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Summary: 
● Plant genotype strongly affects disease resistance, and also influences the composition 

of the leaf microbiome. However, these processes have not been studied and linked in 
the microevolutionary context of breeding for improved disease resistance. We 
hypothesized that broad-spectrum disease resistance alleles also affect colonization by 
non-pathogenic symbionts. 

● Quantitative trait loci (QTL) conferring resistance to multiple fungal pathogens were 
introgressed into a disease-susceptible maize inbred line. Bacterial and fungal leaf 
microbiomes of the resulting near-isogenic lines were compared to the microbiome of the 
disease-susceptible parent line at two timepoints in multiple fields. 

● Introgression of QTL from disease-resistant lines strongly shifted the relative abundance 
of diverse fungal and bacterial taxa in both 3-week-old and 7-week-old plants. 
Nevertheless, the effects on overall community structure and diversity were minor and 
varied among fields and years. Contrary to our expectations, host genotype effects were 
not any stronger in fields with high disease pressure than in uninfected fields, and 
microbiome succession over time was similar in heavily infected plants and uninfected 
plants.  

● These results show that introgressed QTL can greatly improve broad-spectrum disease 
resistance while having only limited and inconsistent pleiotropic effects on the leaf 
microbiome in maize. 

 
Key words: breeding; disease resistance; introgression; maize; microbiome; pathology; 

phyllosphere; disease ecology 
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Introduction 
Phyllosphere microbiomes—the communities of bacteria and fungi living on and in plant 

leaves—profoundly affect the health of their plant hosts and the entire ecosystem (Lindow & 
Brandl, 2003; Vorholt, 2012; Laforest-Lapointe et al., 2017). Leaf-dwelling microbes can 
interfere with the exchange of gases and plant-derived volatiles (Bringel & Couée, 2015), alter 
patterns of herbivory (Clay, 1990; Humphrey et al., 2014), participate in nitrogen cycling (Murty, 
1984; Papen et al., 2002; Fürnkranz et al., 2008), and influence drought resistance (Schardl et 
al., 2004; Rodriguez et al., 2009). Microbial symbionts are also noted for their role in disease 
resistance; manipulation of the phyllosphere microbiome can directly affect disease 
susceptibility in various species including tomato, poplar, wheat, and Arabidopsis thaliana 
(Massart et al., 2015; Busby et al., 2016; Ritpitakphong et al., 2016; Berg & Koskella, 2018). 
Despite the importance of leaf microbes to plant health, little is known about whether they are 
affected by systematic changes in host genotype, such as those introduced by crop breeders.  

Previous studies of microbiome heritability have compared distantly related genotypes to 
each other, or mutated genes to the wild type (Bodenhausen et al., 2014; Horton et al., 2014; 
Ritpitakphong et al., 2016; Wagner et al., 2016; Wallace et al., 2018). Here, we take a new 
approach by using germplasm from a real breeding experiment to compare leaf microbiome 
composition before and after the introgression of quantitative trait loci (QTL) from 
disease-resistant maize lines into disease-susceptible lines. We designed our study to (1) test 
whether systematic genetic changes commonly used in breeding programs have the potential to 
alter crop microbiomes, and (2) to disentangle the relationships between host genotype, disease 
resistance, and leaf-associated microbes. 

The ecological, physiological, and molecular mechanisms by which the microbiome 
influences disease resistance are complex and poorly understood. For instance, in A. thaliana , 
the foliar community did not directly inhibit the pathogen Botrytis cinerea but still conferred 
resistance via an unknown interaction with the plant host (Ritpitakphong et al., 2016). 
Inoculation with individual fungal endophytes substantially reduced symptoms of Melampsora 
rust infection in Populus trichocarpa , but other endophytes had no effect or even increased 
disease severity (Busby et al., 2016). And in tomato, the ability of the phyllosphere microbiome 
to improve resistance to Pseudomonas syringae depended on the nutrient status of the plant 
(Berg & Koskella, 2018). These examples illustrate the need for further investigation of the links 
between pathogens, the rest of the leaf microbiome, and their shared host. 

One potential link between disease resistance and the microbiome is a shared sensitivity 
to plant genotype, which largely determines the plant phenotype. Host phenotype, in turn, 
determines the habitat available to both pathogenic and non-pathogenic microbes. Several 
studies have detected host genetic variation affecting features of the phyllosphere microbiome 
either among or within plant species (Sapkota et al., 2015; Wagner et al., 2016; Wallace et al., 
2018), but most of the plant genes and traits that shape microbiome composition remain 
unknown. In laboratory settings, mutations in cuticle synthesis genes also affect the composition 
of foliar bacterial communities (Bodenhausen et al., 2014; Ritpitakphong et al., 2016), and 
salicylic acid signaling and glucosinolate biosynthesis genes can alter root microbiome 
composition (Bressan et al., 2009; Lebeis et al., 2015). A genome-wide association study of 
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field-grown A. thaliana revealed that genes affecting cell wall traits, defense-response 
pathways, and trichome development were overrepresented among the candidate genes at 
quantitative trait loci (QTL) affecting foliar microbiome composition (Horton et al., 2014). In 
poplar, down-regulation of a key enzyme in the lignin biosynthetic pathway dramatically 
changed the composition of endophyte communities in leaves, stems, and roots (Beckers et al., 
2016). In addition, evidence is mounting that the plant innate immune system is centrally 
involved in regulating microbial symbionts (Hacquard et al., 2017). 

Some of the plant traits implicated in microbiome variation have also been implicated in 
quantitative disease resistance (QDR), or partial resistance to one or more pathogens (Poland 
et al., 2009; Niks et al., 2015; Beckers et al., 2016; Yang et al., 2017). For example, salicylic 
acid is a critical hormonal regulator of defense responses (Loake & Grant, 2007); and while the 
leaf cuticle can be a physical barrier to pathogens and a reservoir for antimicrobial compounds, 
it also can be recognized and used by pathogens to stimulate invasion (Martin, 1964; Bessire et 
al., 2007; Kachroo & Kachroo, 2009; Serrano et al., 2014). QDR is a valuable target for crop 
improvement for several reasons. Compared to the immunity conferred by large-effect 
resistance (or “R”) genes, QDR is generally more difficult for pathogens to overcome via 
co-evolution (St Clair, 2010). In addition, unlike the highly specific R-genes, QDR genes can be 
effective against several pathogens (Wisser et al., 2011; Wiesner-Hanks & Nelson, 2016; Yang 
et al., 2017). The resulting broad-spectrum protection, or multiple disease resistance (MDR), is 
desirable when several pathogens are present or disease pressures are unpredictable.  

By definition, MDR loci affect colonization success of multiple pathogenic 
microorganisms; therefore, we hypothesized that they might also influence other microbiome 
members. MDR is usually a quantitative plant trait underlain by a large number of relatively 
small-effect genes, likely with diverse functions. Although a few MDR genes have been 
identified (Krattinger et al., 2009; Wiesner-Hanks & Nelson 2016; Sucher et al., 2017), most of 
the mechanisms underlying MDR remain unknown. Despite this, systematic breeding methods 
such as controlled crosses and recurrent selection enable genetic improvement of this complex 
trait. 

