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Abstract
Laughter is a nonverbal vocalization that occurs often in speech
communication. Since laughter is produced by the speech pro-
duction mechanism, spectral analysis methods are used mostly
for the study of laughter acoustics. In this paper the significance
of excitation features for discriminating laughter and speech is
discussed. New features describing the excitation characteris-
tics are used to analyze the laugh signals. The features are based
on instantaneous pitch and strength of excitation at epochs. An
algorithm is developed based on these features to detect laugh-
ter regions in continuous speech. The results are illustrated by
detecting laughter regions in a TV broadcast program.
Index Terms: Laughter detection, epoch, strength of excitation

1. Introduction
The phenomenon of laughter is common in human communi-
cation as a way of expressing the emotion of happiness. It is
produced by the speech production mechanism using a highly
variable physiological process. The vocalized expression of
laughter varies across gender, individuals and context. De-
spite its variability, laughter is perceived naturally by human
listeners. In recent years much of the research done in the area
of speech recognition has been mainly concentrated on natural
data. This requires data collected in natural environment which
contain many non-speech elements like laughter and other non-
linguistic sounds. Automatic detection of such elements helps
in increasing the accuracy of recognition. It also helps us to
know the emotional state of the speaker which makes us easy to
converse with them.

Laughs were analyzed at three levels: bout, call and seg-
ment levels [1]. The entire laugh is referred to as an episode
which consists of laughter bouts that are produced during one
exhalation. Calls are the discrete acoustic events that constitute
a bout, and each call of a voiced laughter consists of a voiced
part followed by an unvoiced/silence part. Segments are the
audibly reflected changes in the production within a call. It is
assumed that each laughter bout contains several calls, so that
isolated calls are not considered as laughter.

Since laughter is produced by the human speech produc-
tion mechanism, the laughter signal is also analyzed like a
speech signal in terms of the acoustic features of the speech
production. Analysis of laughter could be done for synthesis,
where perceptually important characteristics need to be pre-
served, or for studying the acoustic features during its produc-
tion. Based on analysis of large database of laughter sounds,
Bachorowski and colleagues have differentiated three broad
categories, namely, song-like (consisting primarily of voiced
sounds), snort-like (consisting largely unvoiced calls with per-
ceptually salient nasal-cavity turbulence) and grunt-like (with
turbulence from laryngeal or oral cavities) [2]. Typically, the

acoustic analysis of laughter is carried out using duration (be-
tween onset and offset of acoustic events), F0 (fundamental fre-
quency of voiced excitation) and spectral features. All of these
are used to describe the temporal variability, source variability
and variability in production modes [2]. Formants, pitch and
voice quality analysis are used to discriminate speech, speech-
laughs and laugh [3].

The variability in laughter production is complex in the
sense that it is not guided by the production rules of speech.
Hence it is difficult to describe the phenomenon of laughter
precisely, although it can be perceived by the listeners. The
analysis and description is also limited by the available tools
for analysis of laughter signals. The objective of this study
is to show that some important features of laughter acoustics
can be highlighted using some new tools for analysis proposed
in this paper. It is likely that these new features may help to
spot the laughter regions in continuous speech communication.
Some of these features are: (a) Rapid changes in the instan-
taneous fundamental frequency (F0) within calls of a laughter
bout; (b) Strength of excitation within each glottal cycle and
its relation to F0; (c) Loudness of speech derived from the ex-
citation information; (d) Temporal variability of F0, strength
and formants across calls within a bout. Some of these features
were studied using conventional methods of analysis for F0 and
voiced quality, but using mostly spectrum-based features, like
harmonics, spectral tilt and formants [3]. The difficulty in de-
riving the features of excitation source using short-time spectral
analysis limits the analysis significantly, especially due to the
choice of the size, shape and position of the segment in relation
to the acoustic events in speech production. The main problem
is to extract the rapidly varying instantaneous F0. Moreover,
traditional short-time spectrum analysis masks several impor-
tant subsegmental (less than pitch period) features of the glot-
tal source that are unique in the production of laughter. There
are also many studies done on automatic spotting of laughter
[4] [5] [6]. Kennedy and Ellis [4] tried to spot laughter by using
some spectral features like MFCC’s, delta MFCC’s, energy of
the high frequency components etc. Mary Knox [6] used simi-
lar features and also some more like phone information (using
phone recognizer), shimmer, jitter etc. The analysis in this pa-
per is focused mainly on using source and excitation informa-
tion of laughter.

