal direction up to the beginning of shock-strut deflection, so that #;=0 and equation

and g; and u; are coeflicients of static friction.

(4b) becomes

Fha =(Fv,7+ "

¢ z2,—0N 2> sin 5a-F,,‘r cos ¢

(11

Incorporating equations (11a), (11b). and (9) into equation (11) gives

Fop— (£ Ky sin p—cos o) (K, W —T7)—

Fy (:I':K,.(:OSqa-f-sin‘p\

2= n 1,

In equation (12) wherever the 1 sign appears, the plus signs
apply when Fy_ >0 and the minus signs apply when F-Va,<0'

From equation (10) the vertical displacement of the system

at the instant t, is given in terms of the corresponding

acceleration by
{¥14
z —{m[ﬂ (I—KL)——— } (13)

Integrating equation (10) and noting that z=0 provides
the relationship between the vertical velocity and the
vertical displacement of the system at the beginning of
shock-strut deflection

T T o et
e |

In view of the fact that the tire force-deflection curve is
essentially linear for small deflections, it may be reasonably
assumed that r=1 for the purpose of determining the time
after contact at which the strut begins to telescope. With
this assumption t, can be determined from the relationship

J"vdz f‘v . dz
OJ., 2[m
Zq 3

] LA II'(KL—l)z]

(12

(£ K, sin ¢—cos ¢)

where the general expression for the vartable 7 is obtained
from equation (14) without the subseripts r. Performing
the indicated integration gives

[ t,=\/W gsm‘l C1—Kp)—=in~ ‘C[(l— V) — mz ':l? 31

where
C= g
‘\,/20 ”""[(I—I\L)Ql

The computation of ¢, can be greatly simplifiecd by use ot

the following approximation which assumes a linear relation-

ship between velocity and time;

_ 2z
Zoti.

(15a)

Equation (15a) should be a fairly good approximation in
view of the relatively short time interval between initial con-
tact and the beginning of shock-strut motion.

Equations (12}, (13), and (14) permit the determination
of the vertical acceleration, displacement, and velocity, re-
spectively, of the system (upper and lower masses) at the
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beginning of shock-strut deflection. Equation (15) or (15a) permits caleulation of the time interval between initial contact
and this instant. These equations provide the initial conditions required for the analysis of the behavior of the landing
gear as 4 system with two degrees of freedom after the shock strut begins to deflect.

If drag loads are considered, the solution of equation (12) requires knowledge of the horizontal ground foree Fp at
the instant f.. Since the present analysis does not explicitly treat the determination of drag loads. values of Fy have
to bhe estimated, cither from other analytical considerations, experimental data, or on the basis of experience.

MOTION SUBSEQUENT TO BEGINNING OF SHOCK-STRUT DEFLECTION

Onece the sum of the inertia, weight, and lift forces becomes sufficiently large to overcome the preloading foree in the
shock strut due to initial air pressure and internal friction, the shock strut cun deflect and the system hecomes one having
two degrees of freedom. Incorporating the expressions for the hydraulic, pneumatic, and friction forces (eqs. (2ar. (3,
and (4)) into equation (6) permits the equation of motion for the upper mass to be written as follows:

W, - -;?‘ PAAS . Lo " 2 . lh—+ ) e - - AR _ .
ki {m EICGOWE 824 Pagda (;m) + m\p-\'J (u1+p2) l—.'j%——s+“2]f cos p+ K W — Wi+ Fy, sin ¢=0 (11
where
‘=21—22
"7 cos e
‘.S_Z]—Z_v
oS ¢

and, since Fy? =Fy (22, equation (4¢) becomes
. Wa. . -

Fy, = F"l(:_,)sm ¢— Fy, cos ¢+? Yising—Wysing
where Fy (z3) Is determined from the force-deflection characteristics of the tire. For the usual type of pneumatic tire.
F 1-,(:2')=m =", as previously noted.

Similarly, the equation of motion for the lower mass follows from equation (7):
o2 Co " 3 1Fo | . l,—= , — - '
8+ pagle \ T + o Pyl (uimad “tu |§ cos ¢4 Fu (20— Fy,sin ¢ —110=0
o<

'14“ S 1T

P A

LI __{i 15
P &2 lkl‘_’((',,;i,,)) (14)
T

he overall dynamic equilibrium equation is still, of course, as given by equation (8)
AR { R g .
- :|+';7 23+ 1§ (I\L— 1)+ P‘-K( ?g)zﬂ
> >

Any two of the preceding equations (egs. (16), (17), and SOLUTION OF EQUATIONS OF MOTION

(8)) are sufficient to describe the behavior of the landing

ew X In the general ease the analysis of a landing gear involves
gear subscquent to the beginning of shock-strut motion.

the solution of the cquations of motion given in the section

These equations may be used to calculate the behavior of a
given landing-gear configuration or to develop orifice and
metering-pin characteristics required to produce a specified
behavior for given impact conditions. They may also be
used as 8 basis for the calculation of dynamic loads in Hexible
airplane structures either by (a) determining the landing-
gear forcing function’ under the assumption that the upper
mass is a rigid body and then using this forcing function to
calculate the response of the elustic system or (b) combining
the preceding equations with the cquations representing the
additional degrees of freedom of the structure; the simul-
taneous solution of the equations for such n system would
then take into account the interaction between the defoima-
tion of the structure and the landing gear.

entitled “Motion Subsequent to the Beginning of Shock-
Strut Deflection,” with the initial conditions taken as the
conditions of motion at the beginning of shock-strut deflee-
tion, as determined in accordanee with the initial impact
conditions and the equations given in the section entitled
«“\otion Prior to Shock-Strut Deflection.”

NUMERICAL INTEGRATION PROCEDURES

In view of the fact that the equations of motion for the
landing gear subsequent to the beginning of shock-strut
deflection are highly nonlinear, analytical solution of these
cquations does not appear feasible. In the present report,
therefore, finite-difference methods are resorted to for the
step-hy-step integration of the equations of motion, Al-
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though such numerical methods lack the generality of ana-
Iytical solutions and are especially time consuming if the
calculations are carried out manually, the increasing availa-
bility of automatic calculating machines largely overcomes
these objections.

Most of the solutions presented in this report were obtained
with a procedure, hereinafter referred to as the “linear pro-
cedure,” which assumes changes in the motion variables to
be linear over finite time intervals. A few of the solutions
presented were obtained with a procedure, hereinafter referred
to as the ‘‘quadratic procedure,’” which assumes a quadratic
variation of displacement with time for successive intervals.
‘The generalized solutions for the simplified equations dis-
cussed in a subsequent section were obtained by means of
the Runge-Kutta procedure. The application of these
procedures is described in detail in appendix A.

USE OF TIRE FORCE-DEFLECTION CHARACTERISTICS

In order to obtain solutions for particular cases, it is, of
course, necessary to have, in addition to information regard-
ing the physical characteristics of the landing gear, some

knowledge of the force-deflection characteristics of the tire..

If extensive data regarding the dynamic tire character-
istics, such as shown in figures 2 and 3, are available, an
accurate solution can be obtained which takes into account
the various breaks in the force-deflection curves (logarithmic
coordinates), as well as the effects of hysteresis. In view of
the fact that the constants m’ and r have the same values
throughout practically the entire tirc compression process
regardless of the initial impact velocity or the maximum
load attained, these values of m’ and r, as determined from
the force-deflection curves, can be used in the calculation of

the motion subsequent to the beginning of shock-strut deflec-

tion until the first break in the force-deflection curve is
reached prior to the attainment of the maximum force. If
the conditions for the calculations are the same as those for
which force-deflection curves are available, the values of
m’ and r for each of the several regimes subsequent to the
first break can also be determined directly from the force-
deflection curves. In general, however, the conditions will
not be the same and interpolation will be necessary to
estimate the values of m’ for the subscquent regimes.
Such interpolation is facilitated, particularly after the maxi-

mum force-deflection point has been calculated, by the fact .

that each subsequent regime has a fixed value of », regardless
of the initial impact conditions.

The use of the tire-deflection characteristics in the calcula-
tions is greatly simplified if hysteresis is neglected since the
values of m’ and r which apply prior to the first break in the
force-deflection curves are then used throughout the entire
calculation, except in the case of severe impacts where tire
bottoming occurs, in which casc new values of m’ and r arc
employed in the tire-bottoming regime. A similar situation
exists with respect to the constants a’ and b when the lincar
approximations which neglect hysteresis are used. These
simplifications would normally be employed when only the

287846—54-—-3

tire manufacturer’s static or so-called impact load-deflection
data are available, as is usually the case.