We used germplasm from an MDR breeding program to test whether QTL introgressed 
from disease-resistant lines have pleiotropic effects on the maize leaf microbiome. We 
compared the foliar microbiomes of improved and unimproved maize lines in several fields, at 
early- and late-season timepoints, both with and without pathogen infection. Our data enabled 
us to test several hypotheses. First, because these MDR lines were selected for resistance to 
three different fungal pathogens (Lopez-Zuniga et al., 2019; Martins et al., 2019), we 
hypothesized that the introgressed alleles would have stronger effects on the fungi than 
bacteria. Second, because these loci have known effects on disease resistance, we 
hypothesized that their effects on the microbiome would be stronger in environments with higher 
disease pressure (Figure 1). Finally, we hypothesized that disease establishment would disrupt 
patterns of microbiome succession over the growing season. Our results suggest that 
introgression of QTL from disease-resistant lines can greatly improve broad-spectrum disease 
resistance with only limited, context-dependent side effects on the maize leaf microbiome. 
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Materials and methods 

 
Figure 1 | Host-pathogen-microbiome relationships involve complex interactions among all community 
members. (a) In our simplified model, host genotype can affect the late-season microbiome both directly 
and through cascading effects via disease resistance; for this reason, we hypothesized that MDR alleles 
would exert stronger effects on the microbiome when disease pressure is higher. Furthermore, host 
genotype could affect disease severity both directly (via immune system and other traits that impact 
pathogen success) and indirectly (via traits that influence early microbiome assembly, which in turn 
interacts with the pathogen). (b) The repercussions of breeding-induced changes in a microbial 
symbiont’s relative abundance (Fig. 4) will depend on whether it has a positive effect, negative effect, or 
no effect on host health. For example, if QTL introgression causes a beneficial organism to increase in 
abundance, or a harmful organism to decrease in abundance, the expected outcome for the host plant 
would be an improvement in health or performance. 

 
 Field experimental design 

To directly test whether breeding for MDR affects the foliar microbiome, we compared 
microbiome composition of near-isogenic plants with and without introgressed chromosome 
segments that conferred MDR (Lopez-Zuniga et al., 2019; Martins et al., 2019). Two MDR 
inbred lines (NC304 and Ki3) were crossed with H100, a highly disease susceptible line. Using 
single seed descent, the resulting F1 offspring were backcrossed three times to H100 and then 
self-fertilized for four generations. The resulting two populations of ~200 BC 3F4:5 near-isogenic 
lines (NILs) were mostly genetically identical to the recurrent elite parent (H100) but retained 
small chromosome segments from the donor lines. The NILs were assessed for resistance to 
three fungal pathogens: Bipolaris maydis, Setosphaeria turcica , and Cercospora zeae-maydis , 
the causative agents of the maize foliar diseases southern corn leaf blight, northern corn leaf 
blight, and grey leaf spot, respectively.  

For this study, we selected eight NILs (four from each cross; Table S1) that had high 
scores for resistance to all three pathogens. The relatively strong MDR phenotypes of these 
NILs likely reflect larger-than-average contributions from the MDR parent genome (roughly 10% 
per NIL, compared to the expected 6.25% based on the breeding design; alleles from Ki3 were 
also more homozygous than expected (92% compared to the expected 78%) (Supporting 
Information Fig. S1; (Lopez-Zuniga et al., 2019). Within each set of four NILs there was little 
overlap between introgressed regions, and cumulatively the NILs carried approximately 40% of 
each MDR parent genome (Fig. S1). We planted these eight NILs and their parent lines in 
multiple fields at the Central Crops Research Station (Clayton, NC; Table S2). Replicate plots 
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were planted in two fields in 2016, and in four fields in 2017 (Fig. 2c). Twenty kernels per line 
were planted per field, with the exception of the recurrent parent H100, which was planted at a 
replication of 30 kernels per field. Due to uneven germination, final sample sizes varied among 
replicates.  

To reduce microbial inoculum from kernel surfaces, we soaked kernels in 3% hydrogen 
peroxide for two minutes and rinsed them in distilled water immediately before planting. In each 
field, plants were randomly arranged in five to six adjacent rows of 40 to 50 plants each, spaced 
12 inches apart. To reduce edge effects, we surrounded all experimental plots with two rows of 
border plants. All plots were maintained using standard agronomic conditions for rainfed maize. 
All fields were separated by <2 km and had similar soil types but different crop rotation histories 
(Fig. 2b; Table S2). 

 

 
Figure 2 | Overview of experimental design. Panel (a) illustrates the crossing design used to generate 
the eight near-isogenic lines (NILs) used in this experiment, which were mostly genetically identical to 
their disease-susceptible parent line H100 but which had  chromosome segments introgressed from a 
donor line (Ki3 or NC304) that conferred multiple disease resistance (MDR). Eight NILs were planted in 
randomized plots along with the three parent lines. Panel (b) shows the locations of the replicate plots 
within Central Crops Research Station, Clayton, NC, USA. Map data and imagery: Google. Panel (c) 
summarizes the sampling scheme for a total of six experimental replicate plots over two years. For the 
pilot experiment in 2016, only a single timepoint was sampled at two fields, and only fungi were 
quantified. In 2017, we quantified both bacteria and fungi; plants were sampled at two timepoints in four 
fields, two of which were inoculated with the causal agents of either southern leaf blight (SLB; causal 
agent Cochliobolus heterostrophus ) or northern leaf blight (NLB; causal agent Setosphaeria turcica). 

Pathogen inoculation and disease scoring 
In 2017, we explored the effects of pathogen invasion on foliar microbiomes in maize by 

inoculating one-month-old plants in two of the four fields. Plants in field “C10” were inoculated 
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with Cochliobolus heterostrophus (the causal agent of southern leaf blight); plants in field “D3” 
received Setosphaeria turcica (the causal agent of northern leaf blight), and plants in the other 
two fields received no inoculation (Fig. 2c). Inoculations were performed by incubating sterilized 
sorghum grains in pathogen cultures, and then dropping infected grains into the whorl of each 
plant (Sermons & Balint-Kurti, 2018). Approximately 2 weeks after inoculation, we visually 
scored symptom severity of all inoculated individuals. Northern leaf blight symptoms were 
scored by estimating the percentage of each leaf damaged by lesions, and then averaging 
these scores for each plant. Southern leaf blight symptoms were scored for entire plants on a 
scale from 1 (complete leaf mortality) to 9 (asymptomatic) (Lopez-Zuniga et al., 2019). Disease 
scores were recorded using the Field Book application (Rife & Poland, 2014). 

Sample collection 
In both 2016 and 2017, we collected leaf samples for microbiome quantification when 

plants were 3 weeks old. In 2017 only, we sampled leaves again when plants were 7 weeks old 
(i.e., 3 weeks after pathogen inoculations). The increase in experimental scope between years 
reflected an increase in available resources. For all sample collections, we used a standard hole 
punch to remove three discs evenly spaced from the base to the tip of a single leaf. For the 
early timepoint, we sampled the third leaf; in cases where the third leaf was too small or too 
damaged (<5% of plants), we sampled the second or fourth leaf instead. For the second 
timepoint we sampled the oldest leaf that was at least 50% green and was not touching the soil, 
because the microbiomes of older leaves are more likely to reflect host-driven processes than 
younger leaves, which are in earlier stages of microbiome assembly and more prone to 
stochastic influences (Maignien et al., 2014). We selected green tissue and avoided lesions 
because we were primarily interested in direct genotype effects on non-pathogenic microbial 
symbionts, rather than microbiome responses to differences in pathogen abundance (Fig. S2); 
leaves with insufficient green tissue were not sampled. Leaf discs were collected into sterile 
tubes and stored on ice until they could be transferred into -20°C for storage. Tools were rinsed 
in 70% ethanol between samples to reduce transfer of microbes among plants. 

DNA extraction, library preparation, and sequencing 
To remove loosely associated microbes from leaf surfaces, we vortexed leaf discs in 

sterile water for 10 s on maximum speed and then shook them dry before freezing them at 
-80°C. Lyophilized leaf discs were randomly arranged into 96-well plates and powdered using a 
Retsch MM301 mixer mill (1 minute at 25 Hz). Several wells were left empty as a negative 
control; to several others we added a mock microbial community as a positive control 
(ZymoBiomics Microbial Community Standard, Zymo Research, Irvine, CA, USA). We extracted 
DNA using the Synergy 2.0 Plant DNA Extraction Kit (OPS Diagnostics, Lebanon, NJ, USA) 
following the manufacturer’s instructions, except that we doubled the length of the bead-beating 
step. 

