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Analysis of lattice strains measured under nonhydrostatic pressure
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The equations for the lattice strains produced by nonhydrostatic compression are presented for all

seven crystal systems in a form convenient for analyzing x-ray diffraction data obtained by newly

developed methods. These equations have been used to analyze the data on cubic (hcc a-Fe) and

hexagonal (hcp E-Fe) systems. The analysis gives information on the strain produced by the

hydrostatic stress component. A new method of estimating the uniaxial stress component from

diffraction data is presented. Most importantly, the present analysis provides a general method of

determining single crystal elastic constants to ultrahigh pressures.

Phtisics. (S0021-8979(98)0311 1-9]

|. INTRODUCTION

The improved design of the diamond anvil cell has made
it possible to reach pressures in the range of several hundred
gigapascals, > and the use of synchrotron radiation as the
source of incident x rays allows diffraction patterns to be
recorded from materials compressed under such
conditions.' - Because of the finite shear strength of the
specimen material, the stress state of the compressed sample

.10

is in general not hydrostatic. ® Early experiments on mate-
rials subjected to nonhydrostatic stress states (NSS) led to
the development of mathematical formulations of NSS and

11-13

its effect on the lattice strains. Equations for the lattice

14,

strains under NSS for cubic, ' *'" hexagonal, " and trigonal '7
systems were developed that are valid for a general diffrac-

tion geometry. Equations for all crystal systems have been

derived recently. = The full utilization of the equations in the

interpretation of the lattice strain data and extraction of the

sample properties became possible through the introduction
of two new diffraction geometries; '>**' these permit the
measurement of d spacings as a function of the angle, C,
between the diffraction vector and the load direction. In this
article e present the lattice-strain equations for all the crys-

tal systems in a form convenient for the interpretation of
diffraction data. We then show that the strain produced by

'he hydrostatic stress component can be separated out from
the lattice strains measured under NSS. A new method of
estimating the uniaxial stress component is suggested, and
the possibility of estimating the single crystal elastic con-
stants from the powder diffraction data obtained under non-
hydrostatic compression is demonstrated.

o EQUATIONS FOR LATTICE STRAINS

The stress state at the center of the compressed specimen

111 . . . 12,14
an opposed-anvil setup is given by,

0oz1.89

79198183(12)17567191515.00
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where |, and o5y are radial and axial stress components,
respectively. op is the mean normal stress (equivalent hydro-
static pressure). The uniaxial stress component t=(03;
—ayy) and Dy; is the deviatoric stress component. The strain
produced by op can become large at high pressures and is
better analyzed using an appropriate equation of state. In
terms of the measured d spacing, d,(hkl), the strain pro-
duced by Dy; is given by

ep(hkl)=[d,,(hkl)—d p(hkl)]/d p(hkD). )

where dp(hkl) is the spacing under the pressure op alone.
The equations for the lattice strains derived earlier'*'® can

be rearranged to give the following relation:
d,(hkl)=dp(hk)[1+(1—3 cos® ¢)Q(hkl)], (3)
where

Q(hkl)=(t13){a[2GX(hkD)] "+ (1— a)(2Gy) '}
(4)

Gi(hk!), termed x-ray shear modulus, is the aggregate shear
modulus calculated under the Reuss (iso-stress) condition,
the averaging being done only over the group of crystallites
contributing to the diffracted intensity at the point of obser-
vation. Gy is the shear modulus under the Voigt (iso-strain)
condition. The negative sign of ¢ is included in Eq. (3) so
that ¢ is to be taken as a positive number in this article. The
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factor a, which lies between 0 and 1, decides in an actual
case the relative weights of the strains calculated under Re-
uss and Voigt conditions.

The expressions for Gy in terms of S;; for different crys-

tal systems can be found elsewhere.”” The expressions for
Gi(kk!) are as follows.
A. Cubic system

[2G3(hkD)] ' =[8)1=812—3(S;;— S 12— 3845) T (hkl)],
(5)

where

T(hkl)=(h*k*+ k21> + IPh2)[(h*+ K2+ 17)2,

B. Hexagonal system
[2GR(hkD) i =128~ 812~ S13)
+123(— 5811+ 81+ 5513~ S33+384)
+13(38,,— 65,3+ 3833—3S4)],  (6)

where [5=3a*I*/M?, M?*=[4c*(h*+hk+1*)+3a**], and
a and c are the lattice parameters of the hexagonal cell. It is
noted that [3 is the same as B in Ref. 12.