EFFECT OF DRAG LOADS

Although the present analysis permits taking into account
the effects of wheel spin-up drag loads on the behavior of the
landing gear, the determination of the drog-load time history
is not treated explicitly. Thus, if it is desired to consider the
effects of the drag load on the gear behavior, such as in the
case of & drop test in which drag loads are simulated by
reverse wheel rotation or in a landing with forward speed. it
is necessary to estimate the drag load, either by means of
other analytical considerations or by recourse to experimental
data. As a first approximation the instantaneous drag force
may be assumed to be equal to the vertical ground reaction
multiplied by a suitable coefficient of friction g; that is.
Fg,=Fyu,up to the instant when the wheel stops skidding,
after which the drag force may be assumed equal to zero.
(The current ground-loads requirements specify a skidding
coefficient of frictiog p=0.55; limited experimental evidence,
on the other hand, indicates that ¢ may be as high as 0.7 or
as low as 0.4.) In some cases experimental data indicate
that representation of the drag-load time history can be
simplified even further by assuming a lincar variation of the
drag force with time during the period of wheel skidding.

The instant at which the wheel stops skidding can be
estimated from the simple impulse-momentum relationship

bw . e 1.V,
[ Fugtima | Fr a="0

where
I, polar moment of inertia of wheel assembly about axle
Vi, initial horizontal veloeity
ra - radius of deflected tire
&. time of wheel spin-up
When' the drag force is expressed in terms of the vertical

¢
force, the value of the integral f Fy, dt can be determined as
0

the- step-by-step calculations proceed and the drag-foree

- term climinated from the equations of motion after the re-

quired value of the ‘integral at the instant of spin-up is
reached.

EVALUATION OF ANALYSIS BY COMPARISON OF CALCULATED
RESULTS WITH EXPERIMENTAL DATA

In order to evaluate the applicability of the foregoing
analytical treatment to actual landing gears, tests were
conducted in the Langley impact basin with a conventional
oleo-pneumatic landing gear originally designed for a small
military training airplanc. A description of the test specimen
and apparatus used is given in appendix B.

In this scction calculated results are compared with ex-
perimental data for a normal impact and a severe impact
with tire bottoming. The vertical velocities at the instant
of ground contact used in the caleulations correspond to
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the vertical velocities measured in the tests. Equations
(12), (13), (14), and (15a) were used to calculate the values
of the variables at the instant of initial shock-strut deflection.
Numerical integration of equations (16) and (17) provided
the calculated results for the two-degree-of-freedom system
subsequent to the beginning of shock-strut deflection.

In these caleulations the discharge coefficient for the orifice
and the polytropic expounent for the air-compression process
were assumed to have constant values throughout the impact.
Consideration of the shape of the orifice and éxamination
of data for rounded approach orifices in pipes suggested
a value of Cy equal to 0.9. Evaluation of data for other
landing gears indicated that the air-compression process
could be represented fairly well by use of an average value
of the effective polytropic exponent n=1.12. In view of
the fact that the landing gear was mounted in a vertical
position and drag loads were absent in the tests, friction
forces in the shock strut were assumed to be negligible
in the calculations. Since the weight was fully balanced
by lift forces in the tests, the lift factor K, was taken equal to
1.0. The appropriate exact tire characteristics (see fig. 3)
were used for each case.

NORMAL IMPACT

Figure 4 presents a comparison of calculated results with
experimental data for an impact without tire bottoming at
a vertical velocity of 8.86 feet per second at the instant of
ground contact. The exact dynamic force-deflection charac-
teristics of the tire, including hysteresis, were used in the
calculations. These tire characteristics are shown by the
solid lines in figure 2 (a) and values-for the tire constants
m’ and r are given in figure 3 (a). , 7

Calculated time histories of the total foree on the upper
mass and the acceleration of the lower mass are compared
with experimental data in figure 4 (a). Similar comparisons
for the upper-mass displacement, upper-mass velocity, lower-
mass displacement, strut stroke, and strut telescoping
velocity are presented in figure 4 (b). As can be seen, the
agreement between the calculated and experimental results
is reasonably good throughout most of the time history.
Some of the minor discrepancies during the later stages of
the impact appear to be due to errors in measurement sinice
the deviations between the calculated and experimental
upper-mass accelerations (as represented by the force on
the upper mass) are incompatible with those for the upper-
mass displacements, whereas the calculated upper-mass dis-
placements are necessarily directly compatible with the
calculated upper-mass accclerations. The maximum value

“of the experimental acceleration of the lower mass may be
‘somewhat high because of overshoot of the accelerometer.

In addition to the total foree on the upper mass, figure
4 (a) presents calculated time histories of the hydraulic
and pneumatic components of the shock-strut force, as
determined from cequations (2) and (3), respectively. 1t
can be seen that throughout most of the impact the foree
developed in the shock strut arises primarily from the hy-
draulic resistance of the orifice. Toward the end of the
impuct, however, because of the decreased telescoping
velocities and fairly large strokes which correspond to high

compression ratios, the air-pressure force becomes larger
than the hyvdraulic force.

IMPACT WITH TIRE BOTTOMING

Figure 5 presents a comparison of caleulated and experi-
mental results for a severe impact (Vy,=11.63 ft per sec)
in which tire bottoming occurred. The tire force-deflection
characteristics used in the caleulations are shown by the
solid lines in figure 3 (b). Region (1) of the tire foree-
deflection curve has the same values of the tire constants
m’ and r as for the case previously discussed. Following
the occurrence of tire bottoming, however, different values
of m’ and r apply. These values are given in figure 3 (b).

It can be seen from figure 5 that the agreement between
the calculated and experimental results for this case is
similar to that for the comparison previously presented.

The calculated instant of tire bottoming is indicated in
figure 5. When tire bottoming occurs, the greatly increased
stiffness of the tire causes a marked increase in the shock-
strut- telescoping velocity, as is shown in the right-hand
portion of figure 5 (b). Since the strut is suddenly foreed to
absorb energy at a much higher rate, an abrupt increase
in the hydraulic resistance takes place. The further incrense
in shock-strut force immediately following the occurrence ol
tire bottoming is evident from the left-hand portion of
figure 5 (8). The sudden increase in lower-mass acceleration
at the instant of tire hottoming can also be seen.

‘In this severe impact the hydraulic resistunce of the orifice
represents an even greater proportion of the total shock-
strut force than was indicated by the caleulated results for
an initial vertical velocity of 8.86 feet per second previously
discussed. ’

The foregoing comparisons indicate that the analytical
treatment presented, in'conjunction with reasonably straight-
forward assumptions regarding the parameters involved in
the ecquations, provides a fairly accurate representation of
the behavior of & conventional oleo-pneumatic landing gear.

PARAMETER STUDIES

In the previous section comparisons of caleulated results
with experimental data showed that the. equations which
have been developed provide a fairly good representation of
the behavior of the landing gear for the impact conditions
considered. In view of the fact that the equations are
somewhat complicated and require numerical values for
several parameters such as the tire force-deflection constants
m’ and r, the orifice discharge coefficient Cy, and the poly-
tropic exponent n, which may not be readily or accurately
known in the casc of practical engincering problems, it
appears desirable (2) to determine the relative accuracy
with which these various parameters have to be known and
(b) to investigate the extent to which the cquations can be
simplified and still vield useful results.  In order to accom-
plish these objectives, calculations have been made to
evaluate the effect of simplifving the force-deflection charae-
toristics of the tire, as well as to deternmine the effeets which
different values of the orifice discharge coefficient and the
effective polytropic exponent have on the caleulated behavior.
The results of these caleulations are discussed in the present
soction. The question of simplification of the equations of
motion is considerad in more detail in w subsequent section.
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REPRESENTATION OF TIRE FORCE-DEFLECTION CHARACTERISTICS

In order to evaluate the degree of accuracy required for
adequate representation of the tire force-deflection charac-
teristics, comparisons are made of the calculated behavior
of the landing gear for normal impacts and impacts with
tire bottoming when the tire characteristics are represented
in various ways. First, the force-deflection characteristics
will be assumed to be exactly as shown by the solid-line
curves in figure 2 (b), including the various breaks in the
curve and the effects of hysteresis. These characteristics
are referred to hereinafter as the exact exponential tire
characteristics. The effects of simplifying the representa-
tion of the tire characteristics will then be investigated -by
considering (a) the exponential characteristics without
hysteresis; that is, the tire will be assumed to deflect and
unload along the same exponential curve, (b) the linear-
segment approximations to the tire characteristics (long-
dashed lines), which also neglect hysteresis, and (c) errors
introduced by neglecting the effects of tire bottoming in the
case of severe impacts, The calculated results presented in
this study make use of the relationships between vertical
force on the tire and tire deflection, as shown in figures
3 (a) and 3 (b).

