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Chapter 1

Introduction

This chapter describes the context and framework within which the research of this thesis has

been conducted. We recall important historical facts that have led to the science field called

“radio astronomy”. Subsequently, we identify challenging technological problems that need

to be solved to model/predict the receiver sensitivity of the next generation radio telescope:

the Square Kilometre Array. To address the associated computational challenges, various

innovative modeling techniques are developed throughout this thesis and are summarized in

this chapter. We conclude with the thesis outline.

1.1 Historical Context

An antenna-receiver combination acts like a bolometer, or heat-measuring device,

in which the radiation resistance of the antenna measures the equivalent temperature

of distant parts of space to which it is projected by the antenna response pattern.

Reber (1942)

How were stars formed? What is the origin of the universe in which we live, how does

it evolve, and what is its ultimate fate? To answer these fundamental questions, and to

establish new physical laws, or to validate existing ones, astronomers hanker to perform

deep-space surveys using advanced instrumentation. In early times, observations were
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solely performed in the visible light using “optical telescopes”, but this changed dramati-

cally in 1932, a moment that can be marked as the beginning of a new era in astronomy.

In 1931, the radio engineer Karl Gunthe Jansky of the Bell Telephone Laboratories tried

to detect thunderstorms with a 30 m long by 4 m high rotatable antenna. However, his

experiments, which were published in 1932, not only showed thunderstorm statics, but also

a noisy source of unknown origin whose direction of arrival changed during the day. After

analyzing his results, he came to the staggering conclusion that the Milky Way not only

emits electromagnetic waves in the optical frequency spectrum, but also at much lower

frequencies, i.e., at radio wavelengths [1]. In 1933, he reported his findings in a paper,

entitled: “Electrical Disturbances Apparently of Extraterrestrial Origin” [2].

The radio engineer Grote Reber got fascinated by Jansky’s results and diligently con-

structed a 9.5 m parabolic reflector antenna in the backyard of his home in Wheaton,

Illinois (1937) [3, Chapter 1]. He observed cosmic radiation at wavelengths of order 2 m,

and devoted a considerable effort to characterize and understand the performance-limiting

factors of his antenna-receiver combination. His first results were published in 1940 in

the Astrophysical Journal [4]. Because of the revolutionary character of the material, the

scientific community was initially undecided about the wisdom of publishing it. In 1944,

he produced the first radio maps of the sky. To date, he is considered to be a pioneer who

developed the first radio telescopes.

The Dutch astronomer Prof. Jan Hendrik Oort recognized the importance of Reber’s ac-

tivities and organized a meeting in 1944 on behalf of the Netherlands Astronomers’ Club

(NAC) at Leiden Observatory [5]. It was at this meeting where Hendrik van de Hulst

from the Sonnenborgh Observatory (Utrecht) suggested that Reber might have detected

radiation from a layer of ionized hydrogen. More importantly, van de Hulst’s theoretical

predictions indicated that neutral hydrogen is likely to radiate at a wavelength of 21 cm.

Since its importance, Oort immediately made plans to obtain equipment for observations

at these radio wavelengths. With the help of a young engineer from Delft, C. A. Muller,

a sensitive receiver was developed using electronics from Philips. The first successful ob-

servations at 21 cm were performed with the aid of a 7.5 m Würzburg radar reflector in

Kootwijk, and due to a destructive fire, this happened only in May 1951. Unluckily, this

occurred after H. I. Ewen and E. M. Purcell had detected the 21 cm radiation using a horn

antenna at Harvard University, in March 1951. Despite this setback, the reports by Ewen

and Purcell and by Muller and Oort were published side by side in Nature [6, 7].
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Parallel to the activities in Kootwijk, and owing to the inspiring political skills of Oort, the

Dutch government founded “The Netherlands Organization for the Advancement of Pure

Scientific Research (ZWO)” in 19491. During the same year, the subsidiary “Stichting

Radiostraling van Zon en Melkweg (SRZM)”, or, “Netherlands Foundation for Radio As-

tronomy” was founded2. This new foundation, chaired by Oort, provided a broad base of

knowledge, interest, and financial support to construct a novel 25 m reflector antenna near

the Dwingeloo village, the home base of SRZM. This world’s largest fully moveable radio

telescope was constructed by Werkspoor (a company building railway bridges) under the

supervision of Ben G. Hooghoudt in 1954–1955. The Dwingeloo telescope was inaugurated

in April 1956 by Her Majesty Queen Juliana and remained operational until 1998. Its last

major success was the discovery of the Dwingeloo-1 galaxy in 1994.

As the Dwingeloo telescope was not going to solve the very fundamental problems of the

structure of the universe in which Jan Oort and many others were interested, the construc-

tion of a new instrument consisting of twelve 25 m dishes (two movable) in Westerbork

along an east-west baseline began in 1966 and ended in 1968. Significant contributions

to the design of the antenna-feed structure were carried out at the Eindhoven University

of Technology by Dr. M. E. J. Jeuken [8, 9]. The so named “Westerbork Synthesis Ra-

dio Telescope (WSRT)” was officially opened in 1970 by Queen Juliana. Many upgrades

followed throughout the lifetime of the WSRT, among which the addition of two extra

moveable dishes in 1975–1980. It was the most powerful radio telescope in the world for

over a decade [10], and probably still is below 1.7 GHz due to its excellent polarimetric

imaging capability.

Technologically, the development of these radio telescopes kept evolving rapidly to facilitate

the research demands of radio astronomers. This has caused ASTRON to grow from twenty

employees in the early 1960’s to about 180 staff members today.

1.2 The Square Kilometre Array Radio Telescope

The Square Kilometre Array (SKA) is a future radio telescope which will scan and map

the sky with a sensitivity of two orders of magnitude higher than present-day radio tele-

1At present, ZWO has been renamed to “The Netherlands Organization for Scientific Research (NWO)”.
2To date, SRZM has been renamed to “The Netherlands Institute for Radio Astronomy (ASTRON)”.
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scopes [11–13]. The SKA is planned to be operational in 2020; it will ultimately operate

over a large frequency bandwidth, ranging from approximately 70 MHz to more than

25 GHz, and the receiver sensitivity metric, Aeff/Tsys, is required to be of order3 10000

m2/K, where Aeff is the effective collecting area and Tsys is the system equivalent noise

temperature [15]. Thus, for a canonical 50 K system noise temperature, the total collect-

ing area is required to be of order 1 km2, which is unprecedentedly large. The challenge is

therefore to minimize the system-noise temperature, which is a difficult task for non-cooled

antenna systems.

The SKA project is a long-term international endeavor during which a number of different

antenna technologies are considered each of which operates in a certain frequency subband

(see Fig. 1.1). With the aid of national and international funds, ASTRON examines both

Figure 1.1: Artist impression of the Square Kilometre Array [13].

aperture and focal plane array concepts and develops SKA pathfinding activities, among

which LOFAR, APERTIF, and EMBRACE [16–18], the latter aperture array project being

sponsored by the European FP6 project “SKA Design Studies (SKADS)” [19]. These

instruments will cover a substantial part of the frequency spectrum (0.01 < f < 10 GHz).

Below 300 MHz, electrically small dipole antennas are positioned over a non-uniform grid

whose sparsity level increases with the distance to the center of the array. Above 300 MHz,

3The minimum required sensitivity depends on the astronomical science case, which differs per frequency

subband [14].
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(a) (b)

Figure 1.2: (a) The APERTIF focal-plane array antenna (72 aluminum dual-polarized

tapered slot antennas), (b) The EMBRACE aperture-array antenna (10000 aluminum dual-

polarized tapered slot antennas).

contiguous arrays of Tapered Slot Antennas (TSAs) are promising candidates for both the

aperture- and focal-plane array concepts [see Figs. 1.2(a) and (b)]. Because the number

of antenna elements is relatively large, the manufacturing cost needs to be minimized. At

present, novel antenna-feed concepts have been developed of which the production cost is

as low as two Euro per antenna element [20]. These low-cost technologies require a high

level of integration with the attached electronics [21–23].

1.3 Challenges and Motivation of the Thesis Subject

The design and analysis of large arrays of strongly coupled TSAs constitutes a challenging

task. To increase the operational frequency bandwidth, the outer edges of the TSA fins

are (entirely) connected to the adjacent elements to preserve the continuity of the surface

current across TSA boundaries [consider Fig. 1.2(b)]. Discontinuities introduced by slots

and gaps of sufficient size tend to radiate and, consequently, disrupt the impedance and

radiation characteristics. A penalty of these interconnections is that the numerical analysis

of the entire array problem cannot be reduced to the analysis of a single isolated TSA

element.
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To date, commercial software tools cannot handle large finite antenna arrays because of

memory constraints and excessively long simulation times. Alternatively, one can impose

periodic boundary conditions to analyze a unit cell of an infinite phased-array antenna,

but this is not possible if the edge truncation effects are significant, which is the case in our

applications, and is inefficient if the excitation scheme is nonuniform. Parallelization and

supercomputing technologies increase the future perspectives, but are not yet affordable

to a large audience and cannot be implemented on a large scale on local hardware [24].

A major challenge is therefore to:

Accurately compute the impedance and radiation characteristics of large and

complex antenna arrays using only moderate computing power, particularly,

of single and dual-polarized arrays of 100+ TSA elements that are electrically

interconnected. If the collection of these elements forms a subarray of a larger

system, it is also of interest to analyze an array of disjoint subarrays as illus-

trated in Fig. 1.1.

For validation purposes, a relative accuracy level of ≤ 20% between the measured and

simulated antenna patterns and impedances will be classified as “good”, unless specified

differently. Such a level of disagreement is not uncommon for very large and complex an-

tenna structures where also the measurement errors, and in particular the manufacturing

tolerances, determine the final accuracy. The manufacturing tolerances will be detailed for

specific cases when necessary. The S-parameters have been measured with the Hewlett

Packard 8720D network analyzer (0.05–20 GHz) which has, in combination with the avail-

able calibration kit, a measurement accuracy of order ±0.05 dB, around the 0 dB mea-

surement level, and about ±0.5 dB for a -30 dB reflection measurement (output power is

0 dBm). In the absence of measurement errors and manufacturing tolerances, one may ex-

pect a relative numerical accuracy of less than a few percent; an example is the case where

the accuracy of a plain method-of-moments code is compared to an enhanced version of

it. Nonetheless, it is worth mentioning that relative differences in computed S-parameters

can be as large as 20% if different numerical tools (formulations) are cross-validated [25].

Generally, the impact of a numerical error depends on how the overall system performance

is affected by this error. To determine the maximum permissible error level, one must

model the antenna system in its entirety and, subsequently, pose a requirement on the

accuracy of the overall system sensitivity, as this is the primary figure of merit. However,
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modeling the receiver sensitivity of an actively beamformed antenna system is a complex

task.

A second major challenge is therefore to:

Characterize the system sensitivity of actively beamformed arrays of strongly

coupled antenna elements. The antenna system should incorporate the external

source environment (noise and signals), the antenna array, amplifiers, and a

beamforming network, each of which may be lossy and noisy.

In characterizing the system sensitivity, one should account for: (i) mismatch effects be-

tween antennas, amplifiers, and the beamforming circuit; (ii) an external (possibly nonuni-

form) noise field, superimposed by (partially) polarized celestial sources, and; (iii) noise

generated by active and passive devices. Special attention must be devoted to the noise

emanating from the amplifier inputs and re-entering into the system coherently through

the mutually coupled antennas; this phenomenon is referred to as “noise coupling”.

1.4 Novel Elements of This Dissertation

To address the above challenges, the limitations of a conventional integral-equation based

method-of-moments formulation [26] need to be overcome. In such a method, a bound-

ary integral equation is formulated for the current, which is subsequently discretized by

employing a relatively large number of low-level basis and test functions, after which the

resulting system of linear equation is solved for the unknown expansion coefficients. Of-

ten, a fine discretization is required to accurately represent the spatial distribution of the

current. In turn, this leads to a large construction and solve time of the matrix equation.

Many basis functions are required to represent the “shape” of the current well. However,

the basis functions need not be all independent. In fact, from a physical point of view, the

number of degrees of freedom for the current is limited, and this should correspond to the

number of independent basis functions that are employed.

In this work, a conventional method-of-moments technique has been enhanced and made

suitable to solve electrically large and interconnected antenna array problems on a desktop

computer. Novel approaches encompass:
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• A combination of the Characteristic Basis Function Method (CBFM) and the Adap-

tive Cross Approximation (ACA) technique4. The CBFM employs physics-based

macro-domain basis functions to reduce the number of unknowns while maintaining

the flexibility of low-level basis functions in modeling arbitrarily-shaped geometries.

The ACA is used for fast construction of the corresponding reduced moment matrix.

• A meshing strategy to optimally exploit the quasi-Toeplitz symmetry in overlapping

domain decomposition techniques and, in relation to that, the fast computation of

element radiation patterns and input impedances.

• A derivation of a stationary formula for the antenna input admittance of an antenna.

The antenna is excited by an RWG “voltage-gap source” and treated as a scatter-

ing problem. Consistent definitions for the voltage, current, and field relations are

deduced, which are different from those published in the literature.

• A post-windowing technique for the numerical generation of partially overlapping

macro-domain basis functions (CBFs). This procedure eliminates the edge-singular

currents and preserves the continuity of the surface currents across subdomain inter-

faces while avoiding the use of an independent set of “junction basis functions”.

• A perturbation approach to analyze large phase-steered antenna arrays of disjoint

subarrays (cf. Fig. 1.1).

• A reduced-order model for microstrip-fed TSA arrays. In the literature, it was con-

cluded that similar models could not be used to predict the radiation and impedance

characteristics in a quantitative manner. However, the results of a 112 element TSA

array are compared to measurements and the relative difference is found to be smaller

than 20%.

• A detailed derivation of the sheet impedance of thin conductor slabs.

The techniques mentioned above have been implemented in a dedicated software analysis

tool, termed CAESAR (Computationally Advanced and Efficient Simulator for ARrays,

see Appendix F). Furthermore, this tool is capable of analyzing the receiver sensitivity of

large antenna array systems. Novel aspects, in this respect, include:

4A detailed motivation to select these methods is given in Chapter 4.
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• A framework to numerically model the antenna-receiver combination for a given

set of external and internal signal and noise sources. For this purpose, existing

models/methods have been combined, including the Thévenin network description

of an antenna array on receive, and the connection matrix theory to numerically

evaluate the signal and spectral noise power at the output of a receiver. External

noise sources are represented at the antenna output ports by a noise-wave correlation

matrix whose elements are expressed in terms of pattern overlap integrals and a

nonuniform brightness temperature distribution of the sky.

• The accurate and numerical efficient evaluation of the radiation efficiency and noise

temperature of low-loss antennas from a MoM solution. The thus computed efficiency

is numerically smaller than or equal to 100%, contrary to results obtained with several

commercial solvers. Furthermore, we develop a perturbation approach, which yields

accurate results whenever the current resembles the PEC current.

In addition to the numerical software tool CAESAR, semi-analytical techniques have been

developed to further increase our common understanding in the performance limiting fac-

tors of antenna-array receiving systems. The key elements are:

• The use of the active reflection coefficient of antenna elements to “noise decouple”

the receiver channels. It is concluded that minimum receiver noise temperature is

achieved by noise matching to the active reflection coefficient, rather than to the

passive one.

• The modeling of the system sensitivity by representing an antenna-array receiv-

ing system by an equivalent single-channel receiver. For this purpose, the above-

mentioned “noise-decoupling technique” is used.

With the above described methods implemented, CAESAR is capable of analyzing the

receiver sensitivity of very large actively beamformed antenna array systems, both from a

computational electromagnetics and system modeling point of view.
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1.5 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, the fundamental field equations are

presented and a mathematical framework is developed for the subsequent chapters. Also,

reciprocity relations are derived for antenna arrays on receive. In Chapter 3, the electric-

field integral equation is formulated and subsequently discretized using the method of

moments. Details are given on the computation aspects of the impedance and the radiation

patterns. The numerical results are cross validated with commercially available simulators

and with measurements. In Chapter 4, a numerical method is presented for computing

the electromagnetic radiation and impedance characteristics of large dielectric-free antenna

structures. Here, the Characteristic Basis Function Method (CBFM) is combined with the

Adaptive Cross Approximation (ACA) algorithm to rapidly construct a reduced moment

matrix, a novel method is developed to generate macro-basis functions that preserve the

continuity of the current between connected antenna elements, a perturbation technique

is detailed to analyze arrays of disjoint subarrays, and a combined electromagnetic en

microwave circuit model of a 112-element TSA array is proposed of which the impedance

characteristics are validated through measurements. In Chapter 5, the receiver sensitivity

is analyzed. Both numerical and semi-analytical expressions are developed that account

for the mismatch and noise coupling effects in strongly coupled antenna array systems.

Results are shown for a practical 4-element antenna array system whose noise temperature

is measured through the radiometric method (Y -factor method). Also, numerical results

are shown for a dipole array which is validated by a semi-analytical approach. The radiation

efficiency plays a vital role in the formula for the receiver sensitivity and has therefore been

examined separately. Results on the radiation efficiency are shown for various cases among

which a practical tapered slot antenna. Finally, the conclusions and recommendations are

presented in Chapter 6.

Unless stated differently, the numerical computations have been carried out in double

precision arithmetic on a Dell Inspiron 9300 Notebook, equipped with an Intel Pentium-M

processor operating at 1.73 GHz, and 2.0 GB of RAM.



Chapter 2

Electromagnetic Field Equations

Various (vector) notations and identities are introduced in this chapter for the purpose of

formulating the fundamental field equations. We recall the most relevant theorems that

are required to develop a mathematical framework for the subsequent chapters. Maxwell’s

equations are first formulated in the time domain and subsequently transformed to the

frequency domain. Next, the boundary conditions are presented for the electromagnetic

field and used thereafter to express the radiated field in terms of equivalent currents and

charges. Finally, the reaction concept and the associated reciprocity relations for antenna

arrays are derived.

2.1 Maxwell’s Equations and Constitutive Relations

Throughout this dissertation, vector quantities, matrices and arrays are typeset in boldface,

the only difference being that the latter two are of the sans-serif font type. Calligraphic

script letters are used for time-dependent field functions, and roman letters are used for

frequency-dependent field functions. A double overbar indicates a dyadic operator, while a

single overbar designates the time average. The short-hand notation ∂t denotes the partial

derivative ∂/∂t with respect to the real-valued time coordinate t, and may apply to any

other coordinate as well. By employing a right-handed orthogonal Cartesian reference

system for the spatial coordinates, the gradient operator is expressed as ∇ = ∂xx̂ +

∂yŷ + ∂zẑ, where {x̂, ŷ, ẑ} is the pertaining set of unit basis vectors that span the three-
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dimensional Euclidian space R
3. In this reference frame, the position vector r is defined

as r = xx̂ + yŷ + zẑ and its 2-norm length as r = ‖r‖2 =
√

r · r =
√

x2 + y2 + z2, so

that the unit vector is r̂ = r/r. Herein, the scalar product is denoted by · and the vector

product by ×. Furthermore, we define that

∇ · A is the divergence of a vector field A(r)

∇ × A is the curl of a vector field A(r)

∇φ is the gradient of a scalar field φ(r)

∇ · (∇φ) = ∇2φ is the Laplacian of a scalar field φ(r).

Finally, the operators Re{z} and Im{z} take the real and imaginary part of a complex

number z = z′ + jz′′, respectively, with j as the imaginary unit defined by j2 = −1. We

will adopt the standard convention that j =
√
−1.

The formulation regarding the coupled set of hyperbolic partial differential equations that

interrelate the electric and magnetic field intensities has been completed by James Clerk

Maxwell in 1865 [27]. In the time domain, and in macroscopic form, Maxwell’s equations

read [28]

∇ × E + ∂tB = 0, (Faraday–Henry) (2.1a)

∇ × H − ∂tD = J , (Ampère–Maxwell) (2.1b)

where

E(r, t) is called the electric field strength [Vm−1]

B(r, t) is called the magnetic flux density [Vsm−1]

which, on account of the Lorentz force law, are regarded as the two fundamental electro-

magnetic force fields1. In addition,

H(r, t) is called the magnetic field strength [Am−1]

D(r, t) is called the electric flux density [Asm−1]

J (r, t) is called the electric current density [Am−2].

1From a mathematical point of view, however, it is advantageous to maintain the symmetry in the field

equations by choosing E and H as the primary field quantities.
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Maxwell’s equations in (2.1) are complemented by the conservation law of free charges and

currents. The associated law is commonly referred to as the continuity equation,

∇ · J = −∂t̺ (2.2)

in which

̺(r, t) is called the electric charge density [Asm−3].

By taking the divergence of (2.1a) and (2.1b), and substituting (2.2), one obtains a set of

auxiliary equations, which are known as the compatibility relations

0 = −∇ · (∂tB) = −∂t(∇ · B) → ∇ · B = c1 (2.3a)

∂t̺ = ∇ · (∂tD) = ∂t(∇ · D) → ∇ · D = ̺ + c2 (2.3b)

where we may set the scalar functions c1(r) = c2(r) = 0 by imposing the initial condition

that ∇ · B and ∇ · D − ̺ must vanish at the instant t = t0 for all r ∈ R
3.

At this point, the media considered in this dissertation are assumed linear, time-invariant,

and causal so that a frequency-domain representation can be used for both the sources and

fields through the application of the unilateral Laplace transform

F (r, s) =

∞∫

t0(r)

F(r, t)e−st dt (2.4a)

F(r, t) =
1

2πj

δ+j∞∫

−δ−j∞

F (r, s)est ds (2.4b)

where the time-dependent field F(r, t) at the position r is assumed to be zero prior to

instant t0(r). The complex frequency s = δ + jω, in which ω is the radial frequency

[rads−1]. The medium is assumed to be passive, and the energy of the fields and sources

remain bounded for t → ∞. Hence, each field F (s) is assumed to be analytic for Re{s} > 0,

i.e., poles of F only reside in the left-half of the complex s-plane (δ < 0) and/or along the

imaginary axis (δ = 0).

For a real-valued function F(r, t), and with s = limδ↓0{δ + jω}, it is inferred from (2.4a)

that F (r,−ω) = F ∗(r, ω), so that (2.4b) simplifies to

F(r, t) =
1

π

∞∫

0

Re
{
F (r, ω)ejωt

}
dω (2.5)
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where the angular frequency ω is nonnegative and real-valued.

The sources that generate the fields are assumed to be monochromatic for t > t0, i.e., have

a sinusoidal time dependence for t > t0. Hence, and under steady-state conditions [t → ∞],

the fields that reside in this media will also have a sinusoidal time dependence of the same

frequency, provided that the higher-order turn-on transients of the fields (homogeneous

solution) have sufficiently damped with respect to the instantaneous field.

We will restrict the analysis to steady-state signals (particular solution) by represent-

ing these time-harmonic fields F at each of the discrete frequencies by a phasor F , i.e.,

F(r, t) = Re{F (r, ω)ejωt}. Note that the dimension of F has changed, since it no longer

represents a spectral density, in contrast to F in (2.5). This is a result of taking only one

spectral component of (2.5) through the application of the sifting property of the delta

distribution function, which has the dimension of Hz−1. Consequently, and as opposed to

the integral representation (2.5), the total time-dependent field for a number of spectral

lines is then obtained through a discrete sum of spectral components and the time factor

ejωt. For each of these spectral components, one can write (2.1a) in the frequency domain

as2

∇ × Re{Eejωt} = −∂tRe{Bejωt} (2.6a)

∇ × E = −jωB (2.6b)

where we have used the linearity of the operators and that, if A and B are complex

vectors, and Re{Aejωt} = Re{Bejωt} for all t, then A = B. This can be readily observed

by subsequent evaluation of the above equation at t = 0 and ωt = π/2, which yields

Re{A} = Re{B} and Im{A} = Im{B}, respectively, so that A = B.

In the frequency domain, Maxwell’s equations are expressed in complex phasor form as

∇ × E + jωB = 0 (2.7a)

∇ × H − jωD = J (2.7b)

∇ · J + jωρ = 0 (2.7c)

with the auxiliary set of compatibility relations

∇ · B = 0 (2.8a)

∇ · D = ρ. (2.8b)

2Note that one can equally well choose to work with spectral field densities.
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The above set of partial differential equations is incomplete since the characteristics of the

medium are yet to be specified through the constitutive relations.

In addition to assuming that the media are linear, passive, causal, and time-invariant, they

are also assumed to be isotropic and locally reacting. Then, the constitutive relations for

this matter are

B = μH D = εE (2.9)

where the electromagnetic properties of the medium are defined by the permeability μ(r, ω)

[VsA−1m−1] and the permittivity ε(r, ω) [AsV−1m−1], which are complex-valued scalar

functions. The conductivity σ(r, ω) [AV−1m−1] is herein part of the permittivity, i.e.,

ε = ε0εr − j
σ

ω
(2.10)

so that J in (2.7) designates a primary impressed current. By international agreement,

the permeability of vacuum has been chosen as μ0 = 4π × 10−7 VsA−1m−1, and because

the speed of light in vacuum is c0 = 1/
√

μ0ε0 ≈ 3 × 108 ms−1, it readily follows that the

permittivity in vacuum ε0 ≈ 1/(36π) × 10−9 AsV−1m−1. Furthermore, one can write that

μ = μ0μr and ε = ε0εr, where μr and εr represent the (complex) dimensionless relative

permeability and permittivity of the medium, respectively.

2.2 Boundary Conditions

For Maxwell’s differential equations to have a unique solution, a suitable set of boundary

conditions needs to be imposed on the fields in (2.7). We will distinguish between the

interface and radiation boundary conditions. Consider for this purpose the stationary and

locally smooth interface S that separates two homogeneous media as depicted in Fig. 2.1.

Upon taking the limit of (2.7) when crossing the interface S, it can be derived that the

tangential fields have to satisfy the interface boundary conditions

n̂ × E2 − n̂ × E1 = 0

n̂ × H2 − n̂ × H1 = JS

→
→

n̂ × D2 − (ε2/ε1) n̂ × D1 = 0

n̂ × B2 − (μ2/μ1) n̂ × B1 = μ2JS

(2.11)

at r ∈ S, where the primary impressed and/or secondary induced surface current density

JS [Am−1], supported by S has a Dirac dependence in the n̂-direction. Note that, on
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n̂

S

D2

D1

{ε2, μ2}

{ε1, μ1}

Figure 2.1: Locally smooth boundary interface S as the surface between two homogeneous

media 1 and 2.

physical grounds, and irrespective of the medium properties, the tangential components of

E are continuous across the interface. Similarly, the boundary conditions for the normal

components of the fields are formulated as

n̂ · D2 − n̂ · D1 = ρS

n̂ · B2 − n̂ · B1 = 0

→
→

n̂ · E2 − (ε1/ε2) n̂ · E1 = ρS/ε2

n̂ · H2 − (μ1/μ2) n̂ · H1 = 0
(2.12)

where, in this case, the normal component of B is continuous across the interface. Fur-

thermore, the impressed and/or induced surface charge density ρS [Asm−2] and the corre-

sponding surface current JS satisfy the surface continuity equation

∇S · JS = −jωρS (2.13)

with the surface divergence operator ∇S = ∇ − (n̂ · ∇) n̂.

A specific situation occurs when medium 1 becomes electrically impenetrable, i.e., for

|ε1| → ∞. Examples of such a material are a perfect polarizable medium and a perfect

electric conductor (PEC). From (2.11) one has that n̂ × E1 = n̂ × E2 = 0, and because

fields must remain finite in a PEC medium, one concludes from (2.12) that n̂ · E1 = 0, so

that E1 = 0 as well as that n̂ ·E2 = ρS/ε2. Accordingly, B1 = (j/ω)∇×E1 = 0, so that

from (2.11) and (2.12) it is inferred that n̂×B2 = μ2JS, and n̂ ·B2 = 0, respectively. In

summary, E1 = H1 = 0, and

n̂ × E2 = 0

n̂ · D2 = ρS

n̂ × H2 = JS

n̂ · B2 = 0
(2.14)

at r ∈ S, where E2 and H2 are the limiting field values.

In addition to the interface boundary conditions, a condition at infinity must be enforced

for open-boundary problems as, e.g., in case of antennas radiating in free space. Let R be
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the radius of a sphere that encloses all sources, inhomogeneities, etc. Outside the sphere the

sources are assumed to radiate in a homogeneous space. When R → ∞, the Sommerfeld

radiation condition states that the outward-traveling fields in a point at the surface ∂S of

the sphere must be vanishing small; this is a result of the free-space expansion of the fields

and is essentially a statement of energy conservation. In addition, it states that E and

B will be directed transversely to the propagation direction (plane-wave propagation) and

will decrease as R−1. In mathematical terms, the Sommerfeld radiation condition can be

written as [29]

r̂ × H + (ε/μ)
1
2 E = O

(
R−2
)

as R → ∞ (2.15a)

r̂ × E − (μ/ε)
1
2 H = O

(
R−2
)

as R → ∞ (2.15b)

where r ∈ ∂S. Here, we define the wave impedance Z =
√

μ/ε [Ω] and the wave admittance

Y =
√

ε/μ [Ω−1]. In vacuum, Z0 =
√

μ0/ε0 ≈ 120π.

2.3 Mixed Potential Formulation

Maxwell’s equations (2.7) have a unique solution, provided that an appropriate set of

boundary conditions is imposed and that the constitutive parameters (2.9) of the medium

are known. Of particular interest is to determine the electromagnetic field that is radiated

by a source current distribution J in free space, with ε(r) = ε0 and μ(r) = μ0. For this

specific medium (vacuum), Maxwell’s equations reduce to

∇ × E = −jωμ0H

∇ × H = J + jωε0E

∇ · E = ρ/ε0

∇ · H = 0.
(2.16)

Because H is solenoidal (∇ · H = 0), we may express this field in terms of a magnetic

vector potential A. For instance,

H = ∇ × A (2.17)

which can be substituted in the left two Equations of (2.16) to yield

∇ × (E + jωμ0A) = 0, (2.18)

∇ × ∇ × A = J + jωε0E. (2.19)
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The curl in (2.18) is operating on a conservative (irrotational) vector field, which can

mathematically be formulated as

E = −jωμ0A − ∇Φ (2.20)

where Φ is an electric scalar potential, yet to be determined. Substituting (2.20) in (2.19)

and utilizing the vector identity ∇ × ∇ × A = ∇ (∇ · A) − ∇2A leads to

∇2A + k2
0A = −J + ∇ (∇ · A + jωε0Φ) (2.21)

where the free-space wavenumber has been introduced as k0 = ω
√

μ0ε0.

A vector field A is defined uniquely if both its curl and divergence are specified, provided

that A is known in a single point or vanishes at infinity. With reference to definition (2.17),

and in view of (2.21), it is advantageous to set

∇ · A = −jωε0Φ (2.22)

which is known as the Lorenz gauge. Upon substituting this result in (2.21), one arrives

at the inhomogeneous Helmholtz wave equation

∇2A + k2
0A = −J (2.23)

which can be solved for a given forcing function J . The radiation condition imposed on A

at infinity requires that only outward traveling wave solutions are physically possible. It

can be shown that the well-known general solution of (2.23) is [30, pp. 78–80]

A(r) =

∫∫

V

∫
G(r − r′)J(r′) dV ′ (r outside V) (2.24)

with the scalar free-space Green’s function G = exp(−jk0R)/(4πR) and R = ‖r − r′‖2.

Upon taking the divergence of (2.20), and by using (2.22) as well as that ∇ · E = ρ/ε0,

one readily arrives at the inhomogeneous wave equation for the electric scalar potential,

which reads

∇2Φ + k2
0Φ = − ρ

ε0

(2.25)

and has the generic solution

Φ(r) =
1

ε0

∫∫

V

∫
G(r − r′)ρ(r′) dV ′ (r outside V). (2.26)



2.4 The Reaction Concept 19

In summary, the free-space electromagnetic fields {E,H} can be determined outside the

source region V through the evaluation of the potentials A and Φ as

E(r,J) = −jωμ0A − ∇Φ (2.27a)

H(r,J) = ∇ × A (2.27b)

A(r) =

∫∫

V

∫
G(r − r′)J(r′) dV ′ (2.27c)

Φ(r) = − 1

jωε0

∫∫

V

∫
G(r − r′)∇′ · J(r′) dV ′ (2.27d)

G(r − r′) =
e−jk0‖r−r

′‖2

4π‖r − r′‖2

. (2.27e)

Note that we have substituted the continuity equation ∇′ · J(r′) = −jωρ(r′) in (2.26) to

arrive at (2.27d), with the divergence operator ∇′ = ∇r′ operating on r′.

Alternatively, by substituting (2.22) in (2.20), a single potential formulation is obtained

that assumes the form

E(r,J) =
1

jωε0

[
∇ (∇ · A) + k2

0A
]
. (2.28)

From (2.22), (2.27c), and (2.27d), it is inferred that

∇ ·
∫∫

V

∫
G(r − r′)J(r′) dV ′ =

∫∫

V

∫
G(r − r′)∇′ · J(r′) dV ′. (2.29)

2.4 The Reaction Concept

The reaction concept has been widely used, not only in the analytical evaluation of both

the self- and mutual port impedances of electromagnetic structures [31], but also in the

numerical evaluation of system matrix entries arising in integral-equation-based computer

methods [32] (see also Chapter 3). The reaction concept has been introduced by Rum-

sey [33], and quantifies the reaction of a field a, which has been generated by a source a,

on a source b. This reaction is symbolically written as 〈a, b〉. It will be shown that this

concept is closely related to the reciprocity theorem, which states that 〈a, b〉 = 〈b, a〉.
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D

DbDa

∂Db

∂D

∂Da

n̂a n̂b

n̂

Ja J b

Figure 2.2: Current distributions Ja,b, confined within the overlapping volumetric domains

Da,b and used to generate the respective fields {Ea,b,Ha,b} throughout the entire volume

D.

Figure 2.2 specifies the situation of two electric currents distributions Ja,b, which are con-

fined within the (possibly) overlapping volumetric domains Da,b. Each source is considered

in the absence of the other to independently generate the respective fields {Ea,b,Ha,b}
throughout the entire volume D.

The fields in D satisfy either

∇ × Ea = −jωμHa

∇ × Ha = Ja + jωεEa
or

∇ × Eb = −jωμHb

∇ × Hb = J b + jωεEb
(2.30)

depending upon whether source a, or source b has been used to generate the fields. From

(2.30), and the vector identity ∇ · (A × B) = B · (∇ × A)−A · (∇ × B), one can readily

verify that

∇ ·
(
Eb × Ha

)
= Ha ·

(
∇ × Eb

)
− Eb · (∇ × Ha)

= −jωμHa · Hb − Eb · Ja − jωεEb · Ea. (2.31)

Interchanging the superscripts a and b, and subtracting the resulting equation from (2.31),

yields

∇ ·
(
Eb × Ha − Ea × Hb

)
= Ea · J b − Eb · Ja (2.32)

Next, (2.32) is integrated over the volume D and Gauss’ divergence theorem is used, which

states that ∫∫

D

∫
∇ · A dV =

∫

∂D

∫
A · n̂ dS (2.33)
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so that one arrives at
∫

∂D

∫ (
Eb × Ha − Ea × Hb

)
· n̂ dS = 〈a, b〉 − 〈b, a〉 (2.34)

with the reactions defined by:

〈a, b〉 =

∫∫

Db

∫
Ea · J b dV 〈b, a〉 =

∫∫

Da

∫
Eb · Ja dV. (2.35)

Through cyclic rotation, the left-hand side of (2.34) can be rewritten as
∫

∂D

∫ (
Eb × Ha − Ea × Hb

)
· n̂ dS =

∫

∂D

∫ (
n̂ × Eb

)
· Ha − (n̂ × Ea) · Hb dS. (2.36)

If ∂D represents the surface of a sphere with radius R, which is centered around the origin

of the coordinate system, then n̂ = r̂. In addition, for R → ∞, and on account of the

radiation conditions as listed in (2.15), one has that r̂×Ea,b = Z0H
a,b, where the intrinsic

impedance of the medium (free-space) is given by Z0 =
√

μ0/ε0. Upon substituting the

latter expressions in (2.36), one observes that, at infinity, the integrand in (2.36) vanishes

because Z0H
b · Ha − Z0H

a · Hb = 0. Hence, as R → ∞, Eq. (2.34) simplifies to
∫

∂D

∫ (
Eb × Ha − Ea × Hb

)
· n̂ dS = 0 (2.37)

which is the Lorentz reciprocity theorem in integral form.

With reference to (2.35), Eq. (2.37) also holds if Ja = J b = 0 in the volume outside D,

which is bounded between the finite-sized surface ∂D (see Fig. 2.2) and a third imaginary

surface placed at infinity as the outer shell. Since the integration at infinity yields zero for

outward traveling fields, the integral over ∂D must vanish as well. The implication of this

result is that the Lorentz theorem holds for any regular, closed surface ∂S surrounding the

sources a and b. Hence, and on account of (2.34), one concludes that 〈a, b〉 = 〈b, a〉, which

is commonly known as the reciprocity theorem.

2.5 Antenna Reciprocity for Finite Arrays

Over the past decades, the application of the reciprocity and reaction theorem has become

common practice in solving various types of antenna and scattering problems. In this



22 Electromagnetic Field Equations

respect, a particularly important result in the characterization of the electrical properties

of receiving array antennas has already been reported by de Hoop in 1975 [34]. In this

reference, a rigorous proof is presented which justifies the use of a Thévenin circuit repre-

sentation of an antenna array on receive. This equivalent electrical network has internal

(voltage) sources whose strengths depend on the amplitude, phase and state of polariza-

tion of the radiation that is incident upon the antenna in the receiving situation. Since

this circuit representation is of great importance in the analysis of entire antenna array

systems (Chapter 5), an approach based on [34] will be followed for deriving the relevant

components of the Thévenin network.

Transmit situation

Figure 2.3 illustrates an N -port antenna array on transmit. The array is excited by N cur-

rent sources to generate the total transmitted fields {ET ,HT}. Domains D1 and D3 have

constitutive parameters μ0 and ε0 (vacuum). The antenna structure occupies a (possibly

lossy) domain D2, with complex-valued constitutive parameters μ and ε, and is bounded

by the interior and exterior, sufficiently regular, closed surfaces ∂D1 and ∂D2, respectively.

Domain D1 contains the current sources {IT
1 , IT

2 , . . . , IT
N}, each of which is interconnected

to a pair of perfectly electrically conducting (lossless) leads that penetrate the surface ∂D1.

−+ −+ −+

D1

∂D1
∂D2

D2 D3

· · · · · ·

{μ0, ε0}
{μ, ε}

{μ0, ε0}

IT
1 IT

n IT
N

{ET , HT}

V T
nV T

1 V T
N

n̂2

n̂1

Figure 2.3: N -port antenna array on transmit.
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Receive situation

Figure 2.4 illustrates the N -port antenna array on receive, where a plane electromagnetic

wave is assumed to be incident on the array from direction r̂i, i.e.,

Ei = E0e
j(k0·r)

H i = Z−1
0 Ei × r̂i = Y0E0 × r̂ie

j(k0·r).
(2.38)

where k0 = k0r̂i. The complex-valued vector E0 specifies the polarization state of the

plane wave at the origin O, and the intrinsic admittance of free space is denoted by

Y0 = Z−1
0 = (ε0/μ0)

−1/2. The incident fields {Ei,H i} are defined in the absence of

the scatterer (antenna system). On account of the linearity of Maxwell’s equations, we

define the total fields on receive as

ER = Ei + Es

HR = H i + Hs
(2.39)

for r ∈ R
3, where the fields {Es,Hs} that scatter from the antenna structure have been

added to the incident fields and satisfy Sommerfeld’s radiation condition, Eq. (2.15). The

configuration in Fig. 2.4 also shows that the antenna port currents {IR
1 , IR

2 , . . . , IR
N} induce

the voltages {V R
1 , V R

2 , . . . , V R
N } across the corresponding terminals, each of which is loaded

with a finite impedance.

D1

∂D1
∂D2

D2 D3

{Ei, H i}{Es, Hs}

IR
1

+ −
V R

1 V R
n

IR
n IR

N

· · · · · ·

−+ + −

{ER, HR}

{μ0, ε0}
{μ, ε}

{μ0, ε0}

V R
N

ẑ

O
x̂

ŷ

n̂2

n̂1r̂i

Figure 2.4: N -port antenna array on receive.
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Inside the source-free region D2, the fields must satisfy (2.37), that is,

∫

∂D1

∫ (
ET × HR − ER × HT

)
· n̂1 dS =

∫

∂D2

∫ (
ET × HR − ER × HT

)
· n̂2 dS. (2.40)

The left- and right-hand sides of (2.40) will be evaluated separately and will be expressed

in terms of the current excitation sources on transmit and the plane wave source on receive,

respectively.

In the feed region of an antenna it is often required to interrelate the vector field description

{E,H} to the scalar circuit description {V, I}. For simplicity, consider the single-port feed

region D1 in Fig. 2.5. The accessible port is excited by a current source on transmit, whereas

it is terminated with a port impedance across the gap on receive. The gap size is assumed

to be electrically small, so that the current distributions JT,R within the cylindrically

shaped gaps may be assumed uniform and directed along the axis of the cylinder as shown

in Fig. 2.5; the same assumption will hold for ET,R.

ẑ

O
x̂

ŷ

+ −
D1

ET

JT

n̂1 ∂D1
{μ0, ε0}

l
+ −

D1

n̂1 ∂D1
{μ0, ε0}

l
JR

ER

Transmiting situation Receiving situation

V T V R

Figure 2.5: Electric fields ET,R and total currents JT,R defined in the feed region D1.

The application of (2.34) inside the volume D1 yields

∫

∂D1

∫ (
ET × HR − ER × HT

)
· n̂1 dS =

∫∫

D1

∫ (
ER · JT − ET · JR

)
dV (2.41)

where JT,R is the total current, which combines the induced and impressed current, that

is, JT,R = σET,R + J
T,R
prim. Next, since

(
ET × HR − ER × HT

)
· n̂1 =

(
n̂1 × ET

)
· HR −(

n̂1 × ER
)
· HT , and since n̂1 × ET = n̂1 × ER = 0 on the perfect electrical conducting

surfaces within D1 (vanishing integrand), the surface ∂D1 can be shrunk to exclude the
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cylindrically shaped leads of the terminals. Furthermore, since σ and J
T,R
prim are assumed to

attain non-zero values only within the gaps and metallic leads, the corresponding volume

D1 can be reduced further to contain only the gap volume representing the accessible port.

Finally, within the electrically small gap we may introduce an electric scalar potential Φ

through the locally quasi-static relation ET,R = −∇Φ. The voltage V T,R is the potential

difference Φb − Φa between the terminals a and b, so that V T,R −
∫ b

a
ET,R · dŷ = 0 along

both of the contours in Fig. 2.5. Also, since the integrand on the right-hand side of (2.41)

is a constant function within the gap volume, it can be further evaluated as
∫∫

D1

∫ (
ER · JT − ET · JR

)
dV =

∫∫

gap

∫ (
ER · JT − ET · JR

)
dV

=

∫
ER · d(−ŷ)

∫∫
JT · dS −

∫
ET · dŷ

∫∫
JR · dS

= −V RIT − V T IR (2.42)

where we accounted for the directions of JT,R when integrating the E-field inside the gap

region, and where the flux of the current through a cross section of the cylinder equals the

total port current IT or IR.

Substituting (2.42) in (2.41) leads to the following port–field relation within D1:
∫

∂D1

∫ (
ET × HR − ER × HT

)
· n̂1 dS = −V RIT − V T IR. (2.43)

Analogously, for multi-port antennas, the left-hand side of (2.40) is evaluated as

∫

∂D1

∫ (
ET × HR − ER × HT

)
· n̂1 dS = −

N∑

m=1

(
V R

m IT
m + V T

m IR
m

)
. (2.44)

The right-hand side of (2.40) is rewritten with the aid of (2.39) as
∫

∂D2

∫ (
ET × HR − ER × HT

)
· n̂2 dS =

∫

∂D2

∫ (
ET × H i − Ei × HT

)
· n̂2 dS

+

∫

∂D2

∫ (
ET × Hs − Es × HT

)
· n̂2 dS. (2.45)

Substituting b = T and a = s in (2.37), and by applying this theorem outside D2, leads

to the conclusion that, on account of the radiation condition, the surface integral over the
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scattered and transmitted fields at an imaginary closed surface at infinity amounts to zero.

Hence, the second term on the right-hand side of (2.45) must vanish as well. Using this,

and substituting (2.38) in (2.45), one obtains

∫

∂D2

∫ (
ET × H i − Ei × HT

)
· n̂2 dS =

∫

∂D2

∫
H i ·

(
n̂2 × ET

)
+ Ei ·

(
n̂2 × HT

)
dS

= Y0

∫

∂D2

∫ (
[E0 × r̂i] ·

[
n̂2 × ET

]
+ E0 ·

[
n̂2 × Z0H

T
])

ej(k0·r) dS

= Y0E0 ·

⎛
⎝r̂i ×

∫

∂D2

∫ ([
n̂2 × ET

]
− r̂i ×

[
n̂2 × Z0H

T
])

ej(k0·r) dS

⎞
⎠ (2.46)

where we applied the cyclic rotation

[E0 × r̂i] ·
[
n̂2 × ET

]
= E0 ·

(
r̂i ×

[
n̂2 × ET

])
. (2.47)

Moreover, we used that, for an arbitrary vector B,

E0 · [r̂i × (r̂i × B)] = E0 · (r̂i · B)r̂i − E0 · (r̂i · r̂i)B = −E0 · B (2.48)

since E0 · r̂i = 0 and r̂i · r̂i = 1.

Finally, one can rewrite (2.46) as

∫

∂D2

∫ (
ET × H i − Ei × HT

)
· n̂2 dS = − 1

jωμ0

E0 · eT (2.49)

with

eT = −jk0r̂i ×
∫

∂D2

∫ ([
n̂2 × ET

]
− r̂i ×

[
n̂2 × Z0H

T
])

ej(k0·r) dS. (2.50)

The far-field amplitude vector eT (r̂i) is a result of a surface integration of the tangential

parts of both the electric and magnetic fields on ∂D2. In fact, the electric field ET (r, r̂i) =

eT exp (−jk0r)/(4πr) represents the electric far-field function that has been generated by

these tangential field components on ∂D2 and serves as a mathematical realization of

Huygens’ surface equivalence principle, evaluated in the far field. The general (Fresnel)

form is known as Franz’ formula (1948), see e.g. the exposition in [35], where a comparison

is made with the well-known Stratton-Chu formulas [36, pp. 464–470].
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Equations (2.49) and (2.45) are combined and subsequently substituted, along with (2.44),

in Eq. (2.40) to arrive at

N∑

m=1

(
V R

m IT
m + V T

m IR
m

)
=

1

jωμ0

E0 · eT . (2.51)

Next, the far-field pattern eT can be decomposed into N antenna element patterns ac-

cording to eT =
∑N

m=1 eT
mIT

m. In addition, one can write that V T
m =

∑N
n=1 Zant

mnIT
n for

m = 1 . . . N , where Zant
mn denotes an element of the antenna input impedance matrix.

Hence, upon substituting these expressions in (2.51), and rearranging the result, one ob-

tains

N∑

m=1

N∑

n=1

(
V R

m IT
m + Zant

mnIT
n IR

m

)
=

1

jωμ0

E0 ·
N∑

m=1

eT
m(r̂i)I

T
m

N∑

n=1

N∑

m=1

(
V R

m IT
m + Zant

nmIT
mIR

n

)
=

1

jωμ0

N∑

m=1

[
E0 · eT

m(r̂i)
]
IT
m

N∑

m=1

(
N∑

n=1

Zant
nmIR

n + V R
m

)
IT
m =

1

jωμ0

N∑

m=1

[
E0 · eT

m(r̂i)
]
IT
m. (2.52)

Equation (2.52) should hold for any choice of {IT
m}, so that for each linear combination of

port currents

N∑

n=1

Zant
nmIR

n + V R
m =

1

jωμ0

E0 · eT
m(r̂i), for m = 1 . . . N . (2.53)

This equation is recognized as a Thévenin circuit description. The interpretation of this

equation is graphically illustrated in Fig. 2.6. It should be noted that the transpose of the

antenna impedance matrix Zant is taken and that the mth open-circuit terminal voltage

on receive is specified as

V oc
m = (jωμ0)

−1E0 · eT
m(r̂i). (2.54)

Each voltage generator is an elementary source in the Thévenin network and this voltage

is therefore commonly referred to as the “equivalent electromotive force”. We conclude

by stating that eT
m can be deduced from the elemental far-field pattern ET

m through the

relation eT
m = 4π exp (jk0)E

T
m, with the far-field distance r = 1 m. This normalized pattern
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· · · · · ·
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+
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(
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Figure 2.6: Thévenin circuit representation for an N -port terminated antenna array on

receive.

is obtained by exciting the mth element with an impressed current of 1 Ampère, while the

other ports are open-circuited.

It is important to realize that the Thévenin circuit representation of an array on receive can

readily be added to the library of standard multi-port components available to microwave

circuit simulators. Furthermore, because the internal voltage sources are a function of

the plane-wave field that is incident upon the array, also the received noise power as a

result of an external noise field, such as the cosmic microwave background noise, can be

represented by the internal voltage sources of the Thévenin circuit. This property will

be further elaborated in Chapter 5, where the external noise field in the far-field region

of the antenna system is described in terms of a stochastic plane-wave spectrum which is

generated by a black body. In that chapter, we will also present an analysis methodology

to analyze the receiver sensitivity of antenna array systems.



Chapter 3

Galerkin’s Moment Method for the

Analysis of Antennas

In this chapter, a numerical method is presented for computing the electromagnetic radia-

tion and impedance characteristics of dielectric-free antenna structures1. The volumetric

currents inside electrically thin and imperfectly conducting metals will be modeled by aver-

age surface currents on infinitely thin sheets. After a surface impedance boundary condition

is imposed for the total electric field on these sheets, an integro-differential equation is for-

mulated, discretized and solved to subsequently obtain the sheet currents, antenna input

impedance matrix, and element radiation patterns for various numerical examples.

3.1 Surface Impedance Boundary Condition

The numerical computation of volumetric currents inside imperfectly conducting surfaces

of finite thickness, as e.g. shown in Fig. 3.1(a), is a burdensome task when straightforward

volume integral equation formulations are employed that require fine spatial discretiza-

tions. The computational burden can be significantly relaxed when the conductor can be

1This chapter is partly based on:

[37]: R. Maaskant, D. J. Bekers, M. J. Arts, W. A. van Cappellen, and M. V. Ivashina, “Evaluation of the radiation efficiency

and the noise temperature of low-loss antennas,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1536-1225, Jan. 2009.

[38]: R. Maaskant and M. J. Arts, “Reconsidering the voltage-gap source model used in moment methods,” IEEE Antennas

Propag. Mag., accepted for publication.
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approximated by an infinitesimally thin impedance sheet supporting an average surface

current which can be determined through solving a surface integral equation. The pertain-

ing configuration, which entails both geometrical and electrical approximations, has been

depicted in Fig. 3.1(b).

{Es, Hs}

{Ei, H i}
H = H i + Hs
E = Ei + Es

J

n̂

⇒
Geometrical

and
Electrical

Approximations

n̂

JS

ZS S
∂S

{μ0, ε0}

(a) (b)

Figure 3.1: Induced conductor current due to an incident electromagnetic field: (a) the

volumetric current J in the actual configuration; (b) the averaged surface current JS

supported by a sheet with an appropriate surface impedance ZS(r).

Similar to the interface boundary conditions in (2.11), the impedance sheet is also char-

acterized by: (i) a jump discontinuity of the tangential magnetic field components across

the sheet interface, and; (ii) continuous tangential components of the electric field (no

magnetic currents), i.e.,

n̂ × E2 − n̂ × E1 = 0 (3.1a)

n̂ × H2 − n̂ × H1 = JS (3.1b)

where {E1,H1} and {E2,H2} are the fields on the negative and positive sides of the out-

ward unit vector normal to the surface S, respectively. In addition to (3.1), the amplitude

of the tangential electric field E1|tan = E2|tan at the sheet interface is required to be pro-

portional to the sheet current JS. The complex-valued surface impedance ZS represents

this proportionality constant in Ohms per square, and is known to satisfy [39]

−n̂ × (n̂ × E1) = E1|tan = E2|tan = ZSJS. (3.2)
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3.2 Determination of the Sheet Impedance ZS

3.2.1 Field Impedance Relations for Slab Configurations

An appropriate formula for the sheet impedance ZS will be derived rigorously and pertains

to the fields across the boundaries of a material slab region (see also [40, Chapter 2]). The

mathematical and physical approximations that are subsequently required to arrive at an

effective surface as shown in Fig. 3.1(b), as well as at the effective boundary condition

(3.2), will be introduced systematically.

Consider Fig. 3.2, which illustrates the locally enlarged cross section of Fig. 3.1(a). We will

assume that the smallest curvature radius Rmin of the actual curved surface in Fig. 3.1 is

much larger than the conductor thickness d, i.e., Rmin ≫ d. This implies that the surface

is locally planar as well as that the fields within this slab are primarily determined by the

tangential components of the fields along the bottom and top surfaces (locality principle,

end-effects neglected).

n̂ = ẑ

z = 0
z = d

x̂ ŷ

{E−
t , H−

t }

{E+
t , H+

t }

Figure 3.2: Locally enlarged cross section of the conducting slab.