C. Trigonal system
[2GR(hkl)] "' =[2G x(hk])]per+ 3L515(31i—13)S 14
+31,15(35-13)S s, (7)

F. Monoclinic system

[2GX(hkD)] ™' = 481,31} — 1))+ Sp(BI—13)+ S33(313— 1) + S 1o(6 23— [3 - 1B) + S 15(6 113~ 3 13)
+855(6123— 2= 1)+ 1, 15[ S15(6 11— 1)+ S55(613— 1) + S35(613— 1) ]+ 646/, 1315

(S 2R+ 55 2P Sl D)

where, [} =hd(hkl)!a, l;=kd(hkl)/b and with monoclinic angle, B, [3=(al—hc cos B)d(hkl)/ac sin B.

G. Triclinic system

[2GR(hKD)]™'=3[S14(311 1)+ S50(313—13) +S35(313—
+83(6155—B—13) + (612 —1)(Syalals + Syslaly + 8 16l1 1)+ (63— 1)(Saalals + Saslsly + Sogly 1)
+(613— 1)(Ssglals + Saslsly + Szl 1y) + 61, ol3(Ssely + Sagly + Susls) + 3(Sual3l3+ Sssl3lT + Seel112)]:

where, [y=(hb—ak cos y)d(hkDlab sin y. l,=kd(hkl)/b,
and I5=(Y/Z)d(hkl). Y and Z are given by

Y=abl sin®* y+bch(cos a cos y—cos B)

+ack(cos B cos y—cos a),

and

)+ 86213 — =15+ 856312 —17—12)
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where I;=3ch/M, l=c(h+2k)IM, l;=\3al/M. T,
expression of M is the same as for the hexagonal system, 4
hexagonal set of axes was used to define S;;. For the trigong|
classes 32, 3m, and 3m, S,5=0.

D. Tetragonal system
[2GR(hkD)] ™" =[2G R(hkl) gyt 31715(— 28,425,
+S8e) +3 0 L(E—13)S s, )

where [,=ch/M, l,=ckIM, l;=allM. and M’=[gp
+eX(h*+k*)]. [2GR(hkl)]ey, is obtained by using thes
values of /3 and M in the expression for [2Gx(hk[)],.}. Fo
classes 42m, 4mm, and 423, §,,=0.

E. Orthorhombic system
[2GR(hkD)] ™' =2~ (S1p+ S 13+ S23) +[1(S13=$))
+13(S 13— S2) +13(S 12— S33)
+3[118,1+ 135+ 1353
+ 1328 15+ Se6) + 1313(2S 53+ Syy)
+B(28 15+ S55) 1}, o)

where, [,=hd(hkl)/a, l,=kd(hkl)/b, and l3=Ild(hkI)c.
d(hkl) is the inter-planar spacing which can be expressedin
terms of (hkl) and the unit cell dimensions, a, b and ¢,
using the well known relation.

(10)

(11

Z=abc(1—cos’ a—cos” B—cos’ vy

oy LI
+ 2cos a cos B cos y) 2 Sin ¥.

For choice of axes in monoclinic and triclinic systems.
Ref. 23. It should be noted that the unit cell parameters 2%
the §;; terms appearing in these equations are at press”
Op.
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FIG. 1. The diffraction geometry for measuring o spacings as a function of
angle i

lil. EXPERIMENTAL SETUP

A detailed analysis of the diffraction data under NSS
becomes possible if the d spacings are measured for different
¥ angles. This was achieved by modifying”*' the radial
geometryf“ which suffered from the disadvantage that the
primary x-ray beam passed through the entire sample having
4 pressure differential ranging from 1 bar to the peak pres-
sure. In the present experiments the effects of radial stress
gradients were minimized by using samples (typically a disk
of 10 um thickness and 25 um diameter) which were small
in comparison with the diamond culet (e.g.. 400 um diam-
eter). The sample is confined at the center of the anvil face
with the help of a high-strength Be gasket which is transpar-
ent to high energy x rays (Fig. 1). The magnitude of the
Uniaxial stress component in the sample is deliberately en-
hanced by not using a pressure-transmitting medium. A fine
Primary x-ray beam (down t0 5 um) from the synchrotron
source™ s used and the diffraction data are recorded using
the energy dispersive mode. With a double-collimator sys-
't‘llll only a signal from the sample at the interception of
Primary and diffracted beams is received by the detector and
the Signal from the Be gasket is supressed.”*"*® With this
Arangement, the radial variation of the lattice strain (stress
sradient) is found to be negligible in comparison with the
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FIG. 2. d,(hkl) vs (1 —3cos® ) plots: (a) (201) for eFe at 52 GPa, s
=0. (b) (111) for FeO at 8.3 GPa, s=1.5 A. (¢) (310) for a-Fe at 4.6 GPa,
s=0. Errors ind,,(hk!) for (a) and (c) are less than the size of the symbols,
and nearly of the size of the symbols for (b).

directional variation arising from the uniaxial stress compo-
nent. The diamond cell was rotated about an axis (R, Fig. 1)
perpendicular to the load axis and bisecting the 24 diffraction
angle. The diffraction patterns for the reflections in the
20-60 keV range were collected at 10° increment of . The
analysis of the data on fec-Fey o O (simply referred to as
FeQ), bee-Fe, and hep-Fe is discussed in this article.