Figure 6 presents a comparison of the calculated results
for a normal impact at a vertical velocity of 8.86 feet per

second, whereas figure 7 permits comparison of the solutions

for a severe impact, involving tire bottoming, at a vertical
velocity of 11.63 feet per second. In figures 6 and 7 the
solid-line curves represent solutions of the landing-gear
equations when the exact exponential relationships between
force and tire deflection are considered. Since these solu-
tions were previously shown to be in fairly good agreement
with experimental data (figs. 4 and 5), they are used as a
basis for evaluating the results obtained when tire hysteresis
is neglected and the force-deflection characteristics are repre-
sented by either simplified exponential or linear-segment
relationships.

As in the calculations previously described, the solutions
were obtained in two parts. During the first stage of the
impact the shock strut was considered to be rigid until
sufficient force was developed to overcome the initial air-
pressure force. The calculations for the landing-gear behav-
ior subsequent to this instant were based on the equations
which consider the gear to have two degrees of freedom.
Time histories of the upper-mass acceleration calculated on
the basis of a rigid shock strut are shown by the dotted
curves in figures 6 and 7. These solutions show the greatest
rate of increase of upper-mass acceleration possible with
the exponential tire force-deflection characteristics con-
sidered. Comparisori of these solutions with those for the
two-degree-of-freedom system indicates the effect of the
shock strut in attenuating the severity of the impact.

-3.0[ -tor
_2.5 - -8 =

o B ® T
S 3
."-':; -2.01 § -6
8 8
5 5 |
E-ist 5 -af
3 -]
g g
o
2 i 4 I~
g 5
! -1.0F Lo-2r
g H]
s H

B Tire choracteristics considered: - B

Exact exponentiol
-5r —— —— Exponential (no hysteresis) Y
h — ——-—  Linear - segment (no hysteresis)
2R Exponential {rigid strut) -
. 1 1 I 1 1 1 J 1 | 1 1 { L 1 ! ) 1 Il (CL
[o] .04 o8 12 16 : .20 20 04 .08 A2 16 .20

Time ofter contact, sec

(a) Time histories of upper-mass acceleration and lower-mass acceleration.
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Normal impact.—In the case of the normal impact at a
vertical velocity of 8.86 feet per second, figure 6 shows that
the solution obtained with the exponential force-deflection.
variation which neglects hysteresis and the solution with the
linear-segment approximation to the tire characteristics are
- in fairly good agreement with the results of the calculation
based on the exponential representation of the exact tire
characteristics. The greatest differences between the solu-
tions are evident in the time histories of upper-mass and
lower-mass accelerations; considerably smaller differences are
obtained for the lower-order derivatives, as might be ex-
pected. With regard to the upper-mass acceleration, the
three solutions are in very good agreement during the early
stages of the impact. In the case of the simplified exponen-
tial characteristics, neglect of the decreased slope of the
force-deflection curve between the first break and the maxi-
mum (regime (@ in fig. 3 (a)) resulted in the calculation of a
somewhat higher value of the maximum upper-mass acceler-
ation than was obtained with the exact tire characteristics.
For the simplificd exponential and lincar-segment character-
isties, neglect of hysteresis resulted in the calculation of
somewhat excessive values of upper-mass acceleration sub-
sequent to the attainment of the maximum vertical load.
It is of intercst to note that the calculated results for the
exponential and lincar-segment characteristics without hys-
teresis were genefally in quite good agreement with cach
other throughout the entire duration of the impact, although
the assumption of linear-segment tire force-deflection char-
acteristics did result in somewhat excessive values for the
maximum lower-mass acceleration. On the whole, the
simplified tire force-deflection characteristics considered per-
mit ealeulated results to be obtained which represent the

hehavior of the landing gear in normal impacts fairly well.

Impact with tire bottoming.—In the case of the severe
impact at a vertical velocity of 11.63 feet per second, the
effects of tire bottoming on the upper-mass acceleration, the
lower-mass acceleration, and the strut telescoping velocity
are clearly indicated in figure 7 by the calculated results

based on the exact tire characteristics. As can be seen, the

lincar-segment approximation to the tire deflection character-
isties whicli takes into account the effects of tire bottoming
resulted in a reasonably good representation of the landing-
gear behavior throughout most of the time- history. On the
other hand, as might be expected, the calculations which
neglected the effects of bottoming on the tire force-deflection
characteristics did not reveal the marked increase in the
upper-mass acceleration due to the increased stiffness of the
tire subsequent to the oceurrence of bottoming. It is also
noted that the discrepancies in the calculated upper-mass
acceleration due to neglect of hysteresis in the later stages’
of the impact arc more pronounced in this case than in the
impact without tire bottoming previously considered, again
as might be expected. :

EFFECT OF ORIFICE DISCHARGE COEFFICIENT

In view of the fact that there is very little information
available regarding the magnitude of discharge cocfficients
for orifices in landing gears, it appears desirable to evaluate
the effect which differences in the magnitude of the orifice
coefficient can have on the calculated results. Figure 8
presents comparisons of calculated resuits for a range of
values of the orifice discharge cocfficient €y between 1.0
and 0.7. The four solutions presented are for the same set
of initia! conditions as the normal impact without tire
bottoming previously considered and are based on the
exponential tire force-deflection characteristics which neglect
hysteresis.
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These calculations show that a decrease in the orifice dis-
charge coefficient results in an approximately proportional
increase in the upper-mass acceleration. This vari-
ation is to be expected since the smaller “coefficients cor-
respond to reduced effective orifice areas which result in
greater shock-strut forees due to increased hydraulic
resistance. As a result of the increased shock-strut force
acting downward on the lower mass, the maximum upward
acceleration of the lower mass is reduced with decreasing
values of the discharge coefficient. The increase in shock-
strut force with decreasing discharge cocfficient also results

in a decrease in the strut stroke and telescoping velocity but -

an increase in the lower-mass velocity and displacement,
as might be expected. However,. since the increases in
lower-mass displacement and velocity arc smaller than the
decreases in strut stroke and telescoping velocity, the upper-
mass displacement and velocity are reduced with decreasing
orifice discharge coefficient.

These comparisons show that the magnitude of the orifice
coefficient has an important effect on the behavior of the
landing gear and indicates that a fairly accurate determi-
nation of the numerical value of this parameter is necessary
to obtain good results.

EFFECT OF AIR-COMPRESSION PROCESS

Since the nature of the air-compression process in a shock
strut is not well-defined and different investigators have
assumed values for the polytropic exponent ranging any-
where between the extremes of 1.4 (adiabatic) and 1.0

(isothermal), it appcared desirable to evaluate the im-
portance of the air-compression process and to determine the
extent to which different values of the polytropic exponent
can influence the caleulated results.  Conscequently, solutions
have been obtained for three different values of the poly-
tropic exponent; namely, n=1.3, 1.12. and 0. :

The value n=1.3 corresponds to a very rapid compression
in which an adiabatic process is almost attained.  The
value n=1.12 corresponds to a relatively slow compression
in which the provess is virtually jisothermal.  The value
1n=0 is completely fictitious since it implies constant air
pressure within the strut throughout the impact.  The
assumption n=0 has been considered since it makes one of
the terms in the equations of motion a constant and permits

“simplification of the calculations. The three solutions
presented are for the same set of initial conditions as the
normal impact without tire bottoming previously con-
sidered and are based on the exponential tire force-deflection
characteristics which neglect hysteresis.

Figure 9 shows that the air pressure contributes only a
relatively small portion of the total shock-strut force through-
out most of the impact since the compression ratio is rela-
tively small until tlic later stages of the impact. Toward
the end of the impact, however, the air-pressure force
becomes a large part of the total force since the compression
ratio becomes large, whereas the hydraulic resistance de-
creases rapidly as the strut telescoping velocity is reduced
to zero.
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Ficure 9.—Concluded.

As a result, the calculations show that the magnitude of
the polytropic exponent has only a very small effect on the

behavior of the landing gear throughout most of the impact. .