We generated amplicon libraries separately for bacteria and fungi using a two-PCR-step 
approach. First, we amplified 16S-v4 and ITS1 using the standard primer pairs 515f/806r for 
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bacteria and ITS1f/ITS2 for fungi. Primers included upstream “frameshift” stretches of 3 to 6 
random nucleotides to increase library complexity, plus a binding site for universal Illumina 
adaptors. Each 10-uL reaction included 0.4 uL of each primer (10 uM), 5 uL of 5Prime 
HotMasterMix (Quanta Bio, Beverly, MA, USA), 1.5 uL of template DNA, and 0.15 uL PNA 
PCR-blocker to reduce amplification of host plastid sequence (for bacterial libraries only; 
(Lundberg et al., 2013). The PCR program for fungal libraries included an initial 2-minute 
denaturation at 95°C; 27 cycles of 20-second denaturation at 95°C / 20-second primer 
annealing at 50°C / 50-second extension at 72°C; and a final 10-minute extension at 72°C. The 
PCR program for bacterial libraries was identical except that the primer annealing step was at 
52°C and was preceded by a 5-second PNA annealing step at 78°C. The PCR products were 
cleaned by adding 7 uL of magnetic SPRI bead solution, washing magnet-bound DNA twice 
with 70% ethanol, and eluting in 10 uL ultrapure water. 

The second PCR step added dual-indexed universal Illumina adaptors. The forward and 
reverse primers consisted of (from 5’ to 3’) the P5 or P7 adaptor sequence (respectively), a 
unique 8-bp index, and a binding site to enable annealing to amplicon sequences. PCR 
conditions were the same as above, except that only 8 cycles were performed and 1 uL of the 
first-step PCR product was used as the template. We then pooled 1 uL from each reaction to 
create separate pools for fungi and bacteria, which we purified by adding magnetic bead 
solution at a ratio of 0.8:1 (v/v), washing twice with 70% ethanol, and eluting DNA in ultrapure 
water. Aliquots of the fungal and bacterial pools were combined at equimolar concentrations. 

The final combined pool derived from the 2017 samples was sequenced at 1,344-plex 
on an Illumina HiSeq2500 machine in Rapid Run mode (250 bp paired-end reads). To increase 
library complexity, a 5% phiX spike-in was added prior to sequencing. Because this first 
sequencing run yielded ample ITS sequence but low coverage of 16S amplicons, we sequenced 
the 16S amplicon pool again on the HiSeq platform and on the MiSeq using V2 chemistry (250 
bp paired-end reads) along with the smaller pool of ITS amplicons from the 2016 samples. All 
sequencing was performed by the North Carolina State University Genomic Sciences 
Laboratory (Raleigh, NC, USA).  

Sequence processing and quality filtering 
 After trimming primers from raw, demultiplexed FASTQ files using CUTADAPT  v1.12 
(Martin, 2011), we processed sequences using DADA2  v1.10.1 (Callahan et al. , 2016). We 
required the forward and reverse 16S reads to have a maximum of 2 expected errors and no 
ambiguous bases, then truncated them at 220bp and 160 bp, respectively. We required the 
forward and reverse ITS reads to have a maximum of 1 and 2 expected errors (respectively) 
and no ambiguous bases but did not truncate reads to a fixed length. Error rates were inferred 
from 3x10 6 reads; this was done separately for the ITS data and 16S data, and separately for 
each independent sequencing run. Quality-filtered reads were then de-replicated, de-noised, 
and merged to generate tables of amplicon sequence variants (ASVs). At this point we merged 
the bacterial ASV tables from the three 16S sequencing runs with each other, and also merged 
the fungal ASV tables from 2016 and 2017, which had been sequenced separately. After 
removing chimeric ASVs, we assigned taxonomy using the RDP Classifier (Wang et al. , 2007) 
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trained on the RDP (v.16) training set for 16S sequences and the UNITE database for ITS 
sequences (Cole et al., 2014)(Kõljalg et al., 2005). 
 We discarded ASVs without taxonomic assignment at the kingdom level and ASVs that 
were assigned to chloroplasts or mitochondria (“non-usable reads”). We used the mock 
community positive controls to determine a within-sample relative abundance threshold that 
removed most contaminant ASVs while retaining as much of the data as possible. This 
threshold (0.091% for bacteria, 0.221% for fungi) was then applied to all non-control samples. 
We then removed “non-reproducible” ASVs that were not observed at least 25 times in at least 5 
samples (Lundberg et al., 2012). Together, these filtering steps reduced the final dataset to 
1,502 bacterial ASVs while retaining 93.3% of the data. For fungi, the final dataset retained 548 
ASVs and 90.5% of the original sequences. Finally, we excluded samples with <500 usable 
reads. Out of the original 1,728 fungal samples, 194 were excluded from analysis; for bacteria, 
174 out of 1,315 were excluded. The number of reads remaining after all filtering steps was 
saved as the “sampling effort” for each sample, normalized and centered for use as a covariate 
in downstream analyses. 

Data analysis 
We used R version 3.6.0 for all analysis, especially the packages phyloseq, tidyr, lme4, 

DESeq2, vegan, and lmerTest (McMurdie & Holmes, 2013; Love et al., 2014; Bates et al., 2015; 
Kuznetsova et al., 2017). When applicable, we used the false discovery rate (FDR; (Benjamini & 
Hochberg, 1995) to adjust P-values from multiple comparisons. All analyses were performed in 
parallel for fungi and bacteria. Original R code and raw data are available in a Zenodo 
repository (Wagner et al. 2019); raw reads are available in the NCBI Sequence Read Archive 
under BioProject #PRJNA565009. 

We estimated alpha diversity for each sample using the Shannon and abundance-based 
coverage estimator (ACE) metrics, which describe community evenness and richness, 
respectively (Hughes et al., 2001). For analyses conducted at higher taxonomic levels, we 
consolidated ASVs into their respective genera, families, orders, classes, or phyla using the 
function “Phyloseq::tax_glom” (McMurdie & Holmes, 2013). For analyses that required 
normalization (e.g., ordination) we applied the variance-stabilizing transformation from the 
“DESeq2” package (Love et al., 2014; McMurdie & Holmes, 2014). Bray-Curtis dissimilarity of 
transformed count data was used to quantify community composition. When modeling the 
relative abundances of individual taxa using the DESeq2 package, we tested only taxa with 
abundances that were at least 10% of the mean taxon abundance (Wagner et al. , 2016). For 
example, the mean bacterial ASV was observed 50,689 times across the full dataset; therefore, 
we excluded all bacterial ASVs that were observed fewer than 5,069 times from the relevant 
analysis. This greatly reduced the number of tests to be performed but retained most of the 
data; for example, across the full dataset it reduced the number of bacterial ASVs from 1502 to 
576 while retaining 98.9% of all observations. We explored overall patterns of microbiome 
variation by performing multivariate ANOVA on the Bray-Curtis dissimilarity matrix of the full 
variance-stabilized dataset using the function “vegan::adonis”  (Oksanen et al., 2018). This 
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model included the predictor variables “Genotype”, “Rep” (i.e., field and year), “Genotype*Rep”, 
“Timepoint”, and “Genotype*Timepoint”. 

Characterization of beta diversity and changes in beta diversity: In addition to 
overall microbiome composition, we were interested in whether QTL introgression from 
disease-resistant lines affected microbiome variability. One host genotype might be hospitable 
to only a small subset of microbes, whereas another may be open to colonization by a wider 
range of symbionts. The former host would be expected to exhibit low variability among 
biological replicates, whereas the latter host has the potential to exhibit higher variability among 
biological replicates due to stochastic and microenvironmental effects. Such a scenario would 
manifest as a host genotype effect on beta dispersion.  