IV. ANALYSIS OF THE DATA
A. General

The i dependence of the measured d spacings given by
Eq. (3) is general and valid for all crystal systems. Typical
d(hkl) vs(1—3 cos’ i) plots are shown in Fig. 2. It is seen
that Eq. (3) fits these data very well. Similar fits were ob-
tained for nearly 50 data sets (cubic FeO to 12 GPa, a-Fe to
14 GPa, and eFe to 200 GPa). The R? values ranged from
0.99 in the lower pressure region to 0.95 in the 200 GPa
range.

1. Strain due to op

The intercept of the d,,(hkl) vs (1—3 cos® ¥) plot (Fig.
2) gives dp(hkl), the d spacing corresponding to the hydro-
static stress component op. The lattice parameters ap and
cp, calculated from dp(hkl) values, correspond to the val-
ues under hydrostatic compression. The lattice parameters
for cubic and rhombohedral FeO, a-Fe, and e-Fe. calculated
from the dp(hkl) values are listed in Table 1. The data ob-
tained with the conventional diamond cell geometry, using

TABLE 1. Effect of nonhydrostatic compression on the lattice parameter
(A).

FeO (fcc) FeO (thomb.)  a-Fe (bce) e-Fe (hep)
P (GPa) 8.3 19 4.6 52
ap 4.230 (2) 2.887 (3) 2.8417 (9) 23736 (7)
ay 4352 (11)  2.891 (10}  2.8482 (15) 2381 (6)
cp 7.344 (10} 3.7896 (3)
Cy 7.428 (60} 3795 (2)
Vp 7567 (6) 53.01 (13} 22948 (12) 3698 (2)
Vi 7685 (34) 3377 (57) 23,105 (20) 3725  (18)
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energy dispersive mode, correspond approximately to the
data at =85°. For comparison, the lattice parameters, a
and ¢, calculated with d,,(hkl) at y=85° are also listed in
Table 1. These values correspond to the laitice parameters
obtained if the data are collected using the conventional dia-
mond cell diffraction geometry and the effect of NSS on the
lattice strains is ignored. It is seen that the standard devia-
tions in a p and ¢ p are much smaller than those ina, and ¢ ;.
Many more data sets showed a similar trend; the standard
deviations in a, and ¢, were 2—10 times larger than the
corresponding values for ap and cp. The unit cell volumes
calculated from ap and cp are significantly smaller than the
corresponding volumes calculated from a, and c . This sug-
gests that the volume strain is underestimated if the effect of
NSS is ignored, an effect observed experimentally quite
early'® and explained quantitatively later.”’

2. Estimation of t

The estimation of ¢ has attracted considerable attention
in the past since it offers an elegant and the only method of
estimating as a function of pressure the maximum shear
stress'>14?® supported by the specimen material. A group of
investigators™ ! used isotropic elasticity theory while many
others'®**~% used lattice-strain equations to analyze the dif-
fraction data. A discussion of the earlier work, including the
estimation of ¢ by the measurement of pressure gradient, can
be found in a recent publication.> The estimation of ¢ using
lattice-strain equations requires the knowledge of the single
crystal elastic moduli at op, which can be obtained by ex-
trapolating to high pressures the ultrasonic elasticity data
measured at low pressure. The following relation for the cu-
bic system, which can be derived from Egs. (4) using the
approach outlined earlier,” has definite advantage over the
forms of equations used earlier:

t=(6G)(Q(hkD))f(x),
f(x)=A/B, -
A={[(2x+3)/10]+5x/2(3x+2)},

B={a[x—3(x—1)(T(hk))]+5x(1 - a)/(3x+2)},

where the angle brackets denote the average for all the ob-
served reflections, x=2(5,,—52)/544 denotes the elastic an-
isotropy, and G is the aggregate shear modulus of the speci-
men material at op. For an isotropic case (x=1), f(x)
=1. Even for moderately large anisotropy f(x)=1. For ex-
ample, for a=1, f(x) increases monotonically from 0.80 at
x=3 to | at x=1, and then decreases with a decrease in x,
and reaches 0.85 at x=0.2. For a=0.5, the f(x) values are
0.96 and 1.05, respectively, for x=3 and x=0.2. As dis-
cussed in Sec. IV B, x can be determined from Q(hkl) val-
ues without requiring the value of ¢, and therefore f(x) can
be calculated in cases of a high degree of elastic anisotropy
for which f(x) deviates from unity significantly.