For the practical range of polytropic exponents, variations
in the air-compression process result in only minor differ-
ences in landing-gear behavior, even during the very latest
stages' of the impact. The assumption of constant -air
pressure in the strut throughout the impact (n=0), however,
does lead to the calculation of excessive values of stroke and
of the time to reach the maximum stroke. The time history
of the shock-strut force calculated on the basis of this
assumption is, on the other hand, in quite good agreement
with the results for the practical range of air-compression
processes. ’

On the whole it appears that the behavior of the landing
gear is relatively insensitive to variations in the air-
compression process. The foregoing results suggest that, in
many cases, fairly reasonable approximations for the landing-
gear force-time variation might be obtained even if the air-
pressure term in the equations of motion were completely
neglected.

SIMPLIFICATION OF EQUATIONS OF MOTION

The preceding studies have indicated that variations in the
tire force-deflection characteristics and in the air-compression
process individually have only a relatively minor effect on the
caleulated behavior of the landing gear. These results sug-
gest that the equations of motion for the landing gear might
be simplified by completely neglecting the internal air-
pressure forces in the shock strut and by considering the tire
force-deflection characteristics to be linear.  With these as-
sumptions, the equations of motion for the upper mass,
lower mass, and complete system (cqgs. (16), (17), and (8)) can

be written as follows for the case where the wing lift is equal
to the weight and the internal friction is neglected:

—"‘Ié—l E;+A(Z)—22)z+“‘2=0
W, . . i . .
?zz—A(zl—zg) +az,4+b0—W,=0 (18)
W, . W,
| Mo ntants=o
where
_ 8 pAp.a
A=T3] T A Veone
and

a slope of lincar approximation to tire force-dceflection
characteristies
b value of force corresponding to zero tire deflection, as
determined from the linear-segment approximation to
the tire force-deflection characteristics
The motion variables at the beginning of shock-strut de-
ficetion can be readily determined in a manner similar to
that employed in the more general treatment previously dis-
cussed. For the simplified equations the variables at the
instant ¢, are given by '
s _ W
Ze== nvl g

Wiy, W
=" (“’m (19)

2'f=\/z'02—g‘% 272

a . . LT
In most cases the term Wg_ z,? is small in comparison with 2’

so that Z,=Z,.
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F;GUB?}_ 10.—Evaluation of calculated results for simplified systems. Vv0=8.86 feet per second; Cy=0.9.

The values determined from equations (19) are used as
initial conditions in the solution of equations (18). .

The fact that the lower mass is a relatively small fraction of
the total mass suggests that the system might be simplified
even further without greatly modifying the calculated results
by assuming the lower mass to be equal to zero. With this
assumption t,=0 and the initial values of the variables in
equations (18) correspond to the conditions at initial contact.

EVALUATION OF SIMPLIFICATION

In order to eveluate the applicability of these simplifica-
tions, the behavior of the landing gear has been calculated in
accordance with equations (18) for an impact with an initial
vertical velocity of 8.86 feet per second. A similar calcula-
tion has been made with the assumption Wy=0. These
results are compared in figure 10 with the more exact solu-
tions previously presented in figure 4, which include con-
sideration of the air-compression springing and the exact

_exponential tire characteristics. A time history of the lower-
mass acceleration is not presented for the case where W, is
assumed equal to zero since the values of Z;/g have no
significance in this case.

Figure 10 shows that the two simplified solutions are in
quite good agrecment with each other, as might be expected,
and are also in fairly good sgreement with the more exact
results. Neglecting the air-pressure forces and assuming a
linear tire force-deflection variation resulted in the calcula-
tion of slightly lower ‘values for the maximum upper-mass
acceleration and somewhat higher values for the maximum
stroke than were obtained with the more exact equations.

The effect of neglecting the lower mass was primarily to
reduce the lower-mass displacement (tire deflection), as a
result of the elimination of the lower-mass inertia reaction.
On the whole, it appears that the assumptions considered
permit appreciable simplification of the equations of motion
without greatly impairing the validity of the calculated results.

GENERALIZED TREATMENT

Equations and solutions.—By writing the simplified equa-
tions of motion in terms of dimensiounless variables, general-
ized solutions can be obtained for a wide rauge of landing-gear
and impact parameters which may be useful in pre-
liminary design. If W, is taken equal to zero and it is
further mssumed that the tire force-deflection curve is
represented by a single straight line through the origin
(5=0 throughout the impact), equations (18) reduce to

Bz a—ir=0

A(z'.—z',)"'—az,=0
—vg—! §1+G23=0

|4 .
where —% A, and a are constants, as previously defined, and

any two of the foregoing equations are sufficient to describe
completely the behavior of thesystem. With this representa-
tion of the system, the shock strut begins to deflect at the in-
stant of initial contact (,=0). Thus, the initial conditions
for equations (20) are the initial impact coaditions; namely,
21,=22,=0 and Z;= 2= Z,.
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As can be seen, with the equations in this form, the solution
W
depends on five parameters, namely, ?', A, a, and the

initial counditions 2, and z. However, since z,=0 in all
cases, the number of variable parameters is reduced to four.
In view of the fact that these parameters are independent of
one another and each may take on a large range of values, a
great many solutions and a large number of graphs would be
required to cover the entire range of landing-gear and impact
parameters with the equations in the form of equations (20).

The number of independent parameters which have to be
considered may be greatly decreased by the introduction of
generalized dimensionless variables and the corresponding
transformatious of equations (20). In this case, generalized
variables can be obtained which permit transformation of the
equations of motion to a form which does not involve any
constants. With the equations in this form, there is only
one variable parameter, namely, the initial velocity parani-
eter. To determine the generalized variables which satisfy
the aforementioned requirements, let

u=za
and
ERT]
Thus, -
‘ u'=‘.i_'i=z' a
v ¢ ‘8
and
w=0 2
de “ B

Substituting these new variables pefmits equations (20)
to be written as

'('u,'— Uz')2+(% %) Un"=_0

(ul'—u‘l’)z_(% %) u;=0

oy (CLBTY 4=

Uy +<“'|/g u=10

The number of independent parameters will be reduced
if all the combined constants in equations (20a) are set

equal to one another, that is, let
aWi_o a_ o
A g A Wie

(20a)

From this relationship, it can be seen that

=4
«= Wil

Thus the generalized variables become

vl sl

du, . /.;12/(1 du, . [A¥a

w'=" =4\ 78 =V e

and

ny =

and

@
=78

[R5

(&
\a
[ a
=t m

With these new varinbles equations (20) cun be written as

l_—
7=

where

(u —ua")*+ u.”=0\(
() —u’ ) —us=0 2hH
1w +u.=0 S

where any two of these equations are sufficient to describe
the behavior of the system. '
Inasmuch as equations (21) do not involve any constants.
their solutions are completely determined by the initial val-
ues of the variables. Since the displacements at initial
contact u,, and uy, are equal to zero and the initial velocities
u, and wuy’ are équal, the only parameter-is the initial
dimensionless velocity :

uy =2 ——'E
0 0\ W'la

where uy’ =u,) =4y’ ' :

Generalized solutions of equations (21) are presented in
figure 11 for values of u,’ corresponding to a wide range of
landing-gear and impact parumeters. Parts () to (¢) of
figure 11 show the variations of the dimensionless variables
during the impuct; parts (f) and (g) show the maximum
values of the more important variables as functions of .
Part (h) shows the shock-strut effectiveness 1, and the
landing-gear effectiveness -n;. The shock-strut effective-
ness, sometimes called “efficiency” and, in Europe, “plani-
metric ratio,” is defined as -

Tmaz

'u,” dU

Ns=="""57
UL gz Tmas

where ¢=u,—u; is the dimensionless shock-strut stroke.
Since 7. represents the ratio of the energy actually absorbed
by the shock strut to the maximum energy which the strut
could possibly absorb for any combination of maximum
acceleration (or load) and maximum stroke, it serves as a
measure of the extent to which a given combination of
maximum load and stroke has been utilized to absorb the
energy of an impact. A similar measure of the energy
absorption effectiveness of the landing gear as a whole is
given by g, which is defined by

Yimos
0 u"’ duy

Nig= 77
Ut gz Yimgr

——
1 Enquations (21) uray be reduced to a single equation in one variuble by differentiating the
last cquation and substituting for w2’ in the first equation. This gives (1) +u)"" )2 4u/ =1,
By introducing the new variahle =y, this equation may be reduced ta the second-
order cquation (e w")14 w0’ =0, subjret 1o the initial conditions we= e’ and o =m0,



