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The advent of large-scale sequencing has opened up new areas of research, such
as the study of Piwi-interacting small RNAs (piRNAs). piRNAs are longer than
miRNAs, close to 30 nucleotides in length, involved in various functions, such as the
suppression of transposons in germline 3,4,5. Since a large number of them (many
tens of thousands) are generated from a wide range of positions in the genome,
large-scale sequencing is the only way to study them. The key to understanding
their genesis and biological roles is efficient analysis, which is complicated by the
large volumes of sequence data. Taking account of the underlying biology is also
important. We describe here novel analyses techniques and tools applied to small
RNAs from germ cells in D. melanogaster, that allowed us to infer mechanism and
biological function.

1. Introduction

Relatively inexpensive large-scale sequencing has now become readily ac-

cessible to the masses, through the efforts of companies such as 454 and

Solexa. One drawback of sequences derived from such technologies are the

short read lengths, approximately 30 for Solexa and more than a 100 for

454. This does not pose a problem when the sequences can be easily iden-

tified in the genome. In fact, for small RNAs, the length is close to their

size and hence such sequencing techniques are perfect for their study.

Small RNAs have been discovered to be associated with the Argonaute

family of proteins. The Argonaute family is a complex one, and the nomen-

clature makes it even more confusing1. The family is further divided into

two sub-classes, Argonaute and Piwi. The Argonaute sub-class is involved

in the siRNA and miRNA pathways, while the Piwi sub-class is involved in

piRNA processing. piRNAs tend to be longer than miRNAs and are more
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diverse. Their genesis is not well understood, but our analysis of piRNAs

shows that they arise from clusters and are frequently repeat associated,

which suggests their role in transposon silencing. Indeed, deletion of certain

members of the Piwi sub-class leads to the activation of transposons.

In order to characterize the datasets (we have analyzed three such

datasets 3,4,5), as well as understand their biological role, we developed

several analysis techniques and tools. Taken individually, the techniques

and tools are not novel, but the combination and sequence of steps makes

them a novel contribution which will be of use to others in the field. Sev-

eral other large-scale sequencing projects have been published, but none

involves the kind of analysis described here 2.

The aim of the experiments described here was to delineate the role of

Aubergine and Ago3 in the germline in silencing transposons. We wanted

to understand the transposons that are under control of this mechanism

and which one of these proteins is involved in targetting the transposons

and which one is involved in the maintenance of this silencing. The analysis

that we describe here was arrived at by trial and error. We describe the

methodology as well as our tools below.

2. Case Study:Analysis of Aubergine and Argonaute-3

associated small RNAs from D. melanogaster.

Small RNAs associated with Argonaute-3 and Aubergine in D.

melanogaster were isolated by immunoprecipitation (IP), using antibodies

against the proteins4.

The analysis involves sequence processing, mapping and warehousing.

In addition, it is very important to allow browsing of the data through

user-friendly tools, since the patterns we look for are not readily apparent

and the pattern space that has to be searched is immense. We describe

our suite of web-based tools for this purpose. The exact implementation of

these tools it not very important, as they are standard techniques, but the

analyses allowed by the web-based tools is very relevant, since they helped

us gain understanding of our datasets.

We first describe the sequence processing and then the tools. We also

describe the results we obtained at each step.

2.1. Sequence Processing

The processing of the sequences involves clipping the sequences, mapping

them to the genome, using genome annotations to identify the origin of the
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small RNAs and warehousing the data. We describe the steps below.

2.1.1. Clipping

Adaptors are ligated to the small RNA sequences for amplification and

sequencing. It is essential that the parts of the adaptor sequences that are

sequenced get identified and clipped. This can involve either exact matching

(if the reads are short and high quality) or inexact matching, when the

reads are longer and the quality might have degraded towards the end. We

use a dynamic programming algorithm that scores in a position dependent

manner, allowing for more relaxed matching towards the end and a stricter

match towards the beginning of the sequence. This allows cleaning up

sequences that do not have any inserts, and also being relatively careful

about not removing sequences arbitrarily from the end. The distribution

of sizes after clipping suggests the nature of the dataset (if the peak of the

distribution is around 22nt, it indicates a library biased towards miRNAs

while a peak closer to 30 indicates piRNAs).