Inside the conducting slab region, the electromagnetic fields satisfy

∇ × E = −jωμH , ∇ × H = jωεE. (3.3)

It is convenient to decompose the fields and the gradient operator into tangential and

normal components with respect to the conductor surfaces, that is,

E = Et + Ezẑ, H = H t + Hzẑ, ∇ = ∇t + ∂zẑ (3.4)

which can be substituted in the first equation of (3.3) to yield

∇t × Et + ∂zẑ × Et + ∇t × Ezẑ = −jωμH t − jωμHzẑ (3.5)
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where we have used that ∂zEzẑ × ẑ = 0. By collecting the transverse and normal field

components, one obtains

Hzẑ = −(jωμ)−1∇t × Et (3.6a)

H t = −(jωμ)−1 (∂zẑ × Et + ∇t × Ezẑ) . (3.6b)

Similarly, using duality, we find

Ezẑ = (jωε)−1∇t × H t (3.7a)

Et = (jωε)−1 (∂zẑ × H t + ∇t × Hzẑ) . (3.7b)

Substituting (3.7a) in (3.6b) yields

∂zẑ × Et = −jωμH t − (jωε)−1∇t × (∇t × H t) (3.8)

which is locally valid inside the conducting slab. Next, Eq. (3.8) is averaged over the con-

ductor thickness d by integrating the fields over the conductor thickness d and subsequently

dividing this integral by d. This yields

ẑ × Et|z=d − ẑ × Et|z=0

d
= −jωμ

d

∫ d

0

H t dz − 1

jωεd
∇t ×

(
∇t ×

∫ d

0

H t dz

)
. (3.9)

Upon taking the cross product of (3.9) with −ẑ, and by introducing the short-hand nota-

tions Et|z=d = E+
t and Et|z=0 = E−

t , and subsequently making use of the vector identity

−z × ∇t × (∇t × At) = ∇t∇t · (ẑ × At) (3.10)

one obtains the compact form

E+
t − E−

t = jωμ

(
It +

∇t∇t

k2

)
·
(

ẑ ×
∫ d

0

H t dz

)
(3.11)

where dyadic It is the 2× 2 unit diagonal matrix. The objective is to express (3.11) solely

in terms of the tangential field components at z = 0 and z = d. To this end, we remark that

the integral in (3.11) can be evaluated analytically when plane-wave fields are considered,

or, more generally, for a spectral plane-wave representation of the fields.
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A plane-wave representation for the transverse fields is obtained through the application

of the 2-D spatial Fourier transform pair

F̆ t(kt, z) = FT{F t(r)} =

∞∫

−∞

∫
F t(r)ejkt·r dx dy (3.12a)

F t(r) = FT−1{F̆ t(kt, z)} =
1

4π2

∞∫

−∞

∫
F̆ t(kt, z)e−jkt·r dkt (3.12b)

with kt = kxx̂ + kyŷ. Note that the following useful properties hold:

FT{∇t · F t(r)} = −jkt · F̆ t(kt, z) (3.13a)

FT{∇2
t F t(r)} = −k2

t F̆ t(kt, z) (3.13b)

FT{∇2F t(r)} =
(
−k2

t + ∂2
z

)
F̆ t(kt, z) (3.13c)

The magnetic field H t in the interior slab region satisfies the source-free Helmholtz equation

∇2H t + k2H t = 0. Hence, in the spectral domain, this equation transforms into

∂2
zH̆ t + k2

zH̆ t = 0 (3.14)

where k2
z = k2 − k2

t . The general solution to (3.14) is given as

H̆ t(z) = Ate
−jkzz + Bte

jkzz (3.15)

where At and Bt are vectorial constants that can be determined through the boundary

conditions

H̆ t(d) = H̆
+

t , H̆ t(0) = H̆
−

t . (3.16)

This yields

At =
1

2j

(
ejkzdH̆

−

t − H̆
+

t

sin (kzd)

)
, Bt =

1

2j

(
H̆

+

t − e−jkzdH̆
−

t

sin (kzd)

)
. (3.17)

With the aid of this result, the integral of the transverse magnetic field components in

(3.15) can be evaluated analytically, i.e.,

∫ d

0

H̆ t dz =
1

jkz

[
At

(
1 − e−jkzd

)
+ Bt

(
ejkzd − 1

)]

=
1 − cos (kzd)

kz sin (kzd)

(
H̆

+

t + H̆
−

t

)
=

tan (kzd/2)

kz

(
H̆

+

t + H̆
−

t

)
(3.18)
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where the constants At and Bt have been substituted. Taking the spectral representation

of (3.11), and by substituting (3.18) in the corresponding result, gives

Ĕ
+

t − Ĕ
−

t = jωμfA · ẑ ×
(
H̆

+

t + H̆
−

t

)
(3.19a)

H̆
+

t − H̆
−

t = −jωεfA · ẑ ×
(
Ĕ

+

t + Ĕ
−

t

)
(3.19b)

where the latter expression has been obtained through duality, and where the dyadic

A =

(
I t −

ktkt

k2

)
and function f (kz, d) =

tan (kzd/2)

kz

. (3.20)

Equations (3.19) can be written in matrix form by using impedance operators which relate

Ĕ
+

t and Ĕ
−

t (equivalent vector voltages) to both ẑ × H̆
+

t and ẑ × H̆
−

t (equivalent vector

currents). To this end, we multiply (3.19b) by (jωεf)−1ẑ × A
−1

, which yields

(jωεf)−1ẑ × A
−1

·
(
H̆

+

t − H̆
−

t

)
= Ĕ

+

t + Ĕ
−

t (3.21)

and then add this equation to (3.19a), to obtain

2Ĕ
+

t = jωμfA · ẑ ×
(
H̆

+

t + H̆
−

t

)
+ (jωεf)−1ẑ × A

−1
·
(
H̆

+

t − H̆
−

t

)
(3.22)

with the dyadic (see Appendix A)

A
−1

= k−2
z

[
k2I t − (ẑ × kt) (ẑ × kt)

]
. (3.23)

Substituting (3.23) in (3.22) and using the identities

ẑ × (ẑ × kt) = −kt (3.24a)

(ẑ × kt) ·
(
H̆

+

t − H̆
−

t

)
= −kt · ẑ ×

(
H̆

+

t − H̆
−

t

)
, (3.24b)

one observes that the last term in (3.22) can be expressed as

ẑ × A
−1

·
(
H̆

+

t − H̆
−

t

)
=

k2

k2
z

ẑ ×
(
H̆

+

t − H̆
−

t

)
− 1

k2
z

kt (ẑ × kt) ·
(
H̆

+

t − H̆
−

t

)

=
k2

k2
z

(
I t −

ktkt

k2

)
· ẑ ×

(
H̆

+

t − H̆
−

t

)

=
k2

k2
z

A · ẑ ×
(
H̆

+

t − H̆
−

t

)
. (3.25)
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By substituting this latter result in (3.22), and by collecting the H̆
+

t and H̆
−

t terms, one

arrives at

2Ĕ
+

t = jωμf

(
1 − 1

k2
zf

2

)
A · ẑ × H̆

+

t + jωμf

(
1 +

1

k2
zf

2

)
A · ẑ × H̆

−

t (3.26)

where

f

(
1 − 1

k2
zf

2

)
=

sin2(kzd/2) − cos2(kzd/2)

kz cos(kzd/2) sin(kzd/2)
=

− cos(kzd)

kz sin(kzd)/2
= − 2

kz tan(kzd)
(3.27)

and

f

(
1 +

1

k2
zf

2

)
=

sin2(kzd/2) + cos2(kzd/2)

kz cos(kzd/2) sin(kzd/2)
=

1

kz sin(kzd)/2
=

2

kz sin(kzd)
. (3.28)

Hence, in matrix notation, we find that

Ĕ
+

t = Z11 · ẑ × H̆
+

t + Z12 · ẑ × H̆
−

t (3.29)

where the impedance operators are given as

Z11 = −j
Zk

kz

1

tan(kzd)
A and Z12 = j

Zk

kz

1

sin(kzd)
A (3.30)

with the wave impedance of the medium defined by Z =
√

μ/ε. Analogously, one can find

that

Ĕ
−

t = Z21 · ẑ × H̆
+

t + Z22 · ẑ × H̆
−

t (3.31)

where Z21 = −Z12 and Z22 = −Z11. Both minus signs can be explained from symmetry

and the orientation of ẑ.

From the above elimination procedure, one finally obtains
(

Ĕ
+

t

Ĕ
−

t

)
=

(
Z11 Z12

Z21 Z22

)(
ẑ × H̆

+

t

ẑ × H̆
−

t

)
(3.32)

with

Z11 = −Z22 = −j
Zk

kz

1

tan (kzd)
A (3.33a)

Z12 = −Z21 = j
Zk

kz

1

sin (kzd)
A (3.33b)

where Z =
√

μ/ε is the wave impedance of the slab medium. It is evident that for each

spectral component a different kz has to be computed, however; it will be shown in the

next section that only one spectral component is of interest in the case of good conductors

and a field distribution which can locally be represented by a plane wave.
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3.2.2 Good Conductors Fulfilling the Condition σ ≫ ωε0|εr|

Equation (3.32) can be approximated such that it solely applies to materials for which

σ ≫ ωε0|εr| (electrically good conductors). Furthermore, the curvature radius of the

phase front of the incident field will be assumed much larger than the skin depth of the

material, and because kt has to be continuous across a boundary surface (cf. Snell’s law),

kt = ‖kt‖2 will be smaller than the wavenumber k0 of the surrounding free-space medium,

i.e., kt ≤ k0. Furthermore, for good conductors, one has that k0 ≪ |k|, so that kt ≪ |k|.
This implies that A ≈ I t and kz =

√
k2 − k2

t ≈ k, which simplifies the analysis to the case

of normal incidence (Leontovich IBC). Equation (3.32) then reads
(

Ĕ
+

t

Ĕ
−

t

)
=

(
Z11 Z12

Z21 Z22

)(
ẑ × H̆

+

t

ẑ × H̆
−

t

)
(3.34)

with

Z11 = −Z22 =
−jZ

tan (kd)
and Z12 = −Z21 =

jZ

sin (kd)
. (3.35)

In addition, for good conductors one may write that

Z =

√
jωμ

σ + jωε0εr

≈
√

j
ωμ

σ
=

√
ωμ

2σ
(1 + j) =

1 + j

δσ
(3.36)

and that

k = ω
√

με = ω

√
μ
(
ε0εr − j

σ

ω

)
≈ (1 − j)

√
ωμσ

2
=

1 − j

δ
(3.37)

where δ is the skin depth of the metal defined by

δ =

√
2

ωμσ
(3.38)

so that the impedance matrix elements in (3.35) can be approximated as

Z11 = −Z22 ≈
1 − j

δσ tan [(1 − j) d/δ]
and Z12 = −Z21 ≈ − 1 − j

δσ sin [(1 − j) d/δ]
. (3.39)

From (3.34) and (3.39) it follows that, in the spatial domain,

E+
t =

1 − j

δσ tan [(1 − j) d/δ]

[
ẑ × H+

t − 1

cos [(1 − j)d/δ]
ẑ × H−

t

]
(3.40a)

E−
t =

1 − j

δσ tan [(1 − j) d/δ]

[
1

cos [(1 − j)d/δ]
ẑ × H+

t − ẑ × H−
t

]
(3.40b)



3.2 Determination of the Sheet Impedance ZS 37

Adding the two equations and using that

1

tan(z)

(
1 +

1

cos(z)

)
=

1 + cos(z)

sin(z)
=

2 cos2(z/2)

sin(z)
=

2 cos2(z/2)

2 sin(z/2) cos(z/2)
= cot(z/2)

(3.41)

yields [37,41]

E+
t + E−

t =
1 − j

δσ tan [(1 − j) d/(2δ)]

[
ẑ × H+

t − ẑ × H−
t

]
. (3.42)

To arrive at the surface impedance boundary condition, Eq. (3.2), we need to model the

slab as infinitely thin and assume that E+
t = E−

t at the transition. We then find that

E+
t = E−

t =
1 − j

2δσ tan [(1 − j) d/(2δ)]

[
ẑ × H+

t − ẑ × H−
t

]
(3.43)

where the right-hand-side (RHS) can be viewed as a constant times the surface current,

i.e.,

ZS =
1 − j

2δσ tan [(1 − j) d/(2δ)]
. (3.44)

Equation (3.44) is the approximate surface impedance of a good conductor. It has been

implemented in the FEKO software [42, p. 10-112], and has been tested on a conducting

spherical shell. After illuminating the sphere by a plane electromagnetic wave, the shielding

factor was computed and turned out to be in good agreement with the exact solution

(through a Mie series representation of the fields). An alternative derivation based on the

volume equivalence principle can be found in [43], and a detailed dimensional analysis to

approximate a conductor of finite thickness and conductivity by an infinitely thin perfectly

conducting sheet can be found in [44].

As derived above, the formula for ZS entails a number of approximations, in summary:

• the minimum curvature radius Rmin of the curved slab is much larger than the skin

depth of the slab material, i.e., Rmin ≫ δ;

• the curvature radius of the phase front of the incident field is much larger than the

skin depth of the slab material, i.e., Rph ≫ δ;
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• end/edge effects are neglected;

• the conductor is electrically thin, i.e., |k|d ≪ 1;

• the conductor has a high conductivity, such that σ ≫ ωε0|εr|.

3.2.3 Approximations of ZS for d ≪ δ and d ≫ δ

For electrically thin conducting slabs for which the conductor thickness d is much smaller

than the skin depth δ, i.e., d ≪ δ, one concludes with the aid of the MacLaurin series

approximation tan(z) = z + z3/3 + O(z5) that (3.44) can be approximated as [37,41]

ZS =
1 − j

2δσ [(1 − j) d/(2δ) + ((1 − j)d/(2δ))3/3 + O ((d/δ)5)]

=
1

σd [1 − j(d/δ)2/6 + O ((d/δ)4)]
=

1

σd

{
1 +

jd2

6δ2
+ O

(
(d/δ)4

)}
. (3.45)

Hence, the relative error of approximating ZS by 1/(σd) is mainly described by jd2/(6δ2).

The first-order term indicates a relative error of this approximation of less than 0.5% for

d/δ ≤ 0.17. The zero-order term 1/(σd) in this expression is the low-frequency approxi-

mation [40, pp. 38-40] of ZS.

For d ≫ δ (and |k|d ≪ 1), we use the geometric series representation 1/(1−x) =
∑∞

n=0 xn

for |x| < 1 and write

1

tan [(1 − j) d/(2δ)]
= j
(
1 + e−(1+j)d/δ

)
/
(
1 − e−(1+j)d/δ

)

= j
(
1 + e−(1+j)d/δ

) (
1 + e−(1+j)d/δ + e−2(1+j)d/δ + . . .

)

= j
(
1 + 2e−(1+j)d/δ + O

(
e−2d/δ

))
(3.46)

so that, for d ≫ δ, the following approximation is found for ZS [37, 41]:

ZS =
1 + j

2δσ

{
1 + 2e−(1+j)d/δ + O

(
e−2d/δ

)}
. (3.47)

When ZS is approximated as (1+j)/(2δσ), the first-order term 2e−(1+j)d/δ in (3.47) indicates

a relative error of less than 0.5% for d/δ ≥ 6.

One can also derive a jump condition for the fields pertaining to an electrically thick

conductor (|k|d ≫ 1), provided that the fields across one of the sides of the conductor
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are known. For example, the fields in the exterior region of a waveguiding structure may

be assumed zero when the electric walls are impenetrable from the interior (d ≫ δ).

Accordingly, assuming that the fields only exist across the upper interface of the slab

(see Fig. 3.2 with {E−
t ,H−

t } = 0), reduces Eq. (3.34) to the boundary condition E+
t =

Z11ẑ × H+
t + Z12ẑ × H−

t ≈ ZSẑ × H+
t , with the surface impedance across the upper

boundary

ZS = lim
|k|d→∞

{Z11} =
1 + j

δσ
(3.48)

where, as in (3.47), the surface resistance is seen to equal the surface reactance and the

effective thickness equals the skin depth only once, as opposed to (3.47). The above formula

has been implemented in the HFSS software (finite element method), which is particularly

suitable to analyze closed-boundary problems (waveguides, transmission lines, etc.).

The zero-order term in Eq. (3.47) has been applied to estimate the losses and the asso-

ciated noise contribution of antenna arrays [45]. A footnote in [46] states that the factor

2 in the denominator of the zero-order term results from the assumption that, in good

approximation, the current is evenly distributed on the two faces of the metallic antenna.

However, this is a too stringent requirement, because in the above derivation of ZS we were

not forced to assume a symmetric current distribution inside the conductor, except that

E+
t = E−

t .

Strong currents are often observed along edges when open surfaces are considered that are

highly conductive. Consequently, the edge effects may be strong and the above approxima-

tions for ZS may cease to hold near edges and corners. Higher-order impedance boundary

conditions have been developed to account for both the edge effects and the actual curva-

ture of the conductor, see e.g. [47] and [48] and references cited therein. Depending upon

the required solution accuracy, some uncertainty in the surface impedance may be accept-

able. For instance, when the antenna parameter of interest is the radiation efficiency, ηrad,

a relatively large variation of ZS (say a factor of 2) will not cause ηrad to change much,

provided that ηrad ≈ 100%. Hence, some degree of uncertainty may be acceptable in prac-

tice, particularly in worst-case analyses of low-loss antenna systems. On the contrary, for

low values of ηrad, a small variation of ZS can lead to significant variations in ηrad. As a

result, errors in ZS may be pronounced strongly, and hence; care has to be exercised in

applying the above impedance boundary conditions for a general class of problems.

In this dissertation, we will mostly employ PEC surfaces, although the power absorption



40 Galerkin’s Moment Method for the Analysis of Antennas

losses of metals, which causes the antenna’s radiation efficiency to decrease, will be exam-

ined in a quantitative manner in Chapter 5. It will turn out that these losses contribute

only moderately to the total antenna system noise temperature (determine e.g. ηrad from

Figs. 5.13 and 5.14 for σ = 3×107, and substitute its value in Eq. (5.95) for Tamb = 300 K).

3.3 The Electric Field Integral Equation

When the piecewise-smooth impedance sheet of Fig. 3.1(b) is illuminated by an incident

electromagnetic field {Ei,H i}, which is defined in the absence of the sheet, a current

JS is induced on the surface of the scatterer/antenna which, in turn, generates the scat-

tered/radiated field {Es,Hs}. On account of the linearity of both the constitutive relations

and Maxwell’s equations, the total electric field E is given as

E = Ei + Es(JS) (3.49)

for r ∈ R
3. By inserting (3.49) in boundary condition (3.2), a functional equation is

obtained for JS at the surface of the impedance sheet, i.e.,

−Ei
tan = Es

tan(JS) − ZSJS, for r ∈ S (3.50)

where the scattered/radiated electric field Es, due to a current-carrying volume, is given

by (2.27). To arrive at the field expressions that are generated by currents on surfaces, the

appropriate limiting process of (2.27) has to be taken [49, pp. 147–150]. Accordingly, the

potential formulas are substituted in (3.50) to yield

−Ei
tan = − (jωμ0A + ∇Φ)tan − ZSJS (3.51)

with r ∈ S and

A(r) = lim
δ↓0

∫

S−Sδ

∫
G(r − r′)JS(r′) dS ′ (3.52a)

Φ(r) = − lim
δ↓0

1

jωε0

∫

S−Sδ

∫
G(r − r′)∇′

t · JS(r′) dS ′ (3.52b)

G(r − r′) =
e−jk0‖r−r

′‖2

4π ‖r − r′‖2

(3.52c)

where ∇′
t = ∇′ − ∂nn̂ denotes the surface divergence operator with respect to the primed

coordinates, and where Sδ represents a small area of arbitrary shape that contains the
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singular point r = r′ and has a maximum chord length δ. Hence, the potential integrals

should be understood in terms of Cauchy principal values [50, pp. 86–88]. The integrals

are improper, although convergent, since the residual term contained in Sδ can be shown to

vanish in the limiting case. Equation (3.51) is recognized as the well-known Electric Field

Integral Equation (EFIE); it is herein classified as a Fredholm boundary value integral

equation of the second kind, and occasionally referred to as the third type [51, p. 311].

3.4 Discretization and Solution of the EFIE

The objective in this section is to transform the continuous functional (3.51) into a matrix

equation so that it can be solved by standard algebraic techniques. In this, so-called,

weighted residual method, or moment method approach [32], the surface current JS is

approximated by a finite set of basis functions.

3.4.1 Method of Weighted Residuals

Suppose that N independent vector basis functions {fn}N
n=1 are employed on S, then

JS(r) ≈
N∑

n=1

Infn(r) (3.53)

where the sequence of complex-valued amplitudes {In} are the unknown expansion coeffi-

cients to be determined. Clearly, the numerical convergence of the above approximation de-

pends upon: (i) the specific choice of the subsectional and/or entire domain basis functions

{fn}, and; (ii) the number of independent basis functions N . The specific choice of basis,

and its implications on the solution accuracy and stability, are discussed in e.g. [49,52–54].

In the following, only the most relevant aspects will be emphasized.

Let the EFIE in (3.51) be cast in the compact form

−Ei
tan(r) = L {JS(r)} (3.54)

where L is a linear operator, which maps functions in the domain of L, denoted by D(L),
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onto functions in the range of L, denoted by R(L). Substituting (3.53) in (3.54) gives

−Ei
tan(r) ≈

N∑

n=1

InL {fn(r)} = −Ei
N = −PN

(
Ei

tan

)
, (3.55)

where Ei
N is the approximant of Ei

tan, and where PN is the projection operator which

projects the excitation Ei
tan onto the space spanned by L{fn} for n = 1, . . . , N . The

space that is spanned by the set of basis functions {fn} will be denoted by XN =

span{f 1, . . . ,fn}. For ultimate convergence, it is required that Ei
N → Ei

tan for N → ∞
and, hence, {fn} must form a complete basis for D(L), so that also {L {fn}} forms a

complete basis for the operator range R(L). The latter is most desired as it spans a basis

for Ei
tan, and may be achieved even when the basis {fn} is incomplete in D(L). In any

case, the basis functions should be chosen such that XN is contained in D(L), which means

that each of the basis functions must be suitable to be subjected to the various operations

involved (e.g. differentiations), and that each of the basis functions satisfies the boundary

conditions (classical solution). When only a weighted sum of basis functions satisfies the

boundary conditions, and/or the differentiability conditions are satisfied in a distributional

sense, a distributional solution is obtained. We will, however, consider only the classical

solution.

By substituting (3.53) in (3.54), the field approximation error, or residual field function

R, can be defined as

R(r) = Ei
tan(r) +

N∑

n=1

InL {fn(r)} (3.56)

which has to be minimized, and most preferably in regions on S where the field intensities

are significant. One could enforce that R = 0 at N given points {r1, . . . , rN}; this specific

form of (strong) “testing” is referred to as the collocation method, or point-matching

method [32].

The more general (weak) form of testing is achieved through multiplication (weighting)

of the residual function by N suitable testing functions. More specifically, we require a

vanishing norm of R through the inner product2

〈R,wm〉 =

∫

Sm

∫
R(r) · w∗

m(r) dS = 0 (3.57)

2Note that the inner product reduces to a symmetric product for real-valued testing functions.
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over the mth support Sm of the mth conjugated weighting function wm, for m = 1, 2, . . . , N .

Note that, in the collocation method, the testing functions are real-valued and simply taken

as wm(r) = δ(r − rm), where rm represents the mth test point. However, this method

is often not preferred since the accuracy of the collocation method strongly depends upon

the choice of the matching points. Also note that, on the basis of 〈Ei
tan − Ei

N ,wm〉 = 0,

each of the weighting functions wm is chosen orthogonal to the field approximation error

Ei
tan −Ei

N . Furthermore, the weighting functions {wm} should be contained in R(L) and

form a basis, or, more generally, this basis has to be contained in the domain of the adjoint

operator L∗, viz. D(L∗), because R(L) ⊂ D(L∗). The adjoint operator L∗ is defined as

〈y, L{x}〉 = 〈L∗{y}, x〉 (3.58)

for all x, y ∈ H, where H denotes the Hilbert space, used herein to define inner products

between square-summable vector tuples of infinite dimensions (continuous functions) be-

longing to L2. When L = L∗, the operator is self-adjoint (Hermitian) so that D(L∗) =

D(L) = R(L), which suggests that the testing functions can be chosen equal to the basis

functions, i.e., wm = fm for all m. This specific choice is known as Galerkin’s method. In

electromagnetics, however, the operators are generally not self-adjoint. In fact, the EFIE

operator is symmetric [55], that is, 〈y, L{x}〉 = 〈L{y}, x〉 for all x, y ∈ D(L) and the choice

of Galerkin’s scheme needs more justification, as further detailed below.

When Galerkin’s method is invoked, Eq. (3.56) transforms into the matrix equation

Vm =
N∑

n=1

ZmnIn for m = 1, 2, . . . , N (3.59)

with

Vm = −〈Ei,fm〉 and Zmn = 〈L {fn} ,fm〉 (3.60)

where the subscripts “tan” have been omitted since the vector test functions are chosen

tangential to the surface S. It turns out that, when Galerkin’s method is applied to

discretize EFIE operators, symmetry in Z is preserved if

Zmn = 〈L {fn} ,fm〉 = 〈L {fm} ,fn〉 = Znm (3.61)

which is generally only true for real-valued functions {fm,fn}. For complex-valued func-

tions, symmetry is preserved if the test functions are chosen equal to the conjugate of

the basis functions, that is, wm = f ∗
m for all m. The latter choice is a non-Galerkin ap-

proach for which the energy norm in (3.57) becomes mathematically identical to replacing
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this inner product by a symmetric product and choosing the basis functions equal to the

test functions (Galerkin’s approach). Neither from a practical point of view, nor from

a mathematical point of view, has it been shown that Galerkin’s method is the “best”

choice [56, 57]. Moreover, about a factor of 2 in matrix-fill time can be gained when the

matrix is known to be symmetric. Henceforth, we will indeed remove the conjugate in

(3.57) to maintain symmetry, even when complex-valued basis and testing functions are

involved. Also, it is worthwhile to point out that this is in accordance with the reaction

concept and reciprocity theorem (no conjugations involved). In this respect, for PEC sur-

faces, the matrix element Zmn can then be interpreted as the reaction integral of a basis

function fn, which generates an electric field whose inner product is taken with the mth

test function (current) fm, after which the result is integrated over the support of the mth

test function. In addition, and regardless of whether or not testing functions are identical

to basis functions, it is known that field reactions (defined through a symmetric product),

and therefore also the computed moment matrix entries, are of a variational form and are

second-order accurate in the electric fields that are tested by the basis functions [56,58].

However, without knowledge of the specific type of basis functions, Galerkin’s approach

does not necessarily guarantee accurate solutions for the current. Despite this, it will be

shown in Section 3.5.1 that the antenna port impedance characteristics can be conveniently

computed through a stationary impedance formula whenever a solution vector of the cur-

rent is available which has been obtained through Galerkin’s approach, in conjunction with

a symmetric product for testing.

Finally, the above linear system of N equations with N unknown expansion coefficients can

be solved through standard matrix factorization methods. However, to obtain a unique

solution, or to avoid spurious solutions from occurring, the matrix Z is required to be of

full rank, i.e., the null space N (Z) has to be empty. In numerical practice, we require that

the condition number of Z is sufficiently small, or, equivalently, that the range of singular

values of Z is limited. Without preconditioning, an ill-conditioned matrix equation may

lead to inaccurate solutions and poorly converging iterative solvers. We remark that the

matrix condition number depends on the choice of basis and test functions, and increases

for an increasingly larger discretization level N . This occurs because the columns of the

moment matrix Z become almost linearly dependent for finer discretization levels.
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3.4.2 Selection of Basis and Testing Functions

Not only the above outlined mathematical considerations are of importance in choosing

appropriate basis and testing functions, but the computational aspects are equally impor-

tant. In fact, the analytical and numerical evaluation of matrix elements may become a

difficult and tedious task when, for instance, complicated (higher-order) basis and testing

functions are selected. Furthermore, a basis may be required to conform, at least in a

piecewise-continuous manner, to arbitrary shaped geometries; this particularly applies to

multi-purpose codes. This flexibility may be reduced when entire-domain basis functions

are employed, so that in general a subsectional basis is preferred, even though this may

give rise to a larger moment matrix.

We will employ Galerkin’s scheme in conjunction with a real-valued subsectional basis to

maintain and exploit the symmetry of the moment matrix and to achieve a high degree of

flexibility in modeling arbitrarily shaped structures. Although no rigorous mathematical

proof exists to justify the use of a Galerkin’s scheme for a general EFIE case, it has been

widely accepted and demonstrated that, for plate structures, the Galerkin approach is

capable to yield accurate solutions.

The current JS in the EFIE (3.51) will be expanded according to (3.53), and subsequently

be tested using Galerkin’s method, to yield

−jωμ0〈A,fm〉 − 〈∇Φ,fm〉 −
N∑

n=1

In〈ZSfn,fm〉 = −〈Ei,fm〉 (3.62)

for m = 1, 2, . . . N , with

A(r) =
N∑

n=1

In

∫

Sn

∫
G(r − r′)fn(r′) dS ′ (3.63a)

Φ(r) = − 1

jωε0

N∑

n=1

In

∫

Sn

∫
G(r − r′)∇′

t · fn(r′) dS ′ (3.63b)

where Sn is the support of the nth basis function, and where the principal value limits

have been omitted for conciseness.
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Note that 〈∇Φ,fm〉 in (3.62) can be written as

〈∇Φ,fm〉 = ∇t · 〈Φ,fm〉 − 〈Φ,∇t · fm〉

=

∫

Sm

∫
∇t · (Φfm) dS −

∫

Sm

∫
Φ (∇t · fm) dS. (3.64)

Next, we recall the 2-D variant of Gauss’ theorem (Green’s theorem for planar surfaces) for

a vector field w defined on a piecewise planar surface S with boundary ∂S and w · n̂ = 0,

i.e., w has no component normal to the surface S. Then,

∫

S

∫
(∇t · w) dS =

∮

∂S

w · ν̂ dl (3.65)

where ν̂ denotes an outward pointing unit vector, which has an orientation normal to the

edge ∂S. Applying this surface divergence theorem to (3.64), one obtains

〈∇Φ,fm〉 =

∮

∂Sm

Φ (fm · ν̂m) dl −
∫

Sm

∫
Φ (∇t · fm) dS. (3.66)

This leads to another requirement for the basis functions, namely that fm · ν̂m = 0 along

the boundary ∂Sm, i.e., the vector basis function has only a component of the current which

is parallel to the boundaries of its support. If this physics-based property is satisfied, it is

observed from (3.66) that (3.64) simplifies to

〈∇Φ,fm〉 = −〈Φ,∇t · fm〉. (3.67)

Hence, Eq. (3.62) can then be written as

−jωμ0〈A,fm〉 + 〈Φ,∇t · fm〉 −
N∑

n=1

In〈ZSfn,fm〉 = −〈Ei,fm〉 for m = 1, 2, . . . N.

(3.68)

It is evident from (3.68) and (3.63b) that the gradient operator only acts on the vector

basis/test function f , and because ∇′ · fn = −jωρS, we require that {fn} is chosen such

that both the surface charges and surface currents are associated with electromagnetic

fields of finite energy in order to be in the range of the operator and be able to satisfy the

boundary condition for the electric field on S. More specifically, we require the solution

space of current densities {fn} to be a subset of the, so-called, continuous space H (div, ∂S)



3.4 Discretization and Solution of the EFIE 47

of div-conforming vector functions, which is defined as [59]

H (div, ∂S) =

⎧
⎨
⎩∀f ∈ C

3

∣∣∣∣∣∣

∫

S

∫
‖f‖2

2 + ‖∇ · f‖2
2 dS < ∞; f · ν̂n = 0 on ∂S

⎫
⎬
⎭ . (3.69)

The widely used Rao-Wilton-Glisson (RWG) basis functions are an appropriate choice in

the context of a div-conforming discretization, since they are contained in H (div, ∂S) and

satisfy the aforementioned geometrical requirements [26]. Furthermore, they are also of

low order and therefore lead to a moment matrix whose elements can be evaluated with

relative ease.

Consider the nth (non-planar) RWG basis function fn in Fig. 3.3(a), whose support consists

of a pair of planar triangular patches, T+
n and T−

n , that share a common edge with length

ℓn.

O

r

r+
n

T+
n

T−
n

r−
n

ρ+
n

ρ−
n

ℓn

ℓ n A−
n

ρ−
n

2A+
n

ln

2A−
n

ln

A+
n

ρ+
n

a) b)

Figure 3.3: Parameters for defining the geometry and the current of a RWG function.

With reference to the nth RWG, the surface-current density f±
n at position r ∈ T±

n is

defined by r and the corner vertex r±
n through the linear relation f±

n = C±ρ±
n , where C±

is a normalization constant, yet to be specified, and ρ±
n = ± (r − r±

n ).

Figure 3.3(b) illustrates that, when A±
n designates the area of triangle T± with base length

ℓn, the height of the triangle is given as 2A±
n /ℓn. This height is used to normalize ρ±

n such

that its component normal to the common edge equals unity. The latter applies to both

triangles. Hence, the normal component of f±
n is continuous across the common edge (for a

planar pair of triangular supports constituting the support of a RWG function), while the

tangential part is discontinuous for non-equal and non-equilateral triangles. In summary,
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the function description reads

fn(r) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ℓn

2A+
n

ρ+
n r ∈ T+

n

ℓn

2A−
n

ρ−
n r ∈ T−

n

0 otherwise

so that ∇t · fn(r) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+
ℓn

A+
n

r ∈ T+
n

− ℓn

A−
n

r ∈ T−
n

0 otherwise

(3.70)

Note that the magnitude of the vector field ρ+
n (r) is linearly increasing in T+

n when the

observation point moves from the corner vertex r+
n towards the common edge, whereas the

magnitude of ρ−
n (r) linearly decreases towards the corner vertex of T−

n . Furthermore, the

vector field has no component normal to the outer boundaries of its domain except along

the inner edge, where the normal component has unit length. Hence, for a current dis-

tribution JS(r) =
∑N

n=1 Infn(r), the scalar product Inℓn equals the total current passing

through the nth common edge. This basis function is said to be edge-based; the number of

basis functions N equals the number of inner edges (assuming no multiple joints between

surfaces). On account of (3.70), it is observed that the surface charge densities on the

triangular patches are constant and have opposite signs so that they are in the form of

pulse doublets.

Finally, it is worthwhile to mention that the above discretization of the EFIE operator

L lead to an ill-conditioned problem since it suffers from a low-frequency breakdown for

static or quasi-static conditions. In fact, currents tend to circulate on electrically large

surfaces, so that the basis functions have to be able to correctly describe the solenoidal

(zero-divergence) part of this current. This has led to the introduction of the “loop”-

type basis functions, and their dual complement, the “star”-type basis functions, used to

describe the irrotational part. It was demonstrated that combining the low-order RWG

basis functions into a “loop-star” or “loop-tree” basis virtually annihilates the growth of

the matrix condition number for increasing N , thereby improving the converge rates of

iterative solvers [60,61].

3.4.3 Mesh Representation

The RWG basis needs to be accommodated on a triangular mesh, which is preferably nearly

equilateral in order to minimize the total number of triangular facets while achieving

a relatively high solution accuracy and good condition number of the moment matrix
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(see e.g. [62]). Figure 3.4 shows a possible triangulation of an exponentially Tapered Slot

Antenna (TSA) composed of two (mirror-symmetric) polygons whose outlines are described

by a set of polygonal boundary nodes (black dots). To automatically mesh the structure

(if ZS = 0, or Sm ∩ Sn = ∅)

fn

fm

Zmn =

∫∫

Sm

Es (fn) · fm dS

Figure 3.4: Triangular mesh representation used to partition RWGs.

using CAESAR, each of the polygons is first mapped into a 2-D plane and supplied with

a uniform grid of nodes (visualized as open circles). During this phase, additional nodes

are inherited from adjacent polygons that are common to the polygon under consideration.

Afterwards, the coinciding nodes, as well as those that are in the exterior polygon region,

are removed. Subsequently, a Delaunay triangulation is carried out [63], and the triangles

that appear in the exterior polygon region are removed. Finally, each of the internal nodes

is centered with respect to the surrounding nodes through an iterative routine as a result

of which an almost equilateral triangular mesh is obtained.

After storing all the nodes, as well as the associated node indices of the triangles, into

arrays, the various RWGs are identified by considering each of the inner edges of the

mesh in conjunction with the associated triangles that share this internal edge. Figure 3.4

illustrates a possible polarity distribution of RWGs. One observes that, typically, one

internal edge belongs to one RWG; however, we point out that an edge may belong to

several RWGs when it concerns a line along which multiple polygons are connected. This

is shown pictorially in Fig. 3.5, where the superposition of the in- and outgoing currents to

and from such a “junction edge” naturally satisfies Kirchoff’s current law; this follows from
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the fact that the in- and outgoing current to and from a common edge of a single RWG

already obeys this law (thus no local charge accumulation occurs). However, it should

be noted that, when the number of interconnected polygons at a junction equals Nj, the

number of independent junction basis functions only equals Nj − 1. This readily follows

from Fig. 3.5 by realizing that an arbitrary expansion set {I1, I2, I3, I4} yields an identical

junction current as, e.g., choosing the set {I1 − I4, I2 + I4, I3 − I4, 0}, where, effectively,

only three expansion coefficients are used.

I2

I3

I4

I1

Itot =
4∑

n=1

Inℓn = 0ℓ1

Figure 3.5: Mesh representation at junctions.

PEC Ground plane

fn fm

f ′
n PEC Ground plane

fm

fn

f ′
n

PEC Ground plane

fn
fm

f ′
n

a) b) c)

Figure 3.6: Field reaction between the source RWG fn and the observation RWG fm. a)

Source and observation RWGs above the ground plane. b) Half of a source RWG connected

to the ground plane. c) Half of an observation RWG connected to a ground plane.

Another type of junction may be encountered at infinite PEC ground planes. As an

example, Fig. 3.6(a) illustrates that, in order to determine matrix element Zmn, the electric

field that is generated by both the source RWG fn and its mirrored counterpart f ′
n need

to be tested over the mth observation RWG fm. On the contrary, when the source RWG
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is connected to the ground plane as in Fig. 3.6(b), only half of the source RWG and its

mirrored counterpart contribute to the mth observation RWG. Similarly, when half of the

observation RWG is connected to the PEC plane, both the mirrored and non-mirrored

source RWG contribute to only half of the observation RWG.

3.4.4 Evaluation of the Moment Matrix Elements

As indicated in Fig. 3.4 for the PEC case (or if Sm ∩ Sn = 0 in the lossy case), the

moment matrix element Zmn can be interpreted as a reaction integral of the electric field

Es (fn) that is generated and subsequently tested by real-valued basis functions fn and

fm, respectively. This integral may be evaluated accurately and effectively with the aid of

Gaussian quadrature rules of sufficient high order, provided that Es (fn) is a sufficiently

smooth function over the support of the testing function. The latter is dependent upon

the electrical separation distance between the pair of RWGs as well as the size and mutual

orientation of the triangular patches. Typically, to obtain an accurate phase representation

of the currents on surfaces, the minimum mesh density is N ∼ 10/λ0, but a larger density

may be required near edges or geometries entailing tiny details. It will be demonstrated

that a relatively low-order quadrature scheme suffices for this typical level of discretization.

We recall the discretized EFIE, Eq. (3.68),

−jωμ0〈A,fm〉 + 〈Φ,∇t · fm〉 −
N∑

n=1

In〈ZSfn,fm〉 = −〈Ei,fm〉 for m = 1, 2, . . . N,

(3.71)

with

A(r) ≈
N∑

n=1

In

∫

Sn

∫
G(r − r′)fn(r′) dS ′, (3.72a)

Φ(r) ≈ − 1

jωε0

N∑

n=1

In

∫

Sn

∫
G(r − r′)∇′

t · fn(r′) dS ′, (3.72b)

and numerically evaluate the moment matrix elements (reaction integrals) corresponding

to non-overlapping basis and testing functions. Since the surface divergence of a RWG

basis function is proportional to its surface charge density [see Eq. (3.70)], the second term
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of (3.71) is readily evaluated as

〈Φ,∇t · fm〉 =

∫

Sm

∫
Φ∇t · fm dS = ℓm

⎛
⎝ 1

A+
m

∫

T+
m

∫
Φ dS − 1

A−
m

∫

T−
m

∫
Φ dS

⎞
⎠

≈ ℓm

P∑

p=1

wp

[
Φ
(
r+

m;p

)
− Φ

(
r−

m;p

)]
(3.73)

where a P -point Gaussian quadrature rule for triangles has been used that takes a weighted

sum of sampled field values at P locations {r±
m;p}P

p=1 inside the T±
m triangles of the mth

test RWG (cf. Appendix B). The order of the quadrature rule, P − 1, can be chosen

adaptively and depends on the electrical distance between the basis and test functions (see

Section 3.6).

Similarly, the symmetric products in (3.71) that involve the magnetic vector potential A

and the incident field Ei are evaluated as

〈{
Ei

A

}
,fm

〉
=

∫

Sm

∫ {
Ei

A

}
· fm dS

= ℓm

⎛
⎝ 1

2A+
m

∫

T+
m

∫ {
Ei

A

}
· ρ+

m dS +
1

2A−
m

∫

T−
m

∫ {
Ei

A

}
· ρ−

m dS

⎞
⎠

≈ ℓm

2

P∑

p=1

wp

[{
Ei(r+

m;p)

A(r+
m;p)

}
· ρ+

m;p +

{
Ei(r−

m;p)

A(r−
m;p)

}
· ρ−

m;p

]
. (3.74)

The remaining term in (3.71) concerns the surface impedance and is evaluated as

N∑

n=1

In〈ZSfn,fm〉 =
N∑

n=1

InZ
IBC
mn (3.75)

where the matrix ZIBC equals a constant times the Gram matrix of the basis functions

whenever ZS is chosen constant. Furthermore, ZIBC is a sparse matrix when RWG basis

functions are employed and the segments Sm ∩ Sn are triangular domains. If ZS can be

assumed constant over each triangle [and is e.g. given by (3.44)], then

ZIBC
mn =

∑

x,y∈{+,−}

ZS(T x
m ∩ T y

n )

∫∫

T x
m∩T y

n

fm · fn dS (3.76)
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where ZS(T ) is the value of ZS on triangle T and ZS(∅) = 0. On its plus and minus triangles

an RWG is linearly ascending and descending, respectively, in its vectorial direction. The

integrals in (3.76) can be evaluated in closed form. For a triangle T on which both fm

and fn are non-trivial, let r[T,m] and r[T,n] be the vertices of T in which the mth and nth

RWG function are equal to zero, respectively, let ℓ[T,n] for x ∈ {m,n} be the length of the

edge opposite of the vertex r[T,x], let A be the area of T , let {r[T ]

1 , r[T ]

2 , r[T ]

3 } be the vertices

of the triangle, and let r[T ]
c be the centroid of the triangle given by (r[T ]

1 + r
[T ]

2 + r
[T ]

3 )/3.

Then (cf. Appendix C),

∫

T

∫
fn · fm dS = ±ℓ[T,m]ℓ[T,n]

2A

{
9

12
‖r[T ]

c ‖2
2 −

1

12

(
r

[T ]

1 · r[T ]

2

)
− 1

12

(
r

[T ]

1 · r[T ]

3

)
− 1

12

(
r

[T ]

2 · r[T ]

3

)

− 1

2
(r[T,n] · r[T ]

c ) − 1

2
(r[T,m] · r[T ]

c ) +
1

2
(r[T,n] · r[T,m])

}
(3.77)

The plus sign in (3.77) applies in case both fm and fn are linearly increasing or decreasing

with respect to their vectorial directions, respectively, and the minus sign otherwise. The

computation of ZIBC
mn can also be carried out numerically, since the integrand fn ·fm repre-

sents a quadratic function whose integral is determined exactly using Gaussian quadrature

rules for triangles employing at least 3 quadrature points.

Upon substituting Eqs. (3.73)–(3.75) in (3.71), one obtains

−jωμ0ℓm

P∑

p=1

wp

[
A
(
r+

m;p

)
· ρ+

m;p

2
+ A

(
r−

m;p

)
· ρ−

m;p

2

]
+ ℓm

P∑

p=1

wp

[
Φ
(
r+

m;p

)
− Φ

(
r−

m;p

)]

−
N∑

n=1

InZ
IBC
mn = −ℓm

P∑

p=1

wp

[
Ei
(
r+

m;p

)
· ρ+

m;p

2
+ Ei

(
r−

m;p

)
· ρ−

m;p

2

]
m = 1, 2, . . . N.

(3.78)

Next, we substitute (3.72a) and (3.72b) in (3.78). This gives us a system of linear equations

in the form of ZI = V, i.e.,

−
N∑

n=1

In

[
ℓm

P∑

p=1

wp

(
jωμ0

[
A+

mn;p ·
ρ+

m;p

2
+ A−

mn;p ·
ρ−

m;p

2

]
+
[
Φ−

mn;p − Φ+
mn;p

])
+ ZIBC

mn

]

= −ℓm

P∑

p=1

wp

[
E+

m;p ·
ρ+

m;p

2
+ E−

m;p ·
ρ−

m;p

2

]
m = 1, 2, . . . N

(3.79)
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where element Zmn of the system matrix Z is computed as

Zmn = ZPEC
mn − ZIBC

mn = 〈Es(fn),fm〉 − 〈ZSfn,fm〉

= −ℓm

P∑

p=1

wp

(
jωμ0

[
A+

mn;p ·
ρ+

m;p

2
+ A−

mn;p ·
ρ−

m;p

2

]
+
[
Φ−

mn;p − Φ+
mn;p

])
− ZIBC

mn

(3.80)

and where element Vm of the excitation vector V is computed as

Vm = −〈Ei,fm〉 = −ℓm

P∑

p=1

wp

[
E+

m;p ·
ρ+

m;p

2
+ E−

m;p ·
ρ−

m;p

2

]
, (3.81)

with

A±
mn;p = ±

∫

Sn

∫
G
(
r±

m;p − r′
)
fn(r′) dS ′ (3.82a)

Φ±
mn;p = ∓ 1

jωε0

∫

Sn

∫
G
(
r±

m;p − r′
)
∇′

t · fn(r′) dS ′ (3.82b)

G
(
r±

m;p − r′
)

=
e−jk0‖r

±
m;p−r

′‖
2

4π
..r±

m;p − r′
..

2

(3.82c)

E±
m;p = Ei

(
r±

m;p

)
. (3.82d)

Finally, using (3.70), we can carry out a direct numerical Gaussian quadrature evaluation

of the potential integrals (3.82a) and (3.82b):

A±
mn;p ≈ ±ℓn

2

P∑

q=1

wq

[
G
(
r±

m;p − r+
n;q

)
ρ+

n;q + G
(
r±

m;p − r−
n;q

)
ρ−

n;q

]
(3.83a)

Φ±
mn;p ≈ ∓ ℓn

jωε0

P∑

q=1

wq

[
G
(
r±

m;p − r+
n;q

)
− G

(
r±

m;p − r−
n;q

)]
(3.83b)

G
(
r±

m;p − r±
n;q

)
=

e−jk0‖r
±
m;p−r

±
n;q‖

2

4π
..r±

m;p − r±
n;q

..
2

(3.83c)

where the order of the quadrature rule, P − 1, can be chosen identical to the one used

to test the electric field. This does not automatically imply that symmetry in Z can be

preserved, as this predominantly depends on P .

In the process of constructing the matrix Z, the electric fields that are generated by both

triangles contained in fn have to be tested by the triangle pair contained in fm through a
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reaction integral (four cross terms). As correctly noted in [26], it is inefficient to compute

the matrix elements by a subsequent consideration of pairs of internal edges that form a

RWG basis and testing function, since triangles typically belong to three overlapping RWGs

and, hence, some computations are unnecessarily repeated. It would therefore be beneficial

to loop over triangular facets, rather than over edges, as this saves, approximately, a factor

of nine in the total number of surface-integral evaluations.

However, when the objective is to construct the matrix Z only partially, and such that

most of the triangles are considered only once, then it is advantageous to consider edge

pairs rather than triangle pairs. This occurs, e.g., for electrically large structures when

off-diagonal blocks of Z, representing the far-interactions between groups of RWGs, are

computed only partially with the aid of lower-order quadrature rules, while the remaining

block matrix elements are approximated through an interpolation technique (see Chap-

ter 4). Henceforth, we will employ the above proposed EFIE discretization to retain a

sufficient amount of flexibility and therefore accept a less efficient scheme for construct-

ing the (relatively low amount of) self blocks. Despite this drawback, we can still exploit

that the Green’s function evaluations are identical in both the vector and scalar potentials

(3.83a) and (3.83b), so that the triangle-by-triangle approach in [26] has no additional

advantage in this respect.

The numerical evaluation of the potential integrals (3.82a) and (3.82b) for the case that

R =
..r±

m;p − r′
..

2
= 0 will be treated in Section 3.4.6.

3.4.5 Evaluation of the Excitation Vector for Plane-Wave Fields

For plane-wave incidence [see Eq. (2.38)], the mth forcing term (3.81) is computed as

Vm = −〈Ei,fm〉 = −
∫

Sm

∫
E0 · fmej(k0·r) dS. (3.84)

With the aid of Green’s second identity, it is straightforward to show that this integral can

be evaluated analytically. In R
2 Green’s second identity reads

∫

S

∫ (
ψ1∇

2
t ψ2 − ψ2∇

2
t ψ1

)
dS =

∮

∂S

[ψ1 (∇tψ2 · ν̂) − ψ2 (∇tψ1 · ν̂)] dℓ (3.85)

where the scalar functions ψ1 and ψ2 are twice continuously differentiable on S, and where

ν̂ denotes the outward pointing vector along the contour of the planar surface S. Here
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we have used that ∂ψ1,2/∂ν̂ = (∇tψ1,2 · ν̂). By substituting ψ1 = (E0 · fm) /k2
t and ψ2 =

exp(jk0 ·r) in the LHS of (3.85), it is verified that Eq. (3.84) is obtained because ∇2
t ψ1 = 0

and ∇2
t ψ2 = −k2

t exp(jk0·r). Furthermore, with the function description of the RWG basis,

Eq. (3.70), one observes that ∇tψ1 = ±ℓmEt,0/(2A
±
mk2

t ) and ∇tψ2 = jkt,0 exp(jk0 · r), so

that the surface integration in (3.84) equals the simpler contour integration [RHS of (3.85)]

−
∫

Sm

∫
E0 · fmej(k0·r) dS =

ℓm

2k2
t

⎡
⎢⎣

1

A−
m

∮

∂T−
m

[
E0 · ν̂ +

(
E0 · ρ−

m

)
(jk0 · ν̂)

]
ej(k0·r) dℓ

− 1

A+
m

∮

∂T+
m

[
E0 · ν̂ −

(
E0 · ρ+

m

)
(jk0 · ν̂)

]
ej(k0·r) dℓ

⎤
⎥⎦ (3.86)

where we have used that kt,0 · ν̂ = k0 · ν̂ and Et,0 · ν̂ = E0 · ν̂.

The contour integrals in (3.86) are evaluated for the planar triangles T+
m and T−

m as
∫

T±
m

∫
E0 · fmej(k0·r) dS = ± ℓm

2A±
mk2

t

∮

∂T±
m

[
E0 · ν̂ −

(
E0 · [r − r±

m]
)
(jk0 · ν̂)

]
ej(k0·r) dℓ

= ± ℓm

2A±
mk2

t

3∑

i=1

⎡
⎣[E0 · ν̂ [T,i] + j

(
E0 · r±

m

) (
k0 · ν̂ [T,i]

)] ∫

ℓ[T,i]

ej(k0·r) dℓ

−jk0 · ν̂ [T,i]

∫

ℓ[T,i]

E0 · rej(k0·r) dℓ

⎤
⎦ (3.87)

where the contour integral has been subdivided into line integrals along the three edges

of triangle T . The corresponding ith edge length is denoted by ℓ[T,i] and the outward

pointing vector normal to this edge as ν̂ [T,i], with i ∈ {1, 2, 3}. Next, let r
[T,i]

b and r[T,i]
e

denote the begin and end points of line segment ℓ[T,i] of triangle T , respectively, and let

ϕ[T,i] = k0 ·
(
r[T,i]

e − r
[T,i]

b

)
, then the line integrals are evaluated in closed form as

∫

ℓ[T,i]

ej(k0·r) dℓ =
ℓ[T,i]

jϕ[T,i]

[
ej(k0·r

[T,i]
e ) − ej(k0·r

[T,i]
b

)
]

(3.88)

and
∫

ℓ[T,i]

(E0 · r) ej(k0·r) dℓ =
ℓ[T,i]

(ϕ[T,i])2

[[
(1 − jϕ[T,i]) (E0 · r[T,i]

e ) −
(
E0 · r[T,i]

b

)]
ej(k0·r

[T,i]
e )

+
[
(1 + jϕ[T,i])

(
E0 · r[T,i]

b

)
− (E0 · r[T,i]

e )
]
ej(k0·r

[T,i]
b

)
]
. (3.89)
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Obviously, the analytical result only requires the evaluation of a number of exponential

functions and dot products, and because the RWG functions partially overlap, most edges

and vertices are considered multiple times when evaluating (3.87) for all RWGs. Therefore,

it is advantageous to first construct a database holding the function values {ej(k0·r
[T ]
n )}Nv

n=1

and {E0 ·rn}Nv

n=1 for all the Nv vertices {rn}Nv

n=1. In addition, the phase values {ϕ[T ]}Nℓ
n and

the terms involving ν̂ can be pre-computed for all the Nℓ edges. The latter unit vectors

are often directly available, or can otherwise be expressed in terms of the vertices.

Care has to be exercised when evaluating (3.88) and (3.89) numerically for the case that

ϕ[T,i] ≈ 0. This situation occurs if the incident field vector E0 is almost normal to one of

the edges i = 1, 2, 3. In the limiting case, the integrals are evaluated as

lim
ϕ[T,i]→0

⎧
⎨
⎩

∫

ℓ[T,i]

ej(k0·r) dℓ

⎫
⎬
⎭ = ℓ[T,i]ej(k0·r

[T,i]
b

) (3.90)

and

lim
ϕ[T,i]→0

⎧
⎨
⎩

∫

ℓ[T,i]

E0 · rej(k0·r) dℓ

⎫
⎬
⎭ = ℓ[T,i](E0 · r[T,i]

e )ej(k0·r
[T,i]
b

). (3.91)

Still, Eq. (3.87) remains poorly conditioned for a numerical evaluation whenever kt ≈ 0.

This corresponds to the case that the field vector E0 is almost tangential to the surface

of a triangular patch (normal incidence). Then, the phase gradient of the incident field

is zero over the triangular patch. In the limiting case, the surface integral on the RHS

of (3.87) is therefore evaluated as

lim
kt→0

⎧
⎨
⎩

∫

T±
m

∫
E0 · fmej(k0·r) dS

⎫
⎬
⎭ = ej(k0·r

[T,±]
0 )

∫

T±
m

∫
E0 · fm dS (3.92a)

= ±ℓm

2
E0 · (r[T,±]

c − r[T,±]

m )ej(k0·r
[T,±]
c ) (3.92b)

where r
[T,±]

0 is an arbitrary point on the triangle T±
m , r[T,±]

m is the corner vertex of the

triangle T±
m from which the vector basis function is linearly ascending, and r[T,±]

c is the

centroid of the triangle T±
m . Note that a single point r

[T,±]

0 in (3.92a) directly determines

the constant phase term of the incident field over the triangular surface. The last integral

in (3.92b) is easily evaluated by choosing r
[T,±]

0 = r[T,±]
c and subsequently performing the

integration analytically using the local coordinates and the integration strategy as outlined

in Appendix C.
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However, an exact integration is not required since the desired accuracy can be reached

by taking a relatively small number of Gaussian quadrature points. In fact, through the

application of the vector Taylor series expansion [64]

f (r + a) =
∞∑

n=0

[
1

n!
(a · ∇r′)n f (r′)

]

r′=r

(3.93)

the complex-valued exponential function f(r) = exp [j (k0 · r)] in (3.84) is written as

f(r0 + Δr) = exp [j (k0 · r0)]

[
1 + j (k0 · Δr) − 1

2
(k0 · Δr)2 + O

(
[k0 · Δr]3

)]
(3.94)

with r0 being the center point along the common edge of the pertaining RWG. Hence, the

phase is a slowly varying function in (k0 · Δr), since |k0 · Δr| ≪ 2π over the electrically

small triangles T±
m . Moreover, when Ei is normally incident on Sm, that is, (k0 · Δr) = 0,

the integrand in (3.84) becomes proportional to the linear vector function E0 · fm, and

the integration is already exact for a 1-point quadrature rule. The latter can be concluded

from (3.92b), whose analytical result is identical to a direct numerical evaluation using

a midpoint integration rule. Even for oblique incidence, a low-order integration rule will

be relatively accurate with respect to the computed moment matrix elements (near-field

integrals).