28

Dimensionless upper-mass displocement, v,

Dimensionless fower-mass displocement, va

REPORT 1154—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

6 -6 - r
L
L L
N , by
s5- -5 | N4 LN ; ] L
3 /1A ~ Ll IR j
! | Vs NN | i
s 1 i | \ \\ . & | | |
By T y 6 I T i
L & - . , . .
4ar g4 | i A ! g ! ~ | \ ] ‘ 1 : b
3 Yo / N ! \: ! L ', |
g AN WEEEAURNN L.
. B, A AL
- / //; ! i d \ \ \ \ L | L
_§ 7 D lal N NN IR A
g [l X N~ i 4 :
AR Munw /e NNVEEEE
g‘ AL A L 3 LY ANAY |
_ W7 o NNEEEE
i ! ‘ ‘ S~ N r Ll
N v/ — N RN R NN\ U
(A — . Ds| || ~L 1 NN ,
" AN LA 0 —— T 1 SO0\ !
ST ] . L1 LN
= { = @
o+ o] 4 B8 1.2 1.6 20 24 28 32 k13
Dimensioniess time, & .
‘(&) Relationship betweén upper-mass acceleration, lower-mass displacement, and time.
Fi1cURE 11.—Ceneralized solutions for simplified system.
I
—
(!
T
8
6 [
P
i
|
q
>
2 P "] : . -
/// |1 4//"—’ | ! ‘ L :
W 1 e i P IR
/ — I 2 “!_—T—_‘ ; | | ' I
[ EEENEEERENEE (0
-3 T2 16 20 24 28 32 36 30

Dimensionless time, 6

{(b) Relationship between upper-mass displacement and time.

Figure 11.—Continued.



ANALYSBIS OF LANDING-GEAR BEHAVIOR 29

10 Ly
~ | “0
u .5
; .10
\ \\\\ Upper-mass velocity uﬂ' 4 ’,,21.8
o A
FINNNN NN T3S
R % Eng
TN NN TS
INNN\Y N\ AR
SRR Nk Lt 80
\\\ \\\ | \\\\\\ R4 O L
NRARNNNNNE NI Rl
NN N A TS
N NA\N N NG R NI
4 NN DR N ::& ey ~~ ]
N, N \\\ \\ . \IV?\;\' T ]
oo NEARNVANN NEUNEEN =
. N\ \\ N | \\\ N L
® 2 T —F - A - \‘]\,\ \ P \\ !
z il DU B U BN TN AN NN ~— | |
R s RNE S\ EEEANNANESY =SSEREN
o 20} oA ] AT NN : N | ;
sor” bl 7 bl TN NN RN Z
40" -7 47 1 AT Y \\‘k\\\\ \\ ~L
50 »'v",’ [ i ”’ - ™ \\\} \\ ’-‘<\ // A/ !
B NGRS =L |
80 4" Lower-mass velocity -:—2 NS : S & \<< ~— ‘
s N — NOB > A1/ !
N N < ' !
-4 LN N N
\§\ ™ ~ i
QQ:‘ 4/’<A///‘
R 274
- ™ . 7] ©
0 ) 8 12 16 20 24 28 32 36 Py

(c) Relationship between upper-mass velocity, lower-mass velocity, and time.

Ficure 11.—Continued.

"The generalized results presented in figure 113 .can be
used to estimate the performance of a given landing gear of
known configuration for particular impact conditions or to
choose the dimensions for a landing gear when the impact
conditions and desired performance are specified.

Applicability of solutions.—To illustrate the applicability
of the generalized solutions, the curves of figure 11 have

been applied to the previously considered case of the normal

" impact at an initial vertical velocity of 8.86 feet per second
for comparison with the more exact solution presented in
figure 4. In order to make use of the generalized solutions

3 Although time-history solutions are presentcd for values of ue’ as small as 0.5, it wiil be
noted that valucs of u,,,,. #ma, %, 8nd n,, 8re not given for values of uy’<1.5. It can be
secn from the time histories that the chamceteristics of the solution in the later stages of the im-
pact change as uy’ becomes small; in particular, 1 increases and the curve of w38 a fune-
tion of ue’ appears to reach o minimum at some value of u’$1.5. Furthermore, the later
stages of the solutions greatly stretch out in time and appear to be slmost asymptotic in
character. Severul different analytical, numerical, and analogue methods were applied inan
attempt to study this phase of the problem further but the extremely slow rate of change of
the varlables in tiiy region prevented successtul completion of the solutions.

287846—54 —1I

‘it is first necessary to approximate the tire force-deflection

characteristics by & simple linear variation. Two such
linear approximations which might be considered suitable
for this purpose are shown in figure 12. Linear approxi-
mation I is & straight line through the origin having a slope
a=18.5X10° pounds per foot (¢’=ad=41.6X10* 1b). This
value of @ and the other pertinent landing-gear-and impact
parameters result in a value of the initial dimensionless
velocity parameter u,’=2.57. Linecar approximation II is
a straight line with slope 2=21.3X10° pounds per foot
{a’=47.9X10* 1b) which does not pass through the origin
but intersects the displacement axis at a value of
z,(pv‘_o)=0.0508 foot. With this value of a, u,’ =2.39.

Since the solutions of figure 11 have been calculated only
for integral values of u,’, curves for the foregoing values of
%y’ were graphically interpolated by cross plotting. These
results were then converted to dimensional values by multi-
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.

plying the dimensionless variables by the appropriate
constants. The results obtained are compared in figure 13
with the more exact solution presented in figure 4.
values based on linear approximation I have been plotted
exactly as determined from the generalized solutions. The
results for linear approximation II, however, have been
- displaced relative to the origin of coordinates as indicated
_in the following discussion.

The assumption of linear approximation 11 implies that
the system must move a distance equal to z,(,V -0) after

z

initial contact (at constant velocity sinee the wing lift is
taken equal to the weight) before any finite ground reaction
can develop. The derivation of the equations of motion,
on the other hand, assumes that the ground reaction in-
creases linearly with deflection from the instant of initial
contact. As a result, the equations of motion do not apply
until after the system las attained a displacement cqual to
— which occurs at a time after initial contact

t=———‘2(’v‘-n).
Vv,
apply to a coordinate system transformed so that the tire
force-deflection relationship passes through the orvigin; that
is, a coordinate system displaced by y relative to

23(’

In other words, the equations of motion

1]

(Frem

The *

Ficure 11.—Continued.

the coordinate svstem originating at the point of initinl

contaet. It therefore follows that the upper-mass and

lower-mass displacements determined from the generalized

solutions for the ease of linear approximation Il must be

increased by a constant amount equal to EQ(P" —uy in this
¥

case 0.0508 foot, and all results must be displaced in

. . ‘ 22(’1' =0 .

time by a constant increment At= —=%—, in this case
Vo

0508 . . . L

9?%6—=0.()0m second, relative to the instant of initial

contact. These corrections have been incorporated in plot-

ting the curves for linear approximation IT shown in figure 13.
As can be seen, the results obtained by application of the
generalized solutions, particularly by the method employing
linear approximation IT, are in fuirly good agreement with the
more exact solution. The discrepancies which exist arc
attributable to the neglect of the shock-strut preloading and
springing provided by the air-pressure foree, neglect of the
lower mass, and to differences between the very simple tire
forco-deflection relationships assumed and the exact tire
characteristics.  On the whole, it appears that the zeneral-
izod results offer o mcans for rapidly estimating the behavior
of the landing gear within reasonable limits of accuracy and
may therefore be useful for preliminary design purposes.
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SUMMARY OF RESULTS AND CONCLUSIONS

A theoretical study has been made of the behavior of the
conventional type of oleo-pneumatic landing gear during the
process of landing impact. The basic analysis is presented
in a general form and treats the motions of the landing gear
prior to and subsequent to the beginning of shocl-strut
deflection. In the first phasc of the impact the landing gear
is treated as a single-degree-of-freedom system in order to
determine the conditions of motion at the instant of initial
shock-strut deflection, after which instant the landing gear is
considered- as a system with two degrees of frcedom. The

. equations for the two-degree-of-freedom system consider
such factors as the hydraulic (velocity square) resistance of
the orifice, the forces due to air compression and internal
friction in the shock strut, the nonlinear force-deflection

characteristics of the tire, the wing lift, the inclination of the

landing gear, and the effects of wheel spin-up drag loads.

The applicability of the analysis to actual landing gears
has been investigated for the particular case of a vertical
landing gear in the absence of drag loads by comparing
calculated results with experimental drop-test data for corre-
sponding impact conditions, for hoth a normal impact and a
severe impact involving tire bottoming.