The determination of the averages of Q(hk/[) and
I'(hkl) requires that the reflections be in the complete range
of I'(hkl) (i.e., 0—1). Often, the full range of reflections are
not recorded in the high pressure experiments. In such cases.
Q(hkl) for missing reflections can be estimated from the

Singh g al

TABLE II. Uniaxial stress components for fec FeO, a-Fe, and eFe Wi
a=1.

____:-—-....___“
FeO (fcc) a-Fe (bce) &-Fe (hep)
S
P (GPa) 8.3 4.6 52
G (GPa) 45.6° 90b 175
¢ (GPa) 14 (2F 1.2 (1) 4.4 ()
tG 0.03 0.0 0.02

e
“Extrapolation (second degree polynomial in pressure) of ultrasonic gy,
(Ref. 34).

PExtrapolation (linear in pressure) of ultrasonic data (Ref. 35).

“Choice of @=0.5 increases 1 by 14%, 8%, and 5%, respectively. for Feq
a-Fe, and eFe. The increase in r values is nearly equal to the errors
measurement.

Q(hkl)—T (hkl) plots, and used for evaluating the average;
For lower symmetry crystal systems, more than one param.
eter (e.g., three for hexagonal) is required to define elast
anisotropy. The functional form of f(x) changes, but it r.
mains close to unity.

The use of Eq. (12) in estimating 1 has the advantag
over the other ways'>*** of using the lattice-strain equa-
tions in that it requires only the extrapolation of G (as op-
posed to single crystal elastic elastic moduli) to high pres-
sures. An extrapolation linear in pressure is adequate at low
volume compressions, while the equations based on finite
strain l]'u:oryg?‘38 can be used for large compressions. Equa-
tion (12) with f(x)=1 has been used recently®® in analyzing
the data on iron and tungsten to 300 GPa.

The estimation of r of a pressure-induced phase poses
some difficulty, as G, and G, of the high-pressure phase ar
often not known. The extrapolation of the data on the one-
atmosphere phase does not predict precisely G for the high
pressure phase, as G is expected to change across the trans-
tion. Two sources contribute to this change. The volume
decrease associated with a pressure-induced transition causes
G to increase. The use of a finite strain equation for the
extrapolation of the data fully accounts for this change only
if G} does not change across the transition. The second
source is the structural change during the transition. It
difficult to estimate the contribution from this source. The!
values for both a=1 and «=0.5 for FeO (8.3 GPa, a-Fe (46
GPa), and &Fe (52 GPa) are listed in Table II. The masi
mum shear stress levels (equal to the uniaxial stress comp®
nents) in all three cases are much smaller than the valu;:
obtained from the predicted relation for the theoretical
yield stress (=0.2G).

The uniaxial stress component in the sample has betf
measured recently*® by placing a layer of gold calibrant o
top of the sample. In this configuration, the axial stress com
ponents in the sample and calibrant are equal (required o
the codition of stress continuity at the sample—calibrant i
terface), while the radial stress components are different. T
d,(hkl) vs ¢ data on both the sample and calibrant, and II¥
knowledge of the shear modulus of the calibrant, are used
obtain 7 in the sample. The results of these measureme™
agree very well with those obtained from Eq. (12).
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FIG. 3. Q(hkl) vs 3T (kk!) plot for FeO at 8.3 GPa. The slope and inter-

cept are m,=0.0058(10) and m,=0.0025(7), respectively.

B. Analysis of Q(hk/)

An attempt”’ was made earlier to extract the information
on S;; by analyzing the data on NaCl under NSS. The dif-
fraction patterns were recorded on a film using conventional
diamond cell geometry. Only limited information could be
obtained because reflections with only slightly differing ¢
angles could be recorded. The Q(hkl) values obtained from
the d,,(hkl) vs (1—=3 cos? i) plots contain information on
8- A method of est1malmg S;; by analyzing Q(hkl) has
been suggested recently.** The dctallq of the method are dis-
cussed in this section,

1. Cubic system

Determination of elastic anisotropy: Equations (4) and
(5) suggest that Q(hkl) vs I'(hkl) plot is a straight line, with
the intercept, mg, and slope, m,, given by

mo=(at/3)| (§,;,—82)

5 Sii—812)8

W e (S11=812) a4 ' (13a)

2 3(S11=S12) + S
”i‘i=_(CEIJ{3](S“_S]2_S44;2), (l?)b)
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FIG. 4. Q(hkl) vs 3T (hkl) plot for e-Fe at 4.6 GPa. The slope and inter-
cept are m) = —0.00134(30) and m,=0.00299(20), respectively.