Consider the triangular support of half of a RWG basis function in Fig. 3.7. The illus-

trated triangle is equilateral and each edge has a length of 1 m. The triangular surface

is illuminated by a plane electromagnetic field from the direction (θ0, φ0) with an ampli-

tude (polarization) vector E0 = θ̂(θ0, φ0). We set ‖k0‖2 = 2π/10, so that each edge has

an electrical length of λ0/10. The surface integral (3.84) has been evaluated analytically

ℓ2 = 1

ℓ3 = 1

ℓ1 = 1

r3

r2

ρ1r1

ẑ

ŷ
O

θ

φ

x̂

E0 = θ̂(θ0, φ0)

Figure 3.7: Equilateral triangle in the xy-plane illuminated by a plane-wave field.
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for the single triangle and has been compared to the results obtained through Gaussian

quadrature (cf. Appendix B), for several different (θ0, φ0) directions. The corresponding

results are shown in Table 3.1.

Table 3.1: Computation of (3.84) by both evaluating the analytical formula (3.87) and by

a numerical integration through a 1, 3, and 7 point Gaussian quadrature rule for triangles.

The angles of incidence are θ0 = 0o, 45o, 89o, and φ0 = 90o.

θ0 Analytical Integration P = 1 point/triangle

0o 0.288675135 - 0.000000000j 0.288675135 - 0.000000000j

45o 0.195137918 - 0.057941280j 0.197445471 - 0.051787573j

89o 0.004598520 - 0.001988885j 0.004710302 - 0.001787530j

θ0 P = 3 points/triangle P = 7 points/triangle

0o 0.288675135 - 0.000000000j 0.288675135 - 0.000000000j

45o 0.195175346 - 0.057963148j 0.195137919 - 0.057941277j

89o 0.004600148 - 0.001990373j 0.004598520 - 0.001988885j

The bold-faceted fonts indicate the correctly computed digits with respect to the analytical

result. It is concluded that the quadrature rule has to be increased for oblique incidence to

maintain a certain level of accuracy. It is also observed that it suffices to employ only three

quadrature points to achieve a four-digit accuracy. Furthermore, because the three-point

rule represents a relatively inexpensive scheme, it justifies a direct numerical approach to

compute (3.84).

3.4.6 Singular and Near-Singular Potential Integral Kernels

Thus far, only distant field reactions between source and observation RWGs have been con-

sidered and these are adequately computed with the aid of standard Gaussian quadrature

rules. As stated earlier, the potential integrals in (3.52) have singular kernels and need

to be interpreted in terms of Cauchy principle values in order to be meaningful. In the

context of the present RWG discretization, the potential integrals exhibit a singularity at

r = r′ which becomes pronounced when the observation and integration points (almost)

coincide, i.e., when the source and observation RWGs share edges or vertices (near singu-

lar), or even overlap (fully singular). In the mixed-potential formulation, the singularity

is of a weak form, that is, 1/R = 1/‖r − r′‖2, and the exclusion area Sδ in (3.52) is taken
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equal to the size of a triangular patch. Gaussian quadrature rules that are based on poly-

nomial function approximations are not adequate for computing the self-reactions, unless

the singularity can be extracted to a sufficient level as described below.

Reaction integrals need to be computed that pertain to a triangular source domain Tm and

observation domain Tn (see Fig. 3.8). In abstract form, the involved 4-D integrals are of

r2

r3

r′ ρ3
nr

r1 ρ2
n

ρ1
n

ρ3
m R

ρ2
mρ1

m

Tm Tn

Figure 3.8: Closely separated triangular source and observation regions Tn and Tm, respec-

tively, with uniform and linear source distributions.

the type

I1 =

∫

Tm

∫ ∫

Tn

∫
e−jk0R

R
dS ′ dS (3.95a)

I i;i′

2 =

∫

Tm

∫
ρi

m(r) ·
∫

Tn

∫
e−jk0R

R
ρi′

n(r′) dS ′ dS (i, i′) ∈ {1, 2, 3} . (3.95b)

Over the past decades, numerous approximations to the integrals in (3.95) have been de-

veloped, both numerical and (semi)-analytical, and for various types of source distribution

functions on polygonal and polyhedral domains. In the early days, approximate analytical

expressions were reported only for canonical problems employing simple types of basis and

testing functions [32]. Later on, simplified formulas were presented for the inner 2-D po-

tential integrals in (3.95) for uniform and linear-varying source distributions on polygonal

surfaces, evaluated at any point in space [65]; therein, the singularity extraction method

was applied which expresses the potential integrals in (3.95) as
∫

Tn

∫
e−jk0R

R
dS ′ =

∫

Tn

∫ (
e−jk0R − 1

R

)
dS ′ +

∫

Tn

∫
1

R
dS ′ (3.96a)

∫

Tn

∫
ρi′

n(r′)
e−jk0R

R
dS ′ =

∫

Tn

∫
ρi′

n(r′)

(
e−jk0R − 1

R

)
dS ′ +

∫

Tn

∫
ρi′

n(r′)

R
dS ′ (3.96b)
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for (i, i′) ∈ {1, 2, 3}. Since the static potential has been subtracted from the time-harmonic

potential, the residual becomes a regular bounded function, so that it can be integrated

numerically (although its first-order derivative is still discontinuous at R = 0), whereas

the subtracted static term is singular and can be evaluated analytically. Note that the

time-harmonic and static potentials are indeed integrable since [66]
......

∫

Tn

∫ (
1

ρi′

n

)
e−jk0R

R
dS ′

......
2

≤
∫

Tn

∫ .....

(
1

ρi′

n

)
1

R

.....
2

dS ′ <

∫

Smin

∫ (
1

‖ρmax‖2

)
dρ dϕ < ∞

(3.97)

where Smin designates the minimum circular area containing Tn. The integrands of the

static potentials can each be written as the gradient (or divergence) of some (vector)

function, and such that the surface divergence theorem can be applied to transform the

surface integrals into manageable contour integrals along the edges of the triangle.

Alternatively, in [67], a nonlinear transformation for the integration variables is pro-

posed by Graglia that permits a partial analytic integration of two- and three-dimensional

singularity-free potential integrals whose integration formulas for triangles are given in [68].

Yet another method expresses Green’s function in terms of a power series and then invokes

the surface divergence theorem to integrate each of the terms along the contour of the tri-

angle [69]. This method turned out to be particularly efficient and accurate for small and

closely spaced triangles (dense meshes). A particularly important contribution has been

made by the authors of [70], who published closed-form expressions for the 4-D integrals in

(3.95), concerning both the potential and testing integrals in the static self-patch case, i.e.,

Tm = Tn. Each of the 2-D surface integrations required the evaluation of three logarithmic

functions. This method has been improved upon in [71], where formulas are given that are

significantly simpler (three logarithmic functions in total) and are well-suited for numerical

implementation, as these involve only the length of the edges, the perimeter, and the area

of the triangle.

A conceptually simple and effective technique to solve the weakly singular potential inte-

grals is known as the singularity cancellation method [66]. In this method, the Jacobian

of the polar coordinate system cancels the 1/R singularity so that it leads to a numer-

ically integrable integrand [cf. Eq. (3.97)]. This method is a special case of Duffy’s

coordinate transformation which generalizes the removal of such singularities to higher

dimensions [72]. In a sense, this method also compares to Graglia’s nonlinear coordinate-

transformation method mentioned above. Following these concepts, it was shown in [73]
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that through a successive application of appropriate coordinate transformations, including

a Duffy transform, the original 4-D integrals can be transformed into a 1-D integral that

can be evaluated via Gaussian quadrature (see also [74]).

Recently, an increased interest has arisen to obtain purely numerical schemes based upon

the singularity cancellation method for integrating singular and near-singular kernels [75].

This methodology fits well within the object-oriented programming paradigms and suits

multi-purpose codes. In this method, the “standard” Gaussian quadrature points and

associated weights that are employed in the transformed singular-free domain, translate

(map back) into new quadrature rules corresponding to the original triangle coordinates.

Results have shown, however, that a relatively large number of integration points is re-

quired to achieve good accuracy. Based on this philosophy, a scheme has been proposed

to numerically integrate a rational representation of the integrands using standard library

routines for Gauss quadrature of rational functions [76].

In this dissertation, we will employ the well-established singularity extraction method as

presented in [77]. Therein, a complete set of formulas is provided by which any number

of terms can be extracted from Green’s function to obtain a residual function which is

sufficiently regular. Starting from the analytical result that was published in [65], each

successive extracted integral term is solved in closed form through a recursive formula.

In view of future extensions, it is pointed out that the formulas are readily applicable to

problems dealing with homogeneous dielectric objects that are solved through a Combined

Field Integral Equation (CFIE).

The semi-analytical evaluation of the electric potential integral in (3.82b) due to a uniform

source distribution on a single triangular domain Tn, observed in the pth quadrature near-

field point r±
m;p on triangle T±

m of the mth RWG, can be computed by extracting and adding

both a static and dynamic term according to

Φ±
mn;p = ∓ ℓn

4πAnjωε0

∫

Tn

∫
e−jk0R

R
dS ′ (3.98a)

= ∓ ℓn

4πAnjωε0

∫

Tn

∫ (
e−jk0R − 1

R
+

k2
0

2
R

)
dS ′

∓ ℓn

4πAnjωε0

∫

Tn

∫ (
1

R
− k2

0

2
R

)
dS ′ (3.98b)

where R =
..r±

m;p − r′
..

2
. Note that only the odd powers in R are subtracted because these
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can be evaluated analytically as discussed below. Compared to the single term extraction

in (3.96), the first integrand on the right-hand side of (3.98b) has now two continuous

derivatives, so that a Gaussian integration routine will be more effective and accurate [77].

In Appendix D it is described that for a midpoint integration rule (single quadrature point),

the self term can already be computed with a four-digit accuracy.

Similarly, one writes for the magnetic vector potential in (3.82a)

A±
mn;p = ± ℓn

8πAn

∫

Tn

∫
ρ′

n

e−jk0R

R
dS ′ (3.99a)

= ± ℓn

8πAn

∫

Tn

∫
ρ′

n

(
e−jk0R − 1

R
+

k2
0

2
R

)
dS ′

± ℓn

8πAn

∫

Tn

∫
ρ′

n

(
1

R
− k2

0

2
R

)
dS ′ (3.99b)

where we remark that, if the pth observation quadrature point r±
m;p coincides with the qth

source quadrature point rn;q, one should use that

lim
R→0

{
e−jk0R − 1

R

}
= −jk. (3.100)

Even though closed-form expressions are known for the 4-D integrals pertaining to the

1/R terms in (3.98b) and (3.99b) [71], there are still good reasons to test each of the

above integral terms numerically since: (i) analytical expressions are only known in the

fully overlapping case, and; (ii) this is consistent with the numerical evaluation of the

other terms which better suits the object-oriented programming paradigms. Now that the

testing is performed numerically, the remaining 2-D potential integral terms are computed

analytically and are of the type (cf. ref. [77]):

Kα
1 =

∫

Tn

∫
Rα dS ′ (3.101)

Kα
2 =

∫

Tn

∫
Rα(r′ − q) dS ′ (3.102)

for α = {−1, 1, 3, . . .}, and for any arbitrary observation point r with Rα = ‖r − r′‖α
2 .

Furthermore, q denotes a corner vertex of triangle Tn such that ρ′
n = r′ − q.

In order to express (3.101) and (3.102) in a convenient analytic form, it is necessary to

introduce a number of geometrical quantities. Note that, with reference to Fig. 3.9, a local
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m̂1

m̂3

s−2
t02

t03

s−1s+
2

v̂

t01

s−3

q3
s+
1

m̂2

q1 ûs+
3

q2

(u3, v3)

ρ⊥

Figure 3.9: Geometrical notations used in the analytical integration of uniform and linear-

varying (vector) functions over triangular supports.

cartesian coordinate system {û, v̂, ŵ} is employed with û = (q2 − q1) /ℓ3. The segment

length ℓi is the length of the ith edge opposing the corner vertex qi, and n̂ denotes the

unit normal to the triangle, so that v̂ = n̂ × û. The triangle is positioned in the uv-plane

with its base oriented along the u-axis whose end points are given by q1 = (0, 0, 0) and

q2 = (ℓ3, 0, 0). The corner vertex q3 is located at (u3, v3, 0), with u3 = (q3 − q1) · û and

v3 = 2A/ℓ3, where A is the area of the triangle. Since q1 represents the local origin, the

position vector r is readily expressed in local coordinates (u0, v0, w0) by u0 = (r − q1) · û,

v0 = (r − q1) · v̂, and w0 = (r − q1) · n̂. Finally, the projection of the vector r on the

plane of the triangle is defined by ρ‖ = r − w0n̂, with w0 representing the height above

the plane of the triangle.

With the aid of the preceding geometrical quantities, we define the relevant quantities

R+
1 = R−

2 = ‖r − q3‖2 R+
2 = R−

3 = ‖r − q1‖2 R+
3 = R−

1 = ‖r − q2‖2 (3.103)

which are the distance metrics from the begin and end points of the line sections to the

observation point r. The perpendicular distances t0i , for i = 1, 2, 3, measured from the

projected point ρ‖ to the ith line segment (or its extension), are given as (see Fig. 3.9)

t01 =
v0 (u3 − ℓ3) + v3 (ℓ3 − u0)

ℓ1

t02 =
u0v3 − v0u3

ℓ2

t03 = v0 (3.104)

and are readily derived by using similarity rules between triangles. The proper signs

have been incorporated to ensure that the associated normals {m̂i} point in the outward

direction. Also, it is defined that

R0
i =

√
(t0i )

2
+ w2

0 i ∈ {1, 2, 3}. (3.105)
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The contours are parameterized by the arc length variables {ℓ′i}, measured from the plane

which is perpendicular to the ith line segments (or their extensions) and passes through

the point r. The unit vectors {m̂i} and {ℓ̂i} represent a local reference frame for the

corresponding line segment, with end points {s−i } and {s+
i }. By accounting for the specified

directions of {ŝi}, the end points in terms of arc lengths can also be derived from triangle

similarities. These are given by (cf. Fig. 3.9)

s−1 = −(ℓ3 − u0) (ℓ3 − u3) + v0v3

ℓ1

s−2 = −u3 (u3 − u0) + v3 (v3 − v0)

ℓ2

s−3 = −u0

(3.106)

together with

s+
1 = s−1 + ℓ1 s+

2 = s−2 + ℓ2 s+
3 = s−3 + ℓ3. (3.107)

From Eqs. (3.103)–(3.107), it is derived in [65] that for the ith edge,

I−1
i =

∫

∂iTn

∫
1

R
dℓ′ = ln

(
R+

i + s+
i

R−
i + s−i

)
(3.108)

and with the recursive relation in [77], higher-order terms in α are computed as

Iα
i =

∫

∂iTn

∫
Rα dℓ′ =

1

1 + α

(
s+

i

(
R+

i

)α − s−i
(
R−

i

)α
+ α
(
R0

i

)2
Iα−2
i

)
(3.109)

for α = 1, 3, 5, . . . Also, from [68], it is known that

w0K
−3
1 = w0

∫

Tn

∫
1

R3
dS ′ =

⎧
⎪⎨
⎪⎩

0 w0 = 0

w0

|w0|
3∑

i=1

βi otherwise
(3.110)

where, for w0 �= 0,

βi =

⎧
⎪⎨
⎪⎩

arctan

(
t0i s

+
i

(R0
i )

2
+ |w0|R+

i

)
− arctan

(
t0i s

−
i

(R0
i )

2
+ |w0|R−

i

)
t0i �= 0

0 otherwise

(3.111)

so that the integrals in (3.101) and (3.102) can be evaluated analytically by means of the
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relations [77]

Kα
1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2 + α

3∑

i=1

t0i I
α
i w0 = 0

1

2 + α

(
αw2

0K
α−2
1 +

3∑

i=1

t0i I
α
i

)
otherwise

(3.112)

Kα
2 =

(
ρ‖ − q

)
Kα

1 +
1

2 + α

3∑

i=1

I2+α
i mi. (3.113)

3.4.7 Numerical Stability of the Singularity Subtraction Method

In order to obtain a highly accurate moment matrix, it is advised to analytically integrate

the singular terms whenever the source and observation triangles have at least one edge

(or even a vertex) in common [71], i.e., for the self patch and the nearest neighbors.

Mathematically, the above equations are well-suited for this purpose as these are valid at

any observation point r ∈ R
3. However, in practice, close-to-machine-precision evaluation

of the integrals is usually not required. For instance, in [75], it has been conjectured that

three to four correctly computed significant digits are sufficient in the numerical solution

of the potentials, and this is consistent with the evaluation of the remaining terms and the

approximation leading to the MoM matrix system. It will be shown in Section 3.6 that

the desired accuracy of the moment matrix elements can indeed be reached by employing

a low-order quadrature integration rule, without using singularity subtraction techniques

for non-coincident triangles. Moreover, we found that the singularity substraction method

yields numerically unstable solutions for certain specific observation points outside of the

source triangle. This problem has been detailed below and a possible remedy is proposed

to overcome this numerical instability.

A numerical instability is encountered when (3.112) is evaluated for a quadrature point r

inside an observation triangle T near the edges of the source triangle T ′ or its extensions

(dashed line in Fig. 3.10).

The geometrical notations of the previous section will be applied to the triangle T ′ to orient

it in the uv-plane. To expose the problem, it is sufficient to evaluate Eq. (3.112) only for

the edge i = 3 (opposite of q3) and for α = −1. For the sake of generality, the quadrature

point r has been lifted w0 = (r − q1) ·n̂ out of the plane of the source triangle, as indicated
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r

q2

T ′

T
q1

q3

Figure 3.10: Quadrature point r near the edge extension of the source triangle T ′.

n̂

v̂

û

s−3
s+
3

q2q1

R−
3

R+
3

r
w0

t03

ℓ3

Figure 3.11: Quadrature point r near the extension of the edge i = 3.

in Fig. 3.11. We then have that: t03 = (r − q1) · v̂; s−3 = − (r − q1) · û; s+
3 = s−3 + ℓ3 and;

R±
3 =

√
(s±3 )2 + (t03)

2 + w2
0. Note that R±

3 ≥ 0, as opposed to t03 as well as the arc lengths

s±3 , which may become negative. From Eq. (3.112), with i = 3 and α = −1, one observes

that in the limiting case

lim
t03→0,w0→0

{
t03 ln

(√
(s+

3 )2 + (t03)
2 + w2

0 + s+
3√

(s−3 )2 + (t03)
2 + w2

0 + s−3

)}
= 0 (3.114)

but the evaluation of this function becomes numerically unstable when t03 and w0 are al-

most zero. The elliptically shaped cone in Fig. 3.11 represents the region of instability.

The cone increases in the positive direction of û inside of which a term ln(0/0) or ln(./0)

is encountered. We conclude that the region of instability is not biconically shaped since

the numerical instability does not occur along the left edge extension where s±3 are both

positive. The region of instability increases for increasing û because |s±3 | increases, which

implies that |t03| and |w0| have to be increased as well in order to avoid numerical insta-

bilities. Finally, the conical region is elliptically shaped because the instability is more

pronounced for small |w0|. The above statements have been validated by the numerical

evaluation of (3.114) for various observation points.
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Since the numerical inaccuracies are only encountered in the positive û direction, these

instabilities may be reduced by numbering the triangle vertices not in a clockwise but coun-

terclockwise direction as illustrated in Fig. 3.12. Nonetheless, this (rather cumbersome)

r

q1 q2

q3

r

q3

q1q2

(a) (b)

Figure 3.12: Numerically instable regions for anticlockwise and clockwise vertex numbering

schemes, respectively.

solution has not been implemented since the singularity subtraction method turns out to

be sufficiently adequate when solely applied to fully overlapping triangles (cf. Section 3.6).

Often, the associated residual integral terms as well as the reaction integrals are computed

by means of a P = 7 points Gaussian quadrature rule. When the separation distance

d between a pair of RWGs becomes sufficiently large, an adaptive numerical integration

scheme can be employed, so that the total number of correctly computed most significant

digits of each of the moment matrix elements remains constant as a function of the RWG

separation distance d. This reduces the total matrix fill time and prevents that the smaller

matrix entries are computed too accurately with respect to those having a larger magnitude.

For instance, to compute the moment matrix elements with an accuracy that exceeds 4–6

digits accuracy, which is generally considered (more than) adequate, it suffices to select a

numerical integration scheme with P = 7 when d < λ0/10, P = 3 when λ0/10 ≤ d < λ0/5,

and P = 1 when d ≥ λ0/5. The latter criteria have been determined empirically as

described in Appendix D.
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3.4.8 Solution of the Matrix Equation

From the preceding sections, we are now left with the matrix equation ZI = V. The

matrix Z is a square, complex symmetric matrix, i.e., Z = ZT ∈ C
N×N with T the

transposition operator. The unknown expansion coefficient vector I is of size N × 1 and

can, for relatively small matrices (depending upon the RAM memory), be determined in a

non-iterative manner through Gaussian elimination. In that case, the matrix Z is factored

into L and U to obtain the matrix system

LUI = V (3.115)

which is a convenient form when evaluating (3.115) for multiple right-hand sides (MRHS),

that is, for a large number of excitation vectors V. Thus, instead of explicitly forming

the inverse of Z, one solves the two triangular systems LX = V for the unknown vector X

(forward substitution), and then UI = X for the unknown vector I (backward substitution).

The LU -factorization requires ∼ 2
3
N3 flops, while the forward and backward substitution

each require ∼ N2 flops (per excitation vector) [78, p. 152].

The matrix Z is assumed to be invertable (nonsingular), which implies that rank (Z) = N ,

that the range R (Z) = C
N , that the nullspace N (Z) = {0}, that 0 is not an eigenvalue or

singular value of Z, and that the determinant det (Z) �= 0. For diagnostic reasons, and to

assure a numerically stable solution for I, it is sometimes convenient to monitor the invert-

ibility of Z through its condition number by applying the Singular Value Decomposition

(SVD) as explained below.

The SVD is used to factorize a matrix A ∈ C
M×N (not necessarily square) into a product

chain of the three matrices [78, p. 29],

A = UDQH (3.116)

where the superscript H denotes the complex conjugate transpose and where U ∈ C
M×M is

a unitary matrix, so that U−1 = UH , which implies that the columns in U are orthonormal.

Furthermore, Q ∈ C
N×N is unitary, and D = diag{σ1, σ2, . . . , σN} is a rectangular diagonal

matrix of size M × N whose nonnegative real-valued entries are the singular values of A

which can be required to be ordered as σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0. Applying the SVD to Eq.

(3.115), and using the fact that A = AT is complex symmetric, yields

I = QD−1UHV =
N∑

n=1

1

σn

(u∗
n · V)qn (3.117)
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where un are the left-singular vectors of A (columns of U) and qn are the right-singular

vectors of A (columns of Q). Singular values of zero or near-zero magnitude indicate

that the matrix Z is singular or ill-conditioned and, consequently, the solution I may be

inaccurate since the projection of V on each of the conjugated basis vectors {u∗
n} is divided

by its corresponding singular value [see Eq. (3.117)]. Obviously, the relative magnitude of

the vectors in (3.117) depends on the structure of Z as well as on the excitation vector V

through the inner product term (u∗
n · V), which may be small for large n due to cancellation

effects. The latter depends on the physics of the problem [79].

The condition number κ (Z) of the matrix Z is an important measure to quantify the

solution stability of I in terms of perturbations in Z [78, p. 95]. The 2-norm condition

number is defined as

κ (Z) = ‖Z‖2‖Z−1‖2 =
σmax (Z)

σmin (Z)
(3.118)

and is a measure of the spread in the singular values. It is worthwhile to mention that one

should expect losing log10 κ (Z) digits in computing the solution vector I. For instance,

when using double-precision floating-point arithmetic, which has a machine precision ǫ ≈
10−16, the condition number should not exceed 10M in order to retain at least 16 − M

correctly computed significant digits3.

3.5 Generalized Scattering Matrix of an Antenna

To obtain the numerical approximation of the surface current JS, we substitute (3.115)

in (3.53) and this, in turn, enables us to compute the relevant antenna characteristics.

Fig. 3.13 depicts the generalized scattering-matrix representation of antennas [80, pp. 123–

133], one identifies: (i) the power reflection characteristics at the antenna ports (upper-left

matrix block); (ii) the radiated power waves from the antenna (through fictitious ports in

the sky, lower-left matrix block); (iii) the scattering or reradiation power characteristics

from the antenna (lower-right matrix block), and; (iv) the transfer characteristics of the

power waves that are incident on the antenna to those that emanate from the antenna

output ports on receive (upper-right matrix block). The first two pertain to the transmit

3The machine epsilon must be enlarged by a factor on the order of 25/2 when dealing with complex

floating point arithmetic [78, p. 100]



3.5 Generalized Scattering Matrix of an Antenna 71

+
V T

0
ZL

−r

S00

a+

Si0 S0i

b−i b+
i

a−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a−

b−1
b−2
...

b−i
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S00 S01 S02 · · ·
S10 S11 S12 · · ·
S20 · · · · ·
...

·
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a+

b+
1

b+
2
...

b−i
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3.13: Generalized scattering-matrix representation of a single antenna element.

situation and are elaborated below, while the latter two are receive characteristics which

are examined in Chapter 5 by exploiting electromagnetic reciprocity principles.

The amplitudes {b+
i } and {b−i } are the modal amplitudes for the inward and outward

traveling vector wave functions, respectively. Depending on the application, it is often

convenient to choose for a spherical-mode or plane-wave spectral representation. In the

far field (r → ∞), we prefer a plane-wave representation, so that 1/2(b−i )(b−i )∗ directly

represents the total emitted (or reflected) power into one specific solid angle or direction.

The radiation (or scattering) patterns are obtained by computing the radiated (or scat-

tered/reradiated) power over angle.

3.5.1 Antenna Transmit Characteristics

Antenna Input Admittance Characteristics

We will analyze two methods to compute the input admittance of an antenna: (i) through

a direct division of the induced port current by the voltage amplitude of the source, and;
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(ii) through an integral expression which is of a variational form (reaction) and known to be

stationary for perturbed solutions of the currents. Even though the direct gap impedance

calculation may be considered inaccurate and unstable, it will be demonstrated that both

methods yield identical results once the current has been computed. In EFIE formulations,

the surface currents are computed by exciting the antennas with voltage sources (incident

electric field), while all other terminals are then short-circuited so that the admittance

matrix is obtained naturally, without additional manipulations. In order to obtain the

antenna impedance matrix, one simply inverts the admittance matrix.

Consider the circuit source model in Fig. 3.14(a). By definition, the positive direction of

the current is defined such that the current exits the plus terminal of a voltage source.

The voltage source is assumed to have no internal impedance, so that the incident and

scattered electric fields inside the voltage source are oppositely directed (total internal E

field is zero). However, external to the voltage source, the incident and scattered electric

fields point in the same direction. Also, the direction of the magnetic current M is chosen

such that it generates an incident electric field in the positively defined direction of the

port current (see also Appendix E). A voltage V ant can be defined if the port region

is much smaller than the free-space wavelength λ0, and such that within this electrically

small region we may introduce an electric scalar potential Φ through the locally quasi-static

relation E = Ei + Es = −∇Φ, where the potential difference Φ+ − Φ− between the plus

and minus terminals equals the port voltage V ant.

Es

Ei
M

V ant Zant

+

Es −

Iant
AntennaVoltage Source

d

ℓp

T+
p

T−
p

+

−
V ant =

d∫

0

Ei · ŷ dyx̂

ŷ

(a) (b)

Figure 3.14: Voltage source model for feeding a metallic structure: (a) circuit model; (b)

RWG model.

The electric field, which is generated in Fig. 3.14(a) by a magnetic-frill current, will hence-

forth be approximated by an artificial incident electric field that exists only inside the port



3.5 Generalized Scattering Matrix of an Antenna 73

region across a pair of triangular facets [see Fig. 3.14(b)], i.e.,

Ei =

⎧
⎨
⎩

V ant

d
ŷ r ∈ port region

0 elsewhere.
(3.119)

Furthermore, Fig. 3.14(b) illustrates that the port current can be synthesized by a single

RWG basis function and that the plus and minus polarity of the voltage source corresponds

to the T+
p and T−

p triangle of the pth RWG (the port RWG), respectively. As the incident

electric field is assumed to exist only across the conductor surface for 0 ≤ y ≤ d, the

total electric field just external to the source region is E = Es (since Ei = 0 there).

Consequently, E = Es = −∇Φ = −Ei, where the latter equality follows on account of the

boundary condition for PEC surfaces (the voltage source has a zero-internal impedance).

Note that this is in agreement with the circuit model in Fig. 3.14(a), albeit that Ei = 0

across the load impedance for a localized incident field. Similar voltage-current and field

relations have been presented in [81, p. 61], although the current is therein defined to exit

the minus terminal of the voltage source, which may lead to a sign inconsistency in the

antenna input impedance calculations.

In case d → 0, the so-called voltage-gap model is obtained [cf. Fig. 3.14(b)], i.e.,

Ei = V antδ (y)
[
U (x) − U

(
x − ℓp

)] [
U
(
z + 0+

)
− U

(
z − 0+

)]
ŷ r ∈ R

3 (3.120)

which satisfies the voltage definition in Fig. 3.14(b). The Heaviside-step function is denoted

by U . The electric field Ei is only associated to the common edge of the RWG that is shown

in Fig. 3.14(b), i.e., it represents a combination of a pulse function along the direction of the

common edge (x direction), and a delta function across (normal to) this edge (y direction).

The unit of the electric field must be [Vm−1], and because the unit of the delta-distribution

function is [m−1], the electric field should not have a delta dependence in the z direction.

The term “gap” may be misleading as one could think of a physical gap consisting of air (or

vacuum). However, the voltage source has no internal impedance and does not represent a

capacitor, but a short circuit. The mth element of the voltage excitation vector V on the

right-hand side of (3.62) is evaluated as

Vm = −〈Ei,fm〉 = −V ant

∫

Sm

∫
(fm · ŷ) δ (r − rgap) dS =

{
−V antℓp m = p

0 otherwise

(3.121)
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where we used that (fm · ŷ) = 1 at the common edge of the pth RWG. Since the voltage

vector is given by V = [0, . . . ,−V antℓp, . . . , 0]T , the current expansion coefficient vector

I = [I1, . . . , Ip, . . . , IN ]T is obtained through the mapping I = Z−1V. Because the total

port current is given by Iant = Ipℓp, the self-admittance Y ant
11 of the antenna is directly

computed as

Y ant
11 =

Iant

V ant
=

Ipℓp

V ant
= −Ipℓ

2
p

Vp

. (3.122)

To compute the admittance matrix of a Np-port antenna array, we sequentially excite

each port by a unit-voltage amplitude, while the other ports are short-circuited, and then

compute the Np resulting expansion coefficient vectors through repeatedly solving the

matrix system ZI = V, or directly for multiple RHS as I = Z−1V. In the latter case,

the columns of the matrix V are the Np excitation vectors, while the matrix I holds the

Np resulting expansion coefficient vectors. Upon taking the Np rows of I that correspond

to the RWG port indices, and by multiplying these with their associated common-edge

lengths, the Np ×Np admittance matrix Yant is obtained, which holds the self and mutual

admittances between all accessible ports.

Alternatively, the mutual admittance Y ant
ab between two accessible ports a and b can also

be computed in terms of a reaction integral, which is of a variational form. Suppose that

Ja
S is the array surface current distribution that results from exciting terminal a with a

voltage source of amplitude Va, while all other terminals are short-circuited. Likewise, J b
S

is a result of exciting terminal b with Vb, while all other terminals are short-circuited. A

stationary formula for the mutual antenna admittance Y ant
ab has been derived in Appendix E

with the aid of the Lorentz reciprocity theorem; the resulting expression is

Y ant
ab =

−1

VaVb

∫

Sa

∫
Es(J b

S) · Ja
S dS. (3.123)

It is important to note that a minus sign appears in front of (3.123); this is contrary to

the plus sign presented in [32, p. 109], which may be explained from the observation that

the total electric field is meant in [32], not the scattered field.

Next, we expand the current for both excitations i = {a, b} in terms of N RWGs, i.e.,

J i
S(r) =

N∑

n=1

I i
nfn (r) (3.124)
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and substitute this expansion in (3.123) to obtain

Y ant
ab =

−1

VaVb

N∑

n=1

N∑

m=1

Ib
n

⎡
⎣
∫

Sa

∫
Es (fn) · fm dS

⎤
⎦ Ia

m =
1

VaVb

N∑

n=1

N∑

m=1

Ib
n ZPEC

mn Ia
m (3.125a)

=
−1

VaVb

(
Ib
)T (

ZPEC
)T

Ia (3.125b)

where we have used the linearity of the operators contained in Es, and where {Ii∈{a,b}}
are the expansion coefficient vectors of J

i∈{a,b}
S . Since we will determine the solution Ia

from the linear equation Ia =
(
ZPEC

)−1
Va, with Va = [0, . . . ,−V a

p ℓp, . . . , 0]T , and because

ZPEC =
(
ZPEC

)T
, the latter expression readily simplifies to

Y ant
ab =

−1

VaVb

(
Ib
)T

Va =
Ib
pV

a
p ℓp

VaVb

=
Ia

Vb

∣∣∣∣
Va=0

(3.126)

since Ib
pℓp = Ia is the total current through port a due to a voltage excitation at port b.

Clearly, Eq. (3.126) has an identical form to that of (3.122), which means that it suffices to

simply take the current-voltage ratio directly at the port. The success of this approach may

be explained by recognizing the field reactions in (3.125a) as the moment matrix elements

for PEC surfaces, which are also defined through reactions. This is a result of testing the

EFIE by a symmetric product, which can also be viewed as testing it through an inner

product with conjugated test functions or, otherwise, by taking real-valued basis and test

functions. Furthermore, the port current is readily available from the solution when the

voltage-source model in Fig. 3.14(b) is used. The respective post-processing step in the

moment-method formulation is therefore of a variational form since the stationary integral

formula, Eq. (3.123), does not lead to a more stable/accurate scheme for computing the

input admittance than the direct approach in (3.122), in fact; the results are identical.

Far-Field Radiation From Surface Currents

This section addresses the numerical computation of the radiated electromagnetic field at a

large distance from a surface current JS which is of finite extent and located in the vicinity

of the coordinate origin. The radiated magnetic field outside the source region is obtained

by combining Eqs. (2.27a)–(2.27e); it takes the form

H (r) =
1

4π
∇ ×

∫

S

∫
JS (r′)

e−jk0‖r−r
′‖2

‖r − r′‖2

dS ′. (3.127)
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In the far field it is assumed that the condition r = ‖r‖2 ≫ ‖r′‖2 = r′ holds, such that

both R = ‖r − r′‖2 ≈ r − (r̂ · r′) and R ≈ r are sufficiently good approximations for

the respective phase and amplitude terms. Furthermore, it is convenient to introduce the

spherical coordinates r (r, θ, φ) = rr̂ + θθ̂ + φφ̂ along with r̂ (θ, φ) = sin(θ) cos(φ)x̂ +

sin(θ) sin(φ)ŷ + cos(θ)ẑ, and subsequently utilize that, for outward traveling plane waves,

the curl operator ∇× can be replaced by −jk0× where k0 = k0r̂ is the outward pointing

wave vector. Then, by subjecting (3.127) to the aforementioned approximations, which are

exact for R → ∞, it is observed that the magnetic far field H far (r, θ, φ) can be written as

H far (r, θ, φ) =
−jk0e

−jk0r

4πr
r̂ ×

∫

S

∫
JS (r′) ej(k0·r′) dS ′. (3.128)

Accordingly, we substitute the basis function expansion (3.53) in conjunction with (3.70)

in (3.128), and use the numerical efficient midpoint integration rule
∫

T

∫
f (r) dS ≈ Af (rc) (3.129)

where A is the area of a triangle T , and rc is the centroid of the triangle. As a result, Eq.

(3.128) is discretized as

H far ≈ −jk0e
−jk0

8π

N∑

n=1

Inℓn r̂ ×

⎡
⎣ 1

A+
n

∫

T+
n

∫
ρ+

n ej(k0·r′) dS ′ +
1

A−
n

∫

T−
n

∫
ρ−

n ej(k0·r′) dS ′

⎤
⎦

≈ −jk0e
−jk0

8π

N∑

n=1

Inℓn r̂ ×
[
ρ+

n,ce
j(k0·r

+
n,c) + ρ−

n,ce
j(k0·r

−
n,c)
]

(3.130)

with the far-field distance normalized to r = 1 m. A similar expression can be derived

through a series representation of the current by equivalent dipole moments (one per RWG)

whose sum is evaluated rapidly for all angles because the dipole radiation patterns are

known in analytic form [81, p. 43]. Either way, the pattern calculation time of electrically

large antennas grows quadratically with the total number of equivalent dipole sources.

Therefore, we will present an acceleration technique in Chapter 4 to relax the computational

burden for moderately sized antenna arrays.

3.6 Validation and Representative Numerical Results

As discussed in Section 3.4.7, the moment matrix elements are computed through an adap-

tive integration scheme. The number of quadrature points has been determined empirically
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by solving different antenna and scattering problems while maintaining good accuracy and

computational efficiency. We will briefly motivate the final choice of quadrature rule after

which the numerical accuracy of the present moment method will be assessed. All com-

putations have been carried out in double precision arithmetic on a Dell Inspiron 9300

Notebook, equipped with an Intel Pentium-M processor operating at 1.73 GHz, and 2.0

GB of RAM. The C++ source code has been compiled on a Linux platform using the GNU

C++ compiler version 4.1.1.

It is worth mentioning that Makarov has implemented and compared two moment methods:

(i) a fully numerical scheme which avoids coinciding source and observation points. This

scheme is based on a barycentric subdivision of the source triangle (9 subtriangles) where

the midpoint integration rule is used for each of the subtriangles, while the field is tested

at the centroid of the larger compound triangle using a single midpoint integration rule;

(ii) the second scheme employs the singularity subtraction technique [70] in combination

with the barycentric subdivision for the non-“self-terms”. Makarov concludes that only a

minor improvement is observed compared to the case of a full 9-point quadrature scheme;

the difference between the methods was found to be less than 1% in the surface current

magnitudes [81, p. 268].

However, we found that a fixed quadrature rule becomes unnecessary accurate for increas-

ing separation distance between the source and observation triangles. In Appendix D, it is

revealed that the moment matrix entries can be determined with ∼ 4 digits accuracy if the

midpoint rule (single quadrature point) is employed for both the source and observation

triangles, provided that the RWG separation distance d ≥ λ0/10. For a λ0/10 discretiza-

tion it turned out to be sufficiently adequate to apply the singularity subtraction technique

to the self terms only, and to compute the residual integral term for a single quadrature

point. Provided that the condition number of the moment matrix is sufficiently low (cf.

Section 3.4.8), accuracy and symmetry are preserved in both the moment and antenna

input impedance matrices up to 4 digits. It has been demonstrated that this scheme is

sufficiently accurate for all our planar antenna and scattering problems. However, the ac-

curacy deteriorates when metals are bent and/or parallel oriented surfaces face each other

due to both edge singularities and a strong interaction between RWGs. For a general class

of problems, it has been demonstrated that a robust compromise between accuracy and

computational efficiency can be realized by increasing the number of quadrature points to

7, but only in the source triangle and when d ≤ λ0/2.
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3.6.1 Scattering by a Square Metallic Plate

As a first step in validating the moment method for scattering problems, it is customary to

examine the induced surface current distribution on a square metallic plate with dimensions

λ0 × λ0. The flat plate is perfectly conducting and is exposed to an x-polarized plane

electromagnetic wave of 1 V/m at normal incidence.
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Figure 3.15: (a) Magnitude of JS [dBA/m] for an x-polarized plane electromagnetic wave

of 1 V/m at normal incidence (1160 edge elements). (b) Normalized modulus of Jx along

the two principal cuts crossing the plate center (solid line). The solution is compared

to [82, Fig. 4] (circles)

The solution for the current is shown in Fig. 3.15 when synthesized by 1160 RWG basis

functions (20 triangles/λ0). The simulation took about 12 seconds to construct the moment

matrix and 9 seconds to solve the resulting MoM equation. The magnitude of JS is

shown in Fig. 3.15(a) in [dBA/m] and resembles the typical “saddle” type of function with

strong edge effects along two of its sides. The normalized modulus |Jx/Hinc| is shown in

Fig. 3.15(b) along the two principal cuts crossing the plate center. The solid line designates

the present MoM solution, which is in good agreement with the solution presented in

[82, Fig. 4] (circles). The edge effect is seen to occupy a single row of edge cells; this

occurs when the cell size is chosen relatively large with respect to the actual extent of

the edge singularity. As a result, a difference between the two solutions is observed in

Fig. 3.15(b) regarding the slope of the current near the edges. This discrepancy does not
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pose a severe problem when the integral over the current is of interest as e.g. in case

of far-field pattern calculations. Also, the mesh in Fig. 3.15(a) is point symmetric with

respect to the plate center which causes the current to be point symmetric as well. The

symmetry can be improved by choosing a 90 degree rotation-symmetric mesh such as the

rhombic discretization shown in [83, p. 123].

A random discretization may improve the error cancellation in the global solution for the

current. However, the current in Fig. 3.15 is probed at discrete positions whose local

solutions depend strongly on the relative positions inside (and shape of) each of the cor-

responding triangles. Consequently, a random mesh would deteriorate the symmetry in

Fig. 3.15(b).

3.6.2 Input Impedance of a Half Wavelength Dipole Antenna

The computed results for the current and input impedance of a half-wavelength dipole

antenna are shown in Fig. 3.16. The dipole is operated at 75 MHz, has a length of 2 m,

a strip width of 2 cm, and is excited by a delta-gap voltage source of 1 V at its center.

The input impedance has been computed for various mesh densities and was subsequently

compared to the reference data published in [81, p. 66] and [84].

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

|J
x
|

|J
y
|

x [m]

|J
x
|o

r
|J

y
|

[A
/m

]

Triangles [81, p. 66] Present MoM

20 88 + 34j 82 + 35j

40 88 + 41j 84 + 41j

80 87 + 44j 85 + 44j

244 88 + 47j 86 + 46j

A WIPL-D simulation: 85 + 44j [84]

Figure 3.16: Current and input impedance of a half-wavelength dipole strip oriented along

the x-axis (width/length=0.01).
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For this specific strip width, it is observed in Fig. 3.16 that the modulus of the longitudinal

component of the current, |Jx|, dominates over the transverse component by a factor of

about 200, which is in accordance with the current distribution reported in [81, Fig. 4.7].

The second and third columns of the table in Fig. 3.16 indicate that the antenna input

impedance converges to a fixed impedance value for increasing triangulation densities. The

relative variation is 6% for the second column, and 9% for the third column. This difference

is probably caused by the non-uniform mesh density that has been employed by Makarov,

whereas we have used a uniform triangulation.

3.6.3 Base-Driven Monopole on an Infinite Ground Plane

The inclusion of an infinite and perfectly conducting ground plane is validated through

comparing the impedance and radiation characteristics of a base-driven monopole antenna

to the respective characteristics of a dipole antenna. The monopole antenna has a length
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Figure 3.17: (a) Monopole and half of the dipole input impedance as a function of frequency.

(b) Gain pattern of the λ0/4 monopole antenna overlayed with the gain pattern of the λ0/2

dipole antenna + 3 dB.

of 1 m, a strip width of 5 cm, and is electrically connected to the ground plane through a

voltage source of zero-internal impedance, which is used to excite the element. The input

impedance of the monopole antenna and half of the impedance of the corresponding dipole
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antenna are plotted in Fig. 3.17(a) as a function of frequency. As expected, the agreement

is excellent and demonstrates that the input impedance of the dipole antenna equals twice

the input impedance of the monopole antenna. Furthermore, the respective gain patterns

differ 3 dB in magnitude since the monopole is radiating all of its input power into the

upper half space (z > 0).

3.6.4 Comparison with Commercially Available Tools

A comparison has been made with commercially available software tools in solving the

impedance and radiation characteristics of a bow-tie antenna element. The geometrical

parameters of the antenna element are depicted in Fig. 3.18. The antenna is placed above

an infinite ground plane at z = 0 and excited by a voltage-gap generator in between the

metallic fins.

Figure 3.18(b) shows the agreement between the antenna impedances as computed by the

finite-element solver Ansoft HFSS, the Zeland moment method solver (IE3D), and the

present moment method. The number of tetrahedra in HFSS is chosen adaptively and the

surrounding air box with radiating boundary conditions has a separation distance to the

structure of at least λ0/4 at the lowest frequency. The adaptive mesh refinement termi-

nates when the port solution has converged within 2% accuracy at the highest frequency.

Although the computed impedance characteristics are similar, the maximum difference

between the various curves turns out to be as large as ∼ 21%, which is not exceptionally

large when different types of solvers are cross-validated for arbitrary antenna geometries

using default discretizations [25]. In particular, this relative error may be larger near high-

Q impedance resonances due to a minor frequency shift, which can be caused by the use

of different feed models (wave ports, delta-gap sources, frill currents, etc.). Furthermore,

numerical (round-off) errors are stronger pronounced at or near resonances.

The computed E-plane gain patterns are shown in Figs. 3.18(b) and (c) for 0.15 GHz and

0.24 GHz, respectively. The agreement between IE3D and the present moment method is

visually indistinguishable. The HFSS solution differs slightly because of the different type

of formulation used to compute the fields and currents.
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Figure 3.18: (a) Geometrical dimensions of the bow-tie element employing 555 RWG basis

functions (mesh edge length ∼ 3 cm). The magnitude of JS is shown at 0.15 GHz. (b)

The input impedance computed by HFSS, IE3D, and the present method. (c) and (d) The

respective E-plane gain patterns at 0.15 and 0.24 GHz, respectively.
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3.6.5 Simulations and Measurements of a Reference Antenna
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Figure 3.19: (a) Photograph of the 4-element monopole array, located inside a horn an-

tenna. (b) Triangulation of the antenna structure and the magnitude of the computed

surface current at 0.5 GHz when a corner monopole is excited.

A four-element monopole array has been designed, fabricated, and tested. The monopole

array is located inside a horn antenna as shown in Fig. 3.19(a). This reference antenna has

been used in combination with a low-noise receiver and a beamforming network to validate

our system models and to perform studies on the antenna system noise temperature (cf.

Chapter 5 and [85]). In the following, we only present the measured and simulated antenna

four-port S-parameter matrix and the four embedded element gain patterns.

The reference plane for the S-parameters is positioned at the inputs of the SMA connectors,

while the model utilizes voltage gaps at locations where the monopoles are connected to

the horn structure. Therefore, a shift in reference plane must be accounted for to correctly

compare measurements with simulations. For this purpose, the relatively short 50 Ω SMA

connectors have been modeled as ideal lossless transmission lines, each having an effective

length of 9 mm (in vacuum). This effective length roughly equals the physical length times

a factor
√

2.1, since the Teflon substrate has a relative dielectric permittivity of |εr| = 2.1.

The losses are characterized by the tangent delta which is as low as: tan(δ) = ε′′r/ε
′
r = 0.001.

The measured and simulated results are presented in Figs. 3.20–3.23.
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Figure 3.20: Measured and simulated 50 Ω S-parameters as a function of frequency: (a)

Magnitude of Sant
11 ; (b) Phase of Sant

11 ; (c) Magnitude of Sant
22 , and; (d) Phase of Sant

22 .

A very good agreement between measurements and simulations is observed. The relative

difference between the simulated and measured S parameters can be defined through the

Frobenius norm (or Hilbert-Schmidt norm [86]) as

Δ% =
‖SMeas − SSim‖F

‖SMeas‖F

=

√
4∑

m=1

4∑
n=1

|SMeas
mn − SSim

mn |2
√

4∑
m=1

4∑
n=1

|SMeas
mn |2

. (3.131)

The relative difference Δ% in measured and simulated S parameters for the 4×1 monopole
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Figure 3.21: Measured and simulated 50 Ω S-parameters as a function of frequency: (a)

Magnitude of Sant
12 ; (b) Phase of Sant

12 ; (c) Magnitude of Sant
23 , and; (d) Phase of Sant

23 .

antenna array has been plotted in Fig. 3.22. Not surprisingly (see previous section), this

difference exhibits maxima near impedance resonances, that is, of about 24% at 1.0 GHz

and 27% at 1.5 GHz (average difference is about 15%).

Generally, deviations can be attributed to measurement errors, fabrication tolerances

(monopole length and strip width), model inaccuracies (infinitely thin metallic sheet as-

sumption), and discretization errors arising in the moment method when approximating

the actual current.
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Figure 3.22: Relative difference between measured and simulated S parameters.

In addition to the impedance characteristics, the computed embedded element patterns in

Fig. 3.23 (embedded = all antenna ports terminated, in this case by 50 Ω) are also in very

good agreement with the measurements. These far-field patterns have been measured in

an anechoic chamber using a planar near-field scanner, which has a limited scan range of

about ±70◦. As a result of this, and because the measurement equipment does not enable

us to perform absolute gain measurements in an accurate manner, the gain patterns are

normalized with respect to their maximum. The angle at which the maximum occurs

may be different from θ = 0◦ as can be seen in Fig. 3.23(d), which explains the reduced

normalized gain values in Fig. 3.23(c) for θ = 0◦.

3.7 Conclusions

Although closed-form expressions have been derived for both the Gram matrix elements

and the excitation vector for plane-wave fields (for a RWG basis), a direct numerical scheme

for the computation of the Gramm matrix elements has shown to be relatively inexpensive

and sufficiently accurate. In practice, only three to four correctly computed significant

digits are sufficient in the numerical solution of the pertaining integrals. In general, a

robust compromise between accuracy and computational efficiency can be realized for a 7

point quadrature rule, but this is only required for the source triangle and if the separation

distance between the source and observation triangle ≤ λ0/2 (empirically determined),

otherwise a single point suffices.
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Figure 3.23: Measured and simulated 50 Ω S-parameters as a function of frequency: (a)

Magnitude of Sant
14 ; (b) Phase of Sant

14 . The measured and simulated normalized gain pat-

terns of 4 elements at 1 GHz: (c) E-plane cuts, and; (d) H-plane cuts. The normalization

is with respect to the maximum pattern gain.

It is sometimes advised to analytically integrate the singular terms in the potential integrals

for the self patch and the nearest neighbors. However, the Singularity Subtraction Method

(SSM) needs a careful implementation to avoid numerically unstable solutions for points

outside of the source triangle, in particular near one of its edges or its edge extensions.

Despite this drawback, the SSM turns out to be sufficiently adequate when solely applied

to fully overlapping triangles.
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The antenna admittance can be computed directly through dividing the applied source

voltage by the locally induced port current. The so-determined “spot admittance” has

shown to be identical to the one calculated from an integral formula, which is known to be

second-order accurate. The results are identical, provided that the EFIE is discretized by

Galerkin’s method and tested by means of a symmetric product.

The delta-gap source may be incorrectly interpreted as a physical gap of infinitesimal

width. An ideal voltage source, however, should not represent a capacitor, but a short

circuit. The term “delta gap” may therefore be misleading, while the term “voltage gap”

may be more appropriate. Furthermore, the literature is unclear when the voltage, current,

and field relations are specified for a RWG voltage-gap source. In relation to this, a sign

inconsistency was discovered in the stationary expression for the antenna input admittance

as presented by Harrington [32, Eq. (6-12)]. This is an important observation because

this expression is used as a reference formula in various numerical test cases, or in semi-

analytical approaches.



Chapter 4

Efficiency Enhancement Technique

for the Method of Moments

After a compendious literature review, the Characteristic Basis Method (CBFM) is selected

and presented to efficiently compute the electromagnetic radiation and impedance character-

istics of electrically-large dielectric-free antenna structures1. A post-windowing technique

is developed for generating Characteristic Basis Functions (CBFs) for electrically inter-

connected antenna structures and the CBFM will be hybridized with the Adaptive Cross

Approximation (ACA) technique to reduce the matrix construction time. Additionally, the

quasi-Toeplitz structure of the reduced matrix is exploited and translation symmetry is used

to rapidly compute the antenna element patterns. A perturbation approach and a multi-

level CBFM technique are proposed for solving arrays of nested disjoint subarray problems.

Finally, results are presented of a combined quasi-static and electrodynamic field model of

a practical 8 × 7 dual-polarized array of Tapered Slot Antennas (TSAs).

1This chapter is based on a number of papers, including:

[87]: R. Maaskant, R. Mittra, and A. G. Tijhuis, “Fast analysis of large antenna arrays using the characteristic basis function

method and the adaptive cross approximation algorithm,” IEEE Trans. Antennas Propag., vol. 56, no. 11, pp. 3440–3451,

Nov. 2008.

[88]: R. Maaskant, R. Mittra, and A. G. Tijhuis, ”Fast solution of multi-scale antenna problems for the square kilomtre array

(SKA) radio telescope using the characteristic basis function method (CBFM),” Applied Computational Electromagnetics

Society (ACES) Journal, vol. 24, no. 2, pp. 174–188, Apr. 2009.

[89]: R. Maaskant, M. V. Ivashina, O. Iupikov, E. A. Redkina, S. Kasturi, and D. H. Schaubert, “Analysis of Large Microstrip-

Fed Tapered Slot Antenna Arrays by Combining Electrodynamic and Quasi-Static Field Models,” IEEE Trans. Antennas

Propag., accepted for publication.
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4.1 Introduction

The evolution of computational electromagnetics during the last decade has enabled us to

analyze large real-world antenna and scattering problems that were beyond our reach only

a few years ago. In recent years, a variety of novel and efficient computational methods

have been introduced and combined. Herein, we provide only a concise overview of the

literature that is closely related to the subject of the present thesis, i.e., large finite antenna

arrays analyzed by using iterative-free integral equation techniques. Rather than solving

a large matrix equation iteratively for each individual excitation, the proposed technique

generates a relatively small matrix equation, which can be solved directly and efficiently

for many different excitations (MRHS).

A variety of computational techniques have been developed that are based on the infinite-

array approach with corrections that explicitly account for the edge behavior associated

with finite arrays. These analyses are often based on the assumption that the edge behavior

of an array is local, and almost independent of the array size. This is a valid assumption for

very large arrays where the center elements behave as infinite-array elements. For instance,

within the truncated Floquet-wave diffraction method an integral equation is solved for

only the fringe current describing the difference between the finite-array current and the

associated infinite array current [90]. The fringe current is expanded by using a relatively

small set of basis functions, derived from a diffraction analysis of canonical structures,

whose use requires the solution of only a moderately sized matrix equation. Other infinite-

array-based techniques that relax the computational burden for a finite array analysis can

be found in [91–94]. However; as these methods are based on the solution of infinite phased

arrays, some of these may be limited in their application to certain types of excitation. In

addition, for moderate-sized arrays, and for those that require a high degree of flexibility

in terms of array lattice geometry and element shape, it is preferable to use alternative

methods that are based on finite-size arrays.

To reduce the size of the matrix equation, one could employ subsectional basis functions

of higher-order polynomials [95]; however, an even greater reduction in the number of un-

knowns can be achieved by employing macro basis/test functions. Moreover; since macro-

domain functions can be constructed as fixed combinations of subsectional functions, these

macro functions can conform to arbitrarily shaped geometries. An additional advantage

of using these macro basis functions is that existing codes can be reused with only minor
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modifications. These types of macro functions are sometimes referred to as aggregated

basis functions, and have been applied to arrays of disconnected patch antennas in [96]

and [97].