Studies have also been made to determine the effeets of
variations in such parameters as the dynamic foree-defection

characteristies of the tire, the orifice discharge coefficient, and
the effective polytropic exponent for the air-compression

. process, which might not be known accurately in practical

design problems.

In addition to the more exact treatment an investigation
has also been made to determine the extent to which the
basic equations of motion can be simplified and still yield
useful results. Generalized solutions of the simplified
equations obtained are presented for a wide range of landing-
gear and impact parameters.

On the basis of the foregoing studies the following con-
clusions are indicated: ’

1. ‘The behavior of the landing gear us caleulated from the
basic equations of motion was found to he in-good agreement
with experimental drop-test data for the case of a vertical
landing gear in the absence of drag loads, for both a normal
impact and a severe impact involving tire bottoming. -

2. A study of the effects of variations in the force-deflection
characteristics of the tire indicates that

a. In the case of & normal impact without tire bottoning,
reasonable variations in the force-deflection characteristies
of the tire have only a relatively small effect on the calculated
behavior of the landing gear.  Approximating tho aber
complicated force-deflection characteristics of the actual tin
by simplified exponential or linear-segment variations appears
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Ficure 11.—Continued. .

to be adequate for practical purposes. Tire hysteresis was
found to be relatively unimportant.

" b. In the case of a severe impact involving tire bottoming,
the use of simplified exponential and linear-segment approxi-
mations to the actual tire force-deflection characteristics
which neglect the effects of tire bottoming, although adequate
up to the instant of bottoming, fails to indicate the pro-
nounced increase in landing-gear load which results from
bottoming of the tire. The use of exponential or linear-
segment approximations to the tire characteristics which
take into account the increased stiffness of the tire that re-
sults from bottoming, however, yields good results.

3. A study of the importance of the discharge coefficient
of the orifice indicates that the magnitude of the discharge
coefficient has a marked cffect on the celculated behavior of
the landing gear; a decrease in the discharge coefficient (or
the product of the discharge coefficient and the net orifice
area) results in an approximately proportional increase in
the maximum upper-mass acceleration.

4. A study of the importance of the air-compression process
in the shock strut indicates that the air springing is of only
minor significance throughout most of the impuct, and that
vuriations in the effective polytropic exponent n between the
isothermal velue of 1.0 and the near-adiabatic value of 1.3
lieve oniy a secondary effect on the calculated behavior of

the landing gear. Even the assumption of constant air
pressure in the strut equal to the initial pressure {(n=0)
yields fairly good results, which may be adequate for many
practical purposes. _

5. An investigation of the extent to which the equations of
motion for the landing gear can be simplified and still yield
acceptable calculated results indicates that, for many prac-
tical purposes,, the air-pressure force in the shock strut can
be completely neglected, the tire force-deflection relationship
can be assumed to be linear, and the lower or unsprung mass
can be taken equal to zero.

6. Generalization of the equations of motion for the
simplified system described in the preceding paragraph
shows that the behavior of this system is completely deter-
mined by the magnitude of one paramecter, namely, the
dimensionless initial-velocity parameter. Solution of these
generalized equations in terms of dimensionless variables
permits compact representation of the behavior of the system
for a wide range of landing-gear and impact paramecters,
which may be useful for rapidly estimating landing-gear
performance in preliminary design.

LANGLEY AERONAUTICAL LABORATORY,
NaTioNAL Apvisory COMMITTEE FOR AERONAUTICS,

LaNcLEY Fiewp, Va., May 1, 1952.
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r-mass dizplacement, and maximum strut stroke with initial velocity parameter.
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APPENDIX A

NUMERICAL INTEGRATION PROCEDURES

As previously noted. most of the specific solutions presented
in tlis report were obtained with a numecrical integration
procedure, termed the “lincar procedure,” which assumes
changes in the variables to be linear over finite time intervals.
With this procedure a time interval ¢=0.001 second was
used in order to obtain the desired accuracy for the particular
cases considered. A few of thie specific solutions presented
were obtained by means of a procedure, termed the “quad-
ratic procedure,” which assumes a guadratic variation of
displacement with time for successive intervals. This pro-~
cedure, although requiring somewhat more computing time
per interval, may permit an increase in the interval size for
A given aecuracy, in some cases allowing a reduction in the
total computing time required. In the case of the more
exact equations of motion the accuracy of the quadratic pro-
codure with a time interval of 0.002 second appears to be
equal to that of the linear procedure with an interval of
0.001 second. Although the accuracy naturally decreases
with increasing interval size, the loss in accuracy for pro-
portionate increases in interval size appears to he smaller for
the quadratic than for the linear procedure. In the case of
the simplified equations of motion reasonably satislactory

_results were obtained in.test computations with the quadratic
procedure for intervals as lurge as 0.01 second, whereas the
linear procedure was considered questionable for intervals
larger than 0.002 second. .

The generalized solutions presented.  because of the
relatively simple form of the equations of motjon, were
obtained with the well-known Runge-Kutta  proecdure.
A study of the allowable interval size resulted in the use of
an interval A0=0.08, which corresponds to a time interval of

about 0.005 sccond for the landing gear under consideration.

LINEAR PROCEDURE

In this step-by-step procedure the variations in dis-
placement, velocity, and acccleration are assumed to be
linear over each finite time interval e. The method, as
used, involves one stage of iteration.  Linear extrapolation
of the velocity at the end of any interval is used to obtain
estimated values of velocity and displacement for the nest
interval. These values are then used to caleulate values of
the acceleration in accordance with the equations of motion.
Integration of the acceleration provides improved values of
the velocity and, if desired, the displacement and aceelera-
tion. In this procedure all integrations are performed by
applieation of the trapezoidal rule.

The following derivation illustrates the application of the
linear procedure to the equations of motion for the landing
gear, which apply subscquent to the beginning of shock-strut
deflection at time .. In the example presented internal
friction forees are neglected in order to simplify the deriva-

36

tion. However. the same general procedure ean be used if
these, or other complicating effeets, are included in the
cquations.

For the case under consideration the equations of motion
(egs. (16). (17). and (8)) can he written as follows:

IE’I 21“1‘;1(2.1—‘2.3)2+B[1_C(:1__32)]_nfD=U (.\1,)
W, . . L\, . _ .
P 22—.‘1(21'—23) —B[I—‘C(Zl—z:)l "‘+'F;"(52)—]I g’—:n
\2)
w,. W,. ., . .
. '?]31‘{'"\2’: 52“.‘FV‘(32)—“L=0 (;\3)
where
,1:i 3_;_8,{,1"5 .
5 2(Cedy)rose
B=p, d.cose
_
U COSE
D=K W1,
E=W(HK,—1)
Solving equation (A3) for ¥, gives
S F—@E—HFe (o) (A4
where
W N
F —W.; (1 —I\ng
N
1
=5
H= v

Integrating equation (A4) with respeet to ¢ bhetween the
limits £, and ¢ and noting that 2, =7, =i, gives
z'l=i,—+-1"r—(;'(z'g—z',)—1’1J Fo(zade (A3)
0

where r=((—1t).
Integrating again and noting that z, =z, =z rives

:1=(l—}—(1')(2,—{-.Z'.r)-'{-l'r_;-—(;:g—”J rfr I"\'u(:_-)’lf dr
b Ju

(AG)
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Substituting for #, and z, in equation (A2) gives

L1 (4 [(1+G)(z'.—é=)+Ff—"f'F" (:MT:P
Fali v o

Bli—cla+6)etir—2+ Eron [ Fezaar dr |} =)

The motion of the landing gear subsequent to the beginning
of shock-strut deflection is determined by means of u step-
by-step solution of equation (AT). This nimerieal procedure
vields time histories: of the lowei-mass motion variables
2, 7, and %, from which the motion variables for the upper
mass 3. and zp can be caleulated by means of equations
(A4, (A3), and (AG).