2.1.2. Warehousing the data

The sequences from the experiment are collapsed to create a unique, non-

redundant set, and the multiplicities (the number of times each fragment

is sequenced in an experiment) are tracked. We use MySQL’s relational

database for the storage.

2.1.3. Mapping to the genome

Mapping of the small RNAs is an relatively easy problem, compared to

mapping mRNAs, since gaps are not expected. In addition, due to the large

number of sequences, the ones that do not map exactly to the genome can

be ignored. We used a suffix-array based approach to find matches. This

is essential in speeding up the processing of the small RNAs and highlights

the importance of proper clipping.

Some small RNAs map thousands of times to the genome, while about

10% of the small RNAs map to a unique location on the genome. The

unique mappers allow idenfication of the clusters which are the main sources

of the small RNAs.
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2.1.4. Annotating the small RNAs

The annotations of the underlying genome are used to annnotate the small

RNAs. The annotation categories are repeats, non-coding RNAs (tRNAs,

snoRNAs, miRNAs etc.) and coding mRNAs, both introns and exons. It

is essential to get a good reference set of annotations or generate one from

curated datasets especially for the non-coding RNAs. Upto 10 mappings

of each piRNA are considered for annotation, and a majority rule is used

to pick the final annotation. In addition, in case of conflicts, a hierarchy,

starting with non-coding RNAs, then repeats, followed by exons and finally

introns, is used to pick a unique annotation for the piRNA. The orientation

of the piRNA with respect to the underlying annotation is also identified.

Result: The small RNAs in this experiment are predominantly repeat-

associated. The Aubergine associated ones are mainly anti-sense to the

repeats while the Argonaute-3 associated ones are sense to the repeats.

2.2. Web-enabled tools

We built a set of web-based tools to allow exploring the dataset. We de-

scribe the function of the tools and the conclusion reached with each tool,

but not the exact implementation, since the functionality is important in

understanding the nature of the piRNAs while the implementation involves

fairly standard techniques. The front-end, which is the starting point of

the analysis, is shown in figure 1. The front-end allows filtering the small

RNAs by various criteria such as, annotation, multiplicity (number of times

the sequence was sampled in the experiment), number of mappings on the

genome, and location on the genome. After the filtering, the selected small

RNAs can be analyzed for distribution on the genome (by using a genomic

viewer that is built into the tool), for the distribution of nucleotides at var-

ious positions (by using a tool to generate weight matrices for collections

of sequences), for the density distribution on the genome (by specifying a

window and step size for the sliding window to a graphing tool built into

the tool), and for the correlations between positions on the genome for two

sets of small RNAs in a graphical format.

2.3. Genome View

We built a viewer to view annotations along with small RNA map positions

to allow browsing the genome (Figure 2). The viewer is based on the light-

weight genome viewer (lwgv 7).
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Figure 1. Front end of the tool to study small RNAs. This allows the selection of small
RNAs by various filters. The filters are annotations (repeats, miRNAs etc.), number of
mappings to the genome, the experimental source and by chromosome if necessary. From
the selected small RNAs, (i) weight matrices (figure 3), (ii) graphical representation of
the density of small RNAs in regions of the genome (figure 5), (iii) a browser view in the
form of tracks (figure 2), and (iv) Position correlations between datasets (figure 4) can
be generated. Each of these plays a crucial role in the analysis, as explained in the text.

Result Viewing regions of the genome with annotations of repeats and

small RNAs confirms the association of the small RNAs with repeats.
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Figure 2. A view of a genomic region showing various features along with the small
RNAs in our browser, based on lwgv.

2.4. Nucleotide bias

A standard method of characterizing collections of small sequences is to

study the nucleotide bias as a function of position. Our tool generates

colored images showing the frequencies of the nucleotides as rectangles,

with the height of each rectangle proportional to the frequency (shown in

black and white in figure 3).