In Section 2 we present new method of analysis of exci-
tation source features, especially the instantaneous F0 and the
strength of excitation at the epochs. In Section 3 laugh sig-
nals are analyzed to extract the source features to describe the
laughter acoustics. Spotting these unique regions in continuous
speech is proposed in Section 4 and its performance is exam-
ined for some TV broadcast data in Section 5. Finally Section
6 summarizes the results presented in this paper, and discusses
issues to be explored further in the study of laughter acoustics.
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Figure 1: Illustration of epoch extraction and their strengths
from the zero-frequency filtered signal. (a) A segment of speech
signal. (b) DEGG signal. (c) Filtered signal. (d) Strength of ex-
citation (α).

2. Method to extract instantaneous
frequency and epoch strength

Recently a new method is proposed for extraction of the in-
stantaneous F0 [7], for epoch extraction [7] and for strength of
excitation at epochs [8]. The method uses the zero-frequency
filtered signal derived from speech to obtain the epochs (in-
stants of significant excitation of the vocal tract system) and
the strength at the epochs. The following steps are involved
in processing the speech signal to derive the epochs and their
strengths from the filtered signals [8]. (a) Difference the speech
signal s[n] to remove any very low frequency component intro-
duced by the recording device.

x[n] = s[n]− s[n− 1]. (1)

(b) Pass the differenced speech signal x[n] through a cas-
cade of two ideal zero-frequency resonators. That is

y0[n] = −
4X

k=1

aky0[n− k] + x[n], (2)

where a1 = −4, a2 = 6, a3 = −4 and a4 = 1.
(c) Compute the average pitch period using the autocorre-

lation function for every 30 ms speech segments.
(d) Remove the trend in yo[n] by subtracting the local mean

computed over a window obtained from (c) at each sample. The
resulting signal y[n] is the zero-frequency filtered signal, given
by

y[n] = y0[n]− 1

2N + 1

NX

m=−N

y0[n + m]. (3)

Here 2N + 1 corresponds to the number of samples in the win-
dow used for mean subtraction. The choice of the window size
is not critical as long as it is in the range of one to two pitch
periods.

(e) The instants of positive zero crossings of the filtered sig-
nal give the locations of the epochs.

(f) The strength of the epoch (denoted as α) is obtained by
taking the slope of the filtered signal around the epoch. The
slope is measured by taking the difference between the positive
and negative sample values around each epoch. Fig. 1 illustrates
extraction of epochs and their strengths from the filtered signal
derived from the speech signal. The strength values are com-
pared with the amplitudes of the peaks around the epochs in the
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Figure 2: (a) A segment of speech signal. (b) Filtered signal
obtained with adaptive window length for trend removal. (c)
Strength of excitation (α). (d) Pitch period.

differenced electro GlottoGraph (DEGG). While this method
works well for the variations of F0 in normal speech signals,
it cannot capture the rapid changes of F0 that occur in the calls
of a laughter episode or cycle.

The critical factor in the above method is the choice of the
window for trend removal from the output of the zero-frequency
resonator. If the window size is too small compared to the av-
erage pitch period, then too many zero crossings occur in the
filtered signal. If it is too large, then the short pitch periods cor-
responding to high F0 may be missed. In order to capture the
rapid variations in F0 between speech and laughter the follow-
ing procedure is adopted:

(a) Pass the signal through the zero-frequency resonator
with window length of 3 ms for trend removal. This window
length has been chosen in such a way that it gives high energy
in the filtered signal in case of speech and laughter and low en-
ergy in the nonvoiced and non-speech regions.