The initial conditions for the step-by-step procedure are

(A8)

where =. . and % are the conditions of motion at the
beginning of shock-strut deflection as determined from the
solution for the one-degree-of-freedom system. _
Estimated values of the lower-mass velocity at the end of
the first time increment e following the beginning of shock-
strut deflection can be obtained from the expression )

z.;,,‘lziv'*_f.:.r
or. as a first approximation,
5 * —_
22 nal <7
The corresponding displacement is given by,
€ .
.‘-;n_]=37+§(22]+21) (A10)

After the initial conditions and the conditions at the end
of the first time increment are established, a siep-hy-step
- ealeulation of the motion ean be obtained by routine opera-
tions as indieated by the following general procedure which
applies at any time r=ne after the beginning of the process.
The operntions indicated are based on integration by appli-
cation of the trapezoidal rule:

23 =iz ,+(Z:,_,—12,,_..)=22,,_-1+§(3:,,_,'{"

With the estimated values 2, amnd 22 the acecleration of
the Jower mass ean be determined by substitution in the

(A9) -

(A7)

appropriate integrodifferentinl - equation for the <v~tenn
equation (A7) in the present ease, Thus

=_f(2:". o)

2n

(Al3:

In equation (A7) the integral expressions can also be evalu-
ated by application of the trapezoidal rule.  For example
when Fy (z)=mz,

ne €
-7 — e (= T~ T -
Za ({1’~0(.;f TSy -)""r—l, - 2,0
0 -
(n—=1)€
_ . € ., A4
...J; at/r-l'-E(--.-,,_l o)
and )
ne (*ne . {(n—1)€ tn=11e
J drdr= f sidr dr+
0 Q ] 0
€ {n—1e Yue
—)(J z_x'r/r—J :_-'t/r) 1S
- [} 0 .

An improved value for the veloeity is abtained from the
expression ’

(\16

€ .. —
22n=3311—1+§(:' T2 )

sn—1 =

- "Fhis value is used in the ealenlation of the estineted veloeit:

* %

Ty, 2ud displacement =¥ for the next interval.

1f desired, improved values of the displacement ane
aceeloration for the nth interval subsequent to the beeinnin:
of shoek-strut deflection ean be obtained as follows:

€ .
5'~.,=:31,—|+§ (22, .7 22,)
. . € . . -
="n—l+t'="ﬂ—l+3‘("u-l Z2,) (AL
and -
2y, = 0%, 22, Ta) (Als

where f(2,,. 22, 7a) is anappropriate equation for the systen
such as equation (A7),

With the values of 2 . 2, and % the motion varinbles o
the upper mass % . 4, and 3, ean be calealated separatel

" from cquations (A4), (A5). and (A6). as previously noted.

Tn setting up the numerieal procedure used in obtaining th
solutions presented in this report. an evaluation of the ervor
introduced by the procedure indicated that it would not b
necessary to caleulate the improved values of the displac
ment 7 {eq. (A17)) ov the aceeleration 2y (eq. (AR, How

n

ever, improved values of the veloctty 4, were caleulated b
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purpose of determining
and the displacement z:
increment immediately

means of equation (A16) for the
estimated values of the velocity 2,
{egs. (Al1) and (A12)) for the
following.

In order to illusirate the application of the method, &
tabular computing procedure for the solution of the system
represented by equations (A1), (A2). and (A3) is presented in
table T.

QUADRATIC PROCEDURE

In this step-by-step procedure a yuadratic variation of
displacement is assumed over successive equal finite time
intervals for the purpose of extrapolating values of the
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motion variables from one interval to the next. With this
assumption the displacement variation over two successive
equal time intervals is completely determined by the three
values of displacement at the beginning and end of each of
the two intervals. By writing the quadratie variation in
difference form. the velocity and acceleration at the midpoint
of the double interval can be expressed in terms of the three
displacement values previously mentioned, Substituting for
the velocity and acceleration in the differential equations for
the system yields difference equations of motion in terms of
successive displacement values which cun be  evaluated
interval by interval.

TABLE I
LINEAR PROCEDURE

i
I
"
i

1
i

| ,
) Row Quantity Equation Procedure t
® r R .
€ . 5 -
@ <1, ilu—|+'§ (z::._,-*— z"n-l) Ve
B! z, 20yt (Fraa HB) @yt €D
; 3 gt Determined from tire foree-
@ F;'(z:_‘) ______________________ deflection characteristics.
' 4 . ' . . €
® J;Fy'(z_.n)ri.- Equation (Al g‘,+§ B+ @
® J;'J:‘YF"-'(z;_)d-r dr Eqguation (A15) @,-{-% [O+&,]
23" -
(O] : Equation (A7) Given by equation (A7),
i ; € . ; e
® &, ‘ Z:_-l+§ (-’v:'_l‘i"l:,) ‘@p'*‘% LORJOPMI
— J— ‘ = e e e
D o s 1‘ L€ ; ¢
D E(.;’,‘ D2asr) l 23,+Z(Z:._|+2:n) @+I[©+®n}g
OO | —
— . € . s € -
0 o gty (FamyH i) O+5 @+ &le
&y i _—
i) o Equation (A Given by equation (A,
i (@ &, Equation (A3) Given by equation (A3).
' - P
3 . z, Lguation (A6) Given by equation (A6,

1 C‘, denotes value for previons time interval.
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The following derivation shows how the procedure can be
applied to the determination of the behavior of the landing
gear subsequent to the beginning of shock-strut deflection at —1
time f,. In order to simplify the derivation, internal friction —]
forces are again neglected in setting-up the equations of /
motion.

The assumption of a quadratic variation of displacement
with time (constant acceleration) over two successive inter-
vals, each of duration ¢, permits expressing the velocity and 7 Zn=i % a4
acceleration at the midpoints of the double interval (see
sketch) in terms of the displacement values at the beginning,
midpoint, and end of the double interval by the equations ‘
(see ref. 5, p. 16): ‘ l

|
\

i

. z-n=2n+1—.2n-1 ' . (A19)
26 . l [ |
and 9z + [¢] « 2¢ f\ {n-Ne ne (n+1)e
Zap1— 42 -2 ) al-f,
Faemtl Toal a7 5 ! (A20) T

where Z,, %, and z, are the velocity, acceleration, and displacement at the end of the ath interval (r=wne) after the
beginning of shock-strut deformation and z,_; and z.4, are the displacements at the end of intervals n—1 and »—1,
respectively. ‘

Substituting the difference relations for 2, 2,, 5, and % into equations (A1) and (A3) permits writing the equations
of motion for the landing gear in difference form as follows:

W, 4 . ' s a1

;;_e;(.zln-{-l_221n+zln—l)+4—:§(2'n+l_21u—1_22n+l+22n—1)2+B[1_—C(zlﬂ—;'-zn)] nTD:O (AZI'
and .

21"+]= 221"—21._1—G(22"+l—222.+ 22"_1)—1'162[ FV‘(SQ")_E_IL] [\:\22)
where the constants are as. defined in the previous section, :
Substituting for z;,,, in equation (A21) gives

22"+1=E"“t—l+w [2“ 12}‘ ."_\4“ 11” g(gA |} ﬂ,,+1-f- I 1'” 2)—g;1 H '(4” lja,‘+1—rg:l'y,.+|)] (‘\2.3)

where i . ) ‘
Cup1= 27 222"—1‘ QZgn_l—géz[Fyr‘(ZQ')“{"E]
Busr=2Wzy +(Wi— Wazo,_,+2Wi(21,—21,_,) —€e [ Fy (22,) T E]

and

722 .
voa= S (B C(e1,— 22,)] "+ D)

Equations (A22) and (A23) are essentially extrapolation formulas which permit the determination of values for the
upper-mass and lower-mass displacements to come from the values of displacement already caleulated.  These cquations
thus permit step-by-step calculation of the displacements as the impuact progresses, starting with the initial conditions,
from which the upper-mass and lower-mass velocities and aceelerations can be determined by means of equations (A19)
and (A20). :

Since the caleulation of the displacements 2z and 2 at any instant by means of equations (A22) and (A23) requires
values for the displacements at two previous instants, the routiné application of these equations can begin only at the
end of the second interval (r=2¢) following the beginning of shock-strut deflection.  Before the displacements at the end
of the second interval can be ealeulated, however, it is necessary to determine the displacements at the end of the first
interval.  These valites can be obtained from the conditions of motion at the instant of initinl shock-strut deflection by
applying cquations (A19) and {(A20) to the instant (=¢,.
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At the instant of initial shock-strut deflection

2'n-0=

n=0
Z;n_‘): Z2n-n= 2y (.&24)
z‘n_0=z~;"_0=:f

~ Application of the difference equations (A19) and (A20)
to the instant t=f, (that is, n=0) gives the following
equations: ’

Zpel—Zn=-1

(A25)

Since the landing gear is considered as a one-degree-of-
freedom svstem from initial contact up to the instant f=¢,,
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the foregoing application of the difference equations rvesults
in identical values for the upper-mass displacement and
lower-mass displacement at the end of the first interval.
Simultaneous solution of equations (A25) gives the following
expression for the displacement at the end of the first interval:

Y

2
L € .
=z =z,Tei,+5 I (A206)

lnmt

With the values for z, and Za.i. equations {A22) and
(A23) permit the step-by-step caleulation of the upper-mass
and lower-mass displacements subsequent to the first interval
following the beginning of shock-strut  deflection.  The
corresponding velocities and accelerntions of the upper and
lower masses can be determined from the caleulated displace-
ments by means of equations (A19) and (A20). as previonsly
noted.