The expansion wave concept is also a method which reduces the number of unknowns

without compromising the solution accuracy or geometrical flexibility of the low-level basis

functions. It decomposes both the incident and scattered fields to and from an isolated

array element in terms of only a few expansion functions [98]. This concept of reducing the

matrix equation and decomposing the problem into smaller problems has been widely ex-

ploited in recently developed iterative-free methods for large-scale problems. For instance,

the Characteristic Basis Function Method (CBFM) [99–103], which has been successfully

applied to a large class of scattering and radiation problems, the Synthetic-Functions Ap-

proach (SFX) [104], [105], the Sub-Entire-Domain Basis Function Method (SED) [106],

the eigencurrent approach [107], and a subdomain multilevel approach [108]. The objec-

tives of these methods are similar, namely to reduce the matrix equation by employing

(physics-based) macro basis and macro test functions for the electric and/or magnetic sur-

face currents. The differences between these methods primarily arise from the way the

macro functions are generated, and how the subdomains treat the flow of current between

electrically interconnected subdomains. The savings realized in memory and computation

time are significant for these approaches. In fact, the solution time (for direct solvers)

scales as O(N3), where N now becomes a relatively small number associated with the

total number of macro functions. The proportionality constant, however, slightly increases

because of the additional time that is required to generate these macro-basis functions.

In this thesis, we use the CBFM to solve antenna array problems, particularly, because this

non-overlapping domain decomposition technique does not require additional basis func-

tions at the subdomain interconnections and intrinsically employs excitation-dependent

macro-domain basis functions.

The following novel enhancement techniques for the CBFM have been proposed and elab-

orated:

Numerical generation and post windowing of partially overlapping CBFs to

model junction currents between subdomains (cf. Sections 4.3.2 and 4.4).

We will focus in this chapter on arrays of Tapered Slot Antennas (TSAs) since their analysis

constitutes a challenging numerical problem. Typically, the outer edges of the TSA fins
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are (entirely) connected to the adjacent elements as a result of which the analysis of the

entire array problem cannot be localized to the analysis of a single isolated TSA element.

It is important to preserve the continuity of the surface current across TSA boundaries

since discontinuities introduced by slots and gaps of sufficient size tend to radiate and may

cause in-band anomalies which disrupt the impedance and radiation characteristics.

Special attention is devoted to the problem of efficient generation of a representative set of

Characteristic Basis Functions (CBFs) on electrically small subarrays that can be used to

synthesize the total surface current for the original problem consisting of many electrically

interconnected array elements. For this purpose, a post-windowing technique is developed

to shape the initially generated CBFs and to guarantee a piecewise continuous current

flow at the interconnections. We minimize the computational cost by keeping the sizes of

the subdomains that support the CBFs as small as possible, i.e., equal to the size of one

antenna element plus a minor extension. Hence, we do choose the subdomains such that

there exists a partial overlap between them and, as a result, between adjacent CBFs as

well. This is an alternative method to [104], and does not require an independent set of

“connection” basis functions to ensure the electrical connectivity between adjacent antenna

elements. Hence, the present approach does not increase the total number of unknowns

and enables us to solve larger problems, although the method in [104] may provide a better

continuity of the current in those interconnection regions.

An array meshing method which exploits symmetry in connected antenna array

problems (cf. Section 4.3.3).

An array meshing method is proposed, which not only exploits the translation symmetry

in arrays of electrically interconnected antennas, but also preserves the quasi-Toeplitz

symmetry in the reduced moment matrix. In turn, this allows for a fast computation of

antenna element patterns and mutual port impedances.

Fast construction of the reduced matrix using the ACA (cf. Sections 4.3.4

and 4.5).

Although the CBFM reduces the number of unknowns, the construction time of the reduced

matrix has not been shortened. This may not seem a problem as it scales as O(N2), but

N still represents here the total number of subsectional basis/testing functions making up

the macro-basis functions. Typically, the number of subsectional basis/testing functions



4.1 Introduction 93

is much larger than the number of macro functions, so that the fill-time of the reduced

matrix governs the total execution time.

A number of hybrid methods have been proposed to reduce the matrix-fill time. For

instance, in [109] the reaction integral between the macro basis and testing functions is

computed using a suitable approximation. A generalization of this approach has led to

the introduction of the Fast Multipole Method (FMM) for rapid computation of these

reactions [110], [95]. Alternatively, the Adaptive Integral Method (AIM) has also been

applied to compute these reduced matrix entries efficiently [111], [112]. In the present

chapter we generate the reduced matrix in a time-efficient manner by hybridizing the

CBFM with the Adaptive Cross Approximation (ACA) algorithm. The ACA algorithm was

originally developed to exploit the low-rank properties of moment matrices representing

reaction integrals between well-separated groups of low-level basis functions [113–115];

however, the algorithm is also suited for the CBFs since these are groups of aggregated low-

level basis functions. The ACA algorithm is purely algebraic in nature, kernel independent

and relatively easy to implement. Also, the algorithm does not require a priori knowledge of

each impedance submatrix. As will be seen, it is an adaptive and on-the-fly rank-revealing

block factorization of the rank-deficient submatrices.

Solution of large arrays of disjoint subarrays (cf. Section 4.6).

The problem of solving large arrays of nested disjoint subarrays is tackled through a per-

turbation approach. The results are shown for an antenna array comprised of 9 subarrays

each of which consists of 64 TSAs. A multilevel CBFM is formulated as well, whose results

will be published elsewhere.

Model and validation of a practical dual-polarized TSA array (cf. Section 4.7).

Quasi-static and electrodynamic field models are combined to compute the antenna impedance

matrix of a practical 8 × 7 dual-polarized array of Tapered Slot Antennas (TSAs). The

measurements and simulations are compared.
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4.2 Entire-Domain Basis Function Approach

Consider the 7 × 1 singly-polarized TSA array in Fig. 4.1, where the domain S represents

the entire conducting surface/support of the surface current JS. Our objective is to find

Sq Sp

J q Jp

ZPEC
pq =

∫∫

Sp

Es(J q) · Jp dS

S

Figure 4.1: Computation of a matrix element ZPEC
pq ; a reaction between the (source) macro

basis function J q on the (observation) macro test function Jp

a solution for JS, given a specific excitation situation. The current JS can be determined

by solving a boundary integral equation [EFIE (3.50)]:

−Ei
tan = Es

tan(JS) − ZSJS, for r ∈ S (4.1)

where Ei is the impressed incident electric field, ZS is the surface impedance of the con-

ducting sheet, and Es(JS) denotes the radiated (or scattered) electric field generated by

the impressed source current JS which is supported by S. For a harmonic time depen-

dence exp(jωt), the radiated field Es(JS) can be computed through the MPIE formulation

[Eq. (3.52)] as:

Es(JS) = −jωμ0A − ∇Φ (4.2a)

A(r) =

∫∫

S

G(r − r′)JS(r′) dS ′ (4.2b)

Φ(r) = − 1

jωε0

∫∫

S

G(r − r′)∇′
t · JS(r′) dS ′ (4.2c)

G(r − r′) =
e−jk0‖r−r

′‖2

4π‖r − r′‖2

. (4.2d)
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Here, A is the magnetic vector potential, Φ is the electric scalar potential, G is the scalar

free-space Green’s function, r is an observation and r′ is a source position on domain S,

and μ0 and ε0 are the permeability and permittivity of vacuum, respectively.

To solve (4.1) through a moment method approach, we subdivide the electrically large

domain S into L smaller subdomains each of which supports a set of (physics-based)

macro-domain basis functions. Typically, L is chosen to be equal to the number of an-

tenna elements to optimally exploit translation symmetry (cf. Section 4.3.3). If the ith

subdomain is denoted by Si, then

S =
L⋃

i=1

Si. (4.3)

Since we propose an overlapping domain decomposition technique, Sp ∩Sq �= 0, in general,

for p, q ∈ {1, 2, . . . , L}. However, in our approach, we require that Sp and Sq overlap only

if the corresponding pair of antenna elements are electrically interconnected.

When an identical set of entire-domain basis and test functions (Galerkin’s testing) is

employed for the EFIE in (4.1), a small-size matrix equation is obtained that has the form

ZI = (ZPEC − ZIBC)I = V (4.4)

where the element ZPEC
pq of the matrix ZPEC represents the reaction integral between the

macro source current J q, supported by the qth subdomain Sq, and the macro observation

(test) current Jp, supported by the pth subdomain Sp, i.e. (see also Fig. 4.1),

ZPEC
pq = 〈Es(J q),Jp〉 =

∫∫

Sp

Es(J q) · Jp dS. (4.5)

The element ZIBC
pq of the matrix ZIBC is computed as

ZIBC
pq = 〈Jp, ZSJ q〉 =

∫∫

Sp∩Sq

Jp · ZSJ q dS (4.6)

and the pth source term Vp is computed as

Vp = −
〈
Ei,Jp

〉
= −

∫∫

Sp

Ei(r) · Jp dS (4.7)
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In this chapter, we will consider PEC surfaces for which ZS = 0, so that ZIBC = 0. The

conductor losses are examined only for relatively small antenna structures in Chapter 5.

It will be demonstrated that the induced surface current resembles the PEC current when

the conductor losses are small. This implies that, to first order, it suffices to solve for the

PEC current first and then to estimate the total ohmic loss as

Pdiss =
1

2
Re

⎧
⎨
⎩

∫∫

S

J∗
S · ZSJS dS

⎫
⎬
⎭ =

1

2
Re
{
(IPEC)HZIBCIPEC

}
(4.8)

where the expansion JS =
∑N

n=1 IPEC
n fn in terms of real-valued RWG basis functions

{fn}N
n=1 has been substituted in (4.8) for a known complex-valued expansion vector IPEC.

4.3 The Characteristic Basis Function Method

4.3.1 Employing Characteristic Basis Functions (CBFs)

In CBFM, the macro functions are generated numerically (see Section 4.3.2), and are

referred to as Characteristic Basis Functions (CBFs). The CBFs are formed by aggregating

the low-level basis functions on that domain. We will employ the Rao-Wilton-Glisson

basis [26], since it offers the flexibility of handling arbitrarily shaped geometries. Following

the CBFM, we expand the CBF on the ith subdomain as

J i(r) =

Ni∑

m=1

I i
mf i

m(r) (4.9)

where i = p for the observation CBF and i = q for the source CBF. Furthermore, f i
m

represents the mth RWG on the ith subdomain, and I i
m (m = 1, 2, . . . , Ni) are the Ni

expansion coefficients for the CBF on the ith subdomain. Note that we use a local num-

bering scheme for the RWGs per subdomain and that some RWGs belong to more than

one subdomain, since the subdomains may partially overlap. Substituting (4.9) in (4.5),

and using the linearity of the operators in (4.2a) through (4.2d), yields

ZCBF
pq =

Np∑

m=1

Nq∑

n=1

Ip
m

⎡
⎢⎣
∫∫

Sp

Es(f q
n) · f p

m dS

⎤
⎥⎦ Iq

n = JT
p ZRWG

pq Jq (4.10)
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where Jq = [Iq
1 , I

q
2 , . . . , I

q
Nq

]T , and ZRWG
pq is a Np×Nq rectangular matrix block whose entries

are the mutual reaction integrals involving the RWGs of domains p and q. Likewise, the

voltage vector in (4.7) is then computed as

V CBF
p = −

Np∑

m=1

Ip
m

⎡
⎢⎣
∫∫

Sp

Ei · f p
m dS

⎤
⎥⎦ = JT

p VRWG
p (4.11)

where VRWG
p is the voltage excitation vector for the RWGs on the pth domain.

So far, we have expanded the surface current using only one CBF per subdomain. However,

for electrically large subdomains, a single CBF may not be adequate, and it becomes nec-

essary to employ a sufficiently large and linearly independent set of CBFs per subdomain.

As detailed in Section 4.3.2, there exist a number of ways of generating such a set of CBFs.

To be more general, suppose that we need to employ Kp CBFs on the pth subdomain and

Kq CBFs on the qth subdomain. Then, (4.10) would read ZCBF
pq = JT

p ZRWG
pq Jq, where ZRWG

pq

is a rectangular matrix block of size Kp × Kq; Jp is a column augmented matrix of size

Np×Kp; and Jq is of size Nq×Kq. Furthermore, (4.11) would read VCBF
p = JT

p VRWG
p , where

VCBF
p is of size Kp × 1. As a result, the total reduced matrix equation ZCBFICBF = VCBF

has the following block structure

⎡
⎢⎢⎢⎢⎣

JT
1 ZRWG

11 J1 JT
1 ZRWG

12 J2 · · · JT
1 ZRWG

1L JL

JT
2 ZRWG

21 J1 JT
2 ZRWG

22 J2 · · · JT
2 ZRWG

2L JL

...
...

. . .
...

JT
L ZRWG

L1 J1 JT
L ZRWG

L2 J2 · · · JT
L ZRWG

LL JL

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ICBF
1

ICBF
2
...

ICBF
L

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

VCBF
1

VCBF
2
...

VCBF
L

⎤
⎥⎥⎥⎥⎦

(4.12)

where the total domain has been subdivided into L (overlapping) subdomains, each of

which may support a distinct set of CBFs.

For problems of moderate size, the reduced matrix equation in (4.12) can be solved via a

single LU -decomposition and one matrix-vector product per excitation. Hence, for each

resulting ICBF the surface current can be re-expressed in terms of RWGs. This allows

computing the desired antenna pattern and scattering parameters. However, when the

degree of translation symmetry is large, as it is in arrays with antennas arranged on a

uniformly spaced grid, it is preferable to use an alternative and more efficient approach for

computing the total scattered/radiated field. In this method, we first compute the field

of each individual CBF, multiply each field pattern by its corresponding CBF expansion

coefficient, and then superimpose these individual patterns to obtain the total pattern.
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Also, the antenna impedance matrix can be computed by using the reduced matrix and

the expansion coefficients of the CBFs directly. This is explained in Section 4.3.6, where

we present a stationary formula that has been used to compute the antenna admittance

matrix.

4.3.2 Numerical Generation of Characteristic Basis Functions

For didactical reasons, we explain the generation of CBFs for an 1-D array of electrically

interconnected TSAs. However, by using the same techniques, also 2-D arrays have been

analyzed of which the results are described in the Sections 4.5–4.7. In [100], a novel

technique has been proposed to generate CBFs for arrays of electrically interconnected

antenna elements that are suitable as macro basis and macro test functions. As will be

explained hereafter (Step IIIa), a specific version of this technique has been employed in

the present chapter. For ease of understanding, and for comparing the results with those

that were obtained in [100], the procedure for generating the CBFs will be briefly explained

in four stages through an example of a 7 × 1 single-polarized array of TSAs (see Fig 4.2).

More details are provided in the subsequent sections.

Step I: Mesh generation

To rapidly construct the mesh for the entire structure, only one array element is triangu-

lated and replicated at various element positions throughout the array lattice by means of

geometrical translations. The partitioning of RWGs is kept identical for each array element

and the polarity of the RWGs that electrically interconnect the antenna elements is chosen

consistently, and such that the entirely meshed array facilitates a one-to-one mapping of

partially overlapping CBFs. This mapping of CBFs has been visualized in the transition

from Step III to Step IV. More details are given in Section 4.3.3.

Step II Generation of primary CBFs

Subarrays are extracted from the entirely meshed array to generate the CBFs. The number

of generating subarrays corresponds to the number of (uniquely) extended subdomains from

which the mapping takes place. As illustrated in Step II, we distinguish three subarrays

since we are not considering rotation symmetry, i.e., two corner elements and one central

element along with their electrically interconnected adjacent element(s). Because our final

objective is to compute both the overall antenna impedance matrix and all antenna element

patterns, we consider the problem on transmit. For this reason, primary CBFs are also
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I

II

III

IV Mapping of CBFs onto
the fully meshed array

Truncation of currents
to form CBFs

Generation of currents
on three subarrays

Fully meshed array

Figure 4.2: Step I–Step III: A 7x1 TSA array decomposed into 3 subarrays for generating

the CBFs. Step IV: The synthesized surface current for broadside scan after solving the

reduced matrix equation.

generated on transmit to achieve an accurate representation of the current for any array

excitation. To generate the primary CBFs, each accessible port (pair of terminals) of the

three subarrays is excited sequentially. As a result, the number of primary generated CBFs

equals the number of accessible ports for each subarray. More specifically, suppose that

for one of the subarrays in Step II, the current J sub on a subarray is expanded into the N

RWG basis functions {f 1,f 2, . . . ,fN} as

J sub(r) =
N∑

m=1

Imfm(r) (4.13)

where {I1, I2, . . . , IN} are the N corresponding RWG expansion coefficients; then, these

expansion coefficients are found by solving the corresponding matrix equation for the N×K
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column-augmented excitation matrix Vsub, i.e.,

Jsub = Z−1
subVsub (4.14)

where Zsub is the moment matrix of the RWGs supported by that subarray, and the K

columns of matrix Jsub represent the corresponding K expansion coefficient vectors of the

CBFs that have been generated on that subarray (K equals the number of subarray ports).

Hence, as a result of exciting the ports of the subarrays, 2 primary CBFs are generated on

the outer two subarrays, while 3 CBFs are generated on the inner subarray.

We remark that, for large scattering problems, one is typically interested in the RCS, so

that the scattered field of the entire structure has to be computed for a series of plane

waves incident from various directions. Hence, when the CBFM is used to solve scattering

problems, it is not uncommon to also let a plane-wave spectrum be incident on each

extended subdomain in order to generate a set of representative CBFs for each of these

subdomains. Although a plane-wave spectrum is an obvious choice to generate CBFs for

scattering problems, it is demonstrated in Section 4.7 that this CBF generation method

can also be applied to antenna problems, both on receive and transmit.

Step IIIa Truncation and Post-Windowing of CBFs

Although the CBFs suffer from truncation effects at the outer edges of each subarray

(Step II, Fig. 4.2), these edge-singular currents can be eliminated by truncating the CBFs

as illustrated in Step III.

Essentially, we apply a trapezoidal windowing function Λ to each of the sets of CBFs that

were generated for each of the subarrays in Step II (Fig. 4.2) [100]. In particular, we

will choose a trapezoidal window that approaches a pulse function. Upon using such a

window, the support of each CBF reduces to the size of one antenna element only, but also

incorporates possible “connection” RWGs (one-cell overlap). In fact, for each subarray,

the final windowed set of CBFs J (Step III, Fig. 4.2) is computed as

J = ΛJsub = ΛZ−1
subVsub (4.15)

where the product with the N × N diagonal matrix Λ realizes that the RWG expansion

coefficients, composing the set of CBFs Jsub, are post-multiplied/weigthed either by 0, 1/2,

or 1, depending upon whether these RWGs are in the external, overlap, or internal region

of the resulting truncated subdomain, respectively. Note that in Step III (Fig. 4.2), the

“connection” RWGs in the overlap region are colored blue as a result of weighting these

RWGs by 1/2, and that the zeros in J are discarded so as to truncate the support.
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The advantage of the presently employed pulse-windowed CBFs is that the partially over-

lapping CBFs in Step IV (Fig. 4.2) sum with a proper weight in the overlap region, since

the corresponding partially overlapping pulse-windowing functions sum to unity (every-

where). It was observed that the use of these pulse-windowed CBFs with reduced support

and weighted edges leads to an improved accuracy of the surface current in the overlap

regions as compared to the pulse-windowing function proposed earlier in [99]. The impact

of choosing various other windowing functions on the accuracy is discussed in detail in

Section 4.4.

Step IIIb Reducing the number of CBFs by Means of a SVD

Since each of the subdomains can support a number of self-overlapping CBFs; a well-

conditioned reduced moment matrix can be constructed if the CBFs within each of these

sets are linearly independent, and this is assured by the SVD operation which renders the

CBFs orthogonal. Let the kth column of Jq be the expansion coefficient vector of the kth

CBF on the qth subdomain. The matrix Jq is of size Nq × Kq, where Nq and Kq denote

the total number of RWGs and CBFs on the qth subdomain, respectively. This matrix

is rank-deficient if the dimension of the column space spanned by the CBFs is less than

the number of CBFs. It should be pointed out that this matrix can be ill-conditioned

because of redundancy. The application of the Singular Value Decomposition (SVD) with

a thresholding procedure on the singular values is a suitable tool for determining as well as

controlling the effective rank of a matrix [116]. After performing the SVD, Jq is decomposed

as

Jq = UDQH (4.16)

where U is an Nq × Kq matrix with orthonormal columns [78, p. 27]; Q is a Kq × Kq

unitary matrix; and, D is a Kq ×Kq diagonal matrix of the form diag(σ1, σ2, . . . , σKq
). The

nonnegative real-valued diagonal entries of D can be required to be ordered as σ1 ≤ σ2 ≤
. . . ≤ σKq

and are the singular values of Jq. The presence of singular values of zero, or

near-zero, indicates that the matrix is singular or ill-conditioned. Therefore, to improve

this condition number, a thresholding procedure is used on the normalized singular values

Rn =
σn

σmax

n = 1, 2, . . . , Kq. (4.17)

Each of these normalized quantities is compared to an appropriate threshold, and if this

level is smaller than the threshold, then the corresponding singular value is set to zero.

Suppose this happens for n > Nσ, then the first Nσ left singular vectors of U forms the

orthonormal set of CBFs that are retained.
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Step IIIc Generation of Secondary CBFs

The number of CBFs per subdomain can be enlarged to achieve a more accurate represen-

tation of the final surface current solution. For this purpose, the primary CBFs Jq, which

are supported by the qth subdomain and that were obtained in Step IIIb, are used as

distant current sources to the subarrays shown in Step II (Fig. 4.2). Essentially, these dis-

tant CBFs mimic possible surface currents on neighboring array elements that are located

within a certain electrical distance to each of these subarrays; and are used to re-induce

surface currents on these subarrays. Following (4.14), the currents Jsub on a subarray are

computed as

Jsub = Z−1
subVsub = Z−1

subZsub,qJq (4.18)

where Vsub = Zsub,qJq, and where Zsub,q is the mutual moment matrix representing reactions

between RWGs on the qth source domain, which supports a set of primary source CBFs Jq,

and the RWGs on the subarray under excitation. After accounting for all the distant source

CBFs within a specified radius to the pertaining subarray, we truncate the supports of the

resultant augmented set of CBFs Jsub with the aid of (4.15), and append the so-generated

secondary CBFs to the already existing set of primary CBFs J. Finally, this relatively

large combined set of primary and secondary CBFs is again orthonormalized and reduced

by applying a SVD.

We point out that it often suffices to invoke the SVD procedure only once, namely, after

generating both the primary and secondary CBFs. However, when a set of primary CBFs

Jq contains redundant CBFs, a relatively large number of additional redundant secondary

CBFs will be generated in view of (4.18), particularly for large radii. Hence, the combined

set of primary and secondary CBFs may become unnecessarily large because of redun-

dancy. A similar problem occurs for scattering problems whenever the CBFs are generated

using a plane-wave spectrum [117]. Consequently, the SVD operation becomes more time-

demanding than if we first reduce a small set of primary CBFs (typically less than 10), and

follow this up with the reduction of a relatively small set of CBFs comprising of primaries

and secondaries. Note that sets of primary CBFs are nearly identical to each other when

the corresponding subarray possesses a large degree of symmetry, both in terms of the

excitation and the geometry, as for instance in the case of subarrays that are extracted

from dual-polarized arrays.

Obviously, the total number of initially generated secondary CBFs (columns of Jsub) de-

pends upon the total number of distant subdomains q that are considered. One can increase
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the specified radius to include more surrounding array elements/domains supporting pri-

mary CBFs. However, the SVD prevents us from adding secondary CBFs that are not

sufficiently independent of the already existing set of CBFs. Hence, convergence of the

solution depends upon the final solution accuracy that one requires and is controllable

through the SVD threshold. Indirectly, the minimum radius for including the relevant

number of secondary CBFs is thus dependent on the SVD threshold as well.

Step IV Mapping of CBFs and solving for the current

After retaining a relatively small set of CBFs for each truncated subdomain (Step III,

Fig. 4.2), the CBFs are mapped onto the various subdomains throughout the entire array

(Step IV, Fig. 4.2). Afterwards, a reduced matrix equation is constructed efficiently (see

Section 4.3.4) and solved directly without resorting to iterative techniques. The resulting

surface current for the 7 × 1 TSA array is shown in Fig. 4.2 for broadside scan when all

elements are excited by a voltage source across the slotline section.

Regarding the generation of CBFs, it is instructive to consider how the CBFs differ from

eigencurrents employed in the eigencurrent approach [107]. In CBFM, the induced sur-

face current on each subarray is computed for a certain excitation vector V by solving the

corresponding matrix equation for the unknown RWG expansion coefficient vector I. The

complex symmetric moment matrix Z = ZT is assumed to be nondefective and diagonal-

izable by its eigenvectors. Hence, an eigenvalue decomposition of Z exists and is herein

expressed through the block factorization

Z = UDU−1 (4.19)

where the nth diagonal entry νn of diagonal matrix D is the nth eigenvalue of Z, and where

the nth column un of U is the nth eigenvector of Z. Hence, the unknown coefficient vector I

can be expressed in terms of the eigenvectors {un}, eigenvalues {νn}, and excitation vector

V as

I =
N∑

n=1

1

νn

(un · V)un. (4.20)

In the eigencurrent approach [107], the eigencurrents {un} of Z are used as macro-domain

basis functions. Essentially, the set of eigencurrents forms a fingerprint of the physical

structure and simultaneously forms a complete orthonormal basis for the currents that can

exist on this structure. Accurate solutions have been obtained for arrays of disconnected
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antenna elements, by using only an (incomplete) subset of {un}. However, this reduced

orthonormal basis does not include information about the port position of the antenna

element or excitation field applied to the actual problem, and therefore may, in general,

not lead to the most optimal/smallest basis. On the contrary, in CBFM, a representative

excitation field V is applied to each subarray to generate CBFs, implying that we identify

the left-hand-side of (4.20) as a basis. This can be advantageous, because when an antenna

port of a subarray is excited, the induced surface current (and thus the CBF) naturally

accounts for a possibly asymmetrical port position, and may therefore represent the final

surface current quite well even when we employ only a limited number of the above macro-

domain basis functions. However, one major drawback in generating macro basis functions

in this manner is that these CBFs will generally not be mutually orthogonal. As a remedy,

one would need to orthonormalize the CBFs, and retain only a minimal number of them

as described in Step IIIb above.

Also, the eigencurrents are known to diagonalize the moment matrix, so that complete-

ness of this basis is guaranteed. On the contrary, CBFs are generated through solving the

moment matrix equation for various different excitations; this basis is generally not com-

plete, even for an overdetermined set of CBFs. However, completeness is not required to

effectively and accurately solve the actual problem, that is, the basis only needs to span a

subspace of the entire solution space which is required to synthesize the range of physically

possible currents. Consequently, the convergence of the solution accuracy as a function of

the number of CBFs depends strongly on the way they have been generated.

4.3.3 Exploiting Translation Symmetry

Once each (extended) subdomain supports a set of CBFs, the reduced moment matrix in

Eq. (4.12) can be constructed efficiently by exploiting the translation symmetry between

CBFs. As an example, Fig. 4.3 graphically exemplifies that the reduced matrix block

ZCBF
pq equals ZCBF

p+1;q+1, because both blocks represent reactions between identical, though

translated, set of CBFs.

It follows that,

ZCBF
pq = JT

p ZRWG
pq Jq = ZCBF

p+1;q+1 (4.21)

provided that the extended subdomain Sq [Fig. 4.3(a)], that supports a set of source CBFs,
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(a)

(b)

JpJ q

SpSq

Sq+1 Sp+1

Jp+1J q+1

ZCBF
pq

ZCBF
p+1;q+1

Figure 4.3: Construction of identical reduced matrix blocks ZCBF
pq and ZCBF

p+1;q+1.

maps one-to-one onto the one-element translated subdomain Sq+1 [Fig. 4.3(b)]. Similarly,

the testing CBFs supported by the subdomain Sp have to map one-to-one onto the subdo-

main Sp+1 for the same translation vector. This translation vector does include information

on the mutual separation distance between identical sets of CBFs (2-norm of this vector), as

well as on the mutual orientation (direction of this vector). To optimally exploit translation

symmetry for connected antenna array problems, a consistent triangulation and partition-

ing of the RWGs of all subdomains (and thus array elements) is required as further clarified

with the aid of Fig. 4.4.

Array Meshing Method

The entire array mesh can be efficiently constructed from a few elementary meshed array

elements, called the base elements. The geometry of each base element is discretized by

a number of polygonal facets of which the outlines are described by a set of boundary
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nodes. Fig. 4.4 (Step I) shows a discretized TSA base element comprising of 3 polygonal

surfaces (two tapered fins and one tiny port polygon across the slotline), where the polyg-

onal boundary nodes are designated by (black) dots. Every polygonal facet is supplied by

a non-uniform grid of internal nodes and subsequently triangulated (in a 2-D plane) using

a Delaunay meshing routine [63, 118]. The internal grid is distributed such that the ele-

mentary triangles are very nearly equilateral (cf. Section 3.4.3). Subsequently, nodes and

triangles are added along the boundaries to ensure that the triangulations will be consistent

with those of the electrically interconnected adjacent elements when these base elements

are placed in the array environment. Next, triangulated base elements are equipped with

the RWGs. Step I (Fig. 4.4) shows a possible RWG polarity distribution, visualized by

vectors that join the common edges of each pair of triangles to form an RWG.

Step II illustrates a one-to-one replication of the discretized base element at array element

locations r1 . . . r7. Note that, at this stage, the RWGs ensuring the electrical connection

between array elements have not yet been defined. This is accomplished in Step III, where

the triangles along a connection line are separately equipped with RWGs and subsequently

mapped (recursively) onto the various corresponding connection lines that remain to be

equipped with RWGs. For this purpose, we utilize the array symmetry as detailed in the

next section. A pseudo Matlab code of the recursive-mapping algorithm is included in

the appendix of [88]. Finally, a full meshing of the array geometry (Step IV) facilitates a

one-to-one mapping of the CBFs, even though each supporting subdomain extends beyond

the outer boundaries of an array element, as shown in Fig. 4.3.

Array Symmetry Extraction Method

For the full array geometry, the degree of translation symmetry between pairs of sub-

domains, each of which supports a set of CBFs, can be determined as explained below.

Following the generation of the boundary nodes for the array in a manner shown in Fig. 4.4

of Step II, where we replicate the boundary nodes of the base antenna element(s) at their

respective array positions, we can determine which array elements are electrically inter-

connected. Furthermore, when using multiple base elements, such as in the case of dual-

polarized arrays, one can also keep track of the type of base element that is interconnected.

Let the element interconnection and the corresponding base element type be stored in two

separate matrices. Then, for our example, using only one type of base element (TSA
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IV

III

II

I

Final discretized array

Connection line of RWGs

Recursive mapping onto 6 connection lines

Base element copying

Discretized base element

r7r5 r6r1 r2 r3 r4

6 754321

Figure 4.4: Efficient and consistent meshing of the antenna array structure to fully exploit

translation symmetry.
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element in Fig. 4.4, Step I), we have:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0

2 1 3

3 2 4

4 3 5

5 4 6

6 5 7

7 6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.22)

where the first rows of the left- and right-hand matrices indicate that antenna element 1

is connected to antenna element 2, and that they are both base elements of type 1 (ignore

the zero entries).

Also, for each array element, one can determine the relative positions of the electrically

interconnected elements surrounding it. Upon comparing the groups of relative position

vectors in conjunction with the corresponding base element types (rows of second matrix),

one can readily determine which subdomains (and therefore corresponding set of CBFs)

are identical. For our example, subdomains {2, 3, 4, 5, 6}; {1}; and {7} form the 3 unique

groups. We need to only generate one set of CBFs per unique subdomain, in this case

for subdomains 1, 7 and 4, where subdomain 4 is chosen from the first group as the most

central element. Elements 1, 7 and 4 are extracted from the fully meshed array, together

with their neighboring array elements (within a specified radius), to form the resulting

three subarrays that are used to generate the CBFs. After windowing these CBFs, the

CBFs supported by subdomain 4 are mapped onto the subdomains 2, 3, 5, and 6.

After determining the unique subdomains (1, 4 and 7), from which the CBFs are mapped,

we also compute the relative element array position vectors between all array elements and

store these in matrix form. For our example, we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 − r1 1 1

r1 − r2 1 4

r1 − r3 1 4
...

...
...

r7 − r5 7 4

r7 − r6 7 4

r7 − r7 7 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.23)
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where the first column holds the 49 relative array position vectors between element pairs,

and the last two columns denote the corresponding two array elements that support the

same set of CBFs from which they were initially mapped, namely either 1, 4 or 7. By com-

paring the rows, one can readily determine which element/subdomain pairs are identical

in terms of the sets of CBFs supported by them (last two columns), as well as their mutual

orientation and separation distance (first column). Upon selecting the unique rows, the

minimal number of impedance matrix blocks that need to be filled can be determined (out

of the 49 possible combinations). For convenience, we create a new matrix showing how

the reduced matrix is built up from only a limited number of unique matrix blocks. For

our example, the structure of the 7 × 7 matrix block is:

Subdomain# 1 2 3 4 5 6 7

1

2

3

4

5

6

7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7

8 9 10 11 12 13

8 9 10 11 14

8 9 10 15

8 9 16

8 17

18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.24)

where only 18 out of 49 non-redundant mutual impedance blocks have been identified, since

we also exploited reciprocity (only the upper triangular part of the matrix is required). Note

that, for this example, the matrix entry 11 denotes that the reactions between the CBFs

supported by subdomains (antenna elements) 2 and 5 are identical to the reactions between

the CBFs supported by subdomains 3 and 6, as we can verify from Fig. 4.4. In conclusion,

symmetry can be exploited for arrays of electrically interconnected elements to reduce the

complexity of the matrix-filling process. For the present example of a regular-spaced single-

polarized antenna array (Fig. 4.4), the computational complexity becomes linear when the

symmetry is exploited. Similarly, the pattern computations can be expedited as explained

in Section 4.3.6.

4.3.4 Fast Reduced Matrix Generation Using ACA

As pointed out in Section 4.1, for direct methods the time it takes to solve the reduced

matrix equation scales as O(N3), where N is the total number of CBFs. This is a significant
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timesaver when the number of CBFs is much smaller than the total number of RWGs used

in the original matrix formulation. For these cases, however, the construction of the matrix

in (4.12) dominates the total solution time as this scales with O(N2), where N remains the

total number of RWGs making-up the CBFs. In fact, Eq. (4.12) suggests that a full matrix

block ZRWG
pq has to be built before its compressed version JT

p ZRWG
pq Jq can be computed.

To decrease the time to construct the reduced matrix, we first exploit the translation

symmetry of the antenna array by concluding that reactions between groups of CBFs are

replicated elsewhere in the array. As a consequence, many blocks of the reduced matrix

are identical and, hence, can be simply copied when the matrix is filled. We have seen that

this also holds for arrays of electrically interconnected elements, where the block Toeplitz

symmetry of the matrix is only slightly broken. In addition, we use reciprocity to fill only

the upper triangular part of the matrix. Finally, and most importantly, each submatrix

in (4.12) can be approximated as

ZCBF
pq = JT

p ZRWG
pq Jq ≈ JT

p Z̃RWG
pq Jq (4.25)

where Z̃RWG
pq is a low-rank decomposition of ZRWG

pq . It is worthwhile to note that in [111]

each column of the matrix product ZRWG
pq Jq is efficiently computed as an AIM matrix vector

product, whereas, in the present approach, the matrix ZRWG
pq is approximated through a

low-rank block factorization. Therefore, once Z̃RWG
pq has been constructed, the product

Z̃RWG
pq Jq is carried out efficiently and in a straightforward manner, for any arbitrary vector

Jq.

The degree of rank deficiency of ZRWG
pq depends on the electrical distance that separates the

observation and source groups p and q, as well as their sizes and mutual orientation. The

effective rank decreases for an increasingly larger separation distance. For well-separated

groups of RWGs, the electric field at the observation group p produced by any source

RWG can be expressed as a linear combination of the fields produced by only a few of

these source RWGs (source sampling). Likewise, the electric field tested at the observation

group p produced by any source RWG can be expressed as a linear combination of the

fields tested by only a few of these observation RWGs (field sampling). Hence, a cross-

approximation technique can be used to adaptively construct the subsets of relevant source

and observation RWGs.

In this work, we use the Adaptive Cross Approximation (ACA) algorithm [113–115], which

is an adaptive and on-the-fly rank-revealing block factorization of the rank-deficient sub-
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matrices. The ACA algorithm is purely algebraic in nature and can be used irrespectively

of the kernel of the integral equation, basis functions or type of integral equation formula-

tion. This makes the ACA algorithm attractive for handling problems involving arbitrary

geometries. The ACA algorithm can be regarded as a rank-revealing column-pivoted LU -

decomposition of the approximate matrix, and therefore inherits the advantages of many

other algebraic block factorization methods. In addition, the ACA algorithm only requires

partial knowledge of the original matrix and belongs to a large group of fast integral equa-

tion algebraic methods (see [114], and references therein). It has been shown that for

low-frequency EMC problems of moderate electrical size both the memory and CPU time

requirements for the ACA algorithm scale as N4/3 log N [114].

The ACA algorithm approximates Z̃RWG
pq through the following block factorization

Z̃RWG
pq = UNp×rk

p Vrk×Nq

q =
rk∑

i=1

u
Np×1
i v

1×Nq

i (4.26)

where rk is a short-hand notation for rk(Z̃RWG
pq ), which denotes the effective rank of the

matrix Z̃RWG
pq . Further, UNp×rk

p is a column-augmented matrix of size Np × rk and Vrk×Nq

q

is a row-augmented matrix of size rk × Nq. The ith column vector of U and the ith row

vector of V are denoted by ui and vi, respectively. Clearly, instead of storing the full

matrix Z̃RWG
pq of size Np × Nq, the algorithm requires the storage of only (Np + Nq) × rk

matrix entries. Also, the CPU time scales as O
(
rk2 (Np + Nq)

)
. The ACA algorithm

should not be used when subdomains overlap fully (p = q), or partially. This is because,

for these cases, the submatrices are diagonally dominant and, hence, seldom rank-deficient.

For these cases, the computational overhead of the ACA algorithm becomes too high, so

that a direct matrix-fill approach suffices. This will be demonstrated in Section 4.5 via a

numerical example.

Finally, upon combining (4.25) and (4.26), the matrix ZCBF
pq is efficiently computed as

ZCBF
pq ≈ JT

p UpVqJq. (4.27)

4.3.5 Construction of Up and Vq

The ACA algorithm constructs the rectangular matrices Up and Vq by successively se-

lecting rows and columns of the original matrix ZRWG
pq (source and field sampling). When
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constructing Up and Vq, and thus Z̃RWG
pq , we also construct an approximate error matrix,

given by ‖R̃‖F = ‖ZRWG
pq − Z̃RWG

pq ‖
F
, where ‖.‖F denotes the Frobenius norm, which is

defined as the square root of the sum of the absolute squares of its matrix elements [86].

Furthermore, each time a new row or column of ZRWG
pq is selected, the corresponding error

vector (row or column) is computed. This is done by subtracting the actual row or column

vector from the corresponding row or column vector of the approximate matrix that has

been constructed in the previous iteration. The row to be selected next corresponds to the

index where the largest entry of the last computed error column is located. Likewise, the

column to be selected next corresponds to the index where the largest entry of the last

computed error row is located. After terminating the iterative process, the columns of Up

are the successively computed error columns, whereas the rows of Vq are the successively

computed error rows. Furthermore, each row vector in Vq is normalized by the maximum

element of the last computed error column.

If the coupling matrix ZRWG
pq is of size M × N , convergence of the ACA is guaranteed

after min(M,N) iterations, since all the rows and columns of ZRWG
pq have then been se-

lected/computed and are thus reconstructed exactly [114]. The ACA does not exploit the

oscillatory nature of the kernel in integral equations, and may therefore not be as efficient

as multipole approaches. However, for many practical applications, with moderate elec-

trical sizes, it is found that the ACA algorithm outperforms the Fast Multipole Method

(FMM), particularly with multiple right-hand-side excitations [114]. For any case, to gain

an appreciable speed advantage relative to a direct matrix fill method, the ACA algorithm

should be terminated ahead, e.g. after rk iterations with rk ≪ min(M,N), or when

‖R‖F ≤ κ‖ZRWG
pq ‖

F
(4.28)

for a given tolerance κ. Because the number of iterations depends on the chosen tolerance

κ, it readily determines the effective rank rk of ZRWG
pq . Since ZRWG

pq is only partially known,

the norm of error matrix R is estimated after the kth iteration as

‖R(k)‖F ≈ ‖uk‖F‖vk‖F . (4.29)

Also,

‖ZRWG,(k)
pq ‖2

F ≈ ‖Z̃RWG,(k)
pq ‖2

F = ‖U(k)
p V(k)

q ‖2
F

= ‖Z̃RWG,(k−1)‖2
F + 2

k−1∑

j=1

|uT
j uk| · |vjv

T
k | + ‖uk‖2

F‖vk‖2
F (4.30)
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where the last expression is written in terms of a recursive formula. The algorithm ap-

proximates the original matrix by requiring only partial knowledge of the original matrix.

Finally, we will list a code implementation of the ACA algorithm. Let the original matrix

Z be of size M×N . In addition, let Irow = [Irow
1 , Irow

2 , . . . , Irow
rk ] and Icol = [Icol

1 , Icol
2 , . . . , Icol

rk ]

be the arrays containing orderly selected row and column indices of Z. uk is the kth column

of matrix U and vk is the kth row of matrix V. In Matlab’s notation, R(Irow
1 , :) indicates the

Irow
1 th row of matrix R. Z̃(k) is the matrix Z̃ at the kth iteration. Then, in pseudo-Matlab

code, the algorithm is summarized as follows [114]:

Initialization (k = 1):

1. Initialize the 1st row index Irow
1 = 1 and set Z̃ = 0.

2. Initialize the 1st row of the approximate error matrix: R̃(Irow
1 , :) = Z(Irow

1 , :).

3. Find the 1st column index Icol
1 : |R̃(Irow

1 , Icol
1 )| = maxj(|R̃(Irow

1 , j)|).

4. v1 = R̃(Irow
1 , :)/R̃(Irow

1 , Icol
1 ).

5. Initialize the 1st column of the approximate error matrix: R̃(:, Icol
1 ) = Z(:, Icol

1 ).

6. u1 = R̃(:, Icol
1 ).

7. ‖Z̃(1)‖2

F = ‖u1‖2
F‖v1‖2

F .

8. Find the 2nd row index Irow
2 : |R̃(Irow

2 , Icol
1 )| = maxi (|R̃(i, Icol

1 )|), i �= Irow
1 .

kth iteration:

1. Update the Irow
k th row of R̃: R̃(Irow

k , :) = Z(Irow
k , :) −

k−1∑
l=1

(ul)Irow
k

vl.

2. Find the kth column index Icol
k : |R̃(Irow

k , Icol
k )| = maxj(|R̃(Irow

k , j)|), j �= Icol
1 , . . . , Icol

k−1.

3. vk = R̃(Irow
k , :)/R̃(Irow

k , Icol
k ).

4. Update the Icol
k th column of R̃: R̃(:, Icol

k ) = Z(:, Icol
k ) −

k−1∑
l=1

(vl)Icol
k

ul.

5. uk = R̃(:, Icol
k ).
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6. ‖Z̃(k)‖2
F = ‖Z̃(k−1)‖2

F + 2
k−1∑
j=1

|uT
j uk||vT

j vk| + ‖uk‖2
F‖vk‖2

F .

7. Check convergence, if ‖uk‖F‖vk‖F ≤ ǫ‖Z̃(k)‖F , end iteration.

8. Find the next row index Irow
k+1 : |R̃(Irow

k+1, I
col
k )| = maxi (|R̃(i, Icol

k )|), i �= Irow
1 , . . . , Irow

k .

4.3.6 Computation of Antenna Impedances and Patterns

Computation of the Antenna Admittance Matrix

The mutual impedance Zant
ab between two accessible ports a and b can be computed in

terms of a reaction integral, and is of a variational form [30, pp. 348–349]. Suppose Ja
S

is the entire surface current as a result of exciting terminal a with a voltage source of

amplitude Va, while all other terminals are short-circuited. Likewise, J b
S is a result of

exciting terminal b with Vb, while all other terminals are short-circuited. A stationary

formula for the mutual antenna admittance Y ant
ab is given by [see also Eq. (3.123)]

Y ant
ab =

−1

VaVb

∫

Sa

∫
Es(J b

S) · Ja
S dS. (4.31)

By expanding the entire surface current for excitation i (i = a, b) in terms of K CBFs, we

can write

J i
S(r) =

K∑

ki=1

ICBF
ki

JCBF
ki

(r). (4.32)

Next, we substitute (4.32) in (4.31) and set Va = Vb = 1 to obtain

Y ant
ab = −

K∑

ka=1

K∑

kb=1

ICBF
ka

⎡
⎣
∫

Sa

∫
Es(JCBF

kb
) · JCBF

ka
dS

⎤
⎦ ICBF

kb
(4.33)

where we have used the linearity of the operators in (4.2). Equation (4.33) can be compactly

rewritten as

Y ant
ab = −

(
ICBF
a

)T (
ZCBF

)T
ICBF
b (4.34)

which shows that each entry of the antenna admittance matrix can be expressed in terms

of the reduced matrix ZCBF and the expansion coefficients for the CBFs ICBF
i . In order to
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obtain the antenna impedance matrix we simply invert the admittance matrix. Alterna-

tively, we could have directly used a stationary formula for the input impedance. However,

in most MoM formulations the surface currents are induced when elements are excited by

voltage sources, while all other terminals are short-circuited so that the admittance matrix

is obtained naturally, without additional manipulations.

Computation of the Antenna Element Patterns

Symmetry can be used to efficiently compute the array (element) far-field pattern function

{Efar,tot,H far,tot} by expanding these fields in terms of M known CBF far-field patterns

{Efar,CBF,H far,CBF} as follows (see also [88,110]):

{Efar,tot(θ, φ),H far,tot(θ, φ)} =
M∑

m=1

ICBF
m {Efar,CBF(θ, φ),H far,CBF(θ, φ)} (4.35)

where ICBF
m is the mth expansion coefficient for the mth CBF current. The coefficient

vector ICBF is computed via the CBFM for a certain array excitation. Because many of

the subdomains support the same set of CBFs, the respective CBF patterns are identical

as well, apart from a phase correction due to their translated position. For instance, we

can write

{E
far,CBF
p , H

far,CBF
p } = {E

far,CBF
q , H

far,CBF
q }e−jk0(rpq·r̂(θ,φ)) (4.36)

where the pth CBF pattern is derived from the qth one by accounting for the translation

vector rpq. The unit vector r̂(θ, φ) denotes the direction of observation. Note that, for our

example (Fig. 4.4), we need to explicitly compute the CBF patterns for the sets of CBFs

supported only by the subdomains 1, 4 and 7. The remaining CBF patterns are obtained

simply via translation.

4.4 On the Choice of the Post-Windowing Function

In this section, we examine the accuracy of the computed impedance and radiation char-

acteristics for various types of trapezoidal taper functions experimentally, i.e., relative to
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a direct MoM solution2. The specific pulse-windowing function that has been presented in

Section 4.3.2 (Step IIIa), which realizes a single RWG overlap between CBFs, belongs

also to this general class of trapezoidal taper functions.

It is essential that the superimposed CBFs be free of discontinuities at the interfaces be-

tween the antenna elements to preserve the continuity of the surface current across these

junctions. One way to achieve this is to employ connection/bridge functions, which lo-

cally compensate for the spurious surface charges that would arise in the absence of these

functions [104]. However, this approach introduces an additional set of unknowns in the

matrix equation, which is undesirable. Furthermore, the matrix condition number gen-

erally increases if macro-domain basis functions are mixed with subsectional basis func-

tions. Instead, in the present approach, all subdomains are extended beyond their original

boundaries, ensuring that the CBFs so generated overlap with those residing in the adja-

cent subdomains. Although the time needed to generate the CBFs slightly increases, the

construction time and number of unknowns in the final reduced matrix equation will be

much smaller, and this, in turn, enables us to solve electrically large problems.

As discussed in Section 4.3.2, we suppress and truncate the singular currents by using a

suitable windowing function Λ for each of the CBFs. Several envelopes for the trapezoidal

tapers have been examined, including the rooftop and pulse-type windowing functions. We

will first examine the accuracy of the windowing technique for a 3 × 1 TSA array in case

only primary CBFs are generated. Afterwards, the same set of primary CBFs are also used

to synthesize the surface current on a larger 7 × 1 TSA array. In both cases, the coupling

coefficients are computed by using a direct MoM approach and CBFM, respectively, and

for the sake of comparison, the degree of agreement between the above coefficients is used

as a measure for the computational accuracy of CBFM.

4.4.1 A 3 × 1 Tapered Slot Antenna Array

The CBFM is applied to the 3×1 TSA array of Fig. 4.5(a). To generate the primary CBFs,

we extract three subarrays from this array, comprising of elements 1–2, 1–2–3 and 2–3.

2This section is based on:

[100]: R. Maaskant, R. Mittra and A. G. Tijhuis, “Application of trapezoidal-shaped characteristic basis

functions to arrays of electrically interconnected antenna elements,” Proc. Int. Conf. on Electromagn. in

Adv. Applicat. (ICEAA), Torino, Sep. 2007, pp. 567–571.
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However, we consider only two of them since subarrays 1–2 and 2–3 have mirror symmetry.

After generating the CBFs for the subarrays, four different post-windowing functions,

ranging from pulse function to rooftop, are considered, and are depicted in Fig. 4.5(b).

The continuous trapezoidal taper function Λ, which determines the post multiplication
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(a) (b)

Figure 4.5: (a) A 3-element TSA array. (b) The two subarrays that have been extracted

from the 3 × 1 array. Four types of windowing functions have been considered, ranging

from the pulse (without overlap) to the rooftop window. The first CBF after windowing

is shown on the right for each windowing function and subarray.

factors for the RWG expansion coefficients, is specified as

dt

dmin

SΛ

Λ(dmin, dt) =

⎧
⎪⎪⎨
⎪⎪⎩

1 dmin > dt
2 and r ∈ SΛ

1
2 − dmin

dt
−dt

2 ≤ dmin ≤ dt
2

0 otherwise.

(4.37)

where dmin is the projection distance from the common-edge center of a RWG basis function,

to the nearest edge that connects the antenna element(s) under consideration, and dt is

the width of the linear taper. If dmin = 0, a point on the connecting edge is considered for
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which the weighting function Λ = 1/2. The weighting function Λ = 0 for points outside

the support SΛ of the trapezoidal taper function, and Λ = 1 for interior points, but outside

the support of the linear taper. For the windowing functions 2–4 in Fig. 4.5(b), we have

chosen dt to be 33%, 67%, and 100% of the antenna element width, respectively. If dt = 0,

the pulse taper is obtained that realizes a single basis-function overlap as described in

Section 4.3.2. However, for the sake of illustration, we will choose the pulse window in this

subsection not to overlap (no electrical connection).

An examination of the coupling coefficients in Fig. 4.6(a) and (b) indicate that the solution

accuracy is lowest for the pulse-type windowing functions (no overlap), which is expected

because such a choice introduces a discontinuity at the interface between the two elements.

Although the total number of unknowns is only 2+3+2=7, excellent agreement is observed

for all applied trapezoidal windows, because they: (i) provide overlap between the CBFs;

and, (ii) do not taper the CBFs at the antenna terminals.
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Figure 4.6: The computed S-parameters are shown for the four different windowing func-

tions: (a) Coupling coefficient Sant
22 and, (b) Coupling coefficient Sant

13 . The direct MoM

solution is designated by a solid line.
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Figure 4.7: Coupling coefficients Sant
11 , Sant

12 , Sant
14 and Sant

17 for various frequencies com-

puted with a direct MoM approach (solid lines) and CBFM (dashed lines). Each graph

corresponds to a certain windowing function that has been applied to the CBFs, ranging

from the pulse function to the rooftop function. The antenna element numbering and

current distribution @ 900 MHz is shown for both the direct MoM approach and CBFM

(window 3), for the case that the corner element is excited and the other terminals are

short-circuited.
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4.4.2 A 7 × 1 TSA Array

Since the generating subarrays of an N × 1-element array are identical to that of a 3 × 1-

element array, the previously generated CBFs are reused to synthesize the surface current,

and to subsequently compute the full S-parameter matrix of the 7× 1 TSA array. Fig. 4.7

shows a comparison of the coupling coefficients, derived by using MoM and CBFM, re-

spectively, for each of the four windowing functions. As expected, the choice that attains

the lowest accuracy is the pulse window, while all remaining windowing functions yield

accurate results for the mutual coupling down to -30 dB level, despite the fact that the

total number of unknowns (CBFs) is only 19, which is orders of magnitude less than the

original 4557 unknowns (RWGs) needed in the direct MoM formulation.
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Figure 4.8: Relative gain pattern for two E-plane scans: (a) 0 degrees (broadside scan),

and (b) 45 degrees. The solid line corresponds to the pattern (@ 900 MHz) computed by

the direct MoM, while the dotted curve refers to the CBFM solution (window 3).

For completeness, also the surface current distribution (@ 900 MHz) is shown in Fig. 4.7

(bottom, left) for the direct MoM approach, where the corner element is excited by a

voltage source and all other terminals are short-circuited. As can be seen in Fig. 4.7

(bottom, right), the approximated surface current distribution is visually indistinguishable

(for CBFM window 3). Moreover, with reference to the radiation patterns computed by

the direct MoM, the approximated patterns for both the 0 and 45 degree scans are also
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well predicted (see Fig. 4.8).

This leads to the conclusion that, as soon as an overlap is provided between CBFs, all

trapezoidal taper functions yield accurate results. Henceforth, we will therefore employ

the pulse function to minimize the support of the CBFs, but will retain a single cell

overlap as proposed in Section 4.3.2.

4.5 Results on Hybridizing CBFM and ACA

The numerical accuracy and efficiency of the CBFM combined with the ACA will be

assessed in this section [87]. Unless specified differently, a threshold of 10−2 is used for the

SVD procedure in CBFM, and the threshold used in ACA.

4.5.1 Accuracy of CBFM for a 7 × 1 TSA Array

The accuracy of CBFM will be discussed for an 1-D single-polarized array of electrically

interconnected TSA elements. For the sake of validation, we compare the CBFM solution to

a direct MoM solution employing only RWG basis functions. This means that we essentially

consider the consequences of reducing the number of MoM basis functions with the CBFM.

The CBFs are generated as described in Sec. 4.3.2, where the radius for generating the

secondary CBFs has been chosen equal to the width of two elements, and has been specified

independent of the frequency. After the SVD procedure, only 3 CBFs are retained for the

outer two corner elements and 5 CBFs for the inner elements (@ 900 MHz). Fig. 4.9 shows

the computed results for a 7 × 1 array of TSAs.

One visually observes a very good agreement between the CBFM and direct solution for

both the radiation and impedance characteristics. These results show that the electrical

interconnection between TSA elements is treated accurately, even though small differ-

ences are noticeable in the error surface current distribution JError
S [Fig. 4.9(d)]. However,

‖JError
S ‖2 is at least 30 dB lower than the largest magnitude observed in ‖JMoM

S ‖2, which is

found to be ∼ 12 dBA/m. The current is a smoothly varying function across the common

edge connecting both the element under excitation (#1) and its direct adjacent element

(#2), whereas the current continuity degrades across common edges for elements farther
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Figure 4.9: (a) Scattering parameters Sant
1n , for n = 1, 2, 4, 7 over frequency for a 150 Ω port

termination, computed by a direct approach (solid blue line) and CBFM (dashed red line

with circles). (b) Magnitude of the normalized surface current distribution in [dBA/m]

and port/element numbering for the direct solution and CBFM solution when element 1

is excited by a voltage source and all other terminals are short-circuited (@ 900 MHz).