(mgolm)=—[x/(x—=1)][1+5(a"

(3x+2)]. (13c)

The Q(hkl) vs I'(hkl) plots are shown in Figs. 3 and 4
for FeO and a-Fe, respectively. The elastic anisotropy, x,
can be determined from Eq. (13c) which does not involve .
However, x obtained from Eq. (13¢) is sensitive to the choice
of a. For a given value of (mg/m;), the inferred elastic
anisotropy is lowest with @=1, and increases with decreas-
ing a. The x value can be used to compute f(x), which is
required to obtain ¢ from Eq. (12). It is easily verified that
although x is sensitive to the choice of a, f(x) varies within
only =15% for any consistent set of @ and x in the range
1=a=0.5 and 3=x=0.2. The x values for FeO and a-Fe for
both =1 and @=0.5 are listed in Table III.

Estimation of S;;: Of the three equations needed to ob-
tain all §;; terms, two are provided by Eqgs. (13a) and (13b).
The third relatlon is derived from the bulk modulus, K, at
Op.

S1+28,=1/(3K),

—4)f

(13d)

where K can be obtained at any desired pressure using a
standard equation of state. The §;; for FeO and a-Fe were

TABLE 11, The elastic moduli of FeQ, a-Fe, and eFe at high pressure. The standard errors (in parenthesis) were derived the errors in Q(hkl); moduli units

in GPa.

FeOQ a-Fe eFe
8.3 GPa 4.6 GPa 52 GPa
a=0.5 a=1 Ultras.” a=0.5 a=1 Ultras.” a=0.5 a=1 Theory*
€ 413 (73) 313 (44) 283 (5) 260 (17) 281 (18) 262 (5) 552 (65) 639 (55) 638
€ 77 (37) 123 (22) 144 (2) 154 (14) 144 (12) 155 (2) 335 (60) 300 (55) 190
Cis 301 (45) 254 (41) 218
Cyy o 562 (80) 648 (83) 606
Cy 20 (4) 28 (7) 36 (1) 153 (40) 123 (30) 128 (2) 395 (30) 422 (23} 178
c? 168 (41) 93 (25) 78 (13) 53 (11) 8 (11) 53 (3)
x 0.12 (3) 03 (1) 0.52 (2) 2.9 (8) g (6) 24 (1) 36 (1.5)¢ 2.5 (6) 0.79°

..Fé"""“p“lﬂliﬂn of ultrasonic data to 3 GPa in Ref. 44.

:;““‘Pﬂfiltinn of ultrasonic data to 1 GPa in Ref. 45.
L
{Tt'lmcd in Ref,. 49,

=E = 122

If(“’ Ciw= (Cy— ]2)!’2.

ults from Ref, 48 calculated at V=9.70 A¥/atom, which is close to the experimental volume at 52 GPa (V=993 A¥atom, Ref. 43): similar results were
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B

FIG. 5. Q(hkl) vs I3 plot for eFe at 52 GPa. A parabolic fit [Eq. (14a)]
gives m0=4,]3{l)X10"‘. m,=—6.63{5}><10_3. and m,=6.15(7)
x 1073,

calculated for @=1 and 0.5, and the resulting C;; are listed in
Table III. For comparison, the C;; values obtained by the
extrapolation (linear in pressure) of the one-atmosphere elas-
tic constants using their pressure derivatives are also listed.

2. Hexagonal system

Equations (4) and (6) can be combined to give the fol-
lowing relation:

Q(hkl)=mg+m, 13+ m,l3, (14a)
where
mo=(atl6)[28,,— S1,— 513
+(a™'=1)(2Gy) '], (14b)
my=(at/6)[—58,,+ 812+ 55,3~ S35+ 3544] (14c)
my=(at/6)[38,,— 68,3+ 3533~ 354] (14d)

The axial compressibilities provide two more relations:

Xoa=a(S1+S1+S3)+(1—a)(3Ky) ™! (14e)

Xe=a(S33+28 ) +(1—a)(3Ky) . (14f)

The Q(hkl) vs I3 plot (Fig. 5) for Fe at 52 GPa indi-
cates that the data fit Eq. (14a) very well. The axial com-
pressibilities at 52 GPa were derived from the measured®
volume compressibility and the pressure dependence of the
axial ratio (c/a) using the following relations:

(14g)

xa—)(rZ[d(cfa)!dP]f(c!a}. “4h)

The §;; were calculated first with a=1. Gy calculated
with these values was used to obtain the first set of §;; with
a=0.5. Three iterations were needed to get a set of §;; which
did not change significantly on further iteration. The result-
ing C;; for both @=1 and @=0.5 are listed in Table II1.