Beta dispersion for groups of samples was calculated using the function 
“vegan::betadisper” (Oksanen et al., 2018). For such analyses, samples were grouped in 
several different ways depending on the question being asked. For example, to ask whether 
beta diversity differed between early and late timepoints, we used the function 
“vegan::betadisper” to find a centroid location in ordination space for each timepoint, and then 
calculated each individual sample’s distance to its corresponding centroid. This 
“Distance_to_Centroid” metric could then be used to compare beta diversity of the two groups 
using standard statistical approaches as detailed below. We used the same approach to assess 
differences in beta diversity among host genotypes and between timepoints in specific fields. 

 These analyses of beta diversity tested whether leaf microbiomes of one group of 
individual plants were more homogeneous than those of another group; however, they were not 
meant to compare overall microbiome composition between the groups. Rather, our conclusions 
about differences in microbiome composition between genotypes were drawn from the 
multivariate ANOVA and negative binomial models described above and below.  

Testing effects of MDR alleles on the juvenile and adult maize microbiomes: Next, 
we tested the hypothesis that the introgression of MDR alleles altered microbiome composition. 
We conducted these analyses separately for young plants measured three weeks after planting 
(the “early” timepoint) and seven weeks after planting (the “late” timepoint). For each timepoint 
we performed multivariate ANOVA of Bray-Curtis dissimilarity, using a model that included 
“Genotype”, “Rep”, and their interaction as predictor variables. Because we were specifically 
interested in contrasting MDR genotypes to the susceptible line H100 (Fig. 2a), we repeated this 
analysis ten times; each time we subset the data to include only H100 and one MDR genotype. 
P-values from this analysis were corrected for multiple comparisons using the false discovery 
rate; FDR < 0.05 was considered statistically significant (Benjamini & Hochberg, 1995). 

We took a similar approach to test whether QTL introgression from disease-resistant 
lines altered alpha diversity and beta diversity. We modeled ACE, Shannon, and beta diversity 
(i.e., distance to the centroid for the corresponding Genotype within each Rep) using separate 
linear mixed-effects models with “Genotype”, “Rep”, and their interaction as fixed-effect 
predictors. ACE diversity was natural log-transformed to improve homoscedasticity. 
Standardized sequencing depth and a “Plate” random-intercept term were also included as 
nuisance variables to control for variation in sampling effort among samples and batch effects 
during DNA extraction and library preparation. Post-hoc Dunnett t- tests (Dunnett, 1955) were 
used to directly contrast each MDR genotype to H100 within each Rep while controlling the 
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family-wise error rate. Finally, to determine which microbial taxa responded to host genotype, 
we fit negative binomial models to counts of individual ASVs, genera, families, orders, classes, 
and phyla, using “Genotype”, “Rep”, and their interaction as predictor variables. For these 
analyses, H100 was set as the reference genotype, so that the coefficients from the model 
described contrasts between MDR lines and the disease-susceptible control. P- values were 
adjusted to correct for multiple comparisons (across all taxa tested, in ten MDR genotypes, in 
multiple experimental replicates) at FDR < 0.05. 

Investigating the effect of disease severity on seasonal microbiome dynamics: We 
analyzed the effect of pathogen invasion on the microbiome by comparing microbiome 
succession between timepoints, (1) in inoculated versus uninoculated fields, and (2) as a 
function of infection severity at the individual plant level within each field. First, we performed a 
partial constrained distance-based redundancy analysis (based on the Bray-Curtis dissimilarity 
metric) to characterize the overall community response to Timepoint*Field interactions after 
controlling for sequencing depth. To assess statistical significance of this interaction, we used 
permutation tests to compare this model to an alternative model containing only the Timepoint 
and Field main effects. To determine which taxa drove this interaction, we used the DESeq2 
package to fit negative binomial models for counts of individual ASVs, genera, families, orders, 
classes, and phyla in response to the Timepoint*Field interaction; likelihood ratio tests were 
used to compare these to alternative models with only the Timepoint and Field main effects. To 
investigate how disease establishment affected alpha and beta diversity at the field level from 
early season to late season, we calculated each individual plant’s change in Shannon diversity 
and in Distance_to_Centroid between timepoints (centroid calculated for each Field at each 
Timepoint). We then fit linear mixed models to these calculated values with “Field” as a 
fixed-effect predictor. Standardized sequencing depth and a “Plate” random-intercept term were 
also included as nuisance variables to control for variation in sampling effort and batch effects. 
Statistical significance was assessed using ANOVA with Type III sums of squares and 
Satterthwaite’s approximation for denominator degrees of freedom. We used Tukey’s Honest 
Significant Difference test to compare the early-to-late changes in alpha and beta diversity 
among fields while controlling the family-wise error rate. Second, within each inoculated field, 
we regressed each plant’s change in alpha diversity and in community composition (i.e., 
Bray-Curtis dissimilarity between the two timepoints) against symptom severity. 
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Figure 3 | Maize leaf microbiomes shifted dramatically between 3 weeks and 7 weeks after planting. (a-b) 
Overall microbiome composition shifted strongly between timepoints. MDS1 and MDS2 are the two major 
axes of variation after ordination of the Bray-Curtis dissimilarity matrix using non-metric multidimensional 

scaling, i.e., numerical summaries of community composition. Each point represents one leaf sample; 
points separated by smaller distances in MDS space indicate samples with more similar microbiomes. 

(c-d)  On average, alpha diversity was higher at the late timepoint than the early timepoint. The top, 
middle, and bottom lines of the boxes mark the 75th percentile, median, and 25th percentile, respectively; 
box whiskers extend 1.5 times the interquartile range above and below the box. (e-f) Beta diversity (i.e., 
variation among samples) was stable over time for bacteria, but increased for fungi between timepoints. 

Boxplot statistics are the same as in panels (c-d).  
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TABLE 1 | Results of permutational MANOVA for fungal and bacterial community composition in the 
leaves of maize plants. P-values are based on 999 permutations of the Bray-Curtis dissimilarity matrix 
calculated from variance-stabilized amplicon sequence variant (ASV) tables. 

 Bacteria  Fungi 

 R 2 pseudo-F test P  R 2 pseudo-F test P 

Genotype 0.010 F10,1086 = 1.50 0.002  0.008 F10,1456 = 1.72 0.001 

Timepoint 0.176 F1,1086 = 255.13 0.001  0.121 F1,1456 = 256.10 0.001 

Rep 0.034 F3,1086 = 16.60 0.001  0.154 F5,1456 = 65.37 0.001 

Genotype x Timepoint 0.009 F10,1086 = 1.27 0.015  0.008 F10,1456 = 1.65 0.001 

Genotype x Rep 0.022 F30,1086 = 1.08 0.115  0.023 F50,1456 = 0.97 0.730 

 

Results 
The final fungal dataset included 546 ASVs and 1,533 samples from 6 replicate plots 

over two years (2016-2017). The bacterial dataset included 1,502 ASVs and 1,141 samples 
from 4 replicate plots in 2017 only. The 2017 data included two timepoints: early (3-week-old 
plants) and late (7-week-old plants), whereas the 2016 data represented the early timepoint only 
(Fig. 2c). Median replication ranged from N =11 to N=14 per genotype per replicate (Fig. 2c). 
The median sequencing depth per sample was 29,283 for fungi and 97,955 for bacteria. 