The difference between both current distributions is shown in (d) (top). Fig. (c) shows

the relative total gain patterns for two E-plane scans: 0 degrees (broadside scan); and 45

degrees (150 Ω port termination). The solid blue line corresponds to the pattern (@ 900

MHz) computed by a direct MoM approach and the pattern in red (dashed with circles)

refers to the CBFM solution. The average error between the RWG expansion coefficients

over frequency is shown in (d) (bottom).



4.5 Results on Hybridizing CBFM and ACA 123

out. This can be understood by realizing that CBFs have been generated to accurately

represent the current on the excited element as well as on those elements that are directly

adjacent (see generation of CBFs in Section 4.3.2). The all-excited array case in Fig. 4.2

(Step IV) demonstrates therefore a better continuity of the current across all the common

edges. To reduce the error for the one-element excitation case, more CBFs need to be

generated to represent the rapidly varying current on the TSA elements farther out, at the

cost of sacrificing the total execution time.

Fig. 4.9(d) (bottom) illustrates the average error of the RWG expansion coefficients as a

result of comparing the CBFM solution to a direct MoM solution. This error is plotted as

a function of frequency and refers to the case that corner element 1 is excited by a voltage

source while all others are short-circuited; it is defined as

Rel. Error =

√√√√
N∑

n=1

∣∣IRWG,MoM
n − IRWG,CBFM

n

∣∣2

√√√√
N∑

n=1

∣∣IRWG,MoM
n

∣∣2
× 100%. (4.38)

Note that this situation does not correspond to the match-terminated case of which the

results are shown in Fig. 4.9(a) and (c). On average, the relative error is less than 5% but

may become larger as it tends to oscillate in accordance with the resonant behavior of the

surface current. Obviously, near such a resonance, a small shift in frequency may result in

a large relative error of the surface current. Resonances appear at almost constant intervals

and weaken in strength as the array becomes electrically large, resulting in a relative error

that levels out below 5%. For completeness, we also plot the reduced error curve when

the SVD threshold is lowered to 10−4. A close inspection of the corresponding current

distribution reveals that the current improves globally, which also mitigates the problem

of discontinuous behavior of the current across the common edges (although not shown).

4.5.2 Error and Fill-Time of the ACA Algorithm

Based on the previous array example, the memory requirements and CPU time of the ACA

approach are examined in detail for a number of subdomain pairs having a certain mutual

orientation and separation distance.
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Figure 4.10: Effective rank of coupling matrix ZRWG
pq , where the matrix entries are the mu-

tual reactions between two separated groups of RWGs, and where each group corresponds

to one TSA element. The matrix ZRWG
pq is of size 675×675 and the rank is computed using

a full SVD (threshold on the normalized singular values is 10−2) for various E-plane and

H-plane separation distances.

Fig. 4.10 illustrates the effective rank distribution of a coupling matrix ZRWG
pq , where the

matrix entries are the mutual reactions between two separated groups of RWGs. The

two groups of RWGs represent two TSA elements that are either separated in the E- or

H-plane, for different separation distances dx and dy, respectively. The effective rank is

computed by means of a full SVD with a threshold on the normalized singular values of

10−2. The size of the matrix ZRWG
pq is 675 × 675. It is observed that, as the element

separation distance becomes less than a wavelength, the effective rank of ZRWG
pq increases

rapidly and is approximately proportional to 1/
√

dx for E-plane separations, and to 1/dy

for H-plane separations. This indicates that a rank-revealing algorithm, such as the ACA,

can be computationally more effective than a straightforward matrix fill, even for elec-

trically small separation distances. Finally, we mention that, for a fixed frequency and

separation distance, the (maximum) effective rank is only weakly dependent upon the

mesh density [114].

The time to construct matrix Z̃RWG
pq using ACA, relative to the time to construct matrix

ZRWG
pq using a straightforward approach, has been plotted in Fig. 4.11 as a function of

the ACA threshold level and for a number of E-plane and H-plane element separation
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distances. The relative block fill time has been defined as

Rel. BlockFillTime =
Time to build Z̃RWG

pq

Time to build ZRWG
pq

× 100%. (4.39)

Also, the relative error between the block factored matrix Z̃RWG
pq and the actual matrix

ZRWG
pq has been illustrated in Fig. 4.11. The relative matrix error has been defined as

Rel. Error =
‖ZRWG

pq − Z̃RWG
pq ‖

F

‖ZRWG
pq ‖

F

× 100%. (4.40)

As expected, Figs. 4.11(a) and (b) show that the time to construct the approximant Z̃RWG
pq

inevitably exceeds the time to construct the actual matrix ZRWG
pq if the threshold level

for the ACA is set (too) high, or if the element separation distance becomes (too) small.

Typically, an ACA threshold of 10−2 is used so that the relative error is expected to be

in the order of a few percent or less. Remarkably enough, for this ACA threshold, the

ACA is computationally more effective than a straightforward approach down to an E-

plane separation of 0.1λ0. The corresponding rank of the matrix is then 47 (see Fig. 4.10).

In case of H-plane separations, the elements are facing each other and, consequently, the

separation distance has to be at least 0.2λ0. The relative error of the approximated matrix

is plotted in Fig. 4.11(c) and (d) and decreases uniformly for increasingly larger ACA

threshold levels as the algorithm successively reduces the rank of ZRWG
pq . The successive

rank reduction has been proven in [113] for matrices generated by asymptotically smooth

functions and is mainly determined by the polynomial interpolation method that is used

by the ACA algorithm. However, despite the fact that our matrices are generated by

oscillatory kernels, the ACA algorithm is found to be very robust for all the antenna

problems that we have studied, and the error resembles the typical error distributions of

Fig. 4.11(c) and (d).

The ACA algorithm only stops constructing an approximant of a matrix block if the error

of that approximated matrix is below a certain specified threshold. Hence, the error of

the approximation is therefore equal for all the matrix blocks that have been constructed

using ACA, irrespective of the fact whether subdomains are large, small, closely separated,

well separated, or even overlapping. The penalty, however, is that for closely separated

domains, or for domains that largely differ in size, the ACA algorithm becomes inefficient,

because of the large number of iterations required to construct an almost full-rank matrix

block to meet a certain error threshold level.
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Figure 4.11: ACA block fill time of matrix Z̃RWG
pq relative to the time to fill ZRWG

pq in a

straightforward manner, as a function of the ACA threshold level κ, for various (a) E-

plane TSA element separations, and (b) H-plane TSA element separations. Matrix ZRWG
pq

is of size 675 × 675 of which the rank distributions are shown in Fig. 4.10. The relative

error between Z̃RWG
pq and ZRWG

pq as a function of the ACA threshold level is plotted, for

various (c) E-plane TSA element separations, and (d) H-plane TSA element separations.

4.5.3 Compression of the ACA Algorithm

Fig. 4.12 illustrates the total storage requirement of the blocks Up and Vq, relative to a full

storage of ZRWG
pq as a function of both the E- and H-plane element separation distances.
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Here, the relative RAM usage is defined as

Rel. RAM =
Total number of entries Up; Vq

Total number of entries ZRWG
pq

× 100%. (4.41)
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Figure 4.12: Total RAM usage of Up and Vq, relative to the RAM required to store ZRWG
pq ,

for various E- and H-plane element separation distances. ACA threshold κ = 10−2. The

corresponding number of iterations rk, which also equals the effective rank, is shown in the

table (full rank is 675).

Typically, the ACA algorithm requires the storage of less than 5% of the full matrix

block when the separation distance becomes larger than 0.2λ0. Moreover, also the matrix

product JT
p UpVqJq will be evaluated in a numerically efficient manner. To analyze the

computational complexity of this product, let us assume two identical domains, each of

them supporting N RWGs, and an effective matrix rank rk as a result of a certain group

separation distance and frequency. Then, if we employ K CBFs per group, the compu-

tational complexity of the multiplications in (4.27) scales as O(KN [2rk + K]). On the

other hand, a straightforward matrix fill method requires a computational complexity of



128 Efficiency Enhancement Technique for the Method of Moments

O(KN [N + K]), which is an order larger in N (usually N ≫ K) if rk ≪ N . The rank rk,

as computed by the ACA algorithm, is also shown in Fig. 4.12 for the various separation

distances in both the E- and H-planes. Comparing this rank distribution to the distri-

bution shown in Fig. 4.10 obtained by using a full SVD approach, we conclude that, in

a sense, the ACA algorithm can be regarded as a “poor man’s SVD” for determining the

effective rank of a matrix.

4.5.4 Computational Complexity for 1-D and 2-D Arrays

Next, we consider the computational complexity of both CBFM and CBFM+ACA for

analyzing large arrays of electrically interconnected TSA elements. The total CPU time

required to compute the antenna impedance matrix of 1-D single-polarized arrays, ranging

from 10 up to 400 TSA elements, is specified in Table 4.1. The total CPU time includes the

time to generate primary and secondary CBFs, to perform the SVD, to construct and solve

the reduced matrix equation, either with or without the ACA algorithm, and to compute

the antenna impedance matrix.

Table 4.1: Total CPU time required to compute the port impedance matrix of various 1-D

single-polarized TSA arrays (@ 900 MHz).

No. CBFM CBFM+ No. No. No.

TSAs [sec.] ACA [sec.] ZRWG
pq RWGs CBFs

10×1 264 206 29 6519 46

20×1 353 207 59 13059 96

40×1 549 223 119 26139 196

80×1 937 262 239 52299 396

160×1 1779 607 479 104619 796

320×1 3400 1053 959 209259 1596

400×1 4108 1344 1199 261579 1996

As the degree of translation symmetry is large for 1-D arrays, the total number of matrix

blocks ZRWG
pq that need to be constructed remains relatively low. In fact, for a 400 element

TSA array, 400 × 400 blocks need to be constructed but this quantity is reduced to only

1199 (0.7%) by exploiting reciprocity and translation symmetry. Moreover, this number
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scales as O(N), where N is the total number of TSA elements. Hence, for relatively small

arrays, a large portion of the time is devoted to the generation of CBFs, which implies that

the speed advantage of the ACA algorithm becomes more apparent for very large arrays, or

for arrays that exhibit little translation symmetry. Due to the fine geometrical features of

a TSA element, as well as the utilized method to generate CBFs (primaries+secondaries),

the reduction factor of unknowns is quite significant (∼ 135).

In order to reduce the degree of translation symmetry, 2-D arrays of single-polarized TSA

elements are considered. In effect, we increase the number of distinct separation distances

and mutual orientations between pairs of CBFs. The element spacing in both the E- and

H-plane are chosen equal to the width of a single TSA element. The results are shown

in Table 4.2 for various array sizes, ranging from a 4 × 4 up to a 20 × 20 element array

configuration.

Table 4.2: Total CPU time required to compute the port impedance matrix of various 2-D

single-polarized TSA arrays (@ 900 MHz).

No. CBFM CBFM+ No. No. No.

TSAs [sec.] ACA [sec.] ZRWG
pq RWGs CBFs

4×4 457 341 54 10380 112

6×6 743 393 150 23418 264

8×8 1160 445 294 41688 480

10×10 1738 537 486 65190 760

12×12 2500 684 726 93924 1104

14×14 3476 934 1014 127890 1512

16×16 4666 1280 1350 167088 1984

18×18 6136 1787 1734 211518 2520

20×20 8022 2527 2166 261180 3120

Since more secondary CBFs are generated for a 2-D array configuration, the reduction

factor for the total number of unknowns for 2-D arrays is slightly less than for the 1-D

array case (95 versus 135). Also, for 2-D arrays, the number of ZRWG
pq matrix blocks that

need to be constructed is increasing more rapidly, so that the computational advantage of

the ACA algorithm becomes more pronounced.

For ease of comparison of the computational cost of CBFM to the combined CBFM–ACA

approach, the results of Tables 4.1–4.2 have been graphically illustrated in Fig. 4.13. As
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Figure 4.13: Total CPU time as a function of the total number of TSA elements for 1-D

and 2-D array configurations of various sizes.

Figure 4.14: Surface current distribution of a 20 × 20 TSA array (Magnitude in [dBA/m]

@ 900 MHz). The four center elements are equally excited by voltage generators (1 V)

while the others are short-circuited.

expected, the CPU time scales linearly for 1-D arrays, whereas the order of complexity

increases (slightly) when 2-D arrays are analyzed. For the array configurations and sizes

that we have studied it is concluded that a combined CBFM–ACA approach approximately



4.6 Analysis of Large Arrays of Subarrays 131

halves the total execution time with respect to a straightforward CBFM approach.

Fig. 4.14 illustrates the corresponding coupling effect and magnitude of the surface current

distribution (logarithmic scale) of a 20 × 20 TSA array when the four center elements are

excited while the other ports are short-circuited.

4.6 Analysis of Large Arrays of Subarrays

A rigorous full-wave analysis of phased arrays, each of them surrounded by a number

of other disjoint actively phased-steered arrays, becomes computationally prohibitive for

a large number of electrically large subarrays. Despite the fact that the computational

complexity of solving the matrix equation can be reduced by a large factor by employing a

relatively small number of CBFs, the numerical analysis of a much larger array of subarrays

will inevitably pose a computational burden, along with an increase in the number of

unknowns beyond a certain point. Conventional infinite-array approaches may be accurate

and fast for an extremely large array of subarrays. However, the subarrays have to be

electrically small and positioned over a uniform (possibly skewed) rectangular lattice.

4.6.1 A Perturbation Approach

In this method, the CBFM is used to construct a reduced moment matrix for only one of

the subarrays, and the matrix entries are modified to account for the mutual coupling by

using the characterization of the actively phase-steered surrounding subarrays. Towards

this end, we enforce the final surface current solution to be identical on every subarray,

apart from a phase difference depending on the scan angle and position vector of a subarray,

whereas, within each subarray, surface currents may differ per element.

Although the subarrays support identical currents (apart from a phase shift), the present

method differs from the array factor method where the current on each subarray is taken

equal to the isolated subarray current, or the current induced on an actively steered sub-

array embedded in an infinite array of subarrays. In fact, it is proposed to employ a quasi

infinite array approach, where only a finite number of subarrays are taken into account,

but where the current on each subarray is assumed to be identical (apart from a phase
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shift).

Computing the fields in a given region of a periodic structure, while assuming that they are

identical in other regions is a perturbation approach, has also been proposed by Skrivervik

and Mosig [92, 119]. The first publication exposes a spectral-domain approach, the latter

shows a spatial-domain approach. In its implementation, the latter is closer to the approach

considered in this section; the main difference is that in the Skrivervik and Mosig papers,

the region referred to above is one (microstrip) antenna, while it here corresponds to a

subarray.

Basically, the CBFM is used at antenna element level, whereas an infinite-array approach

is used at subarray level. The concept of combining infinite-array approaches with macro-

domain basis-functions has been examined before in similar methods, e.g., in [90] and [91].

The use of an infinite-array assumption at the subarray level obviates the need to solve

for all the subarrays at once, and reduces the total solve time significantly. Obviously,

such an approximate method is exact for infinite arrays of mutually coupled subarrays, as

well as for finite arrays of non-coupled subarrays (isolated subarrays), or for mutually cou-

pled subarrays where the end effects of bordering subarrays do not disrupt the impedance

characteristics of the subarray under study. Hence, for a finite and all-excited array, the

active mutual coupling (or active mutual scan impedance) between the subarrays is one

of the primary factors that determines the approximation error of the proposed method.

Generally, the accuracy of the approximate method depends upon the scan angle, number

of surrounding subarrays, the electrical distance between the subarrays, the electrical size

of a subarray, and the type of the antenna element.

Let us refer to Fig. 4.15, in which we depict the scheme for computing the scan impedance

matrix of the six antenna elements that comprise the central subarray. Basically, the scan

impedance matrix is obtained by adding the phase-shifted coupling impedance matrices of

the surrounding subarrays to the array impedance matrix of the central subarray.

As we impose the condition that the final surface currents among the various subarrays

be identical, except for a phase shift, we are led to conclude that the corresponding CBF

expansion coefficients have to be equal, though phase-shifted as well. Fig. 4.15(a) illustrates

how the (active) reduced matrix block ZCBF
pq is computed by testing the electric field,

which is generated not only by the source CBF Jq, but also by the respective phase-



4.6 Analysis of Large Arrays of Subarrays 133

shifted neighboring source CBFs Jqe
jϕ and Jqe

−jϕ (coupling terms), where the phase shift

ϕ depends on both the scan direction r̂(θ, φ) and the relative position of the subarray w.r.t.

the central subarray.

(a)

(b)

(c)

JpJ qJpe
jϕ Jpe

−jϕ

J q+1e
jϕ J q+1 Jp+1 J q+1e

−jϕ

J qe
jϕ J q Jp J qe

−jϕ

r̂(θ, φ)
Scan direction

Figure 4.15: Reduced matrix construction for the central subarray while accounting for

the coupling with the actively phase-steered surrounding subarrays.

In the process of computing all the mutual reactions, the translation symmetry can again be

exploited for fast construction of the ZCBF. This can be observed by comparing Fig. 4.15(a)

to Fig. 4.15(b) [cf. Fig. 4.3], where an identical though one-element translated reaction

between the CBFs is visualized.

Finally, for an off-broadside scan direction, one can easily verify that the active reduced

matrix block ZCBF
pq �=

(
ZCBF

qp

)T
. This is depicted in Fig. 4.15(c), where the source and

test domains on the central subarray have been interchanged with respect to the domains

shown in Fig. 4.15(b). Consequently, the final active reduced matrix ZCBF will not be

symmetric; therefore, both the upper- and lower-triangular part of the matrix must be at

least partially computed.
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Numerical Results

The numerical accuracy and efficiency of the modified CBFM approach, relative to a direct

CBFM approach, will be evaluated in this section for an array of disjoint subarrays of TSA

elements.

The anomalous antenna impedance effects, associated with the (resonant) gaps/slots be-

tween disjoint subarray tiles, have been reported in [120, 121] and will therefore not be

discussed in this thesis. These gaps may need to be introduced for servicing purposes, so

that, e.g., individual subarrays can be installed and/or removed as modular units. Further-

more, the transport and manufacturability of relatively small units may be advantageous.

A threshold of 10−2 is used both for the SVD procedure in CBFM, and the threshold used

in the Adaptive Cross Approximation Algorithm. These parameter settings are chosen

to be equal for both the direct and modified CBFM approaches, and we will exploit the

translation symmetry for all the cases that are studied, which enables us to make relative

comparisons.

9 Subarrays Composed of 64 TSA Elements Each

Fig. 4.16 illustrates an array of 9 TSA subarrays (3× 3) for which a total of 375,192 RWG

basis functions have been employed. We compute the antenna impedance matrix of the

576 TSA elements by using a direct CBFM approach, and then proceed to derive the scan

reflection coefficient for each TSA element (150 Ω source-reference impedance). These scan

reflection coefficients are taken as references for further comparison. It should be noted

that the scan impedances (or scan reflection coefficients) are not only of interest for the

characterization of transmit antennas, but can also be used to evaluate noise coupling in

receive antennas (see e.g. [122,123], and Chapter 5).

Let the scan reflection coefficient of the nth antenna element be denoted as Γscan
n , and

let the total number of the central subarray elements be Nsub. Then, within the central

subarray, the average relative error between the actual and approximated scan reflection
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ẑ

θ

x̂ φ
ŷ

dx = 12.7 cm

dx

2dy

dy = dx

@ 900 [MHz]

Figure 4.16: Array of 9 subarrays (3 × 3), each of them composed of 64 TSA elements

(8 × 8). To illustrate coupling effects, the active antennas within the central tile are

excited by a voltage-gap generator placed over the slot of each TSA element. The central

tile scans to broadside (end-fire direction), whereas the TSAs of the surrounding tiles are

short-circuited. The magnitude of the surface current distribution is shown (logarithmic

scale) as computed by a direct CBFM approach.

coefficients can be defined as

Rel. Error =

Nsub∑
n=1

|Γscan,ref
n (θ0, φ0) − Γscan,approx

n (θ0, φ0)|2

Nsub∑
n=1

|Γscan,ref
n (θ0, φ0)|2

× 100% (4.42)

where θ0 and φ0 designates the scan direction. For the sake of comparison, the error in the

scan reflection coefficients has been computed for a single isolated subarray, as well as for a

single subarray where we account for the coupling effects with the neighboring subarrays.

Fig. 4.17(a) and (c) show the scan reflection coefficient of the central element of the central

subarray, obtained by using the direct CBFM (reference solution). The same figures also

plot the results obtained by using both the single isolated subarray configuration and the

subarray configuration with coupling. The corresponding average relative errors for the

two scan directions have been plotted in Fig. 4.17(b) and (d) as a function of the frequency

for the reference case; the isolated array case; and, for the approximate method as proposed
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@ 900 MHz #RWGs #CBFs #MoM #MoM Blocks Time to build Total

(θ0 = 0) Blocks (Symmetry) MoM Blocks Exec. Time

3 × 3 Tiles 375192 4320 331776 8394 144 min 29 s 209 min 25 s

1 Isolated Tile 41688 464 4096 294 3 min 54 s 11 min 45 s

1 Tile + Coupl. 41688 480 4096 294 8 min 42 s 16 min 48 s

Figure 4.17: (a) Scan reflection coefficient of the central element of the central subarray

for broadside scan (θ = 0◦, φ = 0◦); (b) Average relative error of all the scan reflection

coefficients of the central tile/subarray, for broadside scan; (c) Scan reflection coefficient of

the central element of the central subarray for a 22.5 Deg E-plane scan (θ = 22.5◦, φ = 0◦);

(d) Average relative error of all the scan reflection coefficients of the central tile/subarray,

for a 22.5 Deg E-plane scan.
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in this section.

As compared to the single isolated subarray case, the accuracy of the scan reflection co-

efficients is higher for the one-tile array with coupling, particularly for off-broadside scan

directions. Obviously, a relatively good accuracy can be obtained for a solve time that

is comparable to the time required to solve a single isolated subarray problem (∼ 17 min

versus ∼ 12 min). The larger solve time is due to the overhead required to construct

the reduced matrix while accounting for the coupling terms with neighboring subarrays.

Despite this overhead, the overall solve time is about 12 times shorter than the total time

required when we use the CBFM approach.

4.6.2 The Multilevel CBFM

As demonstrated in the previous section, the mutual interaction between disjoint subarrays

(tiles) of TSAs is much weaker than the self-interaction of a subarray. This property has

been exploited using a perturbation approach, where the mutual coupling between a central

tile and a number of surrounding phase-steered tiles has been accounted for by assuming

periodicity in the currents on the various antenna tiles. This procedure is particularly

attractive if one is only interested in the active scan impedances of the antenna elements

within a subarray. However, alternative methods should be used if the antenna patterns

and/or (passive) antenna impedance matrix of the entire array, or a subarray, have to be

determined.

A suitable choice is the multilevel CBFM (ML-CBFM), which naturally extends the range

of applicability of the conventional monolevel CBFM; it enables one to solve larger problems

in the same amount of time and for an equal memory usage [124]. It is conjectured that the

solutions for the currents on the array of M disjoint subarrays can be accurately synthesized

by those found on a single isolated subarray3. For instance, one could apply a two-level

CBFM to the array of 9 subarrays as shown in Fig. 4.16. More generally, if a single isolated

subarray consists of N antenna elements, we first excite the N elements sequentially and

compute the associated subarray currents using a monolevel CBFM approach (level 1).

Afterwards, these so obtained/generated solutions are used as a set of primary CBFs to

synthesize the current distribution on each of the M disjoint subarrays (level 2). At the

3The results have been reported in a journal paper which is currently under review.
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highest level, we therefore have to solve for only M×N unknown CBF expansion coefficients

(per excitation), as opposed to the M × K CBFs that would be required for a monolevel

CBFM (with K ≫ N), where K is the total number of CBFs needed to synthesize the

current on a single subarray (level 1).

To generalize this concept, let a CBF J [i]
q at the level i on the qth subdomain be expanded

into K
[i−1]
q CBFs at the lower level i − 1, i.e.,

J [i]
q =

K
[i−1]
q∑

n=1

I [i−1]
n,q J [i−1]

q (4.43)

where {I [i−1]
n,q } are the K

[i−1]
q expansion coefficients for the CBFs on the qth subdomain at

the lower level i−1. Then, if Z
[i]
pq denotes an element of the reduced moment matrix at level

i for the mutual reaction between a source and observation (test) CBF on the subdomains

p and q, respectively, Z
[i]
pq is computed in accordance with (4.10) as

Z [i]
pq =

K
[i−1]
p∑

m=1

K
[i−1]
q∑

n=1

I [i−1]
m,p

⎡
⎢⎣
∫∫

Sp

Es(J [i−1]
n,q ) · J [i−1]

m,p dS

⎤
⎥⎦ I [i−1]

n,q =
(
J[i−1]

p

)T

Z[i−1]
pq J[i−1]

q (4.44)

where the vector J[i−1]
q = [I

[i−1]
1,q , I

[i−1]
2,q , . . . , I

K
[i−1]
q

K
[i−1]
q ,q

]T holds the K
[i−1]
q expansion coefficients

for the CBFs on the qth subdomain at the lower level i − 1. Similarly, the elements of

Z[i−1]
pq can be expressed into the CBFs at the lower level i−2, etc.; this presents a recursive

scheme through which the reduced moment matrix at the highest level can be computed.

At the lowest level, i = 0, we do not employ CBFs but RWGs.

Likewise, an element of the voltage vector V[i] at the ith level for the pth subdomain is

computed in accordance with (4.7) as

V [i]
p = −

K
[i−1]
p∑

m=1

I [i−1]
m,p

⎡
⎢⎣
∫∫

Sp

Ei · J [i−1]
m,p dS

⎤
⎥⎦ =

(
J[i−1]

p

)T

V[i−1]
p (4.45)

where V[i−1]
p is the voltage excitation vector for the CBFs on the pth subdomain at the

lower level i−1. Yet again, at the lowest level of this recursion, i = 0, the voltage excitation

vector of the RWGs is taken.

It is to be noted that a set of CBFs need to be generated at each level, and this requires

additional operations in comparison with a monolevel CBFM. In conclusion, even though
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the number of unknowns may be significantly reduced, the speed advantage becomes only

apparent for electrically large problems [124].

4.7 A Practical 8 × 7 Dual-Polarized TSA array

Tapered slot antennas are traditionally etched on high-performance dielectrics, particularly

because dielectrically loaded TSA arrays demonstrate an increased operational impedance

bandwidth [125], and offer a direct means to feed the antenna elements as well. However,

the dielectric-free TSA arrays are low loss and may represent a more cost-effective technol-

ogy to manufacture large phased-array antennas, which is of great interest to the develop-

ment of the next generation radio telescope: the Square Kilometer Array (SKA) [11,126].

Figure 4.18: Dual-polarized array of aluminum TSA elements (cf. ref. [23]), which is

subjected to a reduced-order modeling approach.

In [23], the design of a dual-polarized TSA array has been described where a dielectric

substrate is employed, but only locally, and solely for the purpose of feeding each TSA

element (see also Fig. 4.18). The radiating tapered slots are composed of relatively thick

aluminum fins in order to realize a slotline capacitance which closely resembles the capaci-

tance of an equivalent slotline sheet that is printed on a dielectric substrate. Furthermore,

the relatively thick metals improve the self-supportiveness of the structure. In the present

section we aim to develop a reduced-order model for these types of microstrip-fed TSA
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arrays.

Because the strongly coupled wideband antenna elements are composed of both dielectrics

and metals, an accurate full-wave analysis of such TSA arrays represents an even larger

challenge [24, 127–129]. The computational burden of the entire problem can often be

relaxed by decomposing it into smaller subproblems that each can be solved relatively easily,

and can afterwards be combined into a single aggregated model to obtain its full solution.

By decomposing the problem into subproblems, not only the elementary physics of the

problem gets revealed, but also the opportunity is offered to perform global optimizations in

a time-efficient manner, namely, by first solving for a local subproblem and then accounting

for the interactions with its environment, rather than recomputing the entire problem in

full detail during each optimization cycle.

In [130], a decomposition technique has been proposed to model the scan impedance of an

infinite array of stripline-fed TSAs. To model these bilateral structures, a moment-method

formulation was proposed based upon the periodic Green’s function for currents located

inside and on a protruding dielectric slab. The scan impedance was calculated on the

stripline feed crossing the slotline section, and therefore included both the reactance of

the radial stripline stub, and the stripline-to-slotline transition. The reactance of the stub

was independently modeled between two infinite ground planes using the same full-wave

formulation. Afterwards, the stub reactance was de-embedded to retain a scan impedance

representing only the antenna element and stripline-to-slotline transition. It was concluded

that the radial stub can be optimized independently, and be seen as an individual reactance

in series with the de-embedded scan impedance representing only the antenna and stripline-

to-slotline transition.

A further decomposition into microwave circuit models has been proposed in [131]. Therein,

the microstrip-to-slotline transition is modeled by Knorr’s equivalent circuit [132] (an ideal

transformer), whereas the microstrip stub and feed lines, and even the slotline cavity of

the antenna, have all been modeled by ideal transmission lines. Following this, it has

been demonstrated in [133] that both the microstrip feed and antenna slot cavity of a

single bunny-ear antenna can then be optimized to realize a desired impedance bandwidth.

However, in [130], it has been stated that, for arrays of TSAs, both the tapered slot and

the slotline cavity exhibit a significant interaction with the neighboring elements. As a

result, a quantitative analysis of wideband phased arrays was not found to work for such

a detailed antenna-feed decomposition.
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In the following sections, it is explained how the feed model can be modified in order to

analyze (large) arrays of TSAs in a quantitative manner. The distinction with other papers

is that both the strongly coupled tapered slots and the slotline cavities are now represented

by electrodynamic field models, whereas the microstrip lines and stubs, including their

microstrip-to-slotline transitions, are represented by quasi-static field models. The antenna

array can be analyzed as a dielectric-free structure if the effect of the dielectric substrate

on its radiation characteristics is negligible, which is particularly true if the dielectric: (i)

is employed only locally; (ii) is effectively thin compared to the TSA fins, and; (iii) has a

low relative dielectric permittivity. We will consider only one specific realization for which

mainly the first two requirements are satisfied.

The dielectric-free antenna array is analyzed with the aid of the moment method in which

we employ an adequate number of numerically generated entire-domain basis functions on

each of the metallic TSA elements and then account for the mutual reaction between them

through the CBFM. The direct interaction between antenna feed boards is neglected as

the coupling is assumed to occur only via antenna elements.

Validation of the impedance characteristics of the combined quasi-static and electrody-

namic field models has been carried out via measurements for several practically realized

TSA arrays. The results demonstrate a very good agreement over a large scan range, as

well as over a wide frequency band.

4.7.1 Geometrical Dimensions of the Reference TSA

Fig. 4.19(a) illustrates the geometrical dimensions of the reference TSA element that has

been examined. The element geometry has been adopted from [23], where the design of

an infinite dual-polarized phased array of such elements has been described and analyzed

with the aid of periodic boundary conditions.

The magnitude and phase of Sant
11 of a single array element, both measured and simulated,

are shown in Figs. 4.19(b) and 4.19(c), respectively. The agreement between the measured

and simulated (HFSS) impedance characteristics of a single TSA element (mounted on an

infinitely large PEC ground plane) is sufficiently good and will, henceforth, be used in the

development and validation of the combined model for both the microstrip feed and the

antenna structure.
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Figure 4.19: (a) Geometrical dimensions of the reference TSA element in cm. The mag-

nitude and phase of Sant
11 , both measured and simulated, are shown in figures (b) and (c),

respectively.

4.7.2 Reduced Order Model of a Single Microstrip-fed TSA

We will utilize the measurements or simulations of a single TSA element to extract the

model parameters of the microstrip feed. First, the TSA element is excited by a voltage-

gap generator across the slotline section in the absence of the microstrip feed. The currents

inside the actual antenna conductor of finite thickness are effectively represented by average

surface currents supported by infinitely thin metallic sheets. It is crucial that the actual

thickness of the conductors is modeled accurately in order to obtain the correct fields inside

the slot region, and thereby the correct gap impedance. Therefore; the edges of the current
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sheets have been right-angled folded as illustrated in Fig. 4.20.

Folded Edge

B

A

Figure 4.20: Triangular meshed TSA element with folded edges to simulate a finite thick-

ness of the metal, and delta-gap excitation between A and B.

Following Chapter 3, the current sheets are supplied with a triangular mesh (see Fig. 4.20)

and an adequate number of subsectional Rao-Wilton-Glisson (RWG, [26]) basis/testing

functions is employed. The surface current is subsequently synthesized by discretizing an

Electric Field Integral Equation (EFIE) with the aid of the moment method (Galerkin’s

testing scheme), after which the resulting system of linear equations is solved for the

unknown RWG expansion coefficients.

After computing the antenna impedance between terminals A–B (see Fig. 4.20), the mi-

crostrip feed is modeled as schematically shown in Fig. 4.21.

L1

L2

1 N· · ·

A B

1
:
n

Cslot

(a) (b)

Figure 4.21: (a) A microstrip feed on a localized substrate carrier, and; (b) an equivalent

circuit representation of this feed. Preliminary results have been reported for a 3× 1 TSA

array in [134].

Fig. 4.21(b) illustrates a modified representation of Knorr’s equivalent circuit [132] in which
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the microstrip-to-slotline transition is modeled as an ideal transformer with a (non-integer)

turns ratio n = Vsec/Vprim, where Vprim and Vsec are the microstrip and slotline voltages

across the primary and secondary windings, respectively. A capacitor has been added

in series with the microstrip line because the ground conductor of the microstrip line is

interrupted by the slotline. We therefore have placed this capacitor in the ground conductor

of the transformer [cf. the actual situation in Fig. 4.21(a)]. This capacitor becomes a

required element when wide slots and low-permittivity substrates are considered. However,

in the present case the slot is relatively narrow and composed of two relatively thick metals,

so that the capacitor becomes virtually short-circuited and therefore a non-required circuit

element.

As described in [135], the impedance of wide-band circular stubs can be accurately modeled

by a cascaded series of transmission lines with varying strip widths, although this method

neglects the stub radiation, parasitic effects at junctions, and the fringing field effect at the

stub end. Because the latter effects are small, also the impedance of the triangular stub of

Fig. 4.21(a) could be accurately modeled with this technique. For this purpose, the design

equations of [136, pp. 87–92] for each of the microstrip sections were used, and the stub

impedance was evaluated for a series of cascaded sections with the help of the CAESAR

circuit simulation software (see Chapter 5 and Appendix F).

The impedance of the triangular stub has also been computed with the aid of a full-wave

method (HFSS) and subsequently compared to the presently modeled stub impedance;

the results are shown in Fig. 4.22. The phase accuracy of the reflection coefficient is

even reasonable for a single microstrip section, but readily improves by adding a few

more sections. The magnitude of the reflection coefficient of the stub only is not shown

since |S11| > −0.05 dB for both models over the entire frequency band. The reflection

coefficient of the entire microstrip feed section, when placed above a PEC ground plane

(transformer short circuited), has both been measured and simulated. The agreement

for the magnitude in Fig. 4.22(c), and phase in Fig. 4.22(d) is very good, even outside

the operational frequency range from 0.5–1.5 GHz. Because the microwave network is

non-radiative, the dissipation losses are only due to the ohmic losses in the conductor

and the dielectric material. For the computations, we have used that tan(δ) = 0.0027 and

σcond = 5.8×107 Ω−1m−1. The corresponding frequency-dependent attenuation coefficients

αdiel and αcond, for a passively matched terminated microstrip line, range from 0.01 − 0.1

Np/m and 0.03 − 0.1 Np/m, respectively. As a result, it is observed in Fig. 5(c) that

|S11| > −0.2 dB for a standing-wave current along the microstrip feed.
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Figure 4.22: The modeled and simulated (HFSS) phase of S11 of the (a) triangular stub

(Zref
0 = 50Ω) using (a) N = 1 section; (b) N = 5 sections. (c), (d) The measured magnitude

and phase of the reflection coefficient of the microstrip-feed section (transformer short

circuited).

Since the physical dimensions of the microstrip feed as well as the electrical properties of

the substrate carrier are known (εr = 3.38, dsub = 0.8 mm, wstrip = 1.8 mm), most of the

model parameters of the equivalent circuit [Fig. 4.21(b)] can readily be determined, and

are listed in Table 4.3.

The length L1 of the transmission line includes the equivalent connector length. The pa-

rameter n has been determined by a least-squares fit of the port impedance of the cascaded
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Table 4.3: Model parameters of the circuit shown in Fig. 4.21

N L1 L2 Zref
0 n Cslot

5 67.8 mm 2.2 mm 50 Ω 0.95 –

model (antenna+feed) onto the reference impedance shown in Figs. 4.19(b) and 4.19(c).

Although n is generally a complex-valued quantity, it is herein taken real-valued since the

capacitor accounts for a possible reactive part. Moreover, the conservation of power be-

tween the primary and secondary windings is then automatically satisfied. We remark that

n and Cslot need to be determined only once because they solely depend upon the geometry

of the microstrip-to-slotline transition, which is often not altered during a design optimiza-

tion, as opposed to the geometry of the triangular stub, circular cavity, exponential taper,

width and height of the TSA element.

Figs. 4.23(a) and 4.23(b) illustrate that the overall return loss of the cascaded antenna in

combination with the feed circuit is in good agreement with the reference full-wave solution

(HFSS). Figs. 4.23(c) and 4.23(d) depict the magnitude of Sant
11 when the circular cavity

size D and the height H of the TSA element are varied. As expected, the accuracy remains

satisfactory (i.e. ≤ 20% error) when the TSA element geometry is altered, while the feed

geometry and its model parameters are kept fixed. This confirms that n is almost invariant

to these geometrical changes. The Sant
11 of the antenna element in the absence of the feed

circuit is also shown for these cases, and illustrates that the effect of the feed circuit on

the return loss is rather significant.

4.7.3 Analysis of Large TSA Arrays

It is important to demonstrate that the non-radiative feed model, which has been developed

for a single TSA element, can directly be applied to analyze the impedance characteristics

of large arrays of mutually coupled TSAs. In the following subsections, we present some

specific results of the CBFM for a 4 × 4 singly-polarized and an 8 × 7 doubly-polarized

TSA array.

For antenna problems, it is customary to generate and employ primary and secondary

CBFs [87]. However, we will illustrate that, from an accuracy point of view, one can
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Figure 4.23: Modeled and full-wave simulation results (HFSS) of Sant
11 of a single TSA

element (Zref
0 = 50Ω). The magnitude (a) and phase (b) of Sant

11 for the reference geometry.

(c); (d) The magnitude |Sant
11 | for two different element geometries but for identical feed

models.

obviate the generation of secondary CBFs and, equally well, let a spectrum of incident

plane waves (PWS) be incident on a smaller subarray. These additional CBFs are needed

to accurately synthesize the coupling effects, and are appended to the already existing set

of primary CBFs (after applying a trapezoidal post-windowing procedure, see Section 4.4

and [100]). For this purpose, a PWS is used for the two orthogonal θ and φ polarizations

with an angular step size of 20o (typical value) in both the θ and φ directions, where the

θ range is limited to the upper hemisphere in case an infinite ground plane is present.
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To achieve high solution accuracy for the complicated problem of a dual-polarized array

of interconnected TSAs (which basically form tapered waveguides), the threshold of the

singular value decomposition (SVD), which is used to orthonormalize and to truncate the

number of numerically generated CBFs, has been set to 10−4. The threshold of the Adap-

tive Cross Approximation (ACA) algorithm, which is used for the fast construction of

off-diagonal (reduced) moment matrix blocks, has been set to 10−3 [87]. These thresh-

old values have been determined empirically and yield a relative difference between the

measured and simulated antenna impedance matrix elements of about 20%.

The HFSS v10 computations have been performed on a slightly more powerful Linux

desktop PC which has 8 GB of RAM and 2 dual core AMD processors.

Results for a 4 × 4 Singly-Polarized TSA Array

To be able to validate the measured antenna impedances by commercial solvers, a relatively

small 4 × 4 singly-polarized TSA array has been fabricated as shown in Fig. 4.24(a).

Although the problem requires only 9848 RWG basis functions, it cannot be handled by a

plain MoM solver because of memory overflow errors above ∼ 7000 RWGs. When CBFM

is used instead, it is worth realizing that the computational overhead of CBFM is relatively

large for small arrays, since the total execution time (for this case ∼ 1 hour per frequency

point) is governed by the time to generate CBFs and to construct a reduced matrix. The

details on CBFM will therefore only be discussed for the larger 8 × 7 dual-polarized TSA

array for which it outperforms any direct moment method solver, hypothetically.

From the measured antenna S-parameters, we have computed the active scan reflection

coefficient Γn
act for the nth antenna element as

Γn
act =

1

an

N∑

m=1

Sant
nmam (4.46)

where ap for p ∈ {m,n} is the complex valued transmission line mode amplitude of the

excitation wave incident on the pth antenna port with p ∈ {1, 2, . . . , N}.

Figs. 4.24(b)–(d) depict the active scan reflection coefficients of one of the four center

elements for different phased-array excitation schemes. A good agreement is observed
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Figure 4.24: (a) A 4 × 4 singly-polarized microstrip-fed TSA array mounted on a finite

ground plane. The magnitude of the measured, simulated (HFSS), and modeled active

scan reflection coefficients are shown for: (b) θ = 0◦, φ = 0◦; (c) θ = 45◦, φ = 0◦ (H-plane

scan), and; (d) θ = 45◦, φ = 90◦ (E-plane scan).

between the measured and modeled magnitudes of the active reflection coefficients for

various scan angles and as a function of frequency. The results that have been computed

by the finite-element solver HFSS are also in good agreement, i.e., up to ∼ 1.5 GHz. The

high-frequency results (� 1.5 GHz) have been computed with reduced accuracy because

of memory constraints. More specifically, to assure that the size of the radiation box is

λ0/4 away from element edges at 0.5 GHz, the solution frequency for convergence (used
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for adaptive mesh refinement in HFSS) had to be set to 1.0 GHz (the center frequency).

Finally, it is worth mentioning that the onset of grating lobes above 1.2 GHz occurs in

conjunction with high-Q impedance resonances which are difficult to predict accurately

with limited computational resources.

Results for an 8 × 7 Doubly Polarized TSA Array

The impedance matrix of the 112-port TSA array of Fig. 4.18 has been evaluated with the

above proposed model and compared to measurements. The problem requires 79450 RWG

basis functions, which is a number of unknowns that would significantly increase whenever

the dielectric microstrip feed becomes part of the EM model, and such a problem is beyond

the reach of (most) commercial solvers.

The first step in solving this problem is to construct the entire array mesh. We mesh only

two base elements (a co- and cross-polarized antenna element) and the bottom edge of each

base element is connected along the diagonal of a square ground plane. Note that, when

such a base element is replicated at the various element positions throughout the lattice,

a finite dual-polarized array is formed over a finite ground plane.

After the construction of the entire array mesh, a minimum number of unique supports4

is identified throughout the array lattice each of which holds a distinct set of CBFs. Any

other support function (associated to an array element), inherits one of these unique sets

of CBFs through translation. In the end, all the array elements support a set of (mutually

overlapping) CBFs. The total number of identifiable unique sets of CBFs depends on the

regularity of the meshed antenna array geometry and is independent of the array size [88].

For the present problem we generate 18 sets of CBFs by extracting 18 subarrays from

the fully meshed array. That is, for each polarization, we extract 4 corner element, 4

edge elements, and an inner element along with their direct electrically interconnected

adjacent elements. Next, currents are induced on these 18 subarrays by exciting each of

the array elements sequentially as well as by applying a PWS, after which the supports

of these currents are reduced to the size of a single element plus a minor extension [100].

The 18 sets of CBFs generated in this manner are subsequently mapped onto the array

mesh through translation. Finally, each of the 112 antenna elements supports a set of

4In the present overlapping domain-decomposition technique, a CBF support is comprised of the mesh

of one antenna element including a minor extension over the electrically interconnected adjacent elements.
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CBFs which partially overlaps with the CBFs supported on the electrically interconnected

adjacent elements, and this preserves the continuity of the current in the final solution. By

using a 20 degrees angular step size of the PWS, and a SVD threshold of 10−4, about 31

CBFs are generated for each of the 112 antenna elements (@ 1.0 GHz).

The above meshing strategy has been detailed in [88] and allows for a fast construction

of the (reduced) moment matrix since we can exploit the block-Toeplitz symmetry of this

matrix. This is possible since a large degree of translation symmetry exists between group

pairs of RWGs (or CBFs) throughout the array lattice. Because of this symmetry, only

5166 unique moment matrix blocks out of the 112 × 112 = 12544 need to be constructed

to compute the reaction integrals between CBFs (reciprocity not exploited).

The reduced matrix equation is solved through Gaussian elimination for 112 excitation

vectors (112 element excitations). The total execution time, which also includes the mesh-

ing and post-processing time of the currents, impedances, far-field patterns, and the solve

time of the microwave network, is shown in Table 4.4. The magnitude of the measured

Table 4.4: Total execution time (@ 1.0 GHz, for 79450 RWGs).

CBF generation for 18 distinct supports in the array 1 h 51 min

Construction of the reduced matrix equation 0 h 50 min

Computation of CBF far-field patterns 0 h 45 min

Total number of CBFs 3506

Solve time reduced matrix equation (3506 × 3506) 36 sec

Total execution time 3 h 36 min

and simulated active scan reflection coefficient Γact for a center element as a function of

frequency is shown in Figs. 4.25(a)–(c). For completeness, the HFSS results for a periodic

unit-cell analysis of an infinite-by-infinite TSA array have been overlayed with the finite-

array results. Even though the array size is only 5λ0×5λ0 at 1.5 GHz, the active impedance

characteristics are comparable for a broadside scan down to 0.8 GHz. Deviations are mainly

caused by edge-truncation effects, which increase at low frequencies and large scan angles.

Three scan angles have been considered: broadside scan (θ = 0o, φ = 0o), a 45 degree E-

plane scan (θ = 45o, φ = 180o), and a 45 degree H-plane scan (θ = 45o, φ = 90o). Only the

x-oriented TSAs are excited, while the cross-polarized elements are passively terminated by

50 Ohm loads at the microstrip feed ends. Even though the proposed antenna-feed decom-

position approach is rather crude, the agreement between measurements and simulations
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Figure 4.25: (a)–(c) Magnitude of the measured and simulated active scan reflection coeffi-

cient Γact as a function of frequency and for various scan directions. The HFFS results are

for an ∞×∞ TSA array [23]. (d) The relative difference of the measured and simulated

coupling between the center element and all other equally polarized elements as a function

of frequency.

is found to be remarkably good. In fact, up to the first resonance frequency, at around

1.45 GHz (broadside scan), the relative difference between the measured and modeled mu-

tual coupling coefficients between the center element (#29) and all other equally polarized

elements, is about 20%. This result has been plotted in Fig. 4.25(d). The resonance seems

well-predicted in Fig. 4.25(a); however, it is obvious that the relative difference as defined

in Fig. 4.25(d) can become large (> 100%) due to a minor frequency shift.
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Figure 4.26: Results for the measured and simulated mutual couplings Sant
29,x for x =

1, . . . , 56, between the central element x = 29 and all other equally polarized elements,

for 1.0 GHz. (a) Top view of the array. (b) Magnitude of the current when element 29

is excited (logarithmic scale, 60 dB dynamic range). (c) The measured |Sant
29,x| in [dB]. (d)

The simulated |Sant
29,x| in [dB]. (e) The measured ∠Sant

29,x in [Deg] (f) The simulated ∠Sant
29,x

in [Deg].
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Fig. 4.26 visualizes the measured and simulated magnitudes and phases of the coupling

coefficients between the center element (#29) and all other equally polarized elements (@

1.0 GHz). It is observed from the contour plots in Fig. 4.26(c) and (d) that the E-plane

coupling is stronger than the H-plane coupling, but this depends on the frequency and

the reference impedance (element termination). The latter conclusion can also be drawn

from the magnitude of the current distribution shown in Fig. 4.26(b). Both the magnitude

and phase distributions are well predicted, that is, the relative difference according to

Fig. 4.25(d) is ∼ 10% @ 1.0 GHz. A similar agreement is obtained at other frequencies,

except near or above 1.3 GHz, where element impedances are disrupted by resonant array

effects which are difficult to predict accurately (the λ0/2 element separation distance is at

1.2 GHz). In this respect, it is also worth mentioning that the microstrip feed boards have
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Figure 4.27: (a) Measured Sant
11 values of four isolated TSA elements. (b) Relative spread

in measured Sant
11 values.

been glued on the elements by hand, and that, due to this, the relative spread (standard

deviation of Sant
11 divided by its mean value) in measured impedances between four isolated

elements can be as large as 25% in the frequency band of operation [cf. Fig. 4.27(a)]. This

variation is partly caused by a misalignment of the feed, and/or a small air gap between

the microstrip feed board and the aluminum antenna. Measurements with a Time Domain

Reflectometer revealed that, for each [μm] air gap, the characteristic impedance of the

microstrip line increases by 72 mΩ. The maximum in relative spread in Fig. 4.27(b) occurs

at 900 MHz, and this is also observed in Fig. 4.25(d). It is likely that an increase in the

relative difference between the modeled and simulated coupling coefficients in Fig. 4.25(d)
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is partly due fabrication tolerances. Mechanically more robust solutions to firmly clamp

the feed are currently being examined [137].

Even though element #29 is not an exact center element, one expects symmetry in the

computed coupling coefficients along the y-direction. The coupling coefficients are derived

from the moment matrix solution, but from the reaction concept and reciprocity theorem,

we know that symmetry is preserved in the moment matrix whenever Galerkin’s method

is combined with a symmetric product for testing the integral equation. However, in our

implementation, the moment matrix is only symmetric up to a limited number of computed

digits because the source and test integrals are evaluated using unequal quadrature rules.

The degree of asymmetry depends on the mutual orientation between pairs of RWGs and

the order of the Gaussian quadrature rule that is employed to compute their reaction

integrals (i.e. the moment matrix entries). If desired, the degree of symmetry can be

improved by choosing equal quadrature rules or by increasing their orders at the cost of a

reduced matrix-fill time. Reciprocity can be exploited beyond a certain point and would

save approximately a factor of two in total fill time.

4.7.4 Simulated Far-Field Patterns and Orthogonality of a Co-

and Cross-Polarized Array Beam

The computed embedded-element patterns are illustrated in Fig. 4.28. These are the

patterns that arise if one element is excited while the other elements are passively-matched

terminated using 50 Ohm loads at the microstrip feed ends. Not surprisingly, the far-field

Figure 4.28: Embedded-element power-patterns at 1.0 GHz (linear scale).
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patterns of the edge and corner elements exhibit many ripples and, although not shown,

were found to be frequency-dependent as well. Furthermore, as a result of the coupling

effects, it can be observed that the power patterns of the center elements are “smoother”

and more symmetrical than the patterns of the boundary elements.

In radio astronomy, it is of primary importance to recover the intensity and/or polarization

information of the incident electromagnetic field. The Stokes parameters {I,Q, U, V } are

commonly used to define the polarization state of a partially polarized field. In a fixed

{x̂, ŷ} basis, the Stokes parameters are defined as [3, p. 4-8]

I = |Einc
x |2 + |Einc

y |2 Q = |Einc
x |2 − |Einc

y |2 (4.47)

U = 2Re{Einc
x (Einc

y )∗} V = 2Im{Einc
x (Einc

y )∗}. (4.48)

To measure these Stokes parameters, we can let the 112 TSA element array operate in

phased-array mode and separately combine the output signals of the x- and y-oriented

elements into a co- and cross-polarized beam, respectively. Even though the pertaining

array elements are geometrically orthogonal to each other, it is essential that also the

realized co- and cross-polarized beams are sufficiently orthogonal over a large scan volume

and frequency band in order to effectively recover the Stokes parameters of the incident

field [138].

Let the vectors

eco(θ0, φ0) = eco
θ θ̂ + eco

φ φ̂ (4.49a)

ecross(θ0, φ0) = ecross
θ θ̂ + ecross

φ φ̂ (4.49b)

denote the complex-valued electric far-field vectors of the co- and cross-polarized beam

patterns in the direction (θ0, φ0) of the source. These vectors are normalized such that

Vx = eco · Ei and Vy = ecross · Ei are the received output voltages corresponding to the

x- and y-oriented elements, respectively. Clearly, the set {eco,ecross} forms a basis along

which the incident field Ei is decomposed. The beam orthogonality in the (θ0, φ0) direction

is conveniently measured through the normalized cross-correlation term

ρcor =
〈eco,ecross〉√

〈eco,eco〉〈ecross,ecross〉
(4.50)

where 〈a, b〉 = a∗ · b = aHb represents the Hermitian inner product. We point out

that, if ρcor(θ0, φ0) = 0, the beams are orthogonal in the (θ0, φ0) direction and the Stokes

parameters can, potentially, be measured with high precision, provided that a possible
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rotation of this orthogonal basis with respect to a given reference frame (usually of the

source) is known and can be corrected for in the post-processing of the data (calibration).

On the contrary, if |ρcor(θ0, φ0)| ≈ 1, the Stokes parameters are recovered with low precision.

One could orthonormalize this basis by adapting the beamformer weights, but this is likely

to result in a loss of sensitivity as well.

The beam orthogonality 10 log(|ρcor|) of the 112 TSA element array has been analyzed over

a large scan volume (@ 1.0 GHz). The results are shown in Fig. 4.29. As expected, the

Figure 4.29: Correlation (here used as the measure of orthogonality) between a co- and

cross-polarized beam in the scan direction (θ0, φ0), for 0 ≤ θ0 ≤ 90o and 0 ≤ φ0 ≤ 360o.

The scale is logarithmic.

orthogonality is best in the principal planes, i.e., in the E and H planes, but ρcor reduces

in the D planes down to -14 dB for 0 ≤ θ0 ≤ 60o. The level of orthogonality that is

required depends on the kind of observation and the operation of the system as a whole; it

is therefore considered to be a system specification, even though the beam orthogonality

as presented in Fig. 4.29 is rather intrinsic to the antenna type, excitation scheme, and the

chosen array configuration. Also, it should be clear that the co and cross polarization of a

single TSA element is not very important; it is the combination of the patterns generated

by a x- and y-oriented antenna which determines the capabilities of the instrument to

perform an adequate polarization discrimination.
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4.8 Conclusions

The junction current between electrically interconnection subdomains is modeled by par-

tially overlapping CBFs, rather than by an independent set of connection/bridge functions

across the common interface between subdomains, since this would affect the total exe-

cution time and/or reduce the maximum size of the problem that can be handled. Fur-

thermore, a mixture of macro-domain and subsectional basis functions may increase the

matrix condition number.

A novel method has been developed to generate the CBFs; they are first generated on

an extended subdomain constituting the interconnected adjacent antenna elements. The

current distributions are then truncated by reducing their support, which eliminates un-

desired edge-singular currents. Finally, the CBFs are reshaped using a (trapezoidal) post-

windowing technique and such that, when superimposed, the resulting synthesized surface

current is continuous across the boundary interfaces between adjacent subdomains. When

the CBFs are generated in this manner, it suffices to retain only a one-cell overlap between

adjacent groups. This scheme allows one to compute the surface current and the mutual

coupling between antennas down to -30 dB level (for a typical 10−2 threshold level on the

singular values of the matrix containing the CBFs).