(b) Positive zero crossings of the filtered signal gives the
epoch locations, and the slope calculated as the difference of
values of the samples after and before the epochs gives the
strength of excitation. Mean of the strength of excitation over a
window of 10 ms is calculated, and if this value is more that 30
percent of the maximum strength value of the complete signal
then that segment is considered as a voiced segment, otherwise
it is a nonvoiced segment.

(c) After finding the voiced segments, each voiced region is
separately passed through a zero-frequency resonator with win-
dow length for trend removal derived from that segment. This is
done by first computing the autocorrelation of the segment with
a frame size of 20 ms and a frame shift of 10 ms. Then the max-
imum occurring peak in the autocorrelated signals is chosen as
the window length for that region.

(d) The positive zero crossings of the final filtered signal
give the epoch locations, and the difference in the values of the
samples after and before each epoch gives the strength of exci-
tation.

Fig. 2 illustrates the epochs and strength of excitation for
a segment of speech signal using the modified epoch extraction
method.

3. Analysis of laughter signals
The source characteristics of laughter signals are analyzed using
features like pitch period (T0), strength of excitation (α), and
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some parameters derived from them which are explained below
in detail.
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Figure 3: (a) A segment of laughter signal. (b) Pitch period
derived from the epoch locations. (c) Strength of excitation (α)
at the epochs.

Pitch period and its variation: It is observed that pitch
frequency for laughter is more than that for normal speech [2].
For normal speech the pitch frequency typically ranges between
80 Hz and 200 Hz for male speakers and 200 Hz to 400 Hz
for female speakers, whereas for laughter the mean pitch fre-
quency for males is above 250Hz, and for females it is above
400 Hz [2]. As mentioned earlier, there will be more air flow
through the vocal tract in the case of laughter. This will result
in faster vibration of the vocal folds, and hence reduction in the
pitch period. Apart from lower pitch period, there is also a rais-
ing pattern in the pitch period contour within a call. In some
cases the pitch period may even start with some large value,
decreases to some minimum and then increases again. This
may be because this high pitch frequency (F0) is not normal for
the vibration of the vocal folds to maintain that frequency, and
hence it tends to decrease. Fig. 3(b) shows this general trend of
T0 in the calls within a bout. The main issue here is extracting
the pitch period accurately. It is not easy as in case of normal
speech, since the pitch variation is large in laughter. The pitch
period is extracted as explained in Section 2.

Strength of excitation: Since there is large amount of air
pressure build up in the case of laughter, (as large amounts of air
is exhaled), the closing phase of the vocal folds is very fast. This
will result in an increase in the strength of excitation. Strength
of excitation (α) at every epoch is computed as the difference
between two successive samples of the filtered signal in the
vicinity of the epoch. Fig. 3(c) shows this general trend of α
in the calls within a bout.

Ratio of strength of excitation and pitch period: Since
the closing phase of the vocal folds is fast for laughter, the cor-
responding opening phase will be larger in duration. So we have
used the ratio (η) of the strength to excitation (α) at the epoch
location and the pitch period (T0) as an approximate measure of
the opening phase.

η = α/T0 (4)

Slope of pitch period contour: The pitch period contour
of laughter has a unique pattern of rising rapidly at the end of
a call. So, we use the slope of the pitch period contour to cap-
ture this pattern. First the pitch period contour is normalized
between 0 and 1. At every epoch location the slope of the pitch
period contour is obtained using a window width of 5 successive

epochs. The slope is calculated by dividing the difference be-
tween the maximum and minimum of the 5 pitch period values
within each window by the duration of the window. We denote
this slope by β.

Slope of strength of epochs: As in the case of the pitch pe-
riod, the strength of excitation at epochs also changes rapidly.
Hence the slope of the normalized strengths is calculated by di-
viding the difference between maximum and minimum of the
normalized strength values within 5 epochs window by the du-
ration of the window. We denote this slope by γ.