Result: The Aubergine-associated small RNAs show a T-bias at po-

sition 1, which is similar to the one seen in other piRNA sets, while the

Ago3-associated ones show a bias for an A at position 10. This suggests

the following mechanism. Aubergine uses the small RNAs to target and

cleave transposons. The cleavage occurs at position 10, which means there

is an A at position 10 of the cleaved sequence from the transposon. The

sequence from the transposon gets loaded into Ago3, through an unknown

process, which is probably used to target the primary transcript that gen-

erates the small RNAs, setting up an amplification cycle, which explains
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the abundance of these small RNAs4,6.

2.5. Position Correlations

The results from the nucleotide bias studies suggest that correlations be-

tween positions of small RNAs on the genome, from the two sets should

reveal the connections between the two sets. The correlation between small

RNAs oriented along the plus strand from set a and small RNAs oriented

along the minus strand in set b at a distance ∆, corr+−ab (∆) is defined as

corr+−ab (∆) = Σimult+a (xi)mult−b (xi + ∆) (1)

where mult+a (xi) is the multiplicity (number of times the sequence was

sampled) of the sequence that maps along the plus strand of the genome to

position xi in the set a. The lengths of the small RNAs are disregarded in

this analysis, only their start position is considered. The small RNAs that

map a large number of times (more that 20) are excluded from this analysis.

Alternatively, the multiplicity can be divided by the mapping number, so

that the ones that map to multiple locations do not swamp the calculation.

Either way, the result is similar to the the graph shown in figure 4.

Result: The correlation plot confirms that the small RNAs from the

two set are offset from each other by 10 nucleotides and on opposite strands,

further confirming the picture of the Aubergine-associated small RNAs tar-

getting the transposons for cleavage.

2.6. Clusters on the genome

Density plots on the genome will show the distribution of small RNAs and

highlight clusters if there are any. We use only the uniquely mapped small

RNAs for this analysis. The small RNAs were binned into windows of

5Kb, which were slid over the genome in steps of 1 Kb. From the graphs

of the binned distributions (figure 5) it is obvious these small RNAs arise

from clusters in the genome. Computationally, the cluster boundaries are

identified by the windows where the number of small RNAs is less than 5.

The clusters are robust, not sensitive to the exact details of the criteria.

Result: One of the clusters on arm X of the drosophila genome is the

flamenco locus, which has been known to silence the transposons gypsy,

Idefix and ZAM 4,6. The small RNAs from this locus are responsible for

the silencing, and this analysis helped understand the role of the flamenco

locus in silencing these transposons.
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3. Conclusions

The analyses outlined here works well in other small RNA analysis such as

the study of Mili-associated small RNAs in mammals5. Mili is a protein

belonging to the Piwi sub-class. The first steps in our analysis should be

relevant to any type of large-scale sequencing project, irrespective of the

source, as long as it is derived from an organism whose genome is sequenced.

The correlation and cluster analyses makes sense in this context but might

not be relevant in other experiments.

Further developments in the analyses will be driven by the kinds of

biology that will be probed using large-scale sequencing. It is the underlying

biology that will determine how the sequences will be analysed.
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Figure 3. The top figure shows the distribution of nucleotides at various positions on
the small RNAs from the Aubergine-associated set, while the bottom one depicts the
distributions for the Ago3-associated set. There is a clear T bias at position 1 in the
first set, while a clear A bias exists at position 10, all other positions are unremarkable.
The actual figure is in color, but is shown here in grayscale.
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Figure 4. The correlation of the map positions of small RNAs from the Aubergine and
Ago3 associated sets, calculated as discussed in Eq. (1), shows a strong peak at ∆ = 9
for the correlation between small RNAs from the two sets on opposite strands (+-, the
plot below the x-axis), which corresponds to the 10-nt offset. The peak at zero in the
++ (the plot above the x-axis) is indicative of the origin of the small RNAs from clusters
in the genome (described in figure 5).
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Figure 5. Density distribution of Aubergine-associated small RNAs on arm 2R. The
plot above the x-axis is for the small RNAs that map to the plus strand, while the plot
below the x-axis is for the small RNAs that map to the minus strand. Only small RNAs
that map fewer than 5 times to the genome are considered for this plot.

Pacific Symposium on Biocomputing 13:126-136(2008)