An array meshing method has been developed for an overlapping Domain Decomposition

Technique (DDT) to optimally exploit the quasi-Toeplitz symmetry of the reduced mo-

ment matrix. Although an overlapping DDT saves unknowns (no junction basis functions

required), the degree of translation symmetry is reduced as one can identify multiple sup-

ports with distinct sets of CBFs. A consistent triangulation and partitioning of the RWGs

of all subdomains (and thus array elements) is required, so that a fully meshed array geom-

etry facilitates a one-to-one mapping of CBFs, each of which can extend beyond the outer

boundaries of an array element. For an equally-spaced singly-polarized antenna array, the

computational complexity was found to scale linearly when the symmetry is exploited. For

a 400 element TSA array, 400 × 400 MoM blocks need to be constructed, but the number

of blocks is reduced to only 1199 (0.7%) by exploiting reciprocity and translation symme-

try. The reduction factor reduces from ∼ 135 down to ∼ 95 for 2-D arrays of electrically

interconnected singly-polarized TSAs.

It has been shown that each entry of the antenna admittance matrix can directly be
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expressed in terms of the reduced matrix and the expansion coefficients for the CBFs.

The pattern computations can be expedited by exploiting the property that many of the

subdomains support the same set of CBFs, so that the respective CBF patterns are identical

as well, apart from a phase shift due to their translated position.

The fill time of the reduced matrix has been shortened by hybridizing CBFM with the

Adaptive Cross Approximation (ACA) algorithm. The iteratively robust ACA algorithm

approximates a rank-deficient (off-diagonal) submatrix by requiring only partial knowledge

of the original submatrix. The ACA does not exploit the oscillatory nature of the kernel

in integral equations and may therefore not be as efficient as e.g. multipole approaches.

However, it is kernel independent and purely algebraic. Results indicate that, when the el-

ement separation distance for singly-polarized TSA arrays becomes less than a wavelength,

the effective rank of the MoM coupling matrix increases rapidly and is approximately pro-

portional to 1/
√

dx for E-plane separations, and to 1/dy for H-plane separations. The

ACA (for a typical threshold of 10−2) is computationally more effective than a straight-

forward matrix-fill approach down to an element separation of 0.1λ0 and 0.2λ0 in the E-

and H-plane, respectively. The ACA algorithm requires the storage of less than 5% of the

full matrix block when the separation distance becomes larger than 0.2λ0. For arrays up

to 20 × 20 TSAs, it is concluded that a combined CBFM–ACA approach approximately

halves the total execution time compared to a straightforward CBFM approach.

To solve arrays of disjoint subarray problems, the CBFM has been used to construct a

reduced moment matrix for only one of the subarrays, and the matrix entries are modified

to account for the mutual coupling with the actively phase-steered surrounding subarrays.

This perturbation approach exploits the periodicity of the phase-steered subarrays by en-

forcing an identical current distribution on every subarray, with a phase factor depending

on the scan angle and position vector of a subarray; it yields the scan impedances of the

antennas of a central subarray, which can be used to evaluate the noise-coupling effects in

receive antennas. This approximation is accurate for infinite arrays of mutually coupled

subarrays, as well as for finite arrays of non-coupled subarrays (isolated subarrays), or for

mutually coupled subarrays where the end effects of bordering subarrays do not disrupt

the impedance characteristics of the subarray under study. Generally, the accuracy of the

approximate method depends upon the scan angle, number of surrounding subarrays, the

electrical distance between the subarrays, the electrical size of a subarray, the type of the

antenna element, and whether the array is at resonance (strong coupling). It has been

shown that the accuracy of the scan reflection coefficients is higher for a broadside scan
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direction for which the end effects are relatively insignificant. The solve time of ∼ 17 min.

is comparable to the ∼ 12 min. required to solve a single isolated subarray problem (9

tiles of 8 × 8 TSAs each), which is about 12 times faster than a direct CBFM approach.

Previously, the state of the art was that a quantitative analysis of wideband TSA arrays was

not feasible for a detailed antenna-feed decompositions with associated models. However,

we have presented a reduced-order model where the strongly coupled tapered slots and

the slotline cavities are represented by electrodynamic field models, whereas the microstrip

lines and stubs, including their microstrip-to-slotline transitions, are represented by quasi-

static field models. The antenna array can be analyzed as a dielectric-free structure if the

effect of the dielectric substrate on its radiation characteristics is negligible. The direct

interaction between antenna feed boards is neglected as the coupling is assumed to occur

only via antenna elements. Even though the analyzed array has a size of only 5λ0 × 5λ0 at

1.5 GHz, the active infinite-array impedance characteristics are comparable for a broadside

scan down to 0.8 GHz. Deviations are mainly caused by edge-truncation effects, which have

an increasing influence for lower frequencies and larger scan angles. The relative difference

between the measured and modeled mutual coupling coefficients is about 20%.

A formula for the beam orthogonality/correlation ρcor has been proposed to indicate how

accurate a radio interferometer can measure the polarization characteristics of the incident

field. The co and cross polarization of the transmitted field vector by a single-polarized

array is not very important; it is the combination of the patterns generated by an x-

and y-oriented antenna which determines the capabilities of the instrument to perform an

adequate polarization discrimination. For a practical 8 × 7 doubly-polarized array, it has

been shown that ρcor can be as large as -14 dB for a D-plane scan (0 ≤ θ0 ≤ 60o), which

is still much lower than if we would consider the co and cross polarization level of the field

vector transmitted by e.g. the x-oriented TSAs only.



Chapter 5

Receiver System Modeling

A numerical and semi-analytical method is developed in this chapter to model the receiver

sensitivity of antenna arrays at system level1. The antenna array, low-noise amplifiers,

weighting devices, and arbitrary beamforming networks are characterized by S parameters

to model the interaction and propagation of signal and noise wave amplitudes between in-

terconnected microwave components. Internal noise and signal generators are represented,

at port level, by a noise-wave correlation matrix and a signal-wave vector, respectively.

The antenna’s external noise is generated by the cosmic microwave background radiation,

and internal noise by ohmic conductor losses. External signal sources are modeled as de-

terministic plane-wave fields. Emphasis is on the noise that emanates from the amplifier

inputs and re-enters the system coherently through the mutually coupled antennas (noise

coupling). Simplified analytical system models are developed which are validated through

the combined electromagnetic-microwave simulation software.

1This chapter is based on a number of papers; the most important are:

[139]: R. Maaskant, E. E. M. Woestenburg, and M. J. Arts, “A generalized method of modeling the sensitivity of array

antennas at system level,” in Proc. 34th European Microwave Conference, Amsterdam, Oct. 2004, pp. 1541-1544.

[85]: R. Maaskant and B. Yang, “A combined electromagnetic and microwave antenna system simulator for radio astronomy,”

in Proc. European Conference on Antennas and Propag. (EuCAP), Nice, France, Nov. 2006, pp. 1-4.

[122]: R. Maaskant and B. Woestenburg, “Applying the active antenna impedance to achieve noise match in receiving array

antennas,” in Proc. IEEE AP-S International Symposium, Honulollu, Hawaii, Jun. 2007, pp. 5889-5892.

[37]: R. Maaskant, D. J. Bekers, M. J. Arts, W. A. van Cappellen, and M. V. Ivashina, “Evaluation of the radiation efficiency

and the noise temperature of low-loss antennas,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1536-1225, Jan. 2009.

[140]: M. V. Ivashina, R. Maaskant, and B. Woestenburg, “Equivalent system representation to model the beam sensitivity

of receiving antenna arrays,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 733-737, Jan. 2008.
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5.1 Organization of the Chapter

Throughout this chapter, we will assume that the various RF components of an antenna

array receiving system are interconnected via single-mode transmission lines. The total

field along each transmission line is the sum of a forward and backward traveling wave

(transmission-line mode). The interactions between the modal wave amplitudes at the

ports of a device are described by scattering parameters, or S parameters. Section 5.2

describes how a scattering matrix relates the incident modal voltage amplitudes to the

scattered ones, both for deterministic and stochastic signals. The transmission lines are

assumed to have zero length, or are modeled as separate S-parameter matrices otherwise.

Accordingly, the “incident/scattered modal voltage amplitudes” are simply called “inci-

dent/scattered waves”, as in most microwave books.

Section 5.3 describes how the signal and noise waves propagate through a receiver system

in case it is modeled as a cascaded series of S-parameter matrices. For this purpose, the

correlation between noise-wave amplitudes is accounted for by the elements of a noise-

wave correlation matrix, and the antenna array on receive is represented by a Thévenin

network (cf. Section 2.5) whose internal voltage generators (open-circuit voltages) are

transformed to signal-wave generators as this is in accordance with the S-parameter de-

scription. The noise-wave characterization of active and passive receiver components is

explained in Section 5.4; this includes the antenna array in conjunction with an exter-

nal nonuniform brightness temperature distribution of the sky. Numerical results for a

practical noise measurement setup are described in Section 5.4.5.

The noise coupling phenomenon is explained in Section 5.5, where it is shown that min-

imum receiver noise can be achieved by noise matching each of the receiver channels to

the active scan impedance of the corresponding antenna element. Accordingly, Section 5.6

describes how mutually coupled receiver channels can be “noise decoupled” and be repre-

sented by an equivalent single-channel receiver. Formulas for the receiver sensitivity are

derived and expressed in terms of the coupling, mismatch, and radiation efficiency, after

which the single-channel receiver model is validated by numerical results. Since the ra-

diation efficiency plays a major role in the formula for the system sensitivity, it must be

determined accurately and is therefore considered separately in Section 5.7. Various exam-

ples demonstrate that the numerically computed radiation efficiency does not exceed 100%

for low-loss antennas, as opposed to a number of commercially available software tools.
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5.2 Signal and Noise Wave Representation

Because we consider weak signals, it is assumed that the nonlinear network components can

be linearized, which allows us to work in the frequency domain and to use an S-parameter

matrix formulation. Consider the equivalent representation of a noisy two port in Fig. 5.1;

it is modeled as a noiseless two port in conjunction with the two external noise-wave

sources c1 and c2. Likewise, the internal signal generators are represented by the external

signal-wave amplitudes g1 and g2. In the presence of signal and/or noise sources, incident

Noiseless
Two portI1

+

−
V1

+

−
V2

a1

b1

I2

S
a2

b2

c1 c2
g1 g2

Figure 5.1: Signal and noise-wave representation for a two port.

and reflected waves with complex-valued amplitudes {an} and {bn}, for n ∈ {1, 2}, start

propagating; these complex-valued power wave amplitudes (or power waves for short) are

defined in [141] as

an =
Vn + Zref

0n In

2
√

Re{Zref
0n}

and bn =
Vn −

(
Zref

0n

)∗
In

2
√

Re{Zref
0n}

(for Re{Zref
0n} > 0) (5.1)

where Vn and In denote the voltage and current amplitude at the nth port, respectively (the

arrows in Fig. 5.1 define the positive direction), and where Zref
0n denotes the corresponding

complex-valued normalization impedance for this port. The asterisk denotes the complex

conjugate. The associated inverse relations are [141]

Vn =

(
Zref

0n

)∗
an + Zref

0n bn√
Re{Zref

0n}
and In =

an − bn√
Re{Zref

0n}
. (5.2)

By stacking the power waves in the respective column vectors a = [a1, a2]
T and b = [b1, b2]

T ,

and by introducing the signal- and noise-wave vectors g = [g1, g2]
T and c = [c1, c2]

T ,

respectively, the signal- and noise-wave amplitudes at the terminals of a linear two-port
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device are related via the scattering matrix S as: b = Sa + g + c, that is,

(
b1

b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
+

(
g1

g2

)
+

(
c1

c2

)
(5.3)

where the noise-wave vector c has been temporarily treated as a deterministic signal, and

where a is the incoming, b is the outgoing, and g is the signal-wave vector.

With the aid of the above definitions, the total accepted (input) power Pacc by an N -port

device is conveniently computed from the incident and scattered waves as

Pacc =
N∑

n=1

Re{VnI∗
n} = Re{IHV} =

N∑

n=1

(
|an|2 − |bn|2

)
= aHa − bHb (5.4)

where the amplitudes are assumed to be RMS values. The matrix S depends on the

chosen normalization impedances {Zref
0n}. Choosing a new set of normalization impedances{(

Zref
0n

)′}
, leads to the renormalized scattering matrix S′, according to [142, p. 22]

S′ = Q−1(S − UH)(I − US)−1QH (5.5)

where U is a diagonal matrix with the nth element un on the diagonal equal to

un =

(
Zref

0n

)′ − Zref
0n(

Zref
0n

)′
+
(
Zref

0n

)∗ . (5.6)

Furthermore, the nth diagonal element qn of the diagonal matrix Q is given by

qn =
1 − u∗

n

|1 − un|
√
|1 − unu∗

n|. (5.7)

As opposed to the deterministic signal-wave vector g, the elements of the noise-wave vec-

tor c are stochastic and may be mutually correlated. Henceforth, we shall assume that

the statistical noise sources are (wide-sense) stationary random processes which exhibit

ergodicity. For such processes, the Wiener-Khintchine theorem states that the self- and

cross-power spectral densities are defined as the Fourier transform of their auto- and cross-

correlation functions [143]. Furthermore, the statistical properties can be deduced from

a single, though sufficiently long sample (realization) of the process, and ensemble aver-

ages may be replaced by time averages. The latter is an advantageous property since the

practical implementation of time averages is straightforward.
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We consider the temporal noise voltages v1(t) and v2(t), and compute the cross-correlation

function between these ergodic processes as [144,145]

Rv1v2(τ) = E {v1(t)v2(t + τ)} = lim
T→∞

1

T

T∫

0

v1(t)v2(t + τ) dt = v1(t)v2(t + τ) (5.8)

where E{·} denotes the statistical expectation, and the overbar the time average. Next,

let us record the stochastic voltages v1(t) and v2(t) for the time interval 0 ≤ t ≤ T and

continue these samples periodically. The corresponding Fourier series representations are

v1(t) =
∞∑

n=−∞

ane
jωnt and v2(t) =

∞∑

n=−∞

bnejωnt (5.9)

where ωn = 2πn/T , and where the complex-valued amplitudes {an, bn} are given by

an =
1

T

T∫

0

v1(t)e
−jωnt dt and bn =

1

T

T∫

0

v2(t)e
−jωnt dt. (5.10)

In the limiting case, for T → ∞, the statistical expectation E{anb
∗
n} of the mutual power

anb
∗
n defines the cross-power spectral-density function Sv1v2 according to [146, p. 12]

Sv1v2(ω) = lim
T→∞

Tanb∗n [W/Hz]. (5.11)

By substituting (5.10) in (5.11), introducing new integration variables, and adopting dif-

ferent integration limits, the Wiener-Khintchine theorem is derived as [146, pp. 169–170]:

Sv1v2(ω) = lim
T→∞

Tanb∗n =

∞∫

−∞

v1(t)v2(t + τ)ejωτ dτ (5.12)

where Sv1v2 is the Fourier transform of the cross-correlation function Rv1v2 in (5.8). A simi-

lar derivation of the Wiener-Khintchine theorem is given in [145, pp. 406–409]. From (5.11),

it is observed that, within a narrow frequency bandwidth Δω centered around ω0, one can

write Sv1v2(ω0) = anb∗n/Δω.

The noise waves c1 and c2 that emanate from the two port in Fig. 5.1 are fully characterized

in terms of their spectral noise wave powers |c1|2 and |c2|2 [W/Hz], respectively, together

with their mutual correlations c1c∗2 = c2c∗1, which are complex-valued in order to contain

the phase information. The mutual and self terms can be physically measured by a com-

plex correlator [147], and are conveniently represented in terms of a spectral noise-wave
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correlation matrix C [143], that is, for a general N port device,

C = ccH =

⎛
⎜⎜⎜⎜⎝

|c1|2 c1c∗2 · · · c1c∗N
c2c∗1 |c2|2 · · · c2c∗N

...
...

. . .
...

cNc∗1 cNc∗2 · · · |cN |2

⎞
⎟⎟⎟⎟⎠

(5.13)

where the superscript H denotes the Hermitian complex conjugate for vectors and matrices

and c = [c1, c2, . . . , cN ]T . The matrix C is a Hermitian matrix.

5.3 An Antenna Receiver Model at RF System Level

The various RF system blocks in an antenna array receiving system will be characterized

in terms of scattering and noise-wave correlation matrices. A typical receiving system

modeled by S-matrices is shown in Fig. 5.2. The N -port antenna array is described by

an S-matrix, called Sant. This matrix can be obtained from measurements, simulations

or analytical models. The scattering matrix depends on the antenna array geometry, a

certain characteristic impedance, and the frequency under consideration. The Low Noise

Amplifiers (LNAs) are described by a 2N -port scattering matrix, called SLNA. The output

signals of the LNAs are fed to a beamformer network, described by SBF. The beamformer

network combines the output signals of the LNAs to create M beams at the final output.

The amplitudes of the waves that flow to and from the RF system blocks are denoted by

a and b vector waves, respectively.

The objective is to obtain a general expression for the signal-to-noise ratio of the antenna

system in its entirety, i.e., to compute the noise and signal power of an element of the

output vector b to measure the sensitivity of a certain beam. To this end, we will first

perform a noise analysis, and subsequently a signal analysis.

5.3.1 Noise Wave Propagation in the Receiving System

For the system as shown in Fig. 5.2, we assume that only the antenna array and LNAs

are noisy. Typically, the noise that is generated after the first stage of amplification will

contribute only moderately to the total output noise power whenever the amplifier gains
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b a = 0
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M beams
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Figure 5.2: An antenna array receiving system described by S-matrices.

are sufficiently high. The second-stage noise contribution will therefore not be taken into

consideration.

If the N -port antenna array is lossy, or the antenna array is receiving noise, a noise wave

vector cA is generated and is added to the reflected output signal SantaA of the antenna.

The linear relation between aA, bA and Sant and the noise wave vector cA is given by

bA = SantaA + cA. (5.14)

We assume a small-signal model around the operating point for the individual LNAs, so

that we can work with linear equations. Although not required, we also assume that the

direct coupling between the LNAs is negligible, while the LNAs may still be different from

each other. We introduce noise waves that emanate from the input and output of the LNAs

and their spectral voltage amplitudes are contained in the vectors cI and cE, respectively.

Then, we write
(

bI

bE

)
=

(
SLNA

11 SLNA
12

SLNA
21 SLNA

22

)(
aI

aE

)
+

(
cI

cE

)
(5.15)

where the amplitude vectors (complex quantities) are related via the N × N diagonal

matrices SLNA
11 , SLNA

12 , SLNA
21 and SLNA

22 . Obviously, the elements of the noise wave vectors
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cA, cE, and cI are mutually correlated. Later on, these correlations will be expressed in

terms of the noise wave correlation matrix C.

Next, we describe the electrical connections between the LNAs and N antenna outputs by2

aI = bA and aA = bI . (5.16)

Finally, every LNA output signal is complex weighted before the final addition is carried

out to yield a single beamformer output. We assume that the beamformer is able to create

M beams, hence, we define
(

bB

b

)
=

(
SBF

11 SBF
12

SBF
21 SBF

22

)(
aB

a

)
, (5.17)

where SBF
11 is a N × N diagonal matrix, which contains the complex reflection coefficients

at the input of the beamformer if no coupling between the inputs exists. SBF
12 is a M × N

matrix, holding the complex transmission coefficients from output to input. SBF
21 is a N×M

matrix; each row of the matrix holds a complex steering vector (phased arrays) or weighting

vector (focal plane arrays) to create a particular beam. SBF
22 is a M × M diagonal matrix,

holding the complex reflection coefficients at the output of the beamformer if no coupling

between the outputs exists. In conclusion, we observe that SBF is a (N + M) × (N + M)

matrix.

The connections between the LNAs and the beamformer are expressed in terms of the

following relations

aB = bE and aE = bB. (5.18)

In summary, we developed the following linear set of equations:

bA = SantaA + cA (5.19a)

bI = SLNA
11 aI + SLNA

12 aE + cI (5.19b)

bE = SLNA
21 aI + SLNA

22 aE + cE (5.19c)

aI = bA (5.19d)

aA = bI (5.19e)

bB = SBF
11 aB + SBF

12 a (5.19f)

b = SBF
21 aB + SBF

22 a (5.19g)

aB = bE (5.19h)

aE = bB. (5.19i)

2One should use [142, Eq. (3.65)] for imperfect connections, i.e., for unequal reference impedances.
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In order to compute the total noise-wave vector at the final output of the system, as a

consequence of the noise sources cA, cI and cE, we first express the output signal bE as a

function of cA, cI , and cE. From (5.19d), (5.19e) and (5.19a), it follows that

aI = SantbI + cA. (5.20)

Upon combining (5.20) and (5.19b), and by isolating bI , we find that

bI =
(
I − SLNA

11 Sant
)−1 (

SLNA
11 cA + cI + SLNA

12 aE

)
(5.21)

where I is the identity matrix. Now, it is possible to write bE as a function of cA, cI and

cE. To achieve this, we substitute (5.21) in (5.20) and (5.19c), so that the total noise

coupling vector at the output of the LNAs is given by

bE = SLNA
21 SantbI + cE + SLNA

22 aE + SLNA
21 cA

= cE + SLNA
21 Sant

(
I − SLNA

11 Sant
)−1

cI

+ SLNA
21

(
I + Sant

(
I − SLNA

11 Sant
)−1

SLNA
11

)
cA

+
(
SLNA

22 + SLNA
21 Sant

(
I − SLNA

11 Sant
)−1

SLNA
12

)
aE.

(5.22)

The physical interpretation of Eq. (5.22) is as follows. Suppose that the LNAs are matched

at the output (aE = 0) and that the LNAs are identical (SLNA
11 = SLNA

11 I). We then find

that

bE = cE + SLNA
21 cA + SLNA

21 Sant
(
I − SLNA

11 Sant
)−1 (

cI + SLNA
11 cA

)
(5.23)

where SLNA
21 Sant

(
I − SLNA

11 Sant
)−1

cI is the noise contribution at the LNA outputs; this

term describes how the noise waves that emanate from the LNA inputs re-enter the system

through the mutually coupled antenna elements. Note that this simplified result has also

been reported by other authors [148]. With the aid of the geometric series expansion

(Neumann expansion) (1 − x)−1 =
∑∞

n=0 xn (for |x| < 1), one can write that

SLNA
21 Sant

(
I − SLNA

11 Sant
)−1

cI = SLNA
21 Sant

∞∑

n=0

(
SLNA

11 Sant
)n

cI

= SLNA
21 SantcI + SLNA

21 SantSLNA
11 SantcI + . . . (5.24)

which converges if
(
SLNA

11 Sant
)∞

= 0, or, equivalently, if the magnitudes of all the eigenval-

ues of SLNA
11 Sant are smaller than unity. The first-order term represents the noise wave cI

that reflects from the antenna and is then amplified by SLNA
21 Sant (see also Fig. 5.2), whereas
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the second contribution represents the noise reflected wave from the antenna which, in turn,

reflects at the LNA inputs and antenna after which it is amplified by the amplifiers, etc.

The vector quantity SLNA
21 cA in (5.23) is the output noise due to a direct transfer of the

antenna noise, while SLNA
21 Sant

(
I − SLNA

11 Sant
)−1

SLNA
11 cA describes the propagation of the

antenna noise waves to the output via the mutual coupling between antenna elements and

reflection at the LNA inputs.

We can express (5.22) in a short-hand form, i.e.

bE = cE + AcI + BcA + CaE (5.25)

in which the transfer matrices are given as

A = SLNA
21 Sant

(
I − SLNA

11 Sant
)−1

(5.26)

B = SLNA
21

(
I + Sant

(
I − SLNA

11 Sant
)−1

SLNA
11

)
(5.27)

C = SLNA
22 + SLNA

21 Sant
(
I − SLNA

11 Sant
)−1

SLNA
12 = SLNA

22 + ASLNA
12 . (5.28)

From (5.19i), (5.19f) and (5.19h), it follows that

aE = bB = SBF
11 aB + SBF

12 a = SBF
11 bE + SBF

12 a (5.29)

so that, together with (5.25),

bE =
(
I − CSBF

11

)−1 (
cE + AcI + BcA + CSBF

12 a
)
. (5.30)

As a result, the total output noise vector b for M beams is obtained after substitution

of (5.30) and (5.19h) in (5.19g), i.e.,

b = SBF
22 a + SBF

21

(
I − CSBF

11

)−1 (
cE + AcI + BcA + CSBF

12 a
)
. (5.31)

5.3.2 The Output Noise Powers and Their Correlations

We expressed the M -element output-wave vector b = [b1, b2, . . . , bM ]T in terms of the noise

sources cA, cI , and cE. For a real-valued characteristic impedance Zref
0 , the relationship

between b and the corresponding transmission-line wave voltages contained in V follows

from (5.2), i.e.,

b =
V√
Zref

0

− a =
V−

√
Zref

0

∣∣∣∣∣
a=0

(5.32)
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where V = V− is the complex-valued spectral RMS amplitude [VHz−1/2] of the reflected

voltage wave in case the beamformer output is reflectionless. Accordingly, for stochastic

waves amplitudes, and with reference to Eq. (5.13), it follows that the total spectral noise

powers at the beamformer output can be arranged in an M × M noise-wave correlation

matrix Co, i.e.,

Co = bbH =

⎛
⎜⎜⎜⎜⎝

|b1|2 b1b∗2 · · · b1b∗M
b2b∗1 |b2|2 · · · b2b∗M

...
...

. . .
...

bMb∗1 bMb∗2 · · · |bM |2

⎞
⎟⎟⎟⎟⎠

. (5.33)

The diagonal of Co contains the output noise powers for each of the beams, while the

off-diagonal terms indicate their mutual correlations. The matrix Co can be expressed in

terms of the self- and mutual-correlation matrices concerning the noise waves cA, cI and

cE. The relationship between b and these noise waves is given by Eq. (5.31) through a

transfer matrix T, i.e., for a = 0 we have

b = Tc (5.34)

with

T = SBF
21

(
I − CSBF

11

)−1
[I |A |B] and c = [cT

E | cT
I | cT

A]T , (5.35)

where | denotes matrix augmentation (column-wise concatenation).

The transfer matrix T represents a chain of scattering matrices and describes how the noise

waves c propagate through the beamforming network towards the beamformer output b.

Equation (5.34) can be substituted in (5.33) to obtain the noise-wave correlation matrix

Co, i.e.,

Co = bbH = Tc (Tc)H = Tc cHTH (5.36)

where the last equality is proven in [143]. The term c cH is the correlation matrix of the

antenna noise waves c. If this matrix is denoted by C, Eq. (5.36) is rewritten as

Co = TCTH (5.37)

which shows that the noise-wave correlation matrix C is transformed to the correlation

matrix Co by using the transfer matrix T. Thus, the total spectral noise power at every
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beamformer output, i.e., |b1|2, |b2|2, . . ., |bM |2 is written in terms of the noise-wave powers

|c1|2, |c2|2, . . ., |cN |2 and the correlations between the relevant noise-wave amplitudes.

The next step is to express the elements of the noise-wave correlation matrix C in terms of

the sources that produce these noise waves. To this end, we need to further specify/model

the LNAs and the antenna array in terms of their internal noise sources; this will be

detailed in Section 5.4, where e.g. the antenna noise-wave vector cA is expressed in terms

of a nonuniform equivalent noise-temperature distribution of the sky.

5.3.3 Determination of the Total Signal Output Powers

We expressed the total noise at M outputs of a receiving system in terms of noise sources

that emanate from the antenna ports and LNAs. Besides these stochastic signals, deter-

ministic signals can be considered. For instance, if a plane wave is incident on the antenna

array with a deterministic amplitude and phase defined at a certain reference point in

space, the total signal output power after beamforming can be computed and, hence, a

signal-to-noise ratio can be determined.

The output signal-wave vector at the antenna ports, which arises due to this incident plane

wave, will be denoted by g (as in Fig. 5.1 for internal signal generators). This signal wave

propagates towards the M beamformer outputs in a similar way as the antenna noise-wave

vector cA is doing. Therefore, we define that cA = g and cI = cE = 0. Then, we simply

make use of Eq. (5.31), so that the output wave vector b is given by

b = SBF
22 a + SBF

21

(
I − CSBF

11

)−1 (
Bg + CSBF

12 a
)
. (5.38)

The antenna array signal g is determined by the antenna properties and is a quantity that

can be measured by terminating the array elements with the characteristic impedance.

Alternatively, it is possible to find a relationship between the antenna-array signal g and

the open-port voltage vector Voc. Open-port voltages are convenient, because relationships

exist that relate the open-port voltages to the electromagnetic field that is illuminating the

array (cf. Section 2.5). The relationship between g and Voc can be derived from Fig. 5.3,

where the antenna is characterized by an impedance matrix Zant.

With the aid of Kirchhoff’s voltage law, it is observed that

Voc = V + ZantIA. (5.39)
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Figure 5.3: A circuit representation of a loaded receiving antenna array.

For real-valued and equal normalization impedances, it follows from (5.2) that IA =

(aI − bI) /
√

Zref
0 and V =

√
Zref

0 (aI + bI), so that

Voc =
√

Zref
0 (aI + bI) + Zant 1√

Zref
0

(aI − bI) (5.40)

which in turn allows us to isolate aI . This yields

aI =
(
Zant + Zref

0

)−1 (
Zant − Zref

0

)
bI +

(
Zant + Zref

0

)−1
√

Zref
0 Voc (5.41a)

= SantbI + g (5.41b)

where Zref
0 = Zref

0 I is a diagonal matrix, holding the characteristic impedances of the

antenna-output transmission lines. Furthermore, because aI = bA and bI = aA [cf.

Eqs. (5.19d) and (5.19e)], we can rewrite (5.41b) as bA = SantaA + g, so that,

g =
(
Zant + Zref

0

)−1
√

Zref
0 Voc. (5.42)

This demonstrates that the signal-wave vector g is related to the open-port voltages Voc as

given by Eq. (5.42). As one can see, the antenna signal g is simply added to the reflected

signal from the antenna and is independent on the load ZL; g is “driving” the beamformer.

In conclusion, once the field incident on the antenna array is known, the open-port voltages

can be determined through EM-simulations after which the antenna array signal g can be

computed from Eq. (5.42). Alternatively, it is possible to obtain the open-port voltages via

the element patterns of the array antennas by using relationships obtained by reciprocity

analysis as described in Section 2.5.
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5.4 Noise Wave Characterization of the Receiver Com-

ponents

Noise-wave correlation matrices for active and passive devices can be expressed in terms of

their internal sources, or be re-expressed in terms of more commonly used noise parameters;

most of these relations have been published in the literature and will be summarized here

for completeness.

5.4.1 The Antenna Array Receive Voltages due to External Noise

Sources

A Partially Polarized Galactic Source Distribution

Thus far, only monochromatic plane-wave fields have been considered, each of which has

a deterministic amplitude and state of polarization. In particular, we considered in Sec-

tion 2.5 the completely polarized plane wave Ei(r) = E0e
j(k0·r) to be incident on the

antenna array from the direction r̂i. Then, the mth open-circuit port voltage on receive is

determined through the projection [cf. Eq. (2.54)]

V oc
m = (jωμ0)

−1E0 · eT
m(r̂i) (5.43)

where E0 defines the state of polarization of the incident electric field at the origin of

the coordinate system, and eT
m = 4π exp (jk0)E

T
m is the mth normalized element far-field

pattern on transmit with the distance r taken equal to unity in the far-field expression.

This pattern arises if the mth element is excited by a current source of unit amplitude,

while all other elements are open-circuited.

In radio astronomy, however, one observes distributed sources of a certain spatial extent. In

the following, we let E0(θ, φ) dΩ be the total amplitude polarization vector3 from sources

which subtend a solid angle dΩ at the antenna in the direction defined by θ and φ. Thence,

the mth open-circuit port voltage on receive is computed as [80, p. 115]

V oc
m =

1

jωμ0

∫

S∞

∫
E0(Ω) · eT

m(Ω) dΩ (5.44)

3Note that the unit of E0 has changed to Volt per meter per steradian.
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where Ω is a short-hand notation for the (θ, φ) direction. Next, the mutual product

V oc
m (V oc

n )∗ is taken between the open-circuit output voltage of antennas m and n, i.e.,

V oc
m (V oc

n )∗ =
1

ω2μ2
0

∫

S∞

∫ ∫

S∞

∫ [
E0(Ω1) · eT

m(Ω1)
] [

E0(Ω2) · eT
m(Ω2)

]∗
dΩ1 dΩ2. (5.45)

The field vectors can be expressed in terms of spherical coordinates as E0(Ω) = Eθ(Ω)θ̂ +

Eφ(Ω)φ̂ and eT (Ω) = eθ(Ω)θ̂+gφ(Ω)φ̂, where θ̂ and φ̂ are the unit vectors of the spherical

coordinate system. Then, Eq. (5.45) is written as

V oc
m (V oc

n )∗ =
1

ω2μ2
0

∫

S∞

∫ ∫

S∞

∫
[Eθ(Ω1)em,θ(Ω1) + Eφ(Ω1)em,φ(Ω1)]

[
E∗

θ (Ω2)e
∗
n,θ(Ω2) + E∗

φ(Ω2)e
∗
n,φ(Ω2)

]
dΩ1 dΩ2. (5.46)

Eq. (5.46) holds for completely polarized waves, whereas, in general, partially polarized

waves are emitted by cosmic sources within a narrow frequency band. The exact polar-

ization state E0 can only be determined in a statistical sense. As in Section 5.2, we are

interested in the quantity E {V oc
m (V oc

n )∗} = V oc
m (V oc

n )∗ within a narrow frequency sub-band,

where E{·} denotes the statistical expectation, and the overbar time average. Applying

this time averaging on (5.46), and interchanging the order of time averaging and integration

over Ω1 and Ω2, changes (5.46) into

V oc
m (V oc

n )∗ =
1

ω2μ2
0

∫

S∞

∫ ∫

S∞

∫
tr
{
Γ(1)Γ(2)

}
dΩ1 dΩ2 (5.47)

where the tr{·} operator takes the trace of the resultant matrix multiplication (sum of

diagonal terms), and where the polarization coherence matrix Γ(1) of the incident field is

given as [80, p. 115]

Γ(1)(Ω1, Ω2) =

(
Eθ(Ω1)E∗

θ (Ω2) Eθ(Ω1)E∗
φ(Ω2)

Eφ(Ω1)E∗
θ (Ω2) Eφ(Ω1)E∗

φ(Ω2)

)
(5.48)

and the mutual coherence matrix Γ(2) of the antenna pair as

Γ(2)(Ω1, Ω2) =

(
em,θ(Ω1)e

∗
n,θ(Ω2) em,θ(Ω1)e

∗
n,φ(Ω2)

em,φ(Ω1)e
∗
n,θ(Ω2) em,φ(Ω1)e

∗
n,φ(Ω2)

)
. (5.49)

In most cases of practical interest there is no correlation between the radiation incident

from the two directions Ω1 and Ω2, except when Ω1 = Ω2 = Ω. Under these condi-

tions, the mutual coherence matrix Γ(1) reduces to the coherence matrix J(1). Substituting
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Γ(1)(Ω1, Ω2) = J(1)(Ω)δ(Ω1 − Ω2) in (5.47), and making use of the sifting property of the

delta distribution function, yields [80, p. 116]

V oc
m (V oc

n )∗ =
1

ω2μ2
0

∫

S∞

∫
tr
{
J(1)J(2)

}
dΩ (5.50)

where the coherence matrix of the incident electric field E0 is given as

J(1)(Ω) =

(
|Eθ(Ω)|2 Eθ(Ω)E∗

φ(Ω)

Eφ(Ω)E∗
θ (Ω) |Eφ(Ω)|2

)
(5.51)

and, due to the sifting property, the mutual coherence matrix of the antenna reduces to

J(2)(Ω) =

(
em,θ(Ω)e∗n,θ(Ω) em,θ(Ω)e∗n,φ(Ω)

em,φ(Ω)e∗n,θ(Ω) em,φ(Ω)e∗n,φ(Ω)

)
. (5.52)

In the above analysis we assumed that the averaging is performed over an infinitely long

period of time. In practice, however, the integration time is limited and the accuracy of

the measurement is inversely proportional to the square root of the integration time [3, p.

3-44].

Once the polarization characteristics of the incident field are known, Eq. (5.50) can be used

to construct the voltage correlation matrix

V = Voc (Voc)H =

⎛
⎜⎜⎜⎜⎝

|V oc
1 |2 V oc

1 (V oc
2 )∗ · · · V1 (V oc

M )∗

V2 (V oc
1 )∗ |V oc

2 |2 · · · V oc
2 (V oc

M )∗

...
...

. . .
...

V oc
M (V oc

1 )∗ V oc
M (V oc

2 )∗ · · · |V oc
M |2

⎞
⎟⎟⎟⎟⎠

(5.53)

where Voc = [V oc
1 , . . . , V oc

M ]T is the vector holding the complex-valued voltage amplitudes

on receive.

In practical surveys, one measures V (usually at the output of an amplifying circuit),

with the intention to recover the polarization information of the incident field (inverse

problem). Consider an x- and y-oriented element with corresponding far-field patterns

eco(Ω) and ecross(Ω), respectively. Then, for a deterministic polarization vector E0 of the

incident field, the deterministic receive voltage vector Voc = [V oc
x , V oc

y ]T can be computed

through a matrix-vector product as Voc = J0E0, where J0 = (jωμ0)
−1[eco(Ω) | ecross(Ω)]T

is the column-augmented E-Jones matrix of the mutual orthogonally-oriented antenna
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pair [149]. With the above definitions, the 2 × 2 voltage-correlation matrix V can be

determined directly, i.e.,

V = Voc (Voc)H =

∫

S∞

∫
J0J

(2)JH
0 dΩ (5.54)

where we used that

Voc (Voc)H = J0E0 (J0E0)
H = J0E0E

H
0 JH

0 = J0J
(2)JH

0 . (5.55)

In beamformed arrays, there are many x- and y-oriented elements, which can be combined

into the two beams eco(Ω, Ω0) and ecross(Ω, Ω0), respectively. Here, Ω0 denotes the scan

direction of the beams. For large arrays, the beam width is small, so that the integral

in (5.54) does not need to be carried out over the entire galactic plane. To first order,

one therefore has that V(Ω0) = J0(Ω0)J
(2)(Ω0)J

H
0 (Ω0) for a certain scan angle Ω0. In

order to recover the polarization information of the source, i.e., J(2)(Ω0), it is crucial to

know the beam patterns of the array, i.e., the E-Jones matrix J0(Ω0). Basis functions

for the patterns are employed to model the matrix J0(Ω0), whose unknown parameters

are determined by measuring a number of known sources. Once the model parameters

are determined (calibration), the models are used to predict the beam behavior in other

directions, and because V(Ω0) is measured, while J0(Ω0) is modeled, the polarization infor-

mation J(2)(Ω0) can be recovered through inversion, provided that the condition number

of J0 = (jωμ0)
−1[eco(Ω) | ecross(Ω)]T is sufficiently small. To measure the degree of inde-

pendency of the columns of J0, we introduced a cross-correlation term in (4.50) to quantify

the beam orthogonality between eco and ecross.

A Non-Uniform Brightness Temperature Distribution

We will consider randomly polarized waves, for which there is zero correlation between

the electrical field components θ and φ of the incident field. Then, the coherence matrix,

Eq. (5.51), of the incident radiation (noise field), reduces to

J(1)(Ω) =

(
|Eθ(Ω)|2 0

0 |Eφ(Ω)|2

)
. (5.56)

Consequently, Eq. (5.50) simplifies to

V oc
m (V oc

n )∗ =
1

ω2μ2
0

∫

S∞

∫ {
|Eθ(Ω)|2em,θ(Ω)e∗n,θ(Ω) + |Eφ(Ω)|2em,φ(Ω)e∗n,φ(Ω)

}
dΩ. (5.57)
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Because we are dealing with randomly polarized incident fields, the power is equally dis-

tributed in both polarizations, so that |Eθ(Ω)|2 = |Eφ(Ω)|2 = P (Ω)/2, where P (Ω) is the

total expected incident noise power coming from the direction Ω. Accordingly, (5.57) is

written as

V oc
m (V oc

n )∗ =
1

2ω2μ2
0

∫

S∞

∫
P (Ω)

[
em,θ(Ω)e∗n,θ(Ω) + em,φ(Ω)e∗n,φ(Ω)

]
dΩ

=
1

2ω2μ2
0

∫

S∞

∫
P (Ω) [em(Ω) · e∗

n(Ω)] dΩ (5.58)

which is a similar equation as presented in [150], although not derived therein.

Next, we seek an expression for P (Ω). To this end, the incident noise power is related

to the spatial noise-temperature distribution of the sky. The power per unit area and

per unit solid angle, which is incident on the element within a solid angle dΩ, is given

by E {E0 · E∗
0} /2Z0 in watts per square meter per steradian, where Z0 is the free-space

impedance. This incident power has a spectral width df . The incident power per unit

area and per unit solid angle in a unit frequency interval is called the brightness B of the

noise source in the sky [80, p. 117]. Hence,

B(θ, φ) df =
E {E0 · E∗

0}
2Z0

. (5.59)

The randomly polarized space waves are assumed to be radiated by a black body (cosmic

background radiation). The intensity of the black-body radiation is described over fre-

quency by Plancks’ law. However, at microwave frequencies, the Rayleigh-Jeans approx-

imation of Plancks’ law can be used which, for a single-sided spectrum, reads (cf. [3, p.

3-40], or [151, p. 4.14])

B(θ, φ) =
2kBf 2

c2
0

Tsky(θ, φ) [W/m2 per steradian and per Hertz] (5.60)

where kB = 1.380 × 10−23 J/K (Boltzmann’s constant), c0 is the speed of light, f the

frequency and Tsky the equivalent noise temperature of the sky. An expression for Tsky can

be found in [152]. Combining (5.59) and (5.60), yields

E {E0 · E∗
0} = P (θ, φ) = 4kBTsky(θ, φ)Z0

f 2

c2
0

df. (5.61)

The substitution of (5.61) in (5.58) gives us the antenna open-port voltage-correlation
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elements, i.e.,

V oc
m (V oc

n )∗ =
2kBZ0f

2 df

ω2μ2
0c

2
0

∫

S∞

∫
Tsky(θ, φ) [em(θ, φ) · e∗

n(θ, φ)] sin θ dθ dφ

=
kB df

2π2Z0

∫

S∞

∫
Tsky(θ, φ) [em(θ, φ) · e∗

n(θ, φ)] sin θ dθ dφ. (5.62)

From (5.62), the elements of the voltage correlation matrix V in (5.53) can be readily

computed. The above voltage-correlation matrix for an antenna array is a function of

the element patterns and the spatial temperature distribution of the sky. To transform

this correlation matrix to the antenna noise wave correlation matrix CA, the following

transformation is used:

CA = LVLH (5.63)

where [cf. Eq. (5.42)]

L =
√

Zref
0

(
Zant + Zref

0 I
)−1

(5.64)

and where Zant is the impedance matrix of the antenna and Zref
0 is a real-valued normal-

ization constant. Eqs. (5.62)–(5.64) define the antenna-noise wave correlation matrix CA,

which is needed for determining the overall noise-wave correlation matrix of the receiving

system.

5.4.2 Active Components

For active two-port devices, it is possible to express the entries of the noise-wave corre-

lation matrix in terms of the more commonly used noise parameters: the minimum noise

temperature Tmin, the optimum noise reflection coefficient Γopt, and the equivalent noise

resistance Rn (see e.g. [153]). Then,

|c1|2 = kTmin(|s11|2 − 1) +
kT |1 − s11Γopt|2

|1 + Γopt|2
, (5.65a)

|c2|2 = |s21|2
(

kTmin +
kT |Γopt|2
|1 + Γopt|2

)
, (5.65b)

c1c∗2 =
−s∗21Γ

∗
optkT

|1 + Γopt|2
+

s11

s21

|c2|2, (5.65c)
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where kT is the normalized temperature-energy given by

kT =
4kBT0Rn

Zref
0

. (5.66)

The normalization impedance is denoted by Zref
0 , kB is Boltzmann’s constant and T0 (290 K)

is the reference temperature.

5.4.3 Passive Components

The spectral noise-wave correlation matrix for passive linear microwave devices, having a

uniform temperature Ta, is computed by Bosma’s theorem as [154]

C = kBTa

[
I − SSH

]
, (5.67)

where S is the scattering matrix of the passive device and I is the identity matrix.

5.4.4 Linear Connection Matrix Theory

Once the scattering and noise-wave correlation matrices are defined for all microwave com-

ponents, and when the incident source field is specified, the overall receiver sensitivity can

be computed with the aid of the analytical formulas that have been developed in Section 5.3

(based on [139]). Alternatively, one could utilize the connection matrix theory as described

in [142], which is a numerical approach. Then, the scattering matrix S of the total circuit

is partitioned into submatrices associated with the internal and external ports, i.e.,
(

be

bi

)
=

(
See Sei

Sie Sii

)(
ae

ai

)
+

(
ce

ci

)
, (5.68)

where be and bi are the external and internal outgoing circuit waves, and ce and ci are

the external and internal noise (or signal) waves, respectively. The connections of pairs

of internal ports are imposed by bi = Γiai, where Γi is the connection matrix. It can

be shown that, when the receiver outputs are terminated characteristically (ae = 0), the

overall outgoing wave vector be can be computed as

be =
[
I|Sei(Γi − Sii)

−1
]
(

ce

ci

)
= T

(
ce

ci

)
, (5.69)
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where [A|B] denotes a compound matrix, which is formed by augmenting the columns of

A by the columns of B, and where the transfer matrix T = [I|Sei(Γi − Sii)
−1]. The overall

noise-wave correlation matrix Co = beb
H
e is then computed as

Co = T

(
cecH

e cec
H
i

cicH
e cic

H
i

)
TH = TCTH , (5.70)

where C is the block partitioned noise-wave correlation matrix containing the noise-wave

correlation matrices of each of the microwave devices. The receiver sensitivity Sm/Nm at

output m is then computed from (5.69) and (5.70), i.e.,

Sm

Nm

=
|be,m|2
Cnet

mm

. (5.71)

5.4.5 Numerical Results for a Practical Noise Measurement

A 4 × 1 monopole array has been designed and fabricated as shown in Fig. 5.4 (see also

Section 3.6.5). The beamforming network consists of two LNAs, two dummy loaded an-

tenna elements, coaxial cables, a Wilkinson power combiner, an additional amplifier and

a tunable band-pass filter. The scattering and noise-wave correlation matrices of all these

microwave devices have been obtained through measurements and/or simulations [155]. In

addition to the modeled antenna characteristics in Section 3.6.5, the modeled noise and

scatter parameters of the LNAs are also in very good agreement as reported in [155]. The

receiver system was measured above a reflector surface to shield RFI sources and a tunable

band-pass filter was used to limit the bandwidth of the received frequency spectrum. De-

spite these measures, RFI sources were observed appearing in the band of the cell phones

that operate from 876–960 MHz. A noisy “hot” sky was simulated by placing an absorber

with a noise temperature of 280 K (ambient temperature was 7 oC) at the antenna aperture

with minimal impact on the antenna impedance characteristics. Clearly, the RFI sources

were suppressed while the absolute noise-power level at the receiver output increased as

correctly predicted by the simulations in a quantitative manner.
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Figure 5.4: The scatter and noise properties of all microwave devices have been character-

ized by measurements and simulations [155]. The measured output noise power levels for

the “hot” and “cold” sky agree well with the predicted output power levels.

5.5 Role of the Scan Impedance in Noise Coupling

In this section it is demonstrated that the active instead of the passive antenna reflection

coefficient is the key parameter in realizing low-noise receiver designs. This is an important

statement, which has currently been brought into practice by designing dedicated low-noise

receivers for radio astronomical applications [18]. From our experience, this noise match
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condition is not yet commonly known among a large scientific audience. In fact, at a first

glance, one might aim to noise-match the Low Noise Amplifiers (LNAs) to the passive

antenna input impedance. As we know for conventional single-chain antenna receivers,

consisting of only one antenna element and one LNA, this noise-match condition will

lead to the lowest receiver noise temperature. However, as will be shown, higher receiver

sensitivity for array systems can be reached by noise matching the LNA to the active scan

impedance of the corresponding array element. This will be demonstrated for two cases.

First, an idealized and abstract example is used to visualize the underlying phenomena

and to gain basic insight. Second, numerical results are discussed for a two-element dipole

array to confirm the validity of this concept.

5.5.1 Idealized Phased Array Receiver Model

Fig. 5.5(a) illustrates a schematic of an idealized two-element phased array receiver.

+

c1

c2ejϕ

+

c2

=⇒

θ
Γ1

act(ϕ)

ctot =

c1

Γ2
act(ϕ)

Reflected Part + Direct Part + Coupled Part

Equivalent
representation

(a) (b)

Figure 5.5: (a) Propagation paths of noise waves c1 and c2 that emanate from the input

and output of the LNA, respectively. (b) Equivalent representation for the noise-wave

propagation involving active reflection coefficients of antenna elements.

The receiver system in Fig. (5.5)(a) is considered to be noise-free except for the LNAs.
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The beam is electronically steered by adjusting the phase ϕ. For the sake of simplicity,

we consider the noise contribution of only one LNA, since no correlation exists between

the noisy LNAs. Further, we assume that SLNA
11 = 0 and that the LNAs are identical.

Otherwise, if SLNA
11 �= 0, the (complex) reference impedance has to be adjusted such that

SLNA
11 becomes 0. The same reference impedance is used for all S-matrices. The correlated

noise waves that emanate from the input and output of the LNA are denoted by c1 and

c2, respectively [153]. Fig. (5.5)(a) illustrates that, in case of an ideal combiner, the total

outgoing noise wave ctot is a superposition of three noise-wave contributions, i.e.,

ctot = Direct Part + Reflected Part + Coupled Part

= c2 + c1S
ant
11 SLNA

21 + c1S
ant
21 SLNA

21 ejϕ

= c2 + c1S
LNA
21

(
Sant

11 + Sant
21 ejϕ

)

= c2 + c1S
LNA
21 Γ1

act(ϕ), (5.72)

where we used that Γ1
act(ϕ) = Sant

11 + Sant
21 ejϕ, i.e., the active reflection coefficient of the

first antenna element. A similar expression can be derived for the second receiver channel

where, Γ2
act(ϕ) = Sant

22 + Sant
12 e−jϕ.

The result of (5.72) can be interpreted as having an equivalent array representation that

is shown in Fig. 5.5(b) consisting of two “decoupled” receiver channels. Essentially, the

full antenna S-parameter matrix is replaced by a diagonal matrix where the entries on the

diagonal are given by the active reflection coefficients of the individual array elements. For

this system, the total receiver temperature is minimized if the noise contribution for each

receiver channel is minimized. The noise-match condition for a single receiver channel is

straightforward as shown in Fig. (5.6).

c2
c1

Γopt

Rn
Tmin

Γs

TLNA = Tmin +
4T0Rn

Z0

|Γs − Γopt|2
|1 + Γopt|2(1 − |Γs|2)

Figure 5.6: Equivalent noise temperature of LNA, given a source reflection coefficient.

One can noise match the LNA to the source impedance by requiring that the noise param-

eter Γopt of the LNA equals the source reflection coefficient Γs, so that TLNA = Tmin. This
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leads to the conclusion that, for the single receiver channel of Fig. 5.5(b), noise match for

the first channel is achieved if Γ1
opt = Γ1

s = Γ1
act(ϕ). This condition is also valid for the

second channel, even though Γ1
act(ϕ) �= Γ2

act(ϕ) if ϕ �= 0.

5.5.2 Numerical Results for a Two-Element Array

To demonstrate the validity of this noise matching condition, the numerical tool has been

used, which is outlined in the previous sections and based on the Method of Moments

(MoM) for modeling antenna structures, combined with scattering matrices and noise-

wave correlation matrices for modeling microwave circuits [85]. The two-element dipole

array of Fig 5.5(a) is the subject of investigation with electrical antenna dimensions as

shown in Table 5.1.

Table 5.1: Electrical Antenna Dimensions and computed S-parameters for 50 Ω.

Parameter Value

Dipole length 0.45λ0

Dipole width 0.015λ0

Dipole to gndplane spacing 0.225λ0

Element separation distance 0.465λ0

Groundplane size 3λ0 × 3λ0

→

Parameter Value

Sant
11 0.166 - 0.123j

Sant
12 0.272 + 0.219j

Sant
21 0.272 + 0.219j

Sant
22 0.166 - 0.123j

The following parameters are assumed to be identical for both LNAs: sLNA
11 = sLNA

12 =

sLNA
22 = 0, sLNA

21 = 10, Tmin = 100 K and Rn/Z
ref
0 = 0.5. Next, we satisfy the noise-

matching condition by setting Γ1
opt = Γ1

act(ϕ) and Γ2
opt = Γ2

act(ϕ) to minimize the receiver

noise temperature Trec. As Γ1,2
act changes as a function of ϕ, noise match can be realized for

only one value of ϕ, thus for one particular scan angle. Also, if Γ1
act �= Γ2

act two different

LNAs have to be used with different Γ1,2
opt. Fig. 5.7a visualizes the change of Γ1

act and Γ2
act

over scan angle. It is observed that Γ1
act and Γ2

act are different and describe a circle in the

Smith chart for which the return loss value is the exact center.

Next, four scan directions are considered for which we aim to achieve noise match, i.e., at

θ = θ0 for θ0 = 00, 300, 600 and 900. To this end, 4 sets of LNAs are used with different
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(a) (b)

(c) (d)

Figure 5.7: (a) The active and passive antenna impedances normalized to 50 Ω and visu-

alized in a Smith chart. (b) The receiver noise temperature as a function of scan angle θ,

optimized for four values of θ0. (c) The effective area Aeff as a function of scan angle θ. (d)

The receiver sensitivity as a function of scan angle θ, with noise matching for four values

of θ0.
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Γopt values. For each case, Fig. 5.7(b) shows how the receiver input noise temperature

varies over scan angle. As can be seen, the system noise temperature is minimized (Trec =

Tmin = 100 K) for the scan direction at which noise match is achieved. The effective

area Aeff is shown in Fig. 5.7(c) and does not depend on the noise properties of the LNAs

(reference plane is at the input of the receiver system). The receiver sensitivity, defined

by the ratio between the effective area and the receiver noise temperature, is shown in

Fig. 5.7(d). As demonstrated, if noise match is achieved for a particular scan angle, the

receiver sensitivity is highest for that particular scan angle. To observe this, consider a

vertical cut in Fig. 5.7(d) for the optimized scan angle and note that the ensemble maximum

is reached, even though the overall maximum sensitivity may occur at a different scan angle.

Obviously, this noise match condition does not guarantee that the receiver sensitivity is

always lower for other scan angles. In fact, this depends on the behavior of the effective

area Aeff(θ) as a function of the scan angle.

It is also observed that a reasonably high sensitivity over a large scan volume is achieved

by noise matching to the passive antenna reflection coefficient Sant
11 , Sant

22 , whereas a higher

sensitivity can be reached for a slightly smaller scan volume if we noise match each LNA to

the active reflection coefficient of the corresponding antenna element. For this particular

example, and depending on the design requirements, we could choose to noise match for

θ = 300 in order to obtain a large receiver sensitivity over a large scan volume.