Bacterial microbiomes were structured largely by timepoint, which explained 17.6% of 
the variation in community composition (Fig. 3; Table 1). Experimental replicate (i.e., field) and 
host genotype each explained only about 3% of the variation. At the early timepoint, 
communities were dominated by Pantoea  spp. (53.5% relative abundance) followed by 
Herbaspirillum spp. (12.3%). However, four weeks later, the relative abundances of these 
groups had declined sharply to 4.4% and 2.0%, respectively. The dominant bacterial members 
of the adult maize leaf microbiome belonged to the genera Sphingomonas (38.9%) and 
Methylobacterium (29.2%; Table S3). 

In contrast, fungal communities were strongly shaped by experimental replicate (i.e., 
field and year; Table 1); however, timepoint became the dominant predictor when data from 
2016 were excluded, indicating that differences between years contributed to this result (Fig. 
S3). In 2016 the most abundant fungal genus in seedling leaves was Sporobolomyces  (31.7% 
relative abundance) followed by Epicoccum (12.7%). The following year, the same genera were 
again the two most common in young leaves, although in the opposite order ( Epicoccum 24.7%, 
Sporobolomyces 8.3%). In older plants, Epicoccum remained the most abundant genus, despite 
declining to 9.8% relative abundance. Overall, there was a high degree of overlap in the most 
abundant genera within leaf microbiomes of seedlings in 2016 and 2017 (Table S3). However, 
one third of ASVs--representing a diverse range of genera--changed significantly in relative 
abundance between years (Fig. S4). 
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We detected host genetic effects on overall composition of both bacterial and fungal 
microbiomes, as well as an interaction between host genotype and timepoint (Table 1); we 
explore these results in more detail below. On average, alpha diversity of both kingdoms was 
higher in seven-week-old plants relative to three-week-old plants (Fig. 3c-d). In contrast, beta 
diversity (i.e., variation among samples) of bacterial communities did not change between 
timepoints, whereas beta diversity of fungal communities increased (Fig. 3e-f).  

 
In juvenile plants, QTL introgression altered the relative abundances 
of diverse taxa but not overall community structure  

First, we investigated whether the introgression of QTL from MDR genotypes altered 
microbiome composition in the leaves of young maize plants, before the establishment of 
disease. For these analyses we used data from both years, but included only the data from the 
early timepoint (3 weeks after planting). Alpha diversity of both bacterial and fungal leaf 
microbiomes, measured using the ACE metric, varied among genotypes (ANOVA, Genotype x 
Rep, P = 0.070 and P = 0.0038 respectively; Table S4). However, the strength and direction of 
this effect varied across experimental replicates. In some replicates, the NILs deviated from 
H100 in the same direction as the MDR parent lines, consistent with the hypothesis that the 
introgressed MDR alleles affect both disease resistance and early microbiome diversity. In 
others, however, there was no apparent genetic variation at all (Fig. S5). This result suggests 
that host genotype interacts with the environment in complex ways to influence the taxonomic 
diversity of leaf-associated microbial communities in maize. Tests of beta diversity--i.e ., variation 
in microbiome composition among individuals of the same genotype--showed similar patterns. 
Beta diversity of both fungal and bacterial communities varied among genotypes, but the 
direction and strength of the effect were inconsistent among experimental replicates (Table S5; 
Fig. S6). 

In addition to alpha and beta diversity, we investigated the effects of QTL introgression 
from MDR lines on overall community composition using permutational MANOVA. Only one of 
the two disease-resistant parent lines (and none of the NILs) differed from H100 in bacterial 
microbiome composition (Table 2). Similarly, fungal community composition did not differ 
between any of the MDR lines and H100, contradicting our hypothesis that these loci would 
have stronger and more consistent effects on fungi than bacteria. Nevertheless, we detected a 
diverse range of individual taxa that changed in relative abundance in response to MDR allele 
introgression. For instance, 33 fungal genera were either enriched or depleted in at least one 
NIL relative to the common disease-susceptible parent line H100, with effect sizes ranging from 
approximately 4-fold to over 1000-fold (Wald test, FDR < 0.05; Fig. 4a; Table S6). These 
differing patterns detected by permutational MANOVA and by negative binomial models are not 
necessarily contradictory; the former method can detect simultaneous shifts in a large number 
of species, even if most or all of those shifts are too subtle to be detected using univariate 
models (Anderson, 2001). Similarly, strong responses by a relatively small number of taxa--such 
as those observed in MDR NILs (Fig. 4)--may be missed by permutational MANOVA if the rest 
of the community stays relatively stable. 
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Figure 4 | Introgression of QTL from MDR lines altered the relative abundance of diverse taxa in 

leaves of 3-week-old and 7-week-old maize. The enrichment/depletion of fungal (top) and bacterial 
(bottom) genera caused by introgression of MDR alleles into the H100 genetic background is shown for 
(a) the early timepoint/juvenile plants, and (b) the later timepoint/adult plants. MDR genotypes “Ki3” and 
“NC304” are the parent lines; the others are NILs derived from crosses between those lines and the 
disease-susceptible line H100 (Fig. 2). Taxa with significant decreases or increases in relative abundance 
(Wald test, FDR < 0.05) are shown in red or blue, respectively. The relative abundance of each genus is 
shown to the right of each heatplot; to improve figure clarity for the less abundant taxa, the x-axes were 
truncated and the relative abundances of the more common taxa are shown numerically. Fungal taxa 
unidentified at the genus level were excluded for clarity. Additional data on enrichment/depletion of 
organisms from other taxonomic levels are provided in Table S6. 

 
Many taxa responded similarly to several introgressions. For example, several groups 

(including Neorhizobium, Cryptococcus, and Uwebraunia ) were consistently enriched or 
depleted in at least five NILs. This strengthens the evidence that broad-spectrum disease 
resistance shares a genetic basis with the abundance of certain microbiome members, because 
multiple non-overlapping introgressions had similar effects on these taxa. However, the 
inconsistency of the microbiome response across fields and years suggests that these QTL 
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have lower penetrance for microbiome composition than for disease resistance (Lopez-Zuniga 
et al., 2019). For instance, many other taxa (such as Buchnera , Selenophoma , Moesziomyces, 
Udeniomyces, and Naganishia ) were strongly and consistently enriched across five or more 
NILs in one environment, but were consistently depleted or unaffected in other environments 
(Fig. 4; Table S6). 
 

TABLE 2 | Results of permutational MANOVA of fungal and bacterial community composition in maize 
leaves at two timepoints. Each MDR line was individually compared to the common disease-susceptible 
genetic background, H100. R2 values are shown for the Genotype and Genotype*Rep terms of each 
model. For the early timepoint, the Replicate factor included variation among fields and between years; 
for the late timepoint, it only included variation among fields. Statistical significance was based on 
comparison of pseudo-F values after 999 permutations of the Bray-Curtis dissimilarity matrix calculated 
from variance-stabilized ASV tables.  