The C;; derived with a=1 for FeO agrees within the
errors of measurement with the corresponding values obtain
from the extrapolation of the ultrasonic data.™ With a=0.5,
C;; show larger deviations from the extrapolated ultrasonic

2N T XN
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data although the differences are still within the combipeg
uncertainties in the present estimates and extrapolated vy).
ues. The softening of Cy, under pressure seen in the presen
study is in agreement with the ultrasonic measurements up ¢
3 GPa. The lowest inferred elastic anisotropy is larger thy,
the extrapolated value. It is likely that the pressure depep.
dence of Cy4 is nonlinear in pressure, exhibiting a steeper
decrease than predicted by a linear dependence. The resyj
for a-Fe for both @=1 and 0.5 agree well with the extrap.
lated ultrasonic data,” the agreement in the latter case being
better. The results do not suggest softening of Cy as foupg
in some bee-structured materials.™® It has been predicted thy
at higher pressures the modulus C'=(C;;— C,,)/2 shoulq
soften and vanish above a critical pressure; i.e., the reentrap
bee phase proposed at higher pressures should become .
stable with respect to a tetragonal distortion.””*® The mey.
sured C' in fact increases with pressure.

For eFe, C;;, Cy3, and C 3 obtained from the presey
analysis with both =1 and 0.5 agree (within errors of me;.
surement) with the GGA calculations,* but €, and C, dif
fer markedly. The analysis with a@=1 gives the lowest esfi.
mate of Cuq/Cg (a value of 2.5), which deviatg
significantly from the condition Cy4= Cy satisfied by moy
hep metals. Since ¢ for eFe has been estimated. ignoring 4
possible increase in shear modulus across the a—e transi-
tion, we looked for the probable cause of this discrepancy in
the incorrect choice of t. However, calculations of C;; with
different ¢ values indicate that C44/Cg is extremely insensi-
tive to the value of r; a fivefold increase in t results in a
increase in Cy,/Cg4s by only 8%. The relatively large value
of Cyy/Cg requires further scrutiny as it has important im-
plications in the interpretation of reported anisotropy of the
earth’s inner core.***

V. DISCUSSION

It is seen from Egs. (2) and (3) that the strain produced
by the deviatoric stress component vanishes if the measure
ments are made at ¢y=cos” '(1/y/3). and dp(hkl) is directly
measured. However, as discussed earlier, the effect of emx
in setting the ¢ angle on dp(hkl) is maximum at this §
value. The determination of Q(Akl) and the parameters (!
and S;;) derived thereof, requires that d,,(hkI) be at min-
mum of two ¢ values. The measurements at ¢y=0° and %'
are preferred to any other set of ¢ values, as these represet
two extreme points on the d,,(hkl) vs (1—3 cos® ¢) plo
Further. for a given error in setting the ¢ angle, the errors
dp(hkl) and Q(hkl) are minimum for these settings. Such
measurements have been made with a modified Drickamé
cell.'” This sctup.'” however, has a limited high-pressure ¢
pability. The measurements at a number of ¢ values are p©
ferred over those at two settings, as the data are amenable ©
an easier statistical analysis.

The standard errors in Q(hkl) shown in Figs. 3-5 '-\11‘“'
derived from the scatters in the d,,(hki) vs (1-3cost
plots. These scatters represent the combined effects of
intrinsic error in the measurements d,,(hk[), uncertaint) "
the ¢ settings, and the shift of the probed region of

sample when the # angle is changed. The error in the M
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FIG. 6. Effect of error in i setting on d,,(hkl) vs (1—3 cos® i) plot for
(111) reflection of FeO.

surement of 4 spacings, based only on the precision in locat-
ing the diffraction-peak position, is =1 in 10*. While the
incremental steps in ¢ can be set with a precision of 1’ are,
setting /=0 can be done at best with a certainty of £5°. This
results in a constant offset in all the ¢ settings. The calcu-
lated effect of a 5° error in setting =0 is shown in Fig. 6 for
the (111) reflection of FeO at 8.3 GPa. The solid line repre-
sents the data with the correct setting. The open circles above
the solid line represent the data in case the experimentally set
i values are uniformly 5° more than the corresponding cor-
rect values. A straight line fit to these data suggests that the
slope and intercept are overestimated by 0.5% and 0.1%,
respectively. In case the set i values are 5° less than the
corresponding correct values (lower open circles), the slope
is overestimated (0.5%) and the intercept underestimated
(0.1%). In both cases the scatter in the data increases mar-
ginally (R?=0.992).

The best possible alignment procedure sets the i axis at
the geometric center of the specimen (also the center of the
volume enclosed by the interception of the primary and dif-
fracted beams) with an uncertainty of *5 um. Because of
this small offset, the sample region probed by x rays shifts
with the change in ¢ setting. The d,,(hkl) values at different
iy settings represent measurements at different sample re-
gions of varying average pressure. For a given offset, the
severity of the effect on d,,(hkI) vs (1—3 cos® i) plot de-
pends on the magnitude of the radial pressure gradient
(which is expected to become appreciable at very high pres-
sures), and the relative position of the ¢ axis with respect to
the sample region probed. For example, if on changing
from 0% to 90°, the probed region shifts gradually from a
region of lower pressure (average) to a higher pressure re-
gion and back to a lower pressure region, then the data will
fall on a C-shaped curve (concave upward). In general, this
effect will manifest as a nonlinearity in the d,,(hkl) vs
(1—3 cos? i) plots. This effect is not noticeable in the data
analyzed presently, probably because of small radial pressure
gradients.