5.6 An Equivalent Single-Channel Receiver Modeling

Approach

The “noise decoupling” of receiver channels, which has been described in the previous sec-

tion for a two-element receiving system, can be generalized and be used to simplify the

sensitivity analysis of array receiver systems comprised of N strongly coupled antenna ele-

ments. This “noise-decoupling technique” allows us to represent an antenna array receiver

by an equivalent single-channel receiver model and to develop expressions for the beam

sensitivity of the receiver. In the present approach, we focus on Focal Plane Array (FPA)

receiving systems and account for the strong effects of noise coupling that such systems

may exhibit. We remark that noise-coupling effects have been accounted for previously

in various different antenna models [46, 148, 156]. However, we employ the recently intro-
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duced coupling efficiency [157,158] and factorize it to separately account for the losses due

to dissipation and impedance mismatch effects of the equivalent antenna.

Essentially, the coupling efficiency is expressed as a product of the standard IEEE defini-

tions termed: the “radiation efficiency”; and “impedance mismatch factor” [159]. These

definitions are commonly applied to single-port antennas, whereas we will evaluate these

definitions for the array case with a specific beam excitation. The “impedance mismatch

factor” is herein called “mismatch efficiency” since it will be used in a chain of subefficien-

cies whose product is the total efficiency.

Furthermore, we combine the above mentioned efficiencies with the noise temperature mod-

els of multi-channel receiving systems that were proposed in [160] and extended in [161,162]

(and Section 5.5) for phased-array receivers with noise coupling effects. In addition, we

will recall the standard definitions for the aperture efficiency and spillover noise tempera-

ture so as to complement the set of developed model parameters in the expression for the

sensitivity.

It will be demonstrated that the results obtained by the pertaining model are consistent

with the results computed by the CAESAR software (see Appendix F and [85,163]), which

is a tool that can be used to compute the receiver noise and sensitivity of a complex array

system in a direct numerical manner. This numerical analysis is based on a signal-noise

wave covariance approach and the connection matrix theory as explained in Section 5.4.

Both methods can be used to analyze and design antenna receiving systems, albeit that the

full numerical approach is more general, while the semi-analytical approach may provide

a deeper insight.

5.6.1 An S-parameter model of a typical FPA receiving system

We consider a typical FPA case (Fig. 5.8), where a group of array elements is used to

provide the desired illumination of the reflector, and where the remaining array elements are

resistively terminated by loads at ambient temperature Tamb. Furthermore, the beamformer

is comprised of (i) identical Low Noise Amplifiers (LNAs) that generate noise from their

in- and outputs and (ii) complex weight devices (vector modulators) in combination with

a power combiner that are both assumed to be free of noise sources and reflections. The

receiver output in Fig. 5.8 is located at reference plane Σ = 2; this single output port
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Figure 5.8: A block diagram of a typical focal plane array receiving system with N array

elements, among which M elements are connected to LNAs and used in the beamforming;

while (N − M) elements are characteristically terminated.

is referred to as the “beam port”. Both the effective area Aeff and the system noise

temperature Tsys can be determined at this beam port. We will use the term “refer to”

to designate the reference plane at which Aeff and Tsys pertain to. One can refer these

quantities to another reference plane, say to the fictitious port in the sky at Σ = 1, by

dividing Aeff and Tsys by the system available gain Gav
sys, i.e., the available gain between

reference plane Σ = 1 and Σ = 2.

The outgoing/reflected waves b = [b1, b2, · · · , bN ]T from the antenna array in Fig. 5.8 are

related to the incident waves a = [a1, a2, · · · , aN ]T via the scattering matrix Sant of the

antenna array, i.e., b = Santa. We will distinguish between the incident and reflected waves

for the M actively and (N − M) passively terminated ports, respectively, and set

a = [aact, apas]
T and b = [bact,bpas]

T (5.73)

and perform the following matrix decomposition on Sant:
(

bact

bpas

)
=

(
Sant

act,act Sant
act,pas

Sant
pas,act Sant

pas,pas

)(
aact

apas

)
. (5.74)

Next, we set apas = 0, since the corresponding antenna ports are assumed to be character-

istically terminated, so that

bact = Sant
act,actaact, and bpas = Sant

pas,actaact. (5.75)
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Likewise, we block partition the beamformer S-parameter matrix SBF as

SBF =

(
SBF

11 SBF
12

SBF
21 SBF

22

)
(5.76)

where we distinguished between the M input ports on the left-hand side of the beamforming

network (side 1), and possibly multiple output beam ports on the right-hand side (side 2).

However, we will restrict ourselves to a single output beam port and set SBF
22 = 0 (1 × 1

matrix, scalar). Furthermore, we assume no isolation and beamformer reflection losses, so

that SBF
12 and SBF

11 are zero matrices of sizes M × 1 and M × M , respectively. The latter

requirement is not a severe restriction for practical systems where commercial LNAs and

loads are employed that are based on standard reference impedances, but we emphasize

that the present model does entail several assumptions.

Let the complex weight coefficients of the beamforming network on receive be defined by

the row vector

wH = [w∗
1, w

∗
2, · · · , w∗

M ] (5.77)

where the superscript H denotes the hermitian conjugate, and ∗ the complex conjugate.

Then, when assuming an ideal beamformer, we can define the transmission factors by a

matrix of size 1 × M as

SBF
21 =

1√
M

SLNA
21 wH . (5.78)

In the following two sections we apply Eqs. (5.75), (5.77), and (5.78), and demonstrate

how the FPA model shown in Fig. 5.8 can be reduced to a single-port antenna followed

by a two-port LNA as illustrated in Fig. 5.9. For this purpose, expressions will be derived

for the equivalent model parameters ηcoup (coupling efficiency), ηmis (mismatch efficiency),

ηrad (radiation efficiency), Gpower
Eq (equivalent power gain), and T LNA

Eq (equivalent amplifier

noise temperature).

The beamformer transmission coefficients on receive in (5.78) are applied as the excitation

coefficients of the array on transmit to realize the same radiation pattern as the receiving

pattern. Hence, the excitation vector aact assumes the value:

aact =
(
SBF

21

)T ∣∣∣
apas=0

(5.79)
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so that the mth vector element is given by

aact,m =
1√
M

SLNA
21 w∗

m. (5.80)

Note that SBF
21 represents a row vector on receive, whereas the excitation vector aact is a

column vector on transmit.

5.6.2 Representing the FPA by an equivalent antenna element

Figure 5.9: An equivalent single-channel receiver model of the (focal plane) array system

shown in Fig. 5.8.

The element pattern of the equivalent single-port antenna will be the same as the realized

beam of the array when the excitation coefficients are chosen according to (5.80). Upon

exciting the array in this specific manner, one can readily quantify the dissipation losses

in the resistively terminated ports on transmit. The total dissipative loss is accounted for

by the radiation efficiency of the equivalent antenna (Fig. 5.9). With reference to Fig. 5.9,

and by using (5.75) and (5.80), we obtain:

• The radiation efficiency of the equivalent antenna as

ηrad = 1 − Pdiss

Pacc

≈ 1 − bH
pasbpas

aH
actaact − bH

actbact

=

WH
(
I −
[(

Sant
act,act

)H
Sant

act,act +
(
Sant

pas,act

)H
Sant

pas,act

])
W

WH
(
I −
(
Sant

act,act

)H
Sant

act,act

)
W

(5.81)

where W = w∗, and where Pacc is the total accepted power by the array. The approxima-

tion in (5.81) indicates that we only account for the power absorption Pload in passively
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terminated ports, whereas in general, one could define that Pdiss = Pload + Pdiel + Pcond, so

that the dielectric and conductor losses are also included. The presently proposed model

will then still apply, provided that the losses are associated with the same physical tem-

perature, which is typically chosen to be the ambient temperature.

Next, we introduce the mismatch efficiency of the equivalent antenna which accounts for

reflection losses at the actively used ports of the array.

• The mismatch efficiency (or impedance mismatch factor) of the equivalent an-

tenna is defined as

ηmis = 1 − Prefl

Pinc

= 1 − bH
actbact

aH
actaact

=
WH

[
I −
(
Sant

act,act

)H
Sant

act,act

]
W

WHW
. (5.82)

The product of the former two efficiencies equals the recently introduced coupling effi-

ciency [157, 164], which is considered to be a fundamental parameter of (transmitting)

antenna arrays and is used here to quantify the total lost signal power of the equivalent

antenna. Fig. 5.8 shows that the mismatch efficiency reduces both the transmitted signal

and noise powers, which seems to imply that the beam sensitivity (see Section 5.6.4) is

independent of the mismatch efficiency. However, it does influence the noise mismatch be-

tween the receiver and antenna array as well, so that the beam sensitivity is still dependent

on the mismatch efficiency, albeit indirectly through the active reflection coefficients of the

antenna elements as discussed in the next section.

• The coupling efficiency is defined as

ηcoup = 1 − Pcoup

Pinc

= 1 − bH
actbact + bH

pasbpas

aH
actaact

=

WH
(
I −
[(

Sant
act,act

)H
Sant

act,act +
(
Sant

pas,act

)H
Spas,act

])
W

WHW
. (5.83)

Finally, one can readily verify that ηcoup = ηmisηrad.

The above mentioned efficiencies are the model parameters of the equivalent single-port

antenna shown in Fig. 5.8 and depend on the weights of the beamforming network. Note

that, in case the loads are replaced by LNAs followed by zero weights, the absorption loss
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in the passively terminated elements effectively moves from the radiation efficiency to the

mismatch efficiency, where bact is then replaced by b.

5.6.3 Representing the beamforming network by an equivalent

amplifier

In order to represent the beamforming network by an equivalent amplifier, we first com-

pute the total noise temperature due to the LNAs, T LNA
out , at the output beam port (Σ = 2

in Fig. 5.8). For this purpose, we consider the receiver system representation shown in

Fig. 5.10. In this representation, each receiver channel is noise decoupled from the other

channels by replacing the full antenna S-matrix by a diagonal matrix where the entries

on the diagonal represent the active reflection coefficients of the corresponding array el-

ements (cf. [122, 161], and Fig. 5.5). This is permitted when the antenna S-matrix is

symmetric, and when the beamformer is ideal and free of reflections at its inputs.

Figure 5.10: A noise decoupled system representation used to evaluate T LNA
out .

The active reflection coefficient Γact,m of the mth antenna element is defined as

Γact,m =
bact,m

aact,m

=
1

Wm

M∑

n=1

Sant
m,nWn (5.84)

where (5.75), (5.78), (5.79) and W = w∗ have been substituted.

It is convenient to work with the representation in Fig. 5.10, since T LNA
out can now directly
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be computed as the weighted sum of uncorrelated noise contributions:

T LNA
out =

M∑

m=1

Gav
mT LNA

m (5.85)

where the noise temperature T LNA
m of the mth channel is referred to the input of the mth

LNA and is weighted by its available channel gain Gav
m . In view of Fig. 5.10, Gav

m is defined

from the output of the mth antenna element – thus includes the antenna-LNA mismatch –

to the output of the beamformer:

Gav
m =

(
1

M

∣∣SLNA
21

∣∣2 |wm|2
)(

1 − |Γact,m|2
)

(5.86)

where the first term on the right-hand side represents the power transmission coefficient

of the mth element/channel of SBF
21 in (5.78). The second term quantifies the power loss

due to reflection and coupling effects at the port of the mth element. Herein, the gain

definition in [160] for decoupled receiver channels has been extended to account for noise

coupling effects through the use of Γact [161].

The noise temperature contributions of individual LNAs in (5.85) for each beamforming

channel can be computed by using a well-known formula for noisy two ports, which for the

case of the array receivers, as described in Section 5.6.1 (with noise coupling), assumes the

form [161,162]:

T LNA
m = Tmin +

4RnTo

Zo

|Γact,m − Γopt|2
|1 + Γopt|2(1 − |Γact,m|2)

(5.87)

where {Tmin, Rn, Γopt} are the noise parameters of a two port, and Γact,m represents the

active source-reflection coefficient seen from the input of the LNA of the mth receiver

channel (see Fig. 5.10). The second term on the right-hand side of (5.87) measures the

increase in the LNA noise temperature due to noise coupling effects, since it involves the

active source-reflection coefficient.

Next, we determine the effective noise temperature T LNA
Eq of the equivalent amplifier in

Fig. 5.9 and therefore divide T LNA
out at the output beam port (Σ=2) by Gpower

Eq to refer it

to the desired reference plane. We point out that, commonly, T LNA
out is divided by the

available gain Gav
Eq of the equivalent amplifier rather than by Gpower

Eq . Then, the LNA noise

temperature would be referenced in front of the mismatch efficiency block in Fig. 5.9, since

Gav
Eq = ηmisG

power
Eq . However, as we aim to express the final receiver sensitivity in terms of

the coupling efficiency, we will combine the radiation with the mismatch efficiency, thus
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separating ηmis from Gav
Eq, and then work with the remaining power gain Gpower

Eq instead (see

Fig. 5.9). We remark that, regardless of the choice of reference point for the equivalent

LNA noise temperature, the final expression for the beam sensitivity will be the same.

Herein, we define

• The effective noise temperature :

T LNA
Eq = T LNA

out /Gpower
Eq (5.88)

where Gpower
Eq is defined as the ratio of the beamformer output power PBF

out at the beam

port (see Fig. 5.8) to the input power PBF
in,m of a single beamformer channel when all M

receiver inputs are excited by uncorrelated sources of equal power [160]. Therefore, Gpower
Eq

is termed

• The uncorrelated power gain :

Gpower
Eq =

PBF
out

PBF
in,m

=
1

M

∣∣SLNA
21

∣∣2 wHw (5.89)

where we have used (5.78).

5.6.4 The beam sensitivity

The beam sensitivity Aeff/Tsys of the equivalent receiving system can be derived by using

the system model in Fig. 5.9 with the model parameters that were described in the previous

two sections (ηmis, ηrad, ηcoup, Gpower
Eq and T LNA

Eq ), as well as the aperture efficiency ηap and the

spillover noise temperature Tsp = (1 − ηsp)Tground. Parameters ηap and Tsp are determined

by the shape of the equivalent antenna pattern and the subtended angle of the reflector,

and can be calculated from standard formulas. Alternatively, one can use the definitions

from [165] that were specifically derived for receiving arrays.

The sensitivity at the output beam port (plane Σ = 2 in Fig. 5.9) is defined in terms of

the spectral output SNR as

Aeff

Tsys

=
Sout/Sflux

Nout/kB

(5.90)
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where Aeff is the effective area of the equivalent antenna, Tsys is the total system noise

temperature, Sout is the signal power at the output beam port, Sflux the power flux density

of the incident field (assuming perfect polarization match), Nout is the output noise power,

and kB is Boltzmann’s constant.

Since we have already derived the model parameters for the single-channel receiver in

Fig. 5.9, we may readily evaluate (5.90) and express the sensitivity at the output beam

port as

Aeff

Tsys

=
AphηapηradG

av
Eq

TspηradGav
Eq + (1 − ηrad)TambGav

Eq + T LNA
out

, (5.91)

where Aph is the physical aperture area of the (reflector) antenna (at the reference plane

Σ = 1), which is reduced by both the aperture efficiency ηap and radiation efficiency ηrad,

and then amplified by the available gain Gav
Eq of the equivalent amplifier (see Fig. 5.9,

where Gav
Eq = ηmisG

power
Eq ). The spillover temperature Tsp is also defined at the reference

plane Σ = 1 and is affected by the same factor. Note that this factor represents the

available gain Gav
sys of the entire receiver system:

Gav
sys = ηradG

av
Eq = ηradηmisG

power
Eq = ηcoupG

power
Eq . (5.92)

The noise temperature Tant of the equivalent antenna at ambient temperature Tamb is

defined as Tant = (1 − ηrad)Tamb, which is amplified by Gav
Eq and added to the LNA output

noise temperature T LNA
out .

Substituting (5.88) in (5.91), and using (5.92), yields

Aeff

Tsys

=
Aphηapηcoup

Tspηcoup + (1 − ηrad)ηmisTamb + T LNA
Eq

. (5.93)

For the design and modeling, it is often convenient to reference the sensitivity to the plane

Σ = 1. This can be done by dividing both the numerator and denominator of (5.93) by

the system available gain Gav
sys = ηcoupG

power
Eq . Hence, the sensitivity at plane Σ = 1 takes

the following form:

Aeff

Tsys

=
Aphηap

Tsp +

(
1 − ηrad

ηrad

)
Tamb +

(
1

ηcoup

)
T LNA

Eq

. (5.94)

The system noise temperature consists of three main contributions: (i) the spillover noise,

(ii) the noise due to the dissipation losses of the equivalent antenna and (iii) the noise due
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to LNAs which depends on the noise properties of LNAs and active reflection coefficients

seen at the ports of the antenna array. The latter contribution is inversely proportional to

the coupling efficiency of the equivalent antenna.

At this point, we recall that T LNA
Eq and ηcoup both depend on the weights, therefore, one

may not conclude that the coupling efficiency is generally the dominating factor in the

term T LNA
Eq /ηcoup, or that ηcoup has to be maximized for optimum sensitivity. However,

when ηcoup becomes very small, as in case of arrays of strongly coupled elements operating

at low frequencies, it will dominate and may severely reduce the receiver sensitivity.

5.6.5 Numerical Validation

Next, the consistency of the proposed model is validated through a numerical example

of a 4-element dipole FPA receiver system as illustrated in Fig. 5.11(a). The outer two

parasitic antenna elements generate thermal noise that re-enters the system as a result of

the mutual coupling between the antenna elements. These loads also dissipate power and

therefore reduce the radiation efficiency. The amplifiers are identical and their noise and

scattering parameters are as indicated in Fig. 5.11(a).

The efficiencies ηmis, ηrad, and ηcoup have been separately calculated and visualized in

Fig. 5.11(b) as a function of the magnitude of w, while arg(w) = 0. The corresponding

change in the system noise temperature has been computed for Tsp = 0 [see Fig. 5.11(c)],

so that one basically computes the receiver noise temperature Trec. Note that the results

are referred to the input of the receiver (Σ = 1). With reference to (5.94), the thermal

noise due to the loads Tload = Tamb(1 − ηrad)/ηrad and the noise contribution due to LNAs

TLNA = T LNA
Eq /ηcoup have been plotted in Fig. 5.11(c) as well.

By analyzing Fig. 5.11(c), one can see that, for this specific example, the total receiver

noise is dominated by the thermal noise that is generated by the loads when |w| < −7.8dB,

whereas the noise of the LNAs begins to dominate for larger |w|. We remark that this

cross-over point is independent of the choice of the reference planes. Furthermore, one

observes that, when the active elements are equally excited on transmit (w = 1), the

power absorption in the loads is minimized due to destructive mutual coupling interference

effects at the passively terminated ports. Hence, ηrad is maximized. Likewise, on receive,

the noise contribution due to the loads (1/ηrad−1)Tamb is minimized when ηrad is maximized
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Figure 5.11: (a) A 4-element dipole (focal plane) array receiving system; (b) Efficiencies

ηmis, ηrad, and ηcoup of the equivalent single-port antenna shown in Fig. 5.9; (c) The noise

temperature contributions Tload and TLNA as computed by the proposed model, and the

total receiver noise temperature in comparison with the result computed with CAESAR.

for w = 1 as a result of destructive noise coupling interference effects.

Finally, it has been demonstrated in Fig. 5.11(c) that the system noise temperature that

was computed with the aid of the proposed model is consistent with the one computed

by the CAESAR software (see Appendix F and [85], i.e., the results are identical up to

machine precision.
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5.7 Radiation Efficiency and Noise Temperature of

Low-Loss Antennas

Thus far, we did not consider the power dissipation losses in antenna conductors, but we

solely considered the losses that are caused by the resistively loaded parasitic antenna-array

elements. For radio astronomical applications, however, the total loss and the associated

noise temperature of non-cooled antenna systems is strictly specified. For example, in [20],

the target system temperature is set to 50 K, of which 7–10 K is the maximum allowed

contribution due to the antenna, including the connection loss with a low noise amplifier

at the feedpoint. To achieve such low noise temperatures, antennas with only metal con-

ductors are an obvious choice, since additional dielectric material may increase the loss (cf.

the TSA design in Section 4.7). In the absence of other noise sources, Tsys of the receiving

antenna is related to the radiation efficiency ηrad by [see also (5.94)]

Tsys = Tamb

(
1 − ηrad

ηrad

)
(5.95)

where Tamb is the ambient temperature of the antenna, and where ηrad is defined by

ηrad =
Prad

Pacc

. (5.96)

Here Pacc is the total accepted input power by the antenna and Prad is the total radiated

power. It is readily seen that, if ηrad reduces to 98 %, Tsys increases by 6 K at Tamb = 300 K

and, hence, this significant increase should be determined accurately.

Efficiency measurements for low-loss antennas can be carried out with for example Wheeler

cap, radiometric, directivity/gain, or calorimetric methods [166]. However, the accuracies

of these methods are of the order of a few percent [167], which is not sufficient in our

case. Alternatively, one can resort to numerical simulations, but they suffer from accuracy

problems. Fig. 5.12 shows ηrad of a single TSA as specified in Fig. 4.19, computed by

the finite-element-method (FEM) solver Ansoft HFSS (v. 11.1.3), the Method-of-Moments

(MoM) solver Ansoft Designer (v. 4.0.0), and the finite-difference time-domain (FDTD)

solver CST MWS (v. 2008.04) for perfect (PEC) and good electric conductors. In HFSS,

two different settings are employed: the standard adaptive mesh and a fixed maximum

mesh. The surface mesh in Designer and the global mesh in CST are both adaptively

generated. For all meshes, the mesh density is the highest near the tapered slot with sizes

as low as 2 mm. In the HFSS results, ηrad highly exceeds 100%, where the fixed mesh size
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Figure 5.12: ηrad of a TSA computed by HFSS, Designer, and MWS. Settings: HFSS:

airbox 500× 700× 800 mm3, adaptive meshing with maximum 20 passes at 2 GHz, 53966

tetrahedra for setting maximum mesh size 60 mm (maximum tetrahedra size λ0/5 at

1 GHz). Designer: adaptive meshing at 2 GHz (maximum 10 passes, 25% refinement per

pass, maximum ΔS = 0.05, minimum mesh angle 5 Deg, edge length factor 12). MWS:

adaptive hexahedral mesh (FPBA) with 2371008 mesh cells, at least 30 lines per λ0, mesh

step ≥ 0.25 mm, refine factor 6, boundary condition open (space added of at least 15 mesh

lines or λ0/5).

provides the best result. The Designer results seem better, but ηrad varies between 100.0%

and 100.7% for a PEC and between 99.4% and 100.4% for a good conductor. The MWS

result for a PEC is particularly unreliable below 0.8 GHz. The results of all three solvers

are not sufficient for an accurate computation of Tsys.

As noted in [168] numerical sampling (of the far field) and integration (of the Poynting

vector) are still required for a majority of antenna radiation problems despite efforts to

find alternatives, e.g., [110, 168]. Sampling and integration may lead to a high computa-

tional cost and substantial (integration) errors, in particular for large arrays with rapidly

varying far fields. In this work, we evaluate ηrad and Tsys of arrays of low-loss loops and

of a low-loss TSA by computing the dissipated power Pdiss from a MoM solution. Such

an approach is implemented in some commercial and non-commercial MoM solvers and is

similar to the computation of the complex power, see [32, p. 90], [79, pp. 95–98]. We first
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summarize the approach for computing Pdiss and utilize the concept of surface impedance

to describe metal losses. Next, we show that ηrad cannot become larger than 100%, inde-

pendent of numerical errors. Finally, we discuss numerical results for ηrad and Tsys, and

we compare these results with results obtained by numerical integration and by the MoM

solver FEKO 5.4 (v. 4.0.117480). We comment on computation times, mesh issues, and

efficiency computations by the MoM solvers Designer and Zeland’s IE3D (v. 12.1)4.

5.8 Considerations on the Radiation Efficiency

Instead of computing ηrad by (5.96), one can directly compute the dissipated power Pdiss,

and subsequently employ

ηrad = 1 − Pdiss

Pacc

(5.97)

where Pdiss satisfies Prad = Pacc − Pdiss. To ease the explanations that follow, we will

first summarize the steps to calculate Pacc and Pdiss. For a multiport antenna array,

Pacc = Re{
(
Iant
)H

Vant}/2 where H indicates the Hermitian transpose, and Vant and Iant

are column vectors of voltage and current amplitudes at the ports. Modeling the antenna

as an infinitely thin impedance sheet with associated surface impedance ZS, surface current

JS, and boundary condition Etan = ZSJS, we compute Pdiss by

Pdiss =
1

2
Re

⎧
⎨
⎩

∫

S

J∗
S · ZSJS dS

⎫
⎬
⎭ . (5.98)

Note that ZS may depend on the position vector r. In a MoM setting, we expand JS into

the N basis functions {fn}N
n=1, with fn non-zero on the support Sn ⊂ S, and employ the

expansion coefficient vector IMoM. Substituting this expansion in (5.98), yields

Pdiss =
1

2
Re

{(
IMoM

)H
ZIBCIMoM

}
(5.99)

where the matrix elements of ZIBC are given by

ZIBC
mn =

∫

Sm∩Sn

f ∗
m · ZSfn dS = 〈fm, ZSfn〉 (5.100)

4In [25], an extensive assessment of software tools (MoM, FEM, FDTD) for antenna design is described,

although the losses are only discussed shortly in Section 6.3.
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where 〈 · , · 〉 denotes the classical inner product on S. For constant ZS, ZIBC equals

a constant times the Gram matrix of the basis functions. Then, (5.99) resembles the

complex-power expressions in [32, p. 90] and [79, (4.15)].

Henceforth, we will employ real-valued basis functions, so that the complex inner product

in (5.100) can be replaced by a symmetric product; this is in accordance with the EFIE

discretization scheme outlined in Chapter 3. The more general case of employing a complex

inner product is discussed in detail in [37]. Note that, if a symmetric product is used in

conjunction with a Galerkin’s scheme for testing the EFIE, Eq. (5.100) becomes identical

to Eq. (3.76) when employing RWG basis functions.

From Chapter 3, we recall that IMoM is computed from the EFIE: Es
tan(JS)−ZSJS = −Ei

tan

on S, of which the discretized form reads

(ZPEC − ZIBC)IMoM = VMoM (5.101)

where V MoM
m = −〈fm,Ei〉 and ZPEC

mn = 〈fm,Es (fn)〉. Thus, ZIBC and IMoM are available

in a MoM and Pdiss can be computed by the two matrix-vector multiplications in (5.99).

Given the relatively low numerical effort, the question arises whether we avoid computed

radiation efficiencies larger than 100%. We can rewrite (5.99) as

Pdiss =
1

4

[(
IMoM

)H
ZIBCIMoM +

((
IMoM

)H
ZIBCIMoM

)H
]

=
1

4

[(
IMoM

)H
ZIBCIMoM +

(
IMoM

)H (
ZIBC

)H
IMoM

]

=
1

4

(
IMoM

)H [
ZIBC +

(
ZIBC

)H]
IMoM (5.102)

=
1

2

(
IMoM

)H
Re
{
ZIBC

}
IMoM (5.103)

where we used that ZIBC = (ZIBC)T for passive reciprocal systems. Note that (5.103)

equals [32, Eq. (10-8)] for the power dissipated in linear N -port networks. The matrix

A = ZIBC +
(
ZIBC

)H
in (5.102) is Hermitian, because AAH = AHA. Hence, Re

{
ZIBC

}

is a positive semidefinite matrix, so that Pdiss = 1/2
(
IMoM

)H
Re
{
ZIBC

}
IMoM ≥ 0 for all

complex vectors IMoM.

When, for a symmetric product, we apply the basic properties 〈a, b〉 = 〈b,a〉 and 〈a, αb〉 =

〈αa, b〉, we find that (ZIBC)H
mn = 〈fn, ZSfm〉∗ = 〈f ∗

m, Z∗
Sf ∗

n〉 = 〈fm, Z∗
Sfn〉. Then,

(
ZIBC + (ZIBC)H

)
mn

= 2〈
√

Re {ZS}fm,
√

Re {ZS}fn〉. (5.104)
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Thus, the Hermitian matrix G = (ZIBC + (ZIBC)H)/2 is the Gram matrix of the functions√
Re{ZS}fn, n = 1, . . . , N . Computing the inner products in (5.104) by a quadrature rule

with points rp, p = 1, . . . , P , and weights wp, G is numerically speaking the Gram matrix

of the vectors (
√

w1Re{ZS(r1)}fn(r1), . . . ,
√

wP Re{ZS(rP )}fn(rP )). Consequently, G is

numerically positive and, hence, Pdiss ≥ 0. Since Pacc ≥ 0, we conclude from (5.97) that

ηrad ≤ 100% numerically. From this point of view, given the Designer results in Fig. 5.12,

i.e., ηrad larger than 100%, support the idea that Designer v. 4.0.0 does not compute ηrad

from (5.97) and (5.99). Moreover, IE3D does not employ this computation either and clips

ηrad to 100% in case it encounters ηrad > 100%.

To compute Pdiss from (5.99) and (5.101), we need to take two additional steps compared

to the EFIE for a PEC, i.e., to specify ZS, and to compute ZIBC. For good conducting

and electrically thin sheets with thickness d ≪ λ0 and σ ≫ ωε0|εr|, one can use the

surface impedance formula (3.44) for ZS and, accordingly, the matrix ZIBC is computed

by numerical integration. In case ZS is piecewise constant on the triangles of a mesh

with RWG functions, we obtain the exact value of the mnth component by numerically

integrating the function fm ·fn by a Gaussian quadrature with three points in the triangle.

Alternatively, we can use an analytical expression, Eq. (3.76).

We will briefly recall the necessary expressions from Section 3.2.2 and 3.2.3, and provide a

concise literature overview as an alternative source for the derivations in Chapter 3, which

are based on Makarov’s approach. In [169, Sec. 4.8], the surface impedance of a plane

conductor excited from one side is derived by field analysis [169, (4-113)],

Zsingle
S (d) =

1 − j

σδ tan((1 − j)d/δ)
. (5.105)

The expression for a sheet excited from both sides is derived in [170, p. 15] by equivalent-

circuit analysis and equals Zsingle
S (d/2). If the sheet is modeled as infinitely thin, the surface

impedance is composed of two impedances Zsingle
S (d/2) from the lower and upper side that

are in parallel. Consequently, ZS = Zsingle(d/2)/2. The same expression follows from

the field-based surface-impedance derivation in [43, Sec. 7.1] for a thin dielectric sheet by

setting the wavenumber β equal to (1 − j)/δ and by replacing jω(ε − εdiel) in the relation

for the current by σ. The derivation in [171, App. II] for the metal case is analogous to

the one for the thin dielectric sheet. The expansions of ZS for d/δ ≪ 1 and d/δ ≫ 1 are
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[cf. Eqs. (3.45) and (3.47)]

ZS =
1

σd

{
1 +

jd2

6δ2
+ O((d/δ)4)

}
(5.106)

ZS =
1 + j

2δσ

{
1 + 2e−(1+j)d/δ + O(e−2d/δ)

}
. (5.107)

The zero-order terms are the low and high frequency approximations of ZS, whose relative

errors are less than 0.5% for d/δ ≤ 0.17 and d/δ ≥ 6.

5.8.1 Numerical Results

First we consider planar rectangular arrays of X×X loops in free space (X = 1, 2, 4, 8, 16).

Each loop is a thin strip (d = 0.035 mm), whose width b is much smaller than λ0, while

the spacing D and the loop radius a are of the same order as λ0. The currents and the

fields in the EFIE (vector-potential formulation) are width averaged [79, Sec. 2.3.3]. The

basis functions in the MoM are six cosine and two sine functions with radial frequencies

0, 1, . . . , 5 and 1, 2, whose Gram matrix is diagonal with diagonal component 2π for the

constant function and π otherwise. Each loop is excited by a delta gap of 1 V located at

the position ϕ = π [79, Ch. 4].

For specific parameter values, Table 5.2 shows ηrad computed by (5.97) and (5.99), and

by (5.96) through numerical integration of the Poynting vector by a composite Simpson

rule on Mθ ×Mφ points (0 ≤ θ ≤ π, −π ≤ φ ≤ π). Moreover, Prad computed as Pacc −Pdiss

is shown.

Because of an increasing number of far-field lobes for an increasing number of loops, ηrad is

erroneously computed by (5.96) for the larger array sizes (4×4 and larger) and a relatively

low number of integration points (21 × 41). For larger numbers of points ηrad obtained

by (5.96) is closer to the result obtained by (5.97), but even for 81 × 161 points, ηrad is

almost 101% for the array of 16 × 16 loops.

Evaluating Prad for the 16 × 16 array we compute the electric far field in 81 × 161 points.

This matrix of points is much smaller than the moment matrix of the 16 × 16 array,

i.e., 2048 × 2048, used in the evaluation of (5.99). Despite that, the evaluation of ηrad

through (5.97) and (5.99) takes less than 0.02 s for all array sizes, while the evaluation

through (5.96) with numerical integration takes up to 138 s for the 16 × 16 array with
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Table 5.2: ηrad computed by (5.96) with numerical integration (composite Simpson rule on

Mθ ×Mφ points), and by (5.97), (5.99) for planar rectangular arrays of X ×X loops with

a = λ0/6, b/a = 0.06, D/a = 3, σ = 3 × 107 Ω−1m−1 (X = 1, 2, 4, 8, 16).

ηrad [%] from (5.96) ηrad [%] Prad

Loops 21 × 41 41 × 81 81 × 161 from (5.97) [mW]

1 99.7 99.7 99.7 99.8 3.47

2 × 2 99.8 99.8 99.8 99.8 9.35

4 × 4 101.1 99.8 99.8 99.8 34.0

8 × 8 90.5 100.9 99.8 99.8 130

16 × 16 30.0 90.1 100.9 99.8 504

81 × 161 integration points (Matlab 7.02 implementation on a HP PC with Windows XP

Prof. 2002 (SP3), Intel Core (TM)2 Duo CPU, E6550 @2.33 GHz, 1.95 GB RAM). This

difference is explained by the relatively large evaluation time of the far field. Having

computed the current coefficients IMoM, the far field of each loop is expressed as a sum

of Bessel functions [79, App. C]. Both such an analytical approximation and a numerical

computation of the far field of each element are costly compared to the matrix-vector

products in (5.99).

Next, we consider the TSA as specified in Fig. 4.19 with height 30 cm, width 12.5 cm, slot

opening (at the top) 10.5 cm, and tapering opening rate 0.25 cm−1. The TSA is excited

by a voltage source across the slotline gap at 0.5–2 GHz. In the test cases we specify

the thickness d or bound it from below; d is bounded from above by d/λ0 ≪ 1, where

λ0 ≥ 15 cm.

Figure 5.13 shows ηrad for 0.5, 1, and 2 GHz as a function of σ, where we employ the

approximation ZS = (1 + j)/2σδ. For ZS errors of less than 0.5%, the curves apply

to thicknesses d that satisfy d/δ ≥ 6. Note that δ = 1.59 × {10−1, 10−2, 10−3} mm for

σ = 104, 106, 108 Ω−1m−1 at 1 GHz and, hence, ZS = (1+ j)×{0.31, 0.031, 0.0031} Ω with

a relative error of less than 0.5% for d ≥ 9.6×{10−1, 10−2, 10−3} mm. For increasing σ, ηrad

in Fig. 5.13 is approaching 100%. Although the (normalized) magnitudes of the surface

currents at 1 GHz for σ = 104, 106, 108 Ω−1m−1 hardly show differences in our simulations,

the differences in ηrad are clearly noticeable for the different values of σ.

As proposed for lossy waveguides in [172, pp. 44–46] an approximation of Pdiss for ZS
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Figure 5.13: For a single TSA: ηrad as a function of the conductivity σ computed for 0.5,

1, and 2 GHz, ZS = (1 + j)/2σδ.
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Figure 5.14: For a single TSA: ηrad as a function of the frequency for σ =

{105, 106, 107, 108} Ω−1m−1, ZS = (1 + j)/2σδ. First four curves computed with (5.99)

and fifth and sixth curve computed with (5.96), where Prad is computed by a composite

Simpson rule with steps of 5◦.
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small may be obtained from (5.99) with IMoM replaced by IPEC. This approximation is

first-order accurate and, hence, variations of Pacc with respect to the PEC case must be

small. Comparing the curves for the perturbed solution and the “exact” solution at 1 GHz

in Fig. 5.13, we observe that for higher values of σ the two solutions match. For lower

values the perturbed solution underestimates ηrad.

For an aluminum TSA, operating at 1 GHz, with d = 1 mm and σ = 3 × 107 Ω−1m−1,

d/δ = 344 ≫ 1. Thus ZS = (1 + j)/2σδ = 0.0057(1 + j) Ω. Fig. 5.13 shows that

ηrad = 99.1%. Hence Tsys increases by 2.4 K for Tamb = 300 K.

Fig. 5.14 shows ηrad as a function of the frequency for σ = 105, 106, 107, 108 Ω−1m−1. For

σ = 105, 108 Ω−1m−1, ηrad is also computed with (5.96) and for σ = 105, 107 Ω−1m−1 with

FEKO. We observe that ηrad has an oscillatory behavior. which is caused by the frequency

dependence of the surface current. At higher frequencies, ηrad obtained with (5.96) differs

up to 2% from the values obtained with (5.97) and (5.99) and, for σ = 108 Ω−1m−1, ηrad

becomes larger than 100%, which points to inaccuracies in the computed Prad. The results

obtained by FEKO for σ = 107 Ω−1m−1 differ at most 0.8% from our results. Note that

ηrad of a PEC TSA computed by FEKO is 100% as in our simulations. For σ = 105 Ω−1m−1

the difference is less than 3% except near 0.3 GHz, where it runs up to 5%. These large

differences are explained below.
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Figure 5.15: For a single TSA: ηrad for 0.5, 1, 2 GHz as a function of 2σδ for ZS = (1+j)/2σδ

(symbols) and as a function of σd for ZS = 1/σd (solid curves).
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Fig. 5.15 shows ηrad for 0.5, 1, and 2 GHz as a function of 2σδ and σd for ZS = (1+ j)/2σδ

and ZS = 1/σd, respectively, where σ is varied. For higher values of σd and 2σδ the

results match, which follows from Pdiss being independent of Im{ZS} according to (5.103)

and (5.104), and from Re{ZS} being described by σd and 2σδ for the two surface-impedance

expressions. The ηrad differences only occur due to MoM differences. A similar observation

is valid for IE3D, which employs ZS = 1/σd. Dividing the band into subbands and setting

d = 2δ in each subband (at the center frequency), we obtain the asymptotic value of

Re{ZS} for d/δ ≫ 1, i.e., 1/2σδ, which we can employ in the MoM and in the ηrad

computation.

Table 5.3: For a single TSA: ηrad for three different mesh densities and σ = 104, 107 Ω−1m−1

at 1 GHz, ZS = (1 + j)/2σδ.

σ = 104 Ω−1m−1 σ = 107 Ω−1m−1

10 RWGs/λ0 68.0% 98.3%

20 RWGs/λ0 75.0% 98.8%

40 RWGs/λ0 77.7% 99.0%

Table 5.3 shows that for three mesh densities ηrad varies by 10% for σ = 104 Ω−1m−1

and by 0.7% for σ = 107 Ω−1m−1. Thus, the mesh density has to be increased in case

the conductivity is decreased to maintain a constant accuracy of ηrad. This aspect is

explained by writing the EFIE for constant ZS as −Z−1Ei
tan/ZS = (1/ZS − Z−1)JS,

where ZJS = Es
tan(JS). Since the eigenvalues of Z−1 accumulate at zero, they are close

to 1/ZS for larger values of ZS and, hence, the solution of the EFIE is more sensitive

to perturbations. Consequently, for lower σ the mesh needs to be denser or numerical

integration for Prad can be employed. In the described FEKO simulations the mesh is

denser than in our simulations. Taking a coarser FEKO mesh for σ = 105 Ω−1m−1 reduces

the differences with our results in Fig. 5.14 from 3% to 1%.

It is pointed out that, although the above described method guarantees physically mean-

ingful results near ηrad = 100%, the overall accuracy of modeling conductor losses using

impedance boundary conditions remains a challenging problem, in particular when currents

flow across curved surfaces and discontinuities.
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5.9 Conclusions

A framework has been presented to numerically analyze the system sensitivity of active

antenna arrays operating on receive. Additionally, semi-analytical methods have been de-

veloped to describe the noise-coupling effects in active arrays of mutually-coupled antenna

elements; they generalize the noise-coupling models as presented by others and increase

the fundamental understanding of the receiver sensitivity limiting factors.

It has been shown that the receiver can be “noise decoupled” via the active reflection

coefficients of the individual antenna elements. Consequently, and to ease the evaluation

of the LNA noise contribution, the full antenna S-parameter matrix can be replaced by

a diagonal matrix where the diagonal elements are the active reflection coefficients of the

individual array elements. As a result, the total receiver temperature is minimized if

the noise contribution for each receiver channel is minimized, which can be achieved by

noise matching of the LNA to the active reflection coefficient of the corresponding antenna

element (for one specific set of excitation coefficients).

The herein presented “noise-decoupling technique” has been used to represent an antenna

array system by an equivalent single-channel receiver. Accordingly, expressions have been

developed for the beam sensitivity Aeff/Tsys of the antenna system. The model consti-

tutes the parameters: ηcoup (coupling efficiency); ηmis (mismatch efficiency); ηrad (radiation

efficiency); Gpower
Eq (equivalent power gain), and; T LNA

Eq (equivalent amplifier noise temper-

ature). The mismatch efficiency reduces both the system available gain and the receiver

sensitivity, the latter being caused by a noise mismatch. At the input of the antenna sys-

tem (the sky), the radiation efficiency also reduces both the system available gain and the

receiver sensitivity, the latter being caused by an increase in the receiver and thermal noise

temperature.

The aforementioned numerical and semi-analytical methods have been cross-validated and

the consistency of the results was demonstrated. Furthermore, for an experimental setup, it

has been shown that the absolute noise-power level at the receiver output can be accurately

predicted by numerical simulations.

It has been identified that a number of commercial codes are inadequate in computing the

dissipative loss of antennas. In fact, the numerically computed ηrad of antennas may highly

exceed 100%. This occurs when the radiated power is determined through a numerical
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integration of the Poynting vector. The determination of the far field and its numerical

integration do not only lead to a high computational cost, but also to substantial (inte-

gration) errors, in particular for large arrays with rapidly varying far fields. The remedy

is to determine ηrad through the dissipated power Pdiss for which it has been shown that

ηrad cannot become larger than 100%, independent of numerical errors. Moreover, the

data is intrinsically available in a MoM computation and Pdiss can be computed by two

matrix-vector multiplications. Although this method guarantees physically meaningful re-

sults near ηrad = 100%, the overall accuracy of modeling conductor losses using impedance

boundary conditions remains a challenging problem, in particular when currents flow across

curved surfaces and discontinuities.

Numerical examples showed that, if ηrad is expected to be larger than ∼ 95%, the losses

can be computed up to first-order accuracy by simply replacing the actual current by the

current for PEC surfaces.

For a typical aluminum TSA, operating at 1 GHz, with the thickness of the conductor

d = 1 mm and conductivity σ = 3 × 107 Ω−1m−1, it has been shown that ηrad = 99.1%

which means that Tsys increases by 2.4 K for Tamb = 300 K. An increase by 2.4 K may

be significant when the target system temperature is set to 50 K, of which 7–10 K is the

maximum allowed contribution due to the antenna including the connection loss with a

low noise amplifier at the feedpoint. This demonstrates that it is important to determine

this increase in noise temperature accurately.



Chapter 6

Conclusions and Recommendations

This dissertation is a result of five years of research, which was embarked upon in 2004-

2005 at ASTRON, Dwingeloo, the Netherlands. The work has been primarily performed

in collaboration with the Electromagnetics group of the Eindhoven University of Tech-

nology, Eindhoven, the Netherlands, and the Electrical Engineering Department of the

Pennsylvania State University, Pennsylvania.

6.1 Conclusions

As described below, this thesis assesses two major shortcomings of commercially available

software tools in modeling large antenna arrays for use in low-noise actively beamformed

receiving systems.

Firstly, the antennas that are considered in this thesis not only exhibit fine geometrical

features, but are also physically large. These multiscale features have serious repercussions

on the memory requirements and execution times of electromagnetic field solvers. For

integral-equation-based moment-method solvers, the computational burden is further ex-

acerbated when dielectric materials are involved. It is a major challenge to alleviate these

problems in order to account for the performance limiting factors of the presently designed

antenna arrays. For instance, the arrays of electrically interconnected microstrip-fed Ta-

pered Slot Antenna (TSA) elements have, thus far, been designed by analyzing a single (or
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doubly-polarized) antenna element embedded in an infinitely large phased-steered array

antenna. However, to refine the design of the antenna array, it is essential to account for

the finite-array effects and solve the large problem for the actual (nonuniform) excitation

scheme in core, which is beyond the reach of currently available solvers.

Secondly, it is crucial to co-design the antenna in combination with highly integrated

electronics for maximizing the receiver sensitivity of the antenna system in its entirety.

This requires a dedicated system analysis tool which not only accounts for the antenna

array and its external source environment (signal and noise), but also for the low-noise

amplifiers and the beamforming circuit. To date, these types of integrated analyses are

beyond the scope of most general-purpose codes. In particular, the optimal interfacing

reference impedance in most designs is assumed to be the standard 50 Ω, which allows

(weakly-coupled) antenna elements to be designed separately from the electronics, but this

solution is semi-optimal.

To address the above alluded problems, two main topics have been addressed:

• Extending the capability of the method of moments to solve large antenna array

problems.

• Modeling of the receiver sensitivity of actively beamformed antenna array systems.

6.1.1 Conclusions on the Enhanced Moment Method

Various computational techniques have been combined to mitigate the memory overflow

problem and to reduce the execution time of conventional integral-equation-based moment

methods in analyzing large antenna structures (cf. Chapter 4). For instance, instead

of employing a large number of independent low-level basis functions for the current, we

use the Characteristic Basis Function Method (CBFM) to reduce the Degrees of Freedom

(DoF) of the discretized current by employing a relatively small set of physics-based macro-

domain basis functions, each of which is constructed as a fixed combination of low-level

basis functions. The resulting matrix equation can be solved directly without resorting to

iteration. Although this reduces the solve time significantly, the total execution time is

dominated by the generation process of the Characteristic Basis Functions (CBFs) and the

time to construct the reduced matrix.
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The construction of the reduced matrix has been expedited by realizing that the coupling

matrix, which represents the reaction integrals between distant groups of CBFs, is of low

rank. This has been exploited by using the Adaptive Cross Approximation (ACA) algo-

rithm. The numerical efficiency of this iterative algorithm increases with an increasing

separation distance between groups of CBFs, since the rank deficiency of the associated

block matrices then also increases. Reciprocity is exploited to fill only half of the reduced

matrix (approximately). The matrix fill time is reduced even further by exploiting transla-

tion symmetries in the configuration, because many block matrices of the reduced matrix

are identical and can be simply copied in the construction of the reduced matrix. The

latter is possible because of the (quasi-Toeplitz) translation symmetry that exists between

the reaction integrals of group pairs of CBFs. This property can only be exploited if the

array structure is meshed such that it facilitates a one-to-one mapping of identical CBFs

throughout the array lattice. For this purpose, a specific meshing strategy has been pro-

posed, which is nontrivial for the presently considered overlapping domain decomposition

technique, where CBFs between adjacent subdomains partially overlap to model an elec-

trical connection between the subdomains. On the contrary, if one assumes identical sets

of CBFs on all array elements, one needs to employ additional sets of independent junction

basis functions to synthesize a continuous current across common interfaces, which would

unnecessarily increase the size of the matrix equation that needs to be solved.

A novel method has been developed to numerically generate CBFs. First, a small subar-

ray is formed by extracting a single antenna element from the fully meshed array along

with its direct electrically interconnected adjacent elements. Afterwards, this subarray is

excited in various ways to generate a number of distinct current distributions. Then, these

currents are truncated to the mesh of a single element plus a minor extension (a single

cell suffices). In this manner, the supports of the CBFs is reduced, thereby eliminating

undesired edge-truncation effects at the edges of the outer elements. Finally, the CBFs are

reshaped/weighted with the aid of trapezoidal taper functions to ensure that the superpo-

sition of partially overlapping CBFs correctly models a continuous junction current across

the interconnections between antenna elements.

The above enhanced moment-method technique has been implemented on a regular desk-

top computer (or notebook) with 2 GB RAM and a CPU clock of 1.73 GHz (single core);

dielectric-free arrays of 100+ dual-polarized, or 400+ single-polarized TSA element config-

urations can be handled. The maximum problem size that a monolevel CBFM approach

can handle on this hardware platform is of order 7000 CBFs (∼ 100.000 low-level basis
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functions) and is typically solved within a few hours. The exact simulation time and size

of the problem that can be analyzed depends on numerous factors, such as the degree of

translation symmetry that exists between group pairs of CBFs, the geometrical details of

the structure, the number of unique sets of CBFs that need to be generated, the element

type, the total number of CBFs to achieve a certain accuracy level, the sparsity of the

array, the ACA threshold, etc. For instance, for an array of disconnected equally-spaced

dipole antennas, one can compute the radiation patterns and impedance matrix of 800+

dipole antennas within ∼ 15 min, while maintaining a relative error level of a few percent

with respect to a direct MoM solution (for smaller structures).

The scope and range of application of the above EM code has been enlarged by developing

a novel reduced-order model for microstrip-fed TSAs. Even though the microstrip feed

forms an integral part of the radiating antenna elements, one can separately character-

ize the antenna array by EM models, and the feed by circuit models. Afterwards, their

solutions are combined to arrive at the total aggregated antenna model. This approach

results in a fast optimization of the antenna elements using a dielectric-free EM formula-

tion, while the characterization of the feed circuitry remains unaltered. Although earlier

proposed antenna-feed decompositions were found to be inaccurate, we have demonstrated

that a relative difference of less than 20% with the measured impedance characteristics is

achievable.

Increasing the size of the antenna array will ultimately render the problem unmanageable,

even for a CBFM approach. Therefore, to tackle the large arrays of disjoint subarray

problems, a perturbation approach has been developed which exploits the relatively low

coupling between the subarrays. More specifically, the active antenna impedance matrix

of a central subarray has been computed by accounting for the surrounding actively phase-

steered subarrays through the use of periodic boundary conditions whose infinite sum is

truncated in the spatial domain. If the strength of the coupling between tiles increases,

and/or for large scan angles, more tiles need to be included to achieve convergence.

6.1.2 Conclusions on the System Modeling Aspects

A framework has been developed to numerically analyze the system sensitivity of actively

beamformed antenna arrays (cf. Chapter 5). A scattering formulation is used to model

the interaction of transmission-line waves between receiver components. The internal sig-
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nal and noise sources are represented externally at the ports of each microwave device

by a signal-wave vector and a noise-wave correlation matrix, respectively. The antenna

array on receive is modeled by an equivalent circuit model. Both the external nonuniform

brightness temperature distribution of the sky and the incident radiation from (partially

polarized) celestial signal sources are mapped by the element radiation patterns to the out-

put ports of the array elements and are represented by Thévenin sources. The propagation

of transmission-line signal and noise waves throughout the system is analyzed by means

of the connection matrix theory. The so-developed system simulator allows to quantify

the receiver sensitivity of antenna array receiving systems, as well as to determine the

overall system available gain, and to study the noise emitted by the input ports of the

amplifiers which re-enters the system coherently through the mutually-coupled antenna el-

ements (noise-coupling phenomenon). The system simulator includes models for microstrip

transmission lines and compound structures, such as a Wilkinson power combiner, and has

been validated for various cases, among which a practical measurement setup of an actively

beamformed antenna system.

Complementary to the above-described numerical approach, semi-analytical methods have

been developed that generalize the noise-coupling models as presented by others. These

models increase the fundamental understanding of the receiver sensitivity limiting factors.

Furthermore, it was found that, to ease the evaluation of the total receiver noise temper-

ature, one can “noise decouple” the receiver by replacing the fully-populated scattering

matrix of the antenna array by a diagonal matrix, whose diagonal entries are the active

reflection coefficients of the antenna elements. Subsequently, the total noise temperature

is evaluated as a weighted sum of uncorrelated channel noise contributions. The noise per

channel can be minimized by noise matching the amplifiers to the active impedance of the

corresponding antenna element.

The “noise-decoupling technique” described above has been applied to represent the beam-

formed antenna array by an equivalent single-channel receiving system. This simplification

allows the use of the standard IEEE definitions and terms for single-port antennas and to

derive formulas for the system sensitivity of the equivalent single-channel receiving system.

The results obtained by these expressions have been validated by a numerical calculation.

The radiation efficiency of an antenna has a prominent effect on the receiver sensitivity; it

reduces the signal strength in front of the first stage of amplification, but also contributes

to the total system noise temperature. Most commercial EM solvers are inadequate in
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determining the radiation efficiency for low-loss antennas, because the computed efficiencies

often exceed 100%, particularly when the radiation efficiency is computed as a ratio between

the radiated power and the antenna’s accepted power. In conclusion, whenever a surface

current solution is available (as in a MoM approach), it is advised to directly compute

the dissipated power of an antenna. This is numerically efficient and does not lead to

efficiencies larger than 100%.

6.2 Recommendations

The proposed perturbation method for handling large antenna arrays of disjoint subarrays

computes the active impedances of a central subarray only (no patterns), and is therefore

of limited use. To determine all the antenna element patterns and the passive input

impedance matrix of the entire array, it is recommended to employ a multilevel CBFM

approach [173]. This method may ultimately reduce the number of CBFs as few as one

per antenna element (the minimum required number), as a result of which one can solve

much larger problems.

The domain decomposition technique as presented in this thesis is inherently parallelizable

and therefore well-suited to be run on supercomputers or computers equipped with multi-

core CPUs [174]. This may be a desired extension in case the complexity and/or the

problem increases beyond an unmanageable size.

The impact of the imperfect polarization characteristics of an actively beamformed antenna-

array system on the recoverability of the polarization information of the incident field (over

a wide field-of-view) is not well understood. The beam-orthogonality measure introduced

in this dissertation is an initial step towards comprehension. Preliminary results addressing

this issue have been published in [175].

To increase the class of real-world antenna problems that can be solved, it may be worth

extending the macro-basis function approach such that dielectric materials can be handled.

For instance, the fields (or currents) inside a dielectric material may be synthesized by a

superposition of partially overlapping macro-basis functions, each of which represents a

closed-form solution to a canonical problem. This concept is explained in [176] and is still

in an initial research phase.
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To anticipate to the future trends observed in high-frequency electronics, it is recommended

to combine macro-basis function approaches with linear embedding techniques [177]. Such

a combined approach is numerically efficient, generic, and opens up new possibilities in the

analysis and design of packaged active electronics that is highly integrated with waveguiding

and/or antenna structures.

6.3 Impact of the Research

The work as presented in this dissertation has led to a number of journal and conference

papers as well as to the development of the software tool named CAESAR1. An overview

has been given at the EuMC 2008 in Amsterdam (see Appendix F and [163]). The combined

electromagnetic-microwave simulator has been used at ASTRON for a number of aperture-

and focal-plane array related projects. In particular to perform:

• Station configuration and baseline redundancy studies for the LOFAR project (Wim

van Cappellen, Parisa Noorishad et al.) [178].

• The sensitivity modeling of the APERTIF focal-plane array receiving system (Mari-

anna Ivashina, Oleg Iupikov et al.) [179].

• The design and modeling of an EMBRACE precursor called VALARRAY (Rob

Maaskant, Mariya Popova, Elena Redkina et al.) [89].

• The design and experimental characterization of the THACO hot-cold radiometric

measurement facility (Rob Maaskant, Marianna Ivashina et al.) [180].