  Bacteria  Fungi 

  Early 
timepoint 

 Late 
timepoint 

 Early  
timepoint 

 Late 
timepoint 

MDR line 
(vs. H100) 

 Geno. Geno. 
x Rep 

 Geno.  Geno. 
x Rep 

 Geno. Geno. 
x Rep 

 Geno.  Geno. x 
Rep  

Ki3  0.014* 0.024  0.016* 0.026  0.003 0.016  0.009 ‡ 0.023 ‡ 
DRIL32.063  0.009 0.026  0.012 0.030  0.005 0.023  0.011 * 0.018 

DRIL32.095  0.011 ‡ 0.022  0.007 0.022  0.004 0.017  0.005 0.019 

DRIL32.134  0.009  0.021  0.007 0.023  0.004 0.019  0.012 * 0.020 

DRIL32.140  0.007 0.018  0.008 0.019  0.002 0.017  0.007 0.015 

DRIL62.030  0.009 0.025  0.011 0.032  0.006 0.023  0.019 ** 0.022 

DRIL62.032  0.008 0.024  0.010 0.030  0.004 0.019  0.009 ‡ 0.025 ‡ 
DRIL62.054  0.009  0.023  0.008 0.026  0.005 0.018  0.008 0.022 

DRIL62.127  0.008 0.021  0.006 0.025  0.002 0.015  0.008 0.019 

NC304  0.009  0.028  0.022* 0.031  0.008 0.024  0.021 ** 0.029* 

‡ FDR<0.1, *FDR<0.05, **FDR<0.01 

 

In adult plants, introgressed QTL improved disease resistance with 
minimal effects on microbiome diversity 

Next, we investigated whether QTL introgressed from MDR lines affected the maize leaf 
microbiome later in the season, seven weeks after planting. Three weeks prior to this 
late-season sampling, plants in two of the four fields received pathogen inoculations so that at 
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the 7-week timepoint plants in field C10 were infected with southern leaf blight and those in field 
D3 were infected with northern leaf blight. We scored disease symptoms two weeks after 
inoculation and confirmed that resistance to both diseases was improved in all eight MDR NILs 
relative to the susceptible parent line H100 (Fig. 5; all P  < 4.7e -7, all R 2 > 0.70). However, we 
collected microbiome data only from green tissue, avoiding lesions of infected plants (Fig. S2). 
ASVs corresponding to the introduced pathogens ( Bipolaris maydis and Setosphaeria turcica ) 
were removed from the dataset before analysis because we were primarily interested in direct 
effects of MDR alleles on the non-pathogenic microbiome, rather than cascading effects on the 
microbiome driven by improved disease resistance. 

 
Figure 5 | Introgression of QTL alleles from two MDR parent lines improved resistance to northern leaf 
blight (NLB; left) and southern leaf blight (SLB; right) in six-week-old plants. Symptoms were scored two 
weeks after pathogen inoculation. The top, middle, and bottom lines of the boxes mark the 75th 
percentile, median, and 25th percentile, respectively; box whiskers extend 1.5 times the interquartile 
range above and below the box. For NLB, all comparisons to the susceptible genetic background H100 
were significant at P < 9.3e -4  (N = 141; genotype R 2 =0.71); for SLB, all comparisons were significant at P 
< 1.6e -7  (N = 147; genotype R 2 =0.76).  
 

Our results provided mixed support for our hypothesis that host genotype effects would 
be stronger at the late timepoint (after disease establishment) than the early timepoint. 
Permutational MANOVA showed that the introgressed QTL had stronger effects on overall 
community structure in the late timepoint, particularly for fungi (Table 2). For both kingdoms, 
genetic differences in alpha diversity were minor and were comparable between timepoints (Fig. 
S5). QTL introgression tended to decrease beta diversity of fungal communities only at the later 
timepoint, and only in the two fields that had been inoculated with pathogens. This suggests that 
at least some of their effects on the microbiome were mediated through their effects on disease 
resistance (Fig. S6). However, we detected considerably more host-genotype-sensitive taxa at 
the earlier timepoint (Fig. 4; Table S6). Although there was some overlap between the sets of 
taxa responding to introgression at the early and late timepoints, the patterns of depletion and 
enrichment often differed. For instance, several bacterial genera that were frequently and 
strongly depleted in MDR lines at the late timepoint ( Sphingobacterium, Chryseobacterium, 
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Roseomonas, Stenotrophomonas, and Cellulomonas) were not affected by the introgressions at 
the early timepoint (Fig. 4). This indicates that introgression-induced microbiome differences in 
seedlings did not generally persist throughout the growing season. 

Altogether, our results indicate that QTL introgression from disease-resistant lines 
shifted the relative abundance of diverse bacterial and fungal taxa in the leaves of 3-week-old 
and 7-week-old maize plants (Fig. 4). However, the effects of these introgressions on the 
microbiome were much more variable among environments than their effects on disease 
resistance (Lopez-Zuniga et al., 2019; Martins et al., 2019). This suggests that changes in the 
relative abundance of potentially protective microbes is unlikely to be a major mechanism by 
which these particular MDR alleles confer improved disease resistance. 
 

Seasonal microbiome dynamics were largely insensitive to disease 
status 

Finally, we shifted our focus away from host genotype to investigate the relationship 
between disease and the microbiome more closely. We hypothesized that heavy pathogen 
infection and disease establishment would disrupt the normal succession of maize leaf 
microbiomes both (1) at the whole-field level and (2) at the individual plant level. To test these 
hypotheses, we compared patterns of microbiome change over time in two pathogen-infected 
fields versus two uninfected control fields, and in heavily-infected individual plants versus 
less-infected individuals of the same genotype within a field. 

Microbiome composition and diversity of all fields changed dramatically between three 
weeks and seven weeks after planting, regardless of infection status (Fig. 6). Community 
composition diverged among fields over time (Fig. 6a; distance-based redundancy analysis, 
Timepoint*Field P = 0.001), although this pattern was much more pronounced for fungi than 
bacteria. Notably, fungal communities in pathogen-inoculated fields diverged in overall 
composition from those in non-inoculated fields (Fig. 6a). However, the relative abundances of 
individual taxa generally changed in the same direction over time in all four fields (Fig. 6b). 
Furthermore, the average shift in relative abundance between timepoints was similar in 
magnitude between infected and uninfected fields (Fig. 6b-c). Similarly, temporal changes in 
alpha and beta diversity varied in magnitude among fields for both bacteria and fungi (Fig. 6d; 
ANOVA P < 0.05 for all); however, these differences did not correspond to disease treatment. 
Together, these results did not support our prediction that microbiome composition would shift 
more dramatically over time in environments with higher disease pressure. 

Because our disease treatments had to be applied to entire fields, replication was low 
and treatment was confounded with other factors such as the species of crops planted in 
adjacent fields, proximity to roads and trees, and the species of crops planted the previous year 
(Fig. 2; Table S2). As an additional test to circumvent this problem, we investigated whether 
temporal changes in microbiome composition and diversity were correlated with disease 
susceptibility within individual plants. We found no evidence that symptom severity altered 
microbiome succession in either NLB-infected or SLB-infected plants (Fig. S7). This result 
suggests that overall infection severity (measured at the whole-plant level) does not necessarily 
alter microbiome composition in the remaining green leaf tissue. 

16 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2019. ; https://doi.org/10.1101/647446doi: bioRxiv preprint 

https://doi.org/10.1101/647446
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 6 | Maize leaf microbiomes 
(bacteria, left; and fungi, right) changed 
over the growing season regardless of 
disease pressure. All results are shown 
for four fields that are labeled according 
to the disease treatment they received 
(NLB/northern leaf blight, SLB/southern 
leaf blight, or none/control). (a) Partial 
distance-based redundancy analysis, 
constrained on the interaction between 
timepoint and field, shows that microbial 
communities in different fields became 
more distinct from each other over time. 
(b) Changes in relative abundance over 
time varied among fields for all taxa 
shown (likelihood ratio tests of negative 
binomial models with and without 
Timepoint*Field interaction term; FDR < 
0.05). (c) The average magnitude of fold 
changes in relative abundance over 
time was similar between infected and 
non-infected fields. Fields with different 
letters were significantly different based 
on post-hoc Tukey tests, P < 0.05. Each 
point represents one taxon. The top, 
middle, and bottom lines of the boxes 
mark the 75th percentile, median, and 
25th percentile, respectively; box 
whiskers extend 1.5 times the 
interquartile range above and below the 
box. The y-axis was truncated for clarity, 
obscuring several outliers. (d) Changes 
in alpha diversity (Shannon metric) and 
beta diversity (Distance to centroid) 
between timepoints differed among 
fields, but without regard to disease 
status (ANOVA, all P < 0.05; post-hoc 
Tukey tests, P < 0.05). 
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Discussion  
Breeding for MDR involves selecting alleles with the ability to alter the invasion success 

of several different pathogens. We demonstrated that different maize genotypes, identical 
except for the presence of QTL introgressed from two disease-resistant lines, assemble different 
leaf microbial communities both early in development and later in the growing season (Fig. 4; 
Fig. S6; Table 1; Table S6). This shift in community composition involved a wide variety of 
microbial taxa. Interestingly, some of these taxa ( e.g., Uwebraunia , Cryptococcus, 
Pseudopithomyces) responded similarly to multiple independent introgressions (Fig. 4), 
suggesting that the underlying genes may involve partially redundant mechanisms. Many 
others, however, were consistently depleted in one field or timepoint but consistently enriched in 
a different environmental context (e.g., Buchnera , Roseateles, Selenophoma , Moesziomyces). 
Counterintuitively, in some environments seedlings of MDR genotypes were enriched in two 
fungal genera known to contain many plant pathogens ( Curvularia and Mycosphaerella ; Fig. 
4a), although all plants were asymptomatic. 