The stress state in the crystallites constituting a polycrys-
tal is complex. The elastic moduli of a polyerystal in terms
of the single crystal moduli have been derived under the
assumptions of strain (Voigt)® and stress (Reuss)”' continu-
ities across the boundaries separating the crystallites, which
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are shown™ to define the upper and lower bounds of the
moduli, respectively. The experimentally determined moduli
of a polycrystal agree with the mean (arithmetic, geometric,
or harmonic) *' of the two limiting values. Equation (4) rep-
resents a weighted harmonic mean of the x-ray shear modu-
lus under Reuss condition and Voigt shear modulus. The
variational methods (e.g., Refs. 54 and 55) narrow down the
upper and lower bounds considerably. FHomever, refining the
present approach by introducing the variational methods is
difficult as x-ray diffraction takes place only from the crys-
tallites with correct orientation with respect to the directions
of the primary beam and diffracted beam entering the detec-
tof.

The specimen compressed in an opposed-anvil setup un-
dergoes considerable plastic flow before the equilibrium
stress condition is established. The magnitude of the devia-
toric stress component depends on the plastic flow of the
specimen. A large deviatoric stress component can cause
yielding of the crystallites, and the stress state in such a case
is closer to the Reuss condition. A small magnitude of this
component will produce elastic strain resulting in a stress
state closer to Voigt condition. For these reasons, « prior:
choice of a in an actual experiment is difficult. The
analysis ~ of high pressure x-ray diffraction data on NaCl
suggests that a= I in the low pressure region, and tends to
approach a=Q.5 as the pressure is increased. However, this
trend is characteristic of the deformation behavior of the
specimen in the high-pressure setup (a modified Drickamer
cell) used in the experimen, '’ and cannot be generalized. It
should be noted that the(g:)letermination of dp(hkl) from the
d,,,(h &2) vs (7 - 3 cost
choice of a. Among the othetr paramseters. i is least and x is

plots does not depend on the

most sensitive to the choice of a. The changes brought about
in the estimated C,; on changing a from I to 0.5 stay within
the errors of measurement: the changes are such that it pro-
duces a large effect on x. In this respect these changes are
systematic.

In the high-pressure environment, the yielding of the
crystallites under the action of a deviatoric stress component
is complex. The equations in this article are derived assum-
ing a single ¢ value for the crystallites of different orienta-
tions with respect to the load axis. The yielding of a single
crystal at atmospheric pressure is strongly orientation-
dependent, and it may appear logical to consider an
hkl-dependent 1. A simple analysis of the scatter in the data
suggests that the equations with a constant 1 are consistent
with the experimental observations. The errors in Q(hkl) are
derived from the scatter in the d,,(hkl)
(1—13 cos? ¢) plot for each reflection and combined to give
an overall uncertainty, A, Q(hkl), A, being 0.0007 (3),
0.0001 (0), and 0.0002 (1) for FeO, a-Fe, and &Fe, respec-
tively. The numbers in parentheses are the standard devia-
tions. Equation (3) on which these plots are based is also
valid for each reflection with different 7 values. The assump-
tion of a constant ¢ enters only in Egs. (13a) and (14a), which
predict, respectively, a linear Q(hkl) vs I'(hkI) and a para-
bolic Q(hkl) vs z’_'::; plot. The errors (A,) in Q(hkl), derived
from these plots are 0.001, 0.0002, and 0.0001 for FeO.
a-Fe, and e-Fe, respectively. A possible violation of the as-
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FIG. 6. Effect of error in i setting on d,,(hkl) vs (1-3 cos® ¢) plot for
(111) reflection of FeO.

surement of d spacings, based only on the precision in locat-
ing the diffraction-peak position, is =~I in 10°. While the
incremental steps in ¢ can be set with a precision of 1’ are,
setting =0 can be done at best with a certainty of +5°. This
results in a constant offset in all the i settings. The calcu-
lated effect of a 5° error in setting =0 is shown in Fig. 6 for
the (111) reflection of FeO at 8.3 GPa. The solid line repre-
sents the data with the correct setting. The open circles above
the solid line represent the data in case the experimentally set
i values are uniformly 5° more than the corresponding cor-
rect values. A straight line fit to these data suggests that the
slope and intercept are overestimated by 0.5% and 0.1%,
respectively. In case the set ¢ values are 5° less than the
corresponding correct values (lower open circles), the slope
is overestimated (0.5%) and the intercept underestimated
(0.1%). In both cases the scatter in the data increases mar-
ginally (R?=0.992).