4. Proposed method for voiced laughter
identification

As mentioned earlier, the production of laughter and speech are
different in many ways. As a result, source features like pitch
period (T0), strength of excitation (α) differ. Distributions of
the features T0, α, η, β, γ for laughter and speech samples of
5 male and 5 female speakers are shown in the Fig. 4. We can
see from the distributions that there are certain regions where
the laughter feature values are more concentrated, and there are
regions where the speech feature values are more concentrated.
This difference in distribution of features show that they could
be used to discriminate between speech and laughter. A ‘value
threshold’ is placed for each of the features separately. Since
it is not possible to put a single threshold on all the epochs, a
‘fraction threshold’ is used to determine the percent of epochs
that exceed the ‘value threshold’ for the segment to be laughter.
This is done by observing these features for several laughter and
speech samples. Table 1 gives the value and fraction thresholds
for each of the features. The proposed method for laughter spot-
ting consists of the following steps:

(a) The signal is first segmented into voiced and nonvoiced
regions by passing the signal through the zero-frequency res-
onator using a window length of 3 ms for trend removal.

(b) For every voiced region, epochs are extracted using the
zero-frequency filtering method with a window size for trend
removal derived adaptively from the signal. (Explained in detail
in Section 2.)

(c) The five features described in Section 3 are extracted for
every epoch in the voiced region.

(d) If a voiced segment has more epochs than determined
by the ‘fraction threshold’ for all the features, then that segment
is considered as a laughter segment.

Table 1: Value and fraction thresholds for each feature.
T0 α η β γ

Value threshold 5 0.1 0.002 0.003 0.005
Fraction threshold (%) 40 20 20 20 20

5. Results of laughter detection in
continuous speech

The proposed algorithm for laughter detection was tested on a
data collected from a TV program. Each episode is typically
about 30 minutes of informal interview with a celebrity. It con-
tains laughter in between naturally occurring speech. The data
is not clean, as it is mixed with a low amplitude background
music and noise.

The laughter segments were manually labeled with start
time and end time by listening to the show. The manually la-
beled laughter segments has the time stamps of the complete
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Figure 4: Illustration of differences in the excitation source features of Laughter and Normal speech using distributions of (a) T0, (b)
α, (c) η, (d) β and (e) γ . In each plot the distributions of corresponding features of Laughter and Normal speech were represented with
solid and dashed lines respectively.

Table 2: Results of laughter spotting from 30 minutes of TV
show.

MDR (%) FAR (%)

Segment level 10.2 29.1
Segment level after Post-processing 11.1 24.1

Bout level 4.1 32.1
Bout level after Post-processing 4.1 27.4

laughter bout, but not the individual calls. For obtaining the
MDR (Missed Detection Rate) and FAR (False Alarm Rate)
on voiced segments, these laughter regions are segmented into
voiced and nonvoiced regions. This gives the start and end
times of the voiced regions (calls) in a laughter. We assume
that the laughter calls cannot occur in isolation, and hence the
detected laughter segments that occurred in isolation are re-
moved. Laughter segments of duration less than 0.5 sec and
having atleast 3 seconds of non-laughter segments on either side
are treated as isolated segments. This assumption reduced the
FAR as can be seen from Table 2. Table 2 shows the MDR and
FAR at segment level and at bout level detection of laughter
before and after post-processing. Fig.5 shows the features and
their corresponding decisions on a sample of the data.

6. Summary and conclusions
In this paper we have presented features based on excitation
source for analyzing and characterizing the laugh signals. The
excitation features are derived from the zero-frequency res-
onator output of speech signals in the form of instantaneous
pitch and the strength of excitation at epochs. These features
were used to develop an algorithm to discriminate laughter and
speech regions in continuous speech. The performance of the
algorithm was studied on a TV broadcast data.

The main signal processing issue is in analyzing laugh sig-
nals to capture the rapidly changing glottal activity, especially
the rapidly changing pitch and strength of excitation. Since
laughter in practice occurs along with other acoustic distur-
bances, extracting the rapidly changing glottal activity of laugh-
ter in practical environments is a challenging task. Currently we
are exploring other source-related features, together with tradi-
tional spectral features to improve the performance of laughter
detection in continuous speech.
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