The inconsistency of these QTL effects among environments highlights one of the 
primary obstacles to understanding the relationship between host genotype and microbiome 
composition. Genotype-environment interactions for microbiome composition are strong and 
frequently observed (Agler et al. 2016; Peiffer et al. 2013; Wagner et al. 2016), contributing to 
the typically low heritability of these complex communities. Environmental variation has 
compounded effects on plant microbiomes because it not only directly influences the 
composition of the ambient pool of free-living organisms from which the host-associated 
community is derived, but also alters the expression of host genes and the emergent host 
phenotype (Lundberg et al. 2012; Wagner et al. 2016). This, in turn, determines the habitat 
available to potential symbionts. In general, these genotype-environment interactions greatly 
limit our ability to predict microbiome responses to changes in the host genotype, and therefore 
are a high-priority topic for future study (Busby et al. 2017). In the particular case of our study, 
they suggest that (1) disease resistance is not a reliable predictor of microbiome composition 
and (2) microbiome alteration is unlikely to be a mechanism through which MDR alleles confer 
improved disease resistance. 

Nevertheless, our results are consistent with the hypothesis that some MDR loci may 
also affect non-pathogenic bacteria and fungi in certain environments. However, because these 
NILs carried introgressions covering up to 10% of the genome, we cannot rule out the possibility 
that linked genes--rather than the MDR alleles themselves--caused the observed shifts in 
microbiome composition. To determine whether the MDR alleles themselves caused the 
observed changes, follow-up experiments would need to compare the NILs with improved 
disease resistance to other NILs from the same population that did not show improved disease 
resistance. This, combined with data from a wider range of MDR lines, would greatly help to 
clarify the relationship between MDR per se and microbiome composition. Nevertheless, our 
results demonstrate that QTL introgression from disease-resistant lines can alter the relative 
abundances of diverse leaf symbionts (Fig. 4). Whether caused by linkage or true pleiotropy, 
these side-effects have the potential to either facilitate or interfere with the process of breeding 
for increased MDR (Fig. 1b).  
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We also hypothesized that in addition to directly affecting leaf microbiomes, MDR alleles 
would also indirectly influence them through cascading effects of improved disease resistance 
(Fig. 1a). For this reason, we expected to observe stronger host genotype effects after disease 
establishment. However, our data only partially supported this hypothesis, which relied on the 
assumption that disease establishment would profoundly disrupt the microbiome. This 
assumption was contradicted by our comparisons of microbiome composition in infected versus 
uninfected fields, and of severely versus mildly infected plants (Fig. 6; Fig. S7). We propose 
several possible explanations for the weaker-than-expected effect of pathogen invasion on the 
leaf microbiome. First, we deliberately sampled green tissue and avoided lesions (Fig. S2), 
which likely biased our dataset away from capturing the most strongly perturbed local 
communities. This choice was intentional because our primary interest was in direct effects of 
QTL introgression on non-pathogenic microbes; nevertheless, we expected to observe changes 
in microbiome composition as a result of the plant’s systemic response to infection (Gu et al. , 
2016; Hacquard et al., 2017). Second, the observed succession between timepoints likely 
reflected many different causal factors, including plant development and strong morphological 
differences between juvenile and adult leaves, a changing biotic context including insect 
communities and neighboring plants, and higher temperatures and humidity. The combined 
impact of these factors on the microbiome may have swamped out any signal of pathogen 
invasion. Finally, because our disease treatments could only be applied at the whole-field level, 
differences in microbial succession among fields also could have masked community responses 
to disease. A follow-up experiment that randomizes disease treatments while minimizing 
environmental variation would test this hypothesis. 

Our finding that the introduced pathogens did not trigger strong cascading effects on the 
rest of the microbiome was surprising. One possible explanation is that other organisms were 
acting as keystone or “hub” taxa that interact with a large number of other microbes within the 
community (Agler et al. 2016; Herren & McMahon 2018). If such keystone taxa were insensitive 
to the presence of the pathogen, they may have had a stabilizing effect on the rest of the 
community. Keystone taxa also may have contributed to the highly variable effects of QTL 
introgression among environments. For example, it is possible that different taxa occupied “hub” 
positions in the microbial interaction networks within different environments, and that some of 
these hub organisms responded to the introgressed QTL while others did not. Improved 
statistical methods for analyzing microbial interaction networks, combined with manipulative 
experiments with synthetic microbial communities, would help to investigate this possibility 
(Vorholt et al. 2017; Röttjers & Faust 2018; Carr et al. 2019). Our results (e.g., Fig. 4) could 
reflect either direct effects of introgressed QTL or indirect effects via interacting microbes 
(Hassani et al. 2018). 

Altogether, our results indicate that MDR can be improved in maize through 
introgression of QTL from disease-resistant lines, without major side-effects on microbiome 
structure or diversity. In our experiment such side effects were environment-specific and were 
limited to individual taxa (Fig. 4). The upshot for plant health--and ultimately, breeding 
outcomes--depends on whether individual symbionts increase or decrease in frequency during 
breeding, and whether they have a positive or negative effect on the host (Fig. 1b). The 
amplicon sequencing approach provides insufficient resolution to determine what effects the 

19 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2019. ; https://doi.org/10.1101/647446doi: bioRxiv preprint 

https://doi.org/10.1101/647446
http://creativecommons.org/licenses/by-nc-nd/4.0/


enriched or depleted taxa had on our experimental plants, if any. Re-inoculation experiments 
under controlled conditions would be necessary to determine whether these organisms affect 
disease resistance either positively or negatively. Another unresolved question that our data 
could not address is whether the introgressed QTL affected leaf microbiomes in ways other than 
changing relative abundance-- for example, by altering the total microbial load in leaves or by 
inducing changes in microbial gene expression and metabolic activity, which also could 
contribute to disease resistance (Chapelle et al., 2016). Understanding these complex links 
between the plant microbiota, pathogens, host phenotype, and environment will be crucial for 
developing microbiome-based solutions for sustainable disease control (Massart et al., 2015; 
Busby et al., 2017; Berg et al., 2017). 
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Table S1 | Information on parentage of 11 maize genotypes used in this experiment. 
Table S2 | Environmental and treatment information for the 5 fields used in this experiment. 
Table S3 | The 20 most abundant genera in leaves of 3-week-old and 7-week-old maize plants. 
Table S4 | Results of ANOVA of alpha diversity (ACE metric) for fungal and bacterial communities. 
Table S5 | Results of ANOVA of beta diversity (distance to centroid) for fungal and bacterial communities. 
 