The best possible alignment procedure sets the ¢ axis at
the geometric center of the specimen (also the center of the
volume enclosed by the interception of the primary and dif-
fracted beams) with an uncertainty of =5 um. Because of
this small offset, the sample region probed by x rays shifts
with the change in ¢ setting. The d,,(hkl) values at different
¢ settings represent measurements at different sample re-
gions of varying average pressure. For a given offset, the
severity of the effect on d,,(hkl) vs (1—3 cos? i) plot de-
pends on the magnitude of the radial pressure gradient
(which is expected to become appreciable at very high pres-
sures), and the relative position of the ¢ axis with respect to
the sample region probed. For example, if on changing ¢
from 0° to 90°, the probed region shifts gradually from a
region of lower pressure (average) to a higher pressure re-
gion and back to a lower pressure region, then the data will
fall on a C-shaped curve (concave upward). In general, this
effect will manifest as a nonlinearity in the d,,(hki) vs
(1—3 cos® ¢) plots. This effect is not noticeable in the data
analyzed presently. probably because of small radial pressure
gradients.

The stress state in the crystallites constituting a polycrys-
tal is complex. The elastic moduli of a polycrystal in terms
of the single crystal moduli have been derived under the
assumptions of strain (Voigt)™ and stress (Reuss)’' continu-
ities across the boundaries separating the crystallites. which
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are shownsz to define the upper and lower bounds of the
moduli, respectively. The experimentally determined moduli
of a polycrystal agree with the mean (arithmetic, geometric,
or harmonic)> of the two limiting values. Equation (4) rep-
resents a weighted harmonic mean of the x-ray shear modu-
les under Reuss condition and Voigt shear modulus. The
variational methods (e.g.. Refs. 54 and 55) narrow down the
upper and lower bounds considerably. However, refining the
present approach by introducing the variational methods is
difficult as x-ray diffraction takes place only from the crys-
tallites with correct orientation with respect to the directions
of the primary beam and diffracted beam entering the detec-
tor.

The specimen compressed in an opposed-anvil setup un-
dergoes considerable plastic flow before the equilibrium
stress condition is established. The magnitude of the devia-
toric stress component depends on the plastic flow of the
specimen. A large deviatoric stress component can cause
yielding of the crystallites, and the stress state in such a case
is closer to the Reuss condition. A small magnitude of this
component will produce elastic strain resulting in a stress
state closer to Voigt condition. For these reasons, a priori
choice of a in an actual experiment is difficult. The
analysis'® of high pressure x-ray diffraction data on NaCI
suggests that a=1 in the low pressure region, and tends to
approach a=0.5 as the pressure is increased. However, this
trend is characteristic of the deformation behavior of the
specimen in the high-pressure setup (a modified Drickamer
cell) used in the experimen, '* and cannot be generalized. It
should be noted that the determination of d, (hkl) from the
d,,,(hk1) vs (1 -3 cos" zli) plots does not depend on the
choice of a. Among the other parameters, ! is least and x is
most sensitive to the choice of a. The changes brought about
in the estimated C,, on changing a from I to 0.5 stay within
the errors of measurement; the changes are such that it pro-
duces a large effect on x. In this respect these changes are
systematic.

In the high-pressure environment, the yielding of the
crystallites under the action of a deviatoric stress component
is complex. The equations in this article are derived assum-
ing a single t value for the crystallites of different orienta-
tions with respect to the load axis. The yielding of a single
crystal at atmospheric pressure is strongly orientation-
dependent. and it may appear logical to consider an
hkl-dependent t. A simple analysis of the scatter in the data
suggests that the equations with a constant t are consistent
with the experimental observations. The errors in Q(hkl) are
derived from the scatter in the d,,,(hkl)
(1 - 3 cos” V) plot for each reflection and combined to give
an overall uncertainty, A | . Q(hkl), | | being 0.0007 (3),
0.0001 (0). and 0.0002 (1) for FeO. a-Fe, and e-Fe, respec-

tively. The numbers in parentheses are the standard devia-

versus

tions. Equation (3) on which these plots are based is also
valid for each reflection with different t values. The assump-
tion of a constant i enters only in Egs. (13a) and (14a), which
predict, respectively, a linear Q(hkl) vs 1_(hkl) and a para-
bolic Q(hkl) vs 1 plot. The errors (A,) in Q(hkl). thrived
from these plots are 0.001. 0.0002, and 0.0001 for FeO.

a-Fe. and c-Fe. respectively. A possible violation of the as-
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