A tabular computing procedure illustrating the application
of the method is presented in table II.

TABLE I1

QUADRATIC PROCEDURE

Row Quantity Equation Procedure ¥
L@ SR P
- -
1 2),  mesemeesmessmmoomommremmes e
QD F -1 it ip
O] LT Lquation (A23) Given by equation (A23). -
3 7, Equation (A22) Given by equation (A22).
2 2 3, -
& :, Insi et ot
&) 22 2¢ Qe
a 3 27225, =2+ Ly
O 2n Y 2
€ €
i
= — _ —
® 3 Fias) " Fla B2,
» i 2¢ 2
— 41 T =204 D
& % Haet” ?:f,"; oy —1_2%_,*' Yo

t O, denotes value for previous time i

nterval.
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RUNGE-KUTTA PROCEDURE

In this step-by-step procedure the differences in the de-
pendent variables over any given interval of the independent
variable are calculated from a definite set of formulas, the
same set of formulas being used for all increments.  Thus the
values of the variables at the eud of any given interval ave
completely determined by the values at the end of the pre-
ceding interval.  Unfortuuately, however, unless the equa-
tions to be integrated are relatively simple, the method ean
beeome quite lengthy.

The following derivation illustrates the application of the
Runge-Kutta method to the geueralized equations of motion
(eqs. (21)) for the simplified system cousidered in the section
on geueralized results. Since these equations can be readily
reduced to the first order, they can be integrated by the
step-by-step application of the general equations given on
pages 301 and 302 of reference 6 for first-order simultancous
differeuntial equatious.

The generalized equations for the simplified system pre-
\'wusl) dlscussod (eqs (21)) are

.(UL'_‘IIQ,)Q'{'MI” — 0
() —u Y —up=0
w4 u,=0

Inasmuch as any two of these equations are sufficient to
describe the behavior of the system, only the last two equa-
tious are emploved in this procedure.  These equations can
be reduced to a first-order system by muo(hum(r the new
“variable

w=u, (A27)
so that
' =u’ (A28)
and the equations of motion become
(w—uY —u.=0
} (A29)
w +u,=0

Solving equations (A29) for uy’ and »’, respectively, gives

U =w— U (A30)

w=—u, (A31)

Applying the general procedure presented in the reference
previously cited to the simultancous egnations (A27), (A30),

and (A31) gives

Py (ln 2k +2ks+ k)

Auy=w, —uy,_

(h+2L+20+1) (A32)

1
A=W, — W, =6

Dy m,)

1
A=y, — U =g (my=—2m,—
where
ky=w,_ 128
k2=(uu—l+.-,> LY
A
ky= u‘n—1+3 Al

ke=(wa_y+l)a0

l=—u_,n_lA0

’g=—(UQ"
Ia; —(:“2"

=— (s = my) A0
n=1

mr) Ad

m ,\ 18

'"1=('l‘u-| ‘_‘> Af=w, _ A8

m,-—[(u,,_l-{- ) \u_." lm V)

ms=[(zt',,-n+{~',")“\‘/.“f,.-l+%2 A6

M= [(a 1) =y is, T ] 20

With this procodure, 1wy, w, aud wy can be caleulated in
gtep-by-step fashion from the values for the preceding inter-

~al, the procedure begioning with the initinl conditions.

From these values, w’, w/’, and ' can be ealeulated by
means of oqlmnons (A27), (A28), nud (A30), respectively.



APPENDIX B

SOURCE OF EXPERIMENTAL DATA

Following is a brief description of the apparatus and test
specimen used in obtaining the experimental data presented
in this report.

’ EQUIPMENT

The basic piece of equipment employed in the tests is the '

carriage of the Langley impact basin (ref. 7) which provides
means for effecting the controlled descent of the test speci-
men. In these tests the impact-basin carriage was used in
much the same manner as a conventional stationary landing-
gear test jig (see ref. 8). In order to simulate mechanically
the wing lift forces which sustain an airplane during landing
the pneumatic cylinder and cam system incorporated in the
carriage was used to apply a constant lift force to the dropping
mass and landing gear during impact.  The lift force in these
tests was equal to the total dropping weight of 2,542 pounds.

TEST SPECIMEN

The landing gear used in the tests was originally designed
for a small military training airplane having a gross weight of
approximately 5.000 pounds. The gear is of conventional
cantilever construction and incorporates a standard type of
oleo-pneumatic shock strut. ~The wheel is fitted with a 27-
inch type I (smooth-contour) tire, inflated to 32 pounds per
square inch. The weight of the landing gear is 150 pounds.
The weight of the lower mass (unsprung weight) is 131
pounds.

In the present investigation the gear was somewhat modi-
fied in that the metering pin was removed and the original
orifice plate was replaced with one having a smaller orifice
diameter. Figure 14 shows the internal arrangement of the
shock strut and presents details of the orifice.  Other perti-
nent dimensions are presented in table III.  The strut was
filled with specification AN-VV-0-366B hydraulic flud.
The inflation pressure with the strut fully extended was 43.5
pounds per square inch. In these tests the landing gear was
mounted with the shock-strut axis vertical. Figure 15
is a photograph of the landing gear installed for testing.

TABLE 111

IMPORTANT CHARACTERISTICS OF LANDING GEAR
USED IN TESTS

Agy SG It oo e e 0. V5761
< T 0. 04708
Aeysqfto o . [P 0. 005585
By, O Ft. e e . 0. 03545
Pap Ib/sq o oo [ 6, 264
51, ;l, ................. U 0. 5521
A . 224

|1 T R

Wy, b o .. .-

42

. tiometers.

INSTRUMENTATION

A variety of time-history instrumentation was used during
the tests. The vertical acceleration of the upper mass was
measured by means of an oil-damped electrical strain-gage
accelerometer having & range of £8¢and & natural frequency
of 85 cycles per second.. A low-frequency (16.5 eyvcles per
second) NACA air-damped optical-recording accelerometer,
having a range of —1g to 6g, was used as a stand-by instru-
ment and as a check against the strain-gage accelerometer.
Another oil-damped strain-gage accelerometer, liaving a
range of +12¢ and a natural frequency of 260 cveles per
second, was used to determine the vertical acecleration of the
lower mass. The vertical displacement of the lower nass
(tire deflection) and the shock-strut stroke were menssured
separately by means of variable-resistance slide-wire poten-
The vertical displacement of the upper mass wa=
determined by addition of the strut-stroke and tire-deflection
measurements. The vertical velocity of the landing gear at
the instant of ground contact was determined from the output
of an elemental electromagnetic voltage generator. A time
history of the vertical velocity of the upper muss wax ab-
tained by mechanically integrating the vertieal aeceleration
of the upper mass subsequent to the instant of ground con-
tact. Elcctrical differentiation of the current output of the
strut-stroke circuit provided time-history measurements
of the shock-strut telescoping velocity. The instant of
ground contact was determined by means of a micro-
switeh, recessed into the ground platform, which elosed
a cireuit as long as the tire was in contaet with the platform,

The eleetrical output of the instruments was recorded on a
14-channel oscillograph. The galvanometers were damped
to approximately 0.7 critical damping and had natural fre-
quencies high enough to produce virtually uniform response
up to frequencies commensurate with those of the measuring
instrumentation. A typical oscillograph record is shown in
figure 16, .

It is believed that the measurements obtained in the tests

~are accurate within the following limits:,

Measurement Accuracy
Upper-mass acceleration, g .. ... ... . =0.2
Forcc onupper mas=, ... .- - . =500
Lower-mass acceleration, ¢ . oo . =03
Vertical velocity at ground contaet, fps. ... ... . .- =0.1
Upper-mass veloeity during impact, fps. . =0.5
Upper-mass displacement, fto__o. oo R, =0. 03
Lower-mass di=placement, fi.___ ... e e =0.03
sShoek-strut stroke, fto_ o .o ... . . =0.03
Shock=strut teleseoping veloeity, fps oo . o R —0.5
Time alter contaet, see . .o o e e = 0. 003
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Frovre 14.—Shock strut of landing gear tested at Langley impact basin,
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Fravre 15.—View of landing gear and instrumentation,
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