• The analysis of low-frequency rotating magnetic fields to avoid nulls in the field of

an RFID system (Rob Maaskant et al.) [181].

Furthermore, CAESAR is available to international SKA partners and has specifically been

provided to the Universities of Manchester, Cambridge, and the Yebes Observatory. The

numerical tool has fostered the development of analytical system models and international

collaborations with Professors Per-Simon Kildal and Karl Warnick [157, 158]. As a re-

sult of these collaborations, a new set of IEEE standard definitions of antenna figures of

1CAESAR: Computationally Advanced and Efficient Simulator for ARrays.
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merit for beamforming arrays that accounts for the effect of interactions between antenna

element mutual coupling and receiver noise on system performance has recently been pro-

posed [182], and presented to the IEEE committee of standards during the AP symposium

in Charleston, South Carolina, 2009. It has been shown that these generalized definitions

for multi-port antennas reduce to the IEEE standard definitions for a single-port antenna.



Appendix A

The Inverse of the 2-D Operator A
−1

With reference to Eq. (3.23), the objective is to find the spectral inverse of the 2-D

differential dyadic operator

A =

(
It +

∇t∇t

k2

)
(A.1)

which acts on transverse vectors xt = xx̂ + yŷ, that is,

A · xt = bt (A.2)

where the transverse vector bt is the result. The above system of linear equations can be

solved for xt through the application of the inverse dyadic A
−1

, i.e.,

xt = A
−1

· bt (A.3)

where A
−1

is the operator, yet to be determined.

In the spectral domain, (A.2) transforms into

(
I t −

ktkt

k2

)
· x̆t = b̆t (A.4)

which can be written as

k2x̆t − kt (kt · x̆t) = k2b̆t. (A.5)
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This, in turn, leads to the following set of equations:

k2x̆x − kx (kxx̆x + kyx̆y) = k2b̆x (A.6a)

k2x̆y − ky (kxx̆x + kyx̆y) = k2b̆y (A.6b)

In matrix notation, this is written as

(
1 − k2

x/k
2 −kxky/k

2

−kxky/k
2 1 − k2

y/k
2

)(
x̆x

x̆y

)
=

(
b̆x

b̆y

)
(A.7)

which has the solution
(

x̆x

x̆y

)
=

k2

k2
z

(
1 − k2

y/k
2 kxky/k

2

kxky/k
2 1 − k2

x/k
2

)(
b̆x

b̆y

)
(A.8)

where the inverse of the matrix has been used. The inverse operator A
−1

is found by

expanding the matrix equation (A.8) as

x̆x = k−2
z

(
k2b̆x − ky

[
ky b̆x − kxb̆y

])
(A.9a)

x̆y = k−2
z

(
k2b̆y + kx

[
ky b̆x − kxb̆y

])
(A.9b)

where one recognizes that ky b̆x − kxb̆y = (ẑ × kt) · b̆t. Hence, it is easily observed that

(A.9) can be compactly written as

x̆t = k−2
z

[
k2I t − (ẑ × kt) (ẑ × kt)

]
· b̆t (A.10)

with

A
−1

= k−2
z

[
k2I t − (ẑ × kt) (ẑ × kt)

]
(A.11)

which is the inverse operator of (A.1) in the spectral domain.
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Numerical Integration over

Triangular Supports

The numerical integration of a vector function g (r) over a canonical triangular support

can be performed through multidimensional Gaussian quadrature rules that are exact for

polynomials up to a certain specified order.

r3

r1

r2

(r2 − r3)

(r
1 −

r
3 )

x̂

O

ẑ

g (r)
ŷ

Figure B.1: Vector function g (r) subject to integration over a triangular support.

Let the three corner vertices of a triangle T be denoted by r1, r2 and r3, as in Fig. B.1.

Then, the surface of a triangle can be parameterized in terms of local coordinates (ξ, η),

i.e.,

r(ξ, η) = r3 + ξ (r1 − r3) + η (r2 − r3)

= ξr1 + ηr2 + (1 − ξ − η) r3 (B.1)

for 0 ≤ η ≤ 1 and 0 ≤ ξ ≤ 1 − η.
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The function g (r) is then integrated over the triangular surface with area A as

∫

T

∫
g (r) dS =

∫ 1

0

∫ 1−η

0

g [r(ξ, η)]

....
∂r

∂ξ
× ∂r

∂η

....
2

dξ dη

= ‖(r1 − r3) × (r2 − r3)‖2

∫ 1

0

∫ 1−η

0

g (ξ, η) dξ dη

= 2A

∫ 1

0

∫ 1−η

0

g (ξ, η) dξ dη (B.2)

where the Jacobian equals twice the area of the triangle A. With reference to Eq. (B.2),

the quadrature rule is herein defined as

1

A

∫

T

∫
g (r) dS = 2

∫ 1

0

∫ 1−η

0

g (ξ, η) dξ dη =
P∑

p=1

wp g (ξp, ηp) + O
(
hP
)

(B.3)

where the residual error depends upon the maximum edge length h of the triangle. Fur-

thermore, P − 1 is the order of the quadrature rule, and g (ξp, ηp) for p = 1, 2, . . . , P are

the evaluated function values at P quadrature points which are added through a weighted

sum with weights {wp}.

By introducing ζp = 1− ξp − ηp in (B.1), a symmetric 7-point rule (P = 7) can be derived

that is independent on the ordering of the corner vertices. The results have been adopted

from [183] and are listed in Table B.1 in terms of the simplex coordinates (ξp, ηp, ζp); this

is an integration rule that is exact for quintic polynomials in two dimensions [184].

Table B.1: Quadrature points and associated weights for P = 7.

ξp ηp ζp wp

γ γ γ 0.225000000000000

α1 β1 β1 0.132394152788506

β1 α1 β1 0.132394152788506

β1 β1 α1 0.132394152788506

α2 β2 β2 0.125939180544827

β2 α2 β2 0.125939180544827

β2 β2 α2 0.125939180544827

with

α1 0.059715871789770

β1 0.470142064105115

α2 0.797426985353087

β2 0.101286507323456

γ 0.333333333333333
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The results for a symmetric 3-point integration rule (P = 3) are listed in Table B.2 and

are exact for quadratic polynomials in two dimensions [183].

Table B.2: Quadrature points and associated weights for P = 3.

ξp ηp ζp wp

α β β 0.333333333333333

β α β 0.333333333333333

β β α 0.333333333333333

with
α 0.666666666666667

β 0.166666666666667

Finally, for a 1-point rule (P = 1), one simply obtains

Table B.3: Quadrature points and associated weights for P = 1.

ξp ηp ζp wp

α α α 1.000000000000000
with α 0.333333333333333

which is, obviously, only accurate if the function g is virtually linear over the facet of the

triangle. Note that the above quadrature rule is known as the midpoint integration rule,

i.e.,

1

A

∫

T

∫
g(r) dS ≈ g(rc), (B.4)

where g(rc) is simply the value of g evaluated at the centroid of the triangle.
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Appendix C

Surface Impedance Integral

In the process of computing the moment matrix elements, which specifically pertains to the

case of a discretized EFIE and current sheet S with a non-zero surface impedance ZS (r),

it is necessary to evaluate integrals of the type [see Eq. (3.76)]

I±
mn = Z±

S

∫

T±
m

∫
fn · fm dS (C.1)

where Z±
S is assumed constant over the corresponding triangular support T±

m of the testing

function fm. It should be noted that fn · fm = 0 in case the supports of fn and fm are

non-overlapping. Hence, we consider the case that at least one of the triangular supports

of fn is in common with one of those in fm. A typical situation is shown in Fig. C.1,

where the triangular overlapping area T±
m is subject to the evaluation of (C.1).

r1

r3 r2

fm

ρ±
n

T±
m

ρ±
m

fn

Figure C.1: The case that fm and fn have one triangular support in common.
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We need to evaluate the two-dimensional integral

∫

T±
m

∫
fn · fm dS = 2A

∫ 1

0

∫ 1−η

0

fn · fm dξ dη (C.2)

where (B.2) has been used in the mapping to the local (simplex) coordinates (ξ, η). The

position vector is parameterized through the relation [cf. Eq. (B.1)]

r(ξ, η) = ξr1 + ηr2 + (1 − ξ − η) r3 (C.3)

for 0 ≤ η ≤ 1 and 0 ≤ ξ ≤ 1 − η. Note that, on account of (3.70), one can write that

fn · fm = ± ℓn

2A±
n

ρ±
n · ℓm

2A±
m

ρ±
m = ±ℓnℓm

4A2
(r − rn) · (r − rm)

= ±ℓnℓm

4A2

[
(r · r) − (r · rm) − (rn · r) + (rn · rm)

]
(C.4)

where A is the area of the triangle, and rm and rn, for m,n = 1, 2, 3, are the corresponding

corner vertices of the RWGs fm and fn, respectively1. Also, the plus or minus signs should

be chosen in accordance with the directions of ρ±
n and ρ±

n . The substitution of (C.4) in

(C.2) yields,

∫

T±
m

∫
fn · fm dS = ±ℓnℓm

2A

∫ 1

0

∫ 1−η

0

[
(r · r) − (r · rm) − (rn · r) + (rn · rm)

]
dξ dη (C.5)

where we will express every term in the integrand on the right-hand-side of (C.5) in local

coordinates. With the aid of (C.3), the first term gives

(r · r) = ξ2‖r1‖2
2 + 2ξη (r1 · r2) + 2ξ (1 − ξ − η) (r1 · r3)

+ η2‖r2‖2
2 + 2η (1 − ξ − η) (r2 · r3) + (1 − ξ − η)2 ‖r3‖2

2 (C.6)

so that

∫ 1

0

∫ 1−η

0

(r · r) dξ dη =
1

12

[
‖r1‖2

2 + ‖r2‖2
2 + ‖r3‖2

2 + (r1 · r2) + (r1 · r3) + (r2 · r3)
]

(C.7)

where we made use of the following integrals

1Note that, in Fig. C.1, we have chosen for rm = r3 and rn = r2.
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∫ 1

0

∫ 1−η

0

η dξ dη =
1

6
(C.8a)

∫ 1

0

∫ 1−η

0

ξ dξ dη =
1

6
(C.8b)

∫ 1

0

∫ 1−η

0

ξ η dξ dη =
1

24
(C.8c)

∫ 1

0

∫ 1−η

0

η2 dξ dη =
1

12
(C.8d)

∫ 1

0

∫ 1−η

0

ξ2 dξ dη =
1

12
(C.8e)

∫ 1

0

∫ 1−η

0

η(1 − ξ − η) dξ dη =
1

24
(C.9a)

∫ 1

0

∫ 1−η

0

ξ(1 − ξ − η) dξ dη =
1

24
(C.9b)

∫ 1

0

∫ 1−η

0

(1 − ξ − η) dξ dη =
1

6
(C.9c)

∫ 1

0

∫ 1−η

0

(1 − ξ − η)2 dξ dη =
1

12
(C.9d)

Furthermore, if we use that r1 + r2 + r3 = 3rc, where rc is the centroid of the triangle,

Eq. (C.7) can be rewritten as

∫ 1

0

∫ 1−η

0

(r · r) dξ dη =
9

12
‖rc‖2

2 −
1

12

[
(r1 · r2) + (r1 · r3) + (r2 · r3)

]
. (C.10)

Following the above approach, the remaining terms in (C.5) are computed as

∫ 1

0

∫ 1−η

0

(rn · r) dξ dη =
1

2
(rn · rc) (C.11)

∫ 1

0

∫ 1−η

0

(rm · r) dξ dη =
1

2
(rm · rc) (C.12)

∫ 1

0

∫ 1−η

0

(rn · rm) dξ dη =
1

2
(rn · rm) (C.13)

Upon combining the above results, the surface integration in (C.2) is analytically computed

as
∫

T±
m

∫
fn · fm dS = ±ℓnℓm

2A

[ 9

12
‖rc‖2

2 −
1

12
[(r1 · r2) + (r1 · r3) + (r2 · r3)]

− 1

2
(rn · rc) −

1

2
(rm · rc) +

1

2
(rn · rm)

]
(C.14)

with the specific choice rm = r3 and rn = r2 in Fig. C.1.
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Appendix D

Adaptive Integration Rule

As the separation distance d between a pair of RWGs increases, the order of the quadrature

rule, used to compute the mutual reaction Zmn, can be decreased such that the total number

of correctly computed most significant digits in Zmn remains constant as a function of

d. This so-called adaptive integration rule reduces the total matrix fill time and avoids

computing the smaller matrix elements too accurately with respect to those having a larger

magnitude. Figure D.1(a) illustrates an identical pair of RWGs of typical dimensions whose
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Figure D.1: Mutual reaction Zmn as a function of the H-plane separation distance d in

wavelengths between a pair of identical RWG basis functions. (a) Reactive part of Zmn for

0 < d ≤ 0.1λ0. (b) Mutual reaction Zmn for λ0 < d ≤ 10λ0
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mutual reaction Zmn is computed for 0 < d ≤ 0.1λ0 with the aid of quadrature rules of

several different orders. The reference solution (solid line) corresponds to the singularity

subtraction technique, herein applied to observation points out of the plane of the source

triangles (w0 �= 0), along with a numerical integration scheme employing P = 7 quadrature

points per triangle.

The calculation of the self term Z11, for which w0 = 0, has been performed for P = 7

quadrature points per triangle, and gives Z11 = 0.00078104817011 − 0.23429503364064j.

When the residual integral term is computed using only P = 1 quadrature point per

triangle, the result is Z11 = 0.00078104817011−0.23429503364064j, where the correctly

computed most significant digits are bold faceted. Clearly, 4 digits are still correctly

computed because the residual function is smooth over the support of the triangle (two

continuous derivatives).

It is observed in Table D.1 that the accuracy of the computed mutual reactance Im{Zmn}
increases with increasing P . Moreover, the singularity subtraction technique should be

avoided when d � λ0, since a fully numerical scheme with P = 7 yields identical results.

Table D.1: Numerically computed reaction integral between two RWG basis functions

using the singularity subtraction method. The reference case (2nd column) is computed

for P = 7 quadrature points/triangle and has been compared to the case P = 1 (3rd

column). The bold-faceted fonts indicate the correctly computed digits with respect to the

reference case.

d [λ0] Sing. Sub. Method, P = 7 points/triangle Sing. Sub. Method, P = 1 point/triangle

0.00100000 0.00078104197314 - 0.22917607455055j 0.00078610727973 - 0.32521267439367j

0.00215443 0.00078101940656 - 0.20886104043088j 0.00078608463093 - 0.30248938488623j

0.00464159 0.00078091466634 - 0.17345422793983j 0.00078597950910 - 0.25825512349353j

0.01000000 0.00078042860351 - 0.12158942069287j 0.00078549167521 - 0.18308222229693j

0.02154435 0.00077817461474 - 0.06253254417039j 0.00078322947139 - 0.08942602720982j

0.04641589 0.00076775799789 - 0.01913502385877j 0.00077277484099 - 0.02404808744107j

0.10000000 0.00072037859484 - 0.00308045802141j 0.00072522150358 - 0.00339130280859j

0.21544347 0.00052044833380 - 0.00052562278952j 0.00052453611188 - 0.00053621429395j

0.46415888 -0.00005840301341 - 0.00037831517370j -0.00005686352945 - 0.00038153307444j

1.00000000 0.00003079590323 + 0.00018340252761j 0.00003030367453 + 0.00018273633513j

Table D.2 lists the results for the numerical integration rules P = 7, and P = 3.
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Table D.2: Numerically computed reaction integral between two RWG basis functions for

P = 7 quadrature points/triangle (2nd column), and P = 3 (3rd column). The bold-

faceted fonts indicate the correctly computed digits with respect to the reference case (cf.

Table D.1).

d [λ0] P = 7 quadrature points/triangle P = 3 quadrature points/triangle

0.00100000 0.00078104197314 - 1.27973459836940j 0.00078073471895 - 2.71949372527937j

0.00215443 0.00078101940656 - 0.59718950042474j 0.00078071215641 - 1.21026808963206j

0.00464159 0.00078091466634 - 0.28312800729213j 0.00078060743498 - 0.51221968262360j

0.01000000 0.00078042860351 - 0.13911512019398j 0.00078012145935 - 0.19716078784996j

0.02154435 0.00077817461474 - 0.06345978538627j 0.00077786787506 - 0.06809348230503j

0.04641589 0.00076775799789 - 0.01915352017020j 0.00076745313051 - 0.01907922819892j

0.10000000 0.00072037859484 - 0.00308067413149j 0.00072008230759 - 0.00309375009953j

0.21544347 0.00052044833380 - 0.00052562320320j 0.00052018957161 - 0.00052699714509j

0.46415888 -0.00005840301341 - 0.00037831517233j -0.00005853025482 - 0.00037835121929j

1.00000000 0.00003079590323 + 0.00018340252764j 0.00003081508513 + 0.00018340497534j

1.29154967 0.00013394257461 - 0.00005491635234j 0.00013394096463 - 0.00005492715183j

1.66810054 -0.00010286663212 - 0.00004542236708j -0.00010287023830 - 0.00004541720557j

2.15443469 0.00007552407900 + 0.00004365892383j 0.00007552638941 + 0.00004365605522j

2.78255940 -0.00006528696198 + 0.00001761845065j -0.00006528665279 + 0.00001762060343j

3.59381366 -0.00003108346068 - 0.00004217829633j -0.00003108456823 - 0.00004217763151j

4.64158883 -0.00003241050330 - 0.00002442645284j -0.00003241101071 - 0.00002442587361j

5.99484250 -0.00000015901707 + 0.00003143059463j -0.00000015855790 + 0.00003143062323j

7.74263683 -0.00002433192286 - 0.00000061072693j -0.00002433194195 - 0.00000061045236j

10.00000000 0.00000030887338 + 0.00001884444768j 0.00000030903815 + 0.00001884445065j

Finally, table D.3 lists the results for the numerical integration rules P = 1.
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Table D.3: Numerically computed reaction integral between two RWG basis functions for

the integration rule P = 1 quadrature points/triangle. The bold-faceted fonts indicate the

correctly computed digits with respect to the reference case (cf. Table D.1).

d [λ0] P = 1 quadrature point/triangle

0.00100000 0.00078610727973 - 8.24510869446270j

0.00215443 0.00078608463093 - 3.69063644440655j

0.00464159 0.00078597950910 - 1.57809944632013j

0.01000000 0.00078549167521 - 0.60461395780803j

0.02154435 0.00078322947139 - 0.17878934481940j

0.04641589 0.00077277484099 - 0.03304734678172j

0.10000000 0.00072522150358 - 0.00376708089761j

0.21544347 0.00052453611188 - 0.00054160777267j

0.46415888 -0.00005686352945 - 0.00037977735184j

1.00000000 0.00003030367453 + 0.00018361969457j

1.29154967 0.00013412228796 - 0.00005464231270j

1.66810054 -0.00010281406287 - 0.00004561356462j

2.15443469 0.00007547641059 + 0.00004376853317j

2.78255940 -0.00006531172440 + 0.00001755096314j

3.59381366 -0.00003105052632 - 0.00004220621965j

4.64158883 -0.00003239601862 - 0.00002444794161j

5.99484250 -0.00000017455333 + 0.00003143115045j

7.74263683 -0.00002433198351 - 0.00000062005029j

10.00000000 0.00000030328733 + 0.00001884467602j

From the above it is concluded that, in order to compute the moment matrix elements

with at least 4–6 digits accuracy, which is generally considered (more than) adequate, it

suffices to select a numerical integration scheme with P = 7 when d < λ0/10, P = 3 when

λ0/10 ≤ d < λ0/5, and P = 1 when d ≥ λ0/5.



Appendix E

On the Voltage-Gap Source Model in

Moment Methods

In method-of-moments formulations one can use distributed or concentrated sources to

model a voltage source. The term “gap” is often used to refer to the region of the voltage

source1. To realize a concentrated source, the limiting case is taken where the dimension of

the gap tends to zero. Because the incident electric field as a function of position becomes

a delta function, this model is mostly referred to as the delta-gap source model.

The use of the term “gap” maybe misleading. One can think that the gap consists of air

(or vacuum). This confusion can give rise to questions like: ”Is a base-driven monopole

electrically interconnected to the ground plane where a voltage-gap is located?”. To avoid

misunderstandings, we will deliberately avoid the term “delta gap” when referring to a

voltage source. In this respect, the voltage, current and field relations as proposed in [81]

for a Rao-Wilton-Glisson (RWG) source model may also lead to confusion, although the

port model appears to yield consistent results. In fact, the formulation seems ambiguous

because it is unclear whether a total E-field is assumed to exist in a gap of infinitesimal

width, or that an incident E-field is impressed in a short-circuited conductor.

To realize a voltage source, one can choose a suitable magnetic current distribution to

1This appendix is partly based on:

[38]: R. Maaskant and M. J. Arts, “Reconsidering the voltage-gap source model used in moment methods,” IEEE Antennas

Propag. Mag., accepted for publication.
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enclose the gap. This ”frill” current should be distributed such that it generates an im-

pressed electric field which, in combination with the scattered electric field, gives rise to

the correct total electric field (and voltage) across the gap. This will lead to the correct gap

capacitance and input impedance in general. Basically, the impressed electric field (source

field) should incorporate the effect of the ”gap” from the start. In [185] one takes the static

solution for the electric field across the gap as an excitation field. Whenever possible, we

prefer to model the voltage source as an ideal voltage source of zero internal impedance.

Consequently, a possible physical gap must remain part of the actual structure. Similarly,

we may need to model a transmission-line section to feed an antenna, but we will excite

the structure using an ideal voltage source of zero internal impedance.

When a concentrated voltage source is used, the incident field can be chosen such that all

the elements of the voltage excitation vector are zero, except one. Furthermore, because

one is usually interested in relative quantities, such as the port voltage-current ratio (input

impedance of the antenna), gain patterns, etc., the non-zero entry can be set to unity

because the correct sign and amplitude of the corresponding current should follow from

the moment-method solution [186, p. 130].

As we employ voltage-source excitations, the input-admittance matrix can be computed

directly, i.e., without having to construct and invert an input impedance matrix first. The

antenna input admittance can be computed through a stationary formula whose solution is

known to be second-order accurate. Basically, the admittance is then determined through

an integral formula involving the solution for the current. We will derive a stationary

formula for the mutual admittance between two accessible ports through the Lorentz reci-

procity theorem. It turns out that the formula is identical to Eq. (6-12) in [32, p. 109],

except for a minus sign. This is an important observation because the formula may be used

as a reference formula in various numerical test cases, or in semi-analytical approaches.

Furthermore, instead of setting one entry of the voltage excitation vector to unity, we will

relate this entry to the actual applied voltage, while assuring that the voltage-current and

field relations are consistent with standard network models. More specifically, a voltage-

source model for the edge-based RWG basis function is derived, whose use in the moment

method approach is shown to yield the correct formula for the (antenna) input admittance;

the latter being validated through the reaction concept.
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E.1 The Voltage-Source Model

Fig. E.1(a) shows the standard network convention that the current Iant enters a load

(dipole antenna) as a result of exciting the antenna with a voltage source of strength

V ant, that is, the current exits the plus terminal of the voltage source (notice the different

convention in [81]), so that Zant = V ant/Iant, Iant representing the total current through

the source (vectors indicate positive directions).

+

−
V ant

J

Iant

M

−

+

E

V ant
S

τ̂

(a) (b)

Figure E.1: (a) Standard network conventions for V ant and Iant, such that Zant = V ant/Iant.

(b) Voltage source model realized using a magnetic frill current M encircling a PEC

cylinder.

An ideal voltage source can be realized by letting a magnetic frill current M encircle a

perfectly conducting (PEC) cylinder as depicted in Fig. E.1(b). To determine the voltage

between the end caps of the cylinder, we define a surface S with boundary ∂S as indicated

in Fig. E.1. Then, from Maxwell’s equations,
∮

∂S

E · τ̂ dℓ = −
∫

S

∫
(jωB + M ) · n̂ dS (E.1)
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where, in view of the contour integration in the τ̂ direction, the unit normal n̂ to surface

S is pointing into the paper. Because of the boundary condition that E = 0 inside the

PEC cylinder, the integral over the external total E-field yields the antenna voltage, i.e.,

V ant =

∫ −

+

E · τ̂ dℓ = −
∫

S

∫
M · n̂ dS (E.2)

where S is assumed to be small enough such that the total magnetic flux through S is solely

determined by the concentrated source distribution M . The source distribution depends

on the specific geometrical details of the feed region [185].

E.2 The Mutual Admittance Between Two Antennas

We will derive a stationary formula for the mutual port admittance between two anten-

nas through the application of the Lorentz reciprocity theorem. Afterwards, it will be

demonstrated that this admittance formula reduces to the standard definition of the input

admittance using a moment method approach.

The mutual admittance Y ant
21 between two antennas is defined as

Y ant
21 =

Iant
2

V ant
1

∣∣∣∣
V ant
2 =0

(E.3)

where antenna 1 is excited by a voltage source with amplitude V ant
1 , and where the short-

circuited port current Iant
2 is measured at antenna 2.

To derive a stationary formula for Y ant
21 , the antenna structure as depicted in Fig. E.2 is

assumed to have the two accessible ports 1 and 2. The pair of perfectly conducting leads

(dark gray) are contained in the domain D1. The radiating antenna structure occupies a

volume D2 with complex-valued constitutive parameters {μ0, ε}. The background medium

is vacuum.

In situation a we excite the short-circuited port 1 by a magnetic-frill current M 1. Port

2 is also short-circuited, but not excited. The resultant electromagnetic fields, which are

generated throughout the entire space, are denoted by {Ea,Ha}.

Henceforth, we will treat the antenna problem as a scattering problem. For scattering

problems, we express the total electric field as a superposition of the incident and scattered
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{Ea, Ha}
{μ0, ε0}

D2 D3

D1

{μ0, ε0}
1 2M 1

J1 {μ0, ε}

Figure E.2: Situation a; the generated electromagnetic fields {Ea,Ha} in case antenna 1

is excited by a magnetic frill current M 1.

fields, i.e., Ea = Ei,a(M 1) + Es,a(J1). After the application of the volume equivalence

principle, the incident electric field Ei,a is generated by the impressed magnetic-frill current

M 1 in vacuum, but in the absence of the equivalent electric current J1. Likewise; the

scattered field Es,a is generated by the impressed electric current J1 in vacuum, but in the

absence of M 1. Similarly, the total magnetic field is written as Ha = H i,a(M 1)+Hs,a(J1).

In situation b, we only consider the impressed magnetic-frill source M 2 at the location of

port 2 (in vacuum), as illustrated in Fig. E.3. In the absence of electric current sources,

M 2

Ei,b(M 2)

Figure E.3: Incident electric field as generated by M 2 at the location of port 2, in vacuum.

the total electromagnetic fields in situation b are: Eb = Ei,b(M 2) and Hb = H i,b(M 2).

To determine the mutual admittance Y ant
21 , we make use of the Lorentz reciprocity theorem,

which is given as [30, p. 117]

∫∫

D1∪D2

∫
[Ea · J2 − Ha · M 2] dV =

∫∫

D1∪D2

∫ [
Eb · J1 − Hb · M 1

]
dV (E.4)

where the volume D1 ∪D2 encloses the entire antenna system (all sources). There are only
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magnetic sources in situation b, so that J2 = 0, and (E.4) reduces to

−
∫∫

V2

∫
Ha · M 2 dV =

∫∫

D1∪D2

∫ [
Eb · J1 − Hb · M 1

]
dV (E.5)

where V2 is the source volume in situation b, i.e., the support of M 2. For simplicity, we

assume that M 2 is a current filament encircling the cylindrical lead at port 2, and this

mimics, within D1, an ideal voltage-source of zero-internal impedance in accordance with

the voltage-source model in Fig. E.1(b). The radius of the magnetic current loop is assumed

to be electrically small, so that the voltage source alone has a negligible radiation loss in

free space; it primarily generates an Eb = Ei,b field, while Hb = H i,b ≈ 0, so that (E.5)

reduces to

−
∫∫

V2

∫
Ha · M 2 dV =

∫∫

V1

∫
Ei,b · J1 dV (E.6)

where V1 constitutes the volumetric support of J1.

The left-hand side of (E.6) can be evaluated with the aid of Fig. E.4. From the quasi-static

Ha

S2M 2

J1

n̂τ̂

Figure E.4: The generated magnetic field Ha in situation a, which is “tested” along the

magnetic current M 2 in situation b, at port 2.

field assumptions for electrically small magnetic-current sources, we have that H i,a(M 1) ≈
0, so that Ha = H i,a(M 1)+Hs,a(J1) ≈ Hs,a(J1). Furthermore, if M 2 closely surrounds

the cylindrical conductor surface at port 2, the total magnetic field Ha is primarily de-

termined by the short-circuited current J1 through port 2 (displacement current is zero

inside a PEC conductor). The volume integral on the left-hand side of (E.6) can therefore

be evaluated as a surface integral times a contour integral (body of revolution approach)

as

−
∫∫

V2

∫
Ha · M 2 dV = −

∫

S2

∫
M 2 · n̂ dS

︸ ︷︷ ︸
V ant
2

∮
Ha · τ̂ dℓ

︸ ︷︷ ︸
Iant
2

= V ant
2 Iant

2 (E.7)
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where τ̂ has been chosen in the direction of Ha, and n̂ should be chosen accordingly, i.e.,

in the same direction (cf. Fig. E.4 for the case that τ̂ is normal to S). Also, we made use

of (E.2) and the observation that the total short-circuited current through port 2 is Iant
2 .

Substituting (E.7) in (E.6), and dropping the superscript b, yields

V ant
2 Iant

2 =

∫∫

V1

∫
Ei(M 2) · J1 dV. (E.8)

Note that Iant
2 represents the total current through voltage source 2 in case element 1 is

excited by a voltage source, while voltage source 2 is switched off (zero amplitude).

Next to the situations a and b, we could excite port 2 by a magnetic current M 2 and

subsequently compute the induced current J2 from a moment-method approach. If only

PEC materials are considered, the current resides at the surface of the conductor, and the

boundary-integral equation for the tangential components of the electric field across the

PEC surface S1 reads Ei
tan(M 2) = −Es

tan(J2). Substituting this in (E.8), yields

V ant
2 Iant

2 = −
∫

S1

∫
Es(J2) · J1 dS. (E.9)

This result can be divided by V ant
1 V ant

2 to arrive at Y ant
21 = Iant

2 /V ant
1 . Note that Iant

2 is

already a short-circuited current, and that the surface currents J1 and J2 are due to the

voltage excitations V ant
1 at port 1, and V ant

2 at port 2, respectively, while the other port is

then short circuited. In conclusion, the mutual admittance can be computed as

Y ant
21 =

−1

V ant
1 V ant

2

∫

S1

∫
Es(J2) · J1 dS. (E.10)

Note that (E.10) is identical to Eq. (6-12) in [32, p. 109], except for the minus sign. In this

respect, it is regrettable that a minus sign error occurred in Eq. (27) of [87]. It is worth

mentioning that Eq. (E.10) has also been used in [31] to compute the mutual admittance

between slot antennas through an aperture field integration, although this is a different

problem.
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E.2.1 Validation of the Mutual Admittance Formula

We will demonstrate that the minus sign in (E.10) is correct for a single antenna. From (E.10),

the self admittance is computed as

Y ant =
−1

(V ant)2

∫

S

∫
Es(JS) · JS dS (E.11)

where J1 = J2 = JS denotes the surface current. The voltage source can be replaced by

a current source whenever it has an amplitude which is equal to the port current in case it

would have been excited by a voltage source. Then, the induced port voltage would equal

the original source voltage. The current must therefore have an amplitude Iant = V ant/Zant.

Substituting this in (E.11) gives

Zant =
−1

(Iant)2

∫

S

∫
Es(JS) · JS dS (E.12)

which is the correct stationary formula of the antenna input impedance [30, p. 348], which

confirms that the incident field Ei must point into the positively defined direction of JS

to yield a positive real part of the impedance.

E.3 The RWG Voltage-Source Model

It is convenient to synthesize a surface current by employing a set of RWG basis functions as

they can conform to arbitrarily shaped geometries. We will develop a voltage-source model

for an edge-based basis function, more specifically, for a RWG basis function. Following the

x̂

JS

ℓp
+− V ant

Ei

x = 0 x = d

Figure E.5: Voltage-current and field definitions for a RWG voltage generator.

preceding section, we choose Ei to point in the positive current direction. The uniformly
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distributed incident electric field Ei = (V ant/d) x̂ is assumed to exist for 0 ≤ x ≤ d,

and resides on the conductor surface only. Although this artificial voltage source (non-

physical) barely resembles the incident field as generated by a magnetic-frill current inside

the conductor, it is known to yield accurate solutions for a large number of problems.

When the antenna is excited by an incident field Ei, the current will distribute itself

such that the scattered field Es
tan cancels Ei

tan in the port region (= support region of Ei).

Outside the port region, Es
tan must vanish across the remaining part of the PEC conductor,

and outside the source field (where Ei = 0), we have that the total field E = Es(JS).

The total electric field E is directed from the plus to minus terminal of the voltage source

(see Fig. E.1), so that V ant in Fig. E.5 can be expressed as

V ant = −
∫ d

0

E · x̂ dx = −
∫ d

0

Es(JS) · x̂ dx =

∫ d

0

Ei · x̂ dx (E.13)

where the last equality is obtained by assuming that Es(JS) = −Ei just “above” the

RWG basis functions in the port region.

The last step is to prove that the voltage-generator model as proposed in Fig. E.5 leads to

the correct input admittance of an antenna. To perform this check in a moment method

context, let the electric-field integral equation (EFIE) for a PEC surface S be written as

Es
tan(JS) = −Ei

tan for r ∈ S, (E.14)

and let {fn}N
n=1 be the N RWG expansion functions for the surface current JS. Then,

by testing (E.14) through Galerkin’s approach using the symmetric product2 〈a, b〉 =∫
a · b dS, the following linear system of equations is obtained:

N∑

n=1

ZmnIn = Vm for m = 1, 2, . . . , N (E.15)

with

Zmn = 〈Es(fn),fm〉 =

∫

Sm

∫
Es(fn) · fm dS, (E.16a)

Vm = −〈Ei,fm〉 = −
∫

Sm

∫
Ei · fm dS. (E.16b)

2In case the test functions would be complex-valued functions, an identical discretization would be

obtained if the EFIE is tested through an Hermitian inner product, but then the test functions need to be

the conjugates of the basis functions (a non-Galerkin approach).



242 On the Voltage-Gap Source Model in Moment Methods

The key step herein is to express the moment matrix elements in terms of reactions, since

the quantity we are interested in, the self-admittance of an antenna, has also been expressed

in terms of a reaction. Since the solution for the current is known in terms of RWGs, we

can substitute the RWG expansion JS =
∑N

n=1 Infn in (E.11) to obtain

Y ant =
−1

(V ant)2

N∑

m=1

N∑

n=1

Im

⎡
⎣
∫

S

∫
Es(fn) · fm dS

⎤
⎦ In

=
−1

(V ant)2 (I)T
ZI (E.17)

where I = [I1, . . . , IN ]T is the coefficient expansion vector for the RWGs, and where the

reactions between RWG basis functions are recognized as the entries of moment matrix

Z. Since I is computed through the excitation vector V as I = Z−1V, Eq. (E.17) readily

simplifies to

Y ant =
−1

(V ant)2 (I)T
V. (E.18)

To ease the numerical computations, it is convenient to reduce the support of Ei to an

infinitely small region by letting d → 0 while maintaining its potential difference (voltage).

A possible solution to (E.13) is

Ei = V antδ(r − rℓ)x̂ (E.19)

where the field has been concentrated along a line of length ℓ crossing the conductor. If

the delta-field-distribution coincides with a single common edge of a RWG basis function,

the excitation vector V has only one non-zero element. Let Vm in (E.16b) for m = p denote

this non-zero element (the port RWG). From (E.16b) and (E.19), we then have that

Vp = −V ant

∫∫ (
x̂ · f p

)
δ(r − rgap) dS = −V antℓp (E.20)

where
(
x̂ · f p

)
= 1 (see [26]), and ℓp denotes the edge length of the port (the common-edge

length of the pth RWG basis function). The total current through the port is defined as

Iant = Ipℓp. Substituting this result, along with (E.20), in (E.18), yields

Y ant =
1

(V ant)2

Iant

ℓp

V antℓp =
Iant

V ant
(E.21)

which is the correct formula for the antenna input admittance, and this validates the port

model in Fig. E.5.



Appendix F

CAESAR Simulation Software

The numerical techniques as presented in this thesis have resulted in the development of a

combined electromagnetic-microwave simulation tool. The capabilities of this solver opens

up new horizons in understanding the receiver sensitivity limiting factors of actively beam-

formed antenna array systems. A general overview of this software has been given at the

EuMC 2008 in Amsterdam, and has been included on the following pages for information.

The pertaining reference is [163]:

R. Maaskant, A. G. Tijhuis, R. Mittra, M. V. Ivashina, W. A. van Cappellen, and M. J. Arts,

“Hybridization of efficient modeling techniques for fast analysis of large-scale antenna struc-

tures in the context of the Square Kilometre Array project,” in Proc. 38th European

Microwave Conference, Amsterdam, Oct. 2008, pp. 837-840.
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Abstract— We provide an overview of the modeling techniques
that have been combined to solve large-scale antenna problems
within the framework of the Square Kilometre Array (SKA)
project. These numerically efficient techniques have been inte-
grated into a software tool named CAESAR 1, which enables us
to solve large antenna problems, both at antenna, and at system
level. The latter is essential in determining the receiver sensitivity
of the entire instrument, which is the main figure of merit. In
the present paper we summarize how the conventional method of
moments (MoM) has been enhanced using a hybridization of the
Characteristic Basis Function Method (CBFM) in conjunction
with a number of acceleration techniques so as to greatly reduce
the overall execution time without compromising the accuracy.
Representative examples are shown of realistically large and
complex antenna systems that have been examined only recently.

I. INTRODUCTION

The Square Kilometer Array (SKA) project is a world-wide

project to design and construct a revolutionary new radio tele-

scope with a collecting area of order 1 million square meters

in the wavelength range from 3 m to 1 cm [1]–[3]. ASTRON2

conducts the development of the aperture array concept, both

by designing and examining small-scale prototype arrays,

thereby demonstrating the feasibility of the instrument and

revealing the potentials of various cost-effective array tech-

nologies. Concurrently, dedicated simulation software is being

developed to facilitate this research phase in an accurate and

time-efficient manner [4].

The antenna characterization is carried out with the aid

of the method of moments (MoM), which discretizes a con-

tinuous integral equation for the unknown surface/volume

current density by employing an equally large set of basis and

test functions. Typically, a subsectional basis is employed to

locally represent/expand the unknown current on the domain

1Computationally Advanced and Efficient Simulator for ARrays
2Netherlands institute for radio astronomy

that supports this vector basis function, as well as to test

it using identical vector functions (Galerkin’s method). The

primary advantage of employing subsectional basis functions

is that they can be chosen to conform to arbitrarily shaped ge-

ometries. The penalty, however, is that the size of the moment

matrix becomes excessively large when a fine discretization

of the corresponding integral equation for electrically large

problems is required to accurately represent this current.

At present, roughly two classes of solution strategies can

be identified to solve the resultant large matrix equation,

either based on: (i) iterative techniques; or, (ii) iteration-free

techniques. Iteration-free approaches become particularly at-

tractive when a (direct) solution is required for a large number

of excitations (MRHS). For instance, for antenna type of

problems, N linearly independent array excitations need to be

solved to determine the full N -port antenna impedance matrix;

hence, an iteration-free method would require N matrix-vector

products, whereas a standard iterative (Krylov subspace) solver

may then require ∼ N2 matrix-vector products. Furthermore,

by using an iteration-free approach, convergence problems are

avoided that are typically associated to iterative solvers.

Iteration-free techniques rely on a strong compression of

the moment matrix by employing numerically generated large-

domain basis functions so that the resultant reduced matrix

equation can be solved directly, e.g., by means of a stan-

dard LU decomposition technique. In the Characteristic Basis

Function Method (CBFM), the corresponding macro-domain

basis functions (CBFs) conform to arbitrarily shaped geome-

tries since these CBFs are constructed as fixed combinations

(aggregations) of subsectional basis functions [5]. Hence, a

large degree of geometrical flexibility is maintained when

employing a macro basis which in itself is derived from a

subsectional basis. In addition, existing computer codes can

be reused/upgraded by only minor modifications. Techniques

similar to CBFM are, e.g., the eigencurrent approach [6] and
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the synthetic functions approach [7].

Throughout this paper we summarize a number of numeri-

cally efficient techniques that have been used to solve a variety

of SKA related problems using only moderate computing

power.

II. EXAMPLES

All computations have been carried out in double precision

arithmetic on a Dell Inspiron 9300 Notebook, equipped with

an Intel Pentium-M processor operating at 1.73 GHz, and 2.0

GB of RAM.

A. LOFAR LBA Station Configuration Studies Using CBFM

With the aid of CBFM, the beam pattern of an array of

96 dual-polarized inverted-V dipole antennas (LOFAR station)

has been studied for a number of different array configurations,

ranging from sparse to dense, and from regular to irregular [8].

For illustration, the calculated array beam pattern (θ = 300,

ϕ = 00 scan) is shown in Fig. 1 for one of the regular array

configurations.

Fig. 1. Station configuration study for the LOFAR LBA project.

The antenna impedance matrix for each array configuration

was computed by solving the respective reduced matrix equa-

tion

ZredIred = Vred (1)

for the unknown CBF expansion coefficient vectors Ired that

belong to the equally large, though distinct, reduced excitation

vectors Vred (both Ired and Vred are column-augmented

matrices).

In (1), a reduced matrix block Zred
mn is computed as

Zred
mn = JT

mZMoM
mn Jn, (2)

i.e., the fully populated moment matrix block ZMoM
mn , which

holds the reactions between the subsectional basis/test func-

tions supported by the nth and mth subdomain3, respectively,

is compressed by left-right multiplication of ZMoM
mn by the

corresponding nth and mth set of CBFs Jm and Jn, respec-

tively. Each column of Jq holds the expansion coefficients of

the subsectional basis representing one CBF supported by the

qth subdomain. Superscript T in (2) denotes the transposition

operator.

3This domain comprises both a co- and cross-polarized element

Similarly, the reduced excitation vector Vred
m for the mth

subdomain is computed as

Vred
m = JT

mVMoM
m . (3)

Next, we compare the size of the full moment matrix (MoM)

to the size of the reduced moment matrix (CBFM), as well as

the corresponding total execution times. The results are listed

in Table I.

TABLE I

SYSTEM MATRIX COMPRESSION AND TOTAL EXECUTION TIME.

#RWGs #MoM #CBFs Matrix Total
Blocks Compression Exec. Time

MoM 6336 1 0 0% 39 min. 16 sec.

CBFM 6336 179 768 98.8% 1 min. 12 sec.

As opposed to MoM, one observes that the execution

time has dropped significantly for a CBFM approach. Also,

the original moment matrix has been strongly reduced, even

though the problem is relatively small, implying that the

computational overhead of generating CBFs is relatively large.

We remark that CBFM has been used in combination with

a number of additional acceleration techniques as detailed

hereafter, including the exploitation of the block Toeplitz

(translation) symmetry between pairs of groups of CBFs. In

this respect, note that not all 96 × 96 CBF group interactions

have to be computed to construct Zred, but only 179 as a

result of the large degree of translation symmetry that a regular

spaced array possesses with identical elements supporting

equal sets of CBFs.

B. ACA and its Solution Accuracy for the LOFAR HBA Array

In the previous subsection, a significant acceleration has

been achieved by approximating (2) as

Zred
mn ≈ JT

mZ̃MoM
mn Jn, (4)

where Z̃MoM
mn is a low-rank approximation of ZMoM

mn . Matrix

ZMoM
mn can be constructed on-the-fly and numerically efficient

using the Adaptive Cross Approximation algorithm (ACA) [9].

This is accomplished without a priori knowledge of the

actual full matrix block ZMoM
mn . It is well-known that the

effective rank becomes smaller of matrix blocks representing

reaction terms between electrically distant groups of basis

functions. For those groups, the rank-revealing ACA algorithm

becomes highly effective, even though it will only reduce the

computational complexity by a constant factor (instead of by

an order).

The accuracy of the combined CBFM–ACA approach is

demonstrated through an example of a 4 × 4 dual-polarized

array of LOFAR High Band Antennas. For this purpose,

the impedance and radiation characteristics, obtained by a

direct MoM approach, have been overlayed with the solutions

obtained by a combined CBFM–ACA approach (Fig. 2). One

can observe an excellent agreement, both for the computed

mutual impedances, as well as for the computed embedded
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Fig. 2. Top-left: Array of LOFAR HBA antennas. Top-Right: The embedded
element pattern of a corner antenna element in the E-and H-plane. Bottom-
Left: mutual resistance, and Bottom-Right: mutual reactance between the
corner and the remaining antenna elements.

element pattern of a corner-excited HBA antenna. For this

particular case, the relative error ǫ of the antenna impedance

matrix Zant is 1.1%, with the error defined as a ratio of 2-

norms:

ǫ =
||Zant − Z̃ant||2

||Zant||2 , (5)

and where Z̃ant is the approximated matrix.

Not surprisingly, the speed advantage of the ACA algorithm

has to be traded against the solution accuracy. This trade-

off can be controlled by means of the ACA threshold [9],

which directly influences the accuracy of Z̃ant. In the present

example, an ACA threshold level of 250 has been used.

C. Arrays of Interconnected Tapered Slot Antennas

In CBFM we decompose the entire computational domain

into smaller subdomains, each of them supporting a set of

CBFs. These CBFs are generated numerically, and preferably

for relatively small antenna structures that have been extracted

from the original antenna array, with the restriction that these

small antenna structures should closely resemble their original

electromagnetic array environment.

However; the generation of CBFs becomes non-trivial for

electrically interconnected (antenna) structure, since the struc-

ture is, in essence, electromagnetically inseparable. Further-

more, the CBFs have to be generated such as to synthesize

a continuous current flow across the boundaries between

adjacent antenna elements. A possible solution to the latter

problem is to let CBFs partially overlap, or to use special

bridge-functions [7], [10].

In [10] we proposed a trapezoidal post-windowing technique

to generate CBFs for electrically interconnected (antenna)

structures. The pertaining CBF generation procedure has been

graphically visualized in Fig. 3.

Fig. 3. Trapezoidal post-windowing technique for CBFs to synthesize
currents on electrically interconnected antenna arrays.

With reference to Fig. 3, we first extract representative

subarrays from the fully meshed array (Step I). Afterwards,

each subarray is excited a number of times so as to generate a

set of induced surface currents (Step II). Next, these currents

are truncated by a trapezoidal windowing function to eliminate

the undesired edge-singular currents, and to retain an overlap

with adjacent domains. Finally, the so-generated CBFs (Step

III) are mapped onto their corresponding array elements (Step

IV). Note that, when CBFs partially overlap, they combine

properly because the superposition of all taper functions sum

to unity.

The aforementioned CBF windowing method has been

applied to compute the impedance matrix of 576 TSA element

array. Figure. 4 illustrates the array composed of 9 disjoint

antenna tiles. The surface current has been synthesized using

375.000 RWG subsectional basis functions which constitute

the 4320 CBFs. By exploiting translation symmetry, only 8394

out of 331776 mutual moment blocks had to be constructed,

and in an time-efficient manner using the ACA algorithm.

The total execution time amounted to 254 min. 44 sec. per

frequency point. The execution time can be further reduced

by constructing a reduced matrix for only one of the antenna

tiles while accounting for the coupling effect between the

neighboring phase-steered array tiles [11].

D. Antenna System Modeling

In interferometric receiver systems for radio astronomy,

antenna output signals are correlated to create a (steerable)

beam in the sky and to achieve a certain receiver sensitivity

in that direction. In practical systems, noise is generated at

different stages within the receiver, and generally, microwave

components are not power-matched to one another. As a result,

the overall sensitivity depends upon the array receiver in its

entirety.

For the purpose of analyzing the overall receiver sys-

tem, a dedicated microwave simulator has been developed
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Fig. 4. Array of 9 disjoint subarrays (3x3), each of them composed of
64 TSA elements (8x8). The center tile is excited to illustrate the coupling
effects. The magnitude of the surface current distribution is shown (log scale)
as computed by a direct CBFM approach.

and integrated with the electromagnetic solver [12]. All mi-

crowave components, including the antenna, Low Noise Am-

plifiers (LNAs) and beamforming network, are characterized

in terms of signal-noise wave covariance matrices, together

with their scattering matrices. The cascaded compound is com-

puted by applying the connection matrix theory as described

in [14], [15].

The use of the hybridized methods enabled us to conduct

a number of studies. For instance, it has been demonstrated

that one has to noise match the LNAs to the active scan

impedance in order to achieve minimum receiver noise in

phased array antennas [13]. Another example is a microwave

circuit model of a microstrip TSA feed that has been developed

and combined with the antenna impedance characteristics

obtained by full-wave EM simulations [16]. Figure 5 illustrates

that a dielectric-free MoM code can be used to model the

antenna structure separately from the feed structure.

Fig. 5. Combining a microwave circuit model for the feed with a full-wave
dielectric-free antenna array model.

Validation of the combined models has been performed

through measurements and simulations (HFSS). A very good

agreement is obtained showing that realistically complex and

electrically large antenna array structures can be modeled

accurately and fast.
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[84] B. M. Kolundžija, J. S. Ognjanović, and T. K. Sarkar, WIPL-D: Electromagnetic

Modeling of Composite Metallic and Dielectric Structures. Norwood: Artech House,

2000.

[85] R. Maaskant and B. Yang, “A combined electromagnetic and microwave antenna

system simulator for radio astronomy,” in Proc. European Conference on Antennas

and Propag. (EuCAP), Nice, France, Nov. 2006, pp. 1–4.

[86] G. H. Golub and C. F. van Loan, Matrix Computations. London: 3rd ed. Baltimore,

MD: Johns Hopkins, 1996.

[87] R. Maaskant, R. Mittra, and A. G. Tijhuis, “Fast analysis of large antenna arrays

using the characteristic basis function method and the adaptive cross approximation

algorithm,” IEEE Trans. Antennas Propag., vol. 56, no. 11, pp. 3440–3451, Nov.

2008.

[88] ——, “Fast solution of multi-scale antenna problems for the square kilomtre array

(SKA) radio telescope using the characteristic basis function method (CBFM),” Ap-

plied Computational Electromagnetics Society (ACES) Journal, vol. 24, no. 2, pp.

174–188, Apr. 2009.



Bibliography 257

[89] R. Maaskant, M. V. Ivashina, O. Iupikov, E. A. Redkina, S. Kasturi, and D. H.

Schaubert, “Analysis of large microstrip-fed tapered slot antenna arrays by combin-

ing electrodynamic and quasi-static field models,” IEEE Trans. Antennas Propag.,

accepted for publication.

[90] A. Neto, S. Maci, G. Vecchi, and M. Sabbadini, “A truncated Floquet wave diffraction

method for the full wave analysis of large phased arrays – part ii: Generalization to

3-D cases,” IEEE Trans. Antennas Propag., vol. 48, no. 3, pp. 601–611, Mar. 2000.

[91] C. Craeye, A. G. Tijhuis, and D. H. Schaubert, “An efficient MoM formulation for

finite-by-ininite arrays of two-dimensional antennas arranged in a three dimensional

structure,” IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2054–2056, Sep. 2003.

[92] A. K. Skrivervik and J. R. Mosig, “Analysis of finite phased arrays of microstrip

patches,” IEEE Trans. Antennas Propag., vol. 41, no. 9, pp. 1105–1114, Aug. 1993.

[93] B. Tomasic and A. Hessel, “Analysis of finite arrays – a new approach,” IEEE Trans.

Antennas Propag., vol. 47, no. 3, pp. 555–564, Mar. 1999.
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Summary

Analysis of Large Antenna Systems

The research presented in this thesis has been conducted within the framework of the

Square Kilometre Array (SKA) project. SKA is a next generation radio telescope that will

have a receiver sensitivity two orders of magnitude larger than the most sensitive radio

telescope currently in operation. To meet the specifications, various low-cost low-noise

actively beamformed receiving array antennas are being considered. A major problem

in designing these systems is that the present-day commercially available electromagnetic

solvers need an excessive amount of memory and simulation time to solve electrically large

antenna problems. Moreover, it is essential to be able to analyze the receiver sensitivity of

large antenna array systems to understand the sensitivity limiting factors. No dedicated

commercial software tools exist that can analyze the receiver sensitivity of entire antenna

systems specifically for radio astronomy.

The thesis subject deals with two major challenges: (i) To accurately compute the impedance

and radiation characteristics of realistically large and complex antenna arrays using only

moderate computing power, particularly, of single and dual-polarized arrays of 100+ Ta-

pered Slot Antenna (TSA) elements that are electrically interconnected. If the collection of

these elements forms a subarray of a larger system, it is also of interest to analyze an array

of disjoint subarrays. (ii) To characterize the system sensitivity of actively beamformed

arrays of strongly coupled antenna elements.

To address the above challenges, a conventional method-of-moments approach to solving an

electric-field integral equation is enhanced using the Characteristic Basis Function Method

(CBFM) to handle electrically large antenna problems. The generation of the associated

reduced matrix equation is expedited by combining the CBFM with the Adaptive Cross

Approximation (ACA) technique. Furthermore, because an overlapping domain decom-
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position technique is employed, Characteristic Basis Functions (CBFs) are generated that

partially overlap to ensure the continuity of the current between adjacent subdomains

that are electrically interconnected. While generating the CBFs, edge-singular currents

are avoided by a post-windowing technique. Finally, a meshing strategy is proposed to

optimally exploit the quasi-Toeplitz symmetry of the reduced moment matrix. The nu-

merical accuracy and efficiency has been determined for numerous cases, among which

a dual-polarized interconnected TSA array of 112 elements that has been fabricated and

subsequently validated by measurements.

The receiver system has been modeled by both a numerical and a semi-analytical method.

The models account for a nonuniform brightness temperature distribution of the sky, mis-

match effects, noise that emanates from amplifiers inputs and re-enters the system coher-

ently through the mutually coupled antennas (noise coupling), beamformer weights, etc.

Results are shown for a practical setup and design rules are derived which demonstrate

that minimum receiver noise can be reached by noise matching the low-noise amplifiers to

the active antenna reflection coefficient, rather than the passive one. Finally, it is demon-

strated that the radiation efficiency of antennas is an important quantity that can degrade

the system sensitivity severely. Nevertheless, a number of commercial software tools have

shown to be inadequate as the computed efficiency exceeds 100%. A method is proposed

which is numerically efficient and robust since it guarantees an efficiency below 100%.
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Daniëlla (born in September, 2004) for sharing the daily load that I brought home for

dinner. Admittedly, I have sacrificed too many weekends and vacations for my work, my

sincere apologies for that. Improving my self-efficiency is a good way to free some time for

my family, without having to compromise my productiveness. Furthermore, our parents

have demonstrated to be fantastic loco parentis in case of common business trips. Thank

you for offering us this flexibility, as well as for designing the cover of this dissertation.


	Contents
	1. Introduction
	2. Electromagnetic Field Equations
	3. Galerkin’s Moment Method for the Analysis of Antennas
	4. Efficiency Enhancement Technique for the Method of Moments
	5. Receiver System Modeling
	6. Conclusions and Recommendations
	Appendices
	Bibliography
	Summary
	Curriculum Vitae
	Acknowledgments