Figure S1 | The introgressed QTL carried by the eight NILs in this study had little overlap.   
Figure S2 | For diseased plants, we avoided lesions and targeted green tissue for microbiome analysis. 
Figure S3 | The foliar fungal microbiome of three-week-old maize seedlings changed between years. 
Figure S4 | Approximately one-third of all fungal ASVs in maize seedlings changed in relative abundance 

between 2016 and 2017.  
Figure S5 | Effects of introgressed QTL on maize leaf alpha diversity (ACE and Shannon metrics). 
Figure S6 | Effects of introgressed QTL on  maize leaf beta diversity (distance to centroid). 
Figure S7 | Within individual plants, temporal changes in community composition and alpha diversity did 

not correlate with disease resistance. 
 
 

 

TABLE 1 | Results of permutational MANOVA for fungal and bacterial community composition in the 
leaves of maize plants. P-values are based on 999 permutations of the Bray-Curtis dissimilarity matrix 
calculated from variance-stabilized amplicon sequence variant (ASV) tables. 

 Bacteria  Fungi 

 R 2 pseudo-F test P  R 2 pseudo-F test P 

Genotype 0.010 F10,1086 = 1.50 0.002  0.008 F10,1456 = 1.72 0.001 

Timepoint 0.176 F1,1086 = 255.13 0.001  0.121 F1,1456 = 256.10 0.001 

Rep 0.034 F3,1086 = 16.60 0.001  0.154 F5,1456 = 65.37 0.001 

Genotype x Timepoint 0.009 F10,1086 = 1.27 0.015  0.008 F10,1456 = 1.65 0.001 

Genotype x Rep 0.022 F30,1086 = 1.08 0.115  0.023 F50,1456 = 0.97 0.730 

 
 

 
 
 
 
 

TABLE 2 | Results of permutational MANOVA of fungal and bacterial community composition in maize 
leaves at two timepoints. Each MDR line was individually compared to the common disease-susceptible 
genetic background, H100. R2 values are shown for the Genotype and Genotype*Rep terms of each 
model. For the early timepoint, the Replicate factor included variation among fields and between years; 
for the late timepoint, it only included variation among fields. Statistical significance was based on 
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comparison of pseudo-F values after 999 permutations of the Bray-Curtis dissimilarity matrix calculated 
from variance-stabilized ASV tables.  

  Bacteria  Fungi 

  Early 
timepoint 

 Late 
timepoint 

 Early  
timepoint 

 Late 
timepoint 

MDR line 
(vs. H100) 

 Geno. Geno. 
x Rep 

 Geno.  Geno. 
x Rep 

 Geno. Geno. 
x Rep 

 Geno.  Geno. x 
Rep  

Ki3  0.014* 0.024  0.016* 0.026  0.003 0.016  0.009 ‡ 0.023 ‡ 
DRIL32.063  0.009 0.026  0.012 0.030  0.005 0.023  0.011 * 0.018 

DRIL32.095  0.011 ‡ 0.022  0.007 0.022  0.004 0.017  0.005 0.019 

DRIL32.134  0.009  0.021  0.007 0.023  0.004 0.019  0.012 * 0.020 

DRIL32.140  0.007 0.018  0.008 0.019  0.002 0.017  0.007 0.015 

DRIL62.030  0.009 0.025  0.011 0.032  0.006 0.023  0.019 ** 0.022 

DRIL62.032  0.008 0.024  0.010 0.030  0.004 0.019  0.009 ‡ 0.025 ‡ 
DRIL62.054  0.009  0.023  0.008 0.026  0.005 0.018  0.008 0.022 

DRIL62.127  0.008 0.021  0.006 0.025  0.002 0.015  0.008 0.019 

NC304  0.009  0.028  0.022* 0.031  0.008 0.024  0.021 ** 0.029* 

‡ FDR<0.1, *FDR<0.05, **FDR<0.01 
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Figure 1 | Host-pathogen-microbiome relationships involve complex interactions among all community 
members. (a) In our simplified model, host genotype can affect the late-season microbiome both directly 
and through cascading effects via disease resistance; for this reason, we hypothesized that MDR alleles 
would exert stronger effects on the microbiome when disease pressure is higher. Furthermore, host 
genotype could affect disease severity both directly (via immune system and other traits that impact 
pathogen success) and indirectly (via traits that influence early microbiome assembly, which in turn 
interacts with the pathogen). (b) The repercussions of breeding-induced changes in a microbial 
symbiont’s relative abundance (Fig. 4) will depend on whether it has a positive effect, negative effect, or 
no effect on host health. For example, if QTL introgression causes a beneficial organism to increase in 
abundance, or a harmful organism to decrease in abundance, the expected outcome for the host plant 
would be an improvement in health or performance. 

Figure 2 | Overview of experimental design. Panel (a) illustrates the crossing design used to generate 
the eight near-isogenic lines (NILs) used in this experiment, which were mostly genetically identical to 
their disease-susceptible parent line H100 but which had chromosome segments introgressed from a 
donor line (Ki3 or NC304) that conferred multiple disease resistance (MDR). Eight NILs were planted in 
randomized plots along with the three parent lines. Panel (b) shows the locations of the replicate plots 
within Central Crops Research Station, Clayton, NC, USA. Map data and imagery: Google. Panel (c) 
summarizes the sampling scheme for a total of six experimental replicate plots over two years. For the 
pilot experiment in 2016, only a single timepoint was sampled at two fields, and only fungi were 
quantified. In 2017, we quantified both bacteria and fungi; plants were sampled at two timepoints in four 
fields, two of which were inoculated with either southern leaf blight (SLB) or northern leaf blight (NLB). 
 
Figure 3 | Maize leaf microbiomes shifted dramatically between 3 weeks and 7 weeks after planting. (a-b) 
Overall microbiome composition shifted strongly  between timepoints. MDS1 and MDS2 are the two major 
axes of variation after ordination of the Bray-Curtis dissimilarity matrix using non-metric multidimensional 
scaling, i.e., numerical summaries of community composition. Each point represents one leaf sample; 
points separated by smaller distances in MDS space indicate samples with more similar microbiomes. 
(c-d) On average, alpha diversity was higher at the late timepoint than the early timepoint. The top, 
middle, and bottom lines of the boxes mark the 75th percentile, median, and 25th percentile, respectively; 
box whiskers extend 1.5 times the interquartile range above and below the box. (e-f) Beta diversity (i.e., 
variation among samples) was stable over time for bacteria, but increased for fungi between timepoints. 
Boxplot statistics are the same as in panels (c-d).  
 
Figure 4 | Introgression of QTL from MDR lines altered the relative abundance of diverse taxa in leaves 
of 3-week-old and 7-week-old maize. The enrichment/depletion of fungal (top) and bacterial (bottom) 
genera caused by introgression of MDR alleles into the H100 genetic background is shown for (a) the 
early timepoint/juvenile plants, and (b) the later timepoint/adult plants. MDR genotypes “Ki3” and “NC304” 
are the parent lines; the others are NILs derived from crosses between those lines and the 
disease-susceptible line H100 (Fig. 2). Taxa with significant decreases or increases in relative abundance 
(Wald test, FDR < 0.05) are shown in red or blue, respectively. The relative abundance of each genus is 
shown to the right of each heatplot; to improve figure clarity for the less abundant taxa, the x-axes were 
truncated and the relative abundances of the more common taxa are shown numerically. Fungal taxa 
unidentified at the genus level were excluded for clarity. Additional data on enrichment/depletion of 
organisms from other taxonomic levels are provided in Table S6. 
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Figure 5 | Introgression of QTL from two MDR parent lines improved resistance to northern leaf blight 
(NLB; left) and southern leaf blight (SLB; right) in six-week-old plants. Symptoms were scored two weeks 
after pathogen inoculation. The top, middle, and bottom lines of the boxes mark the 75th percentile, 
median, and 25th percentile, respectively; box whiskers extend 1.5 times the interquartile range above 
and below the box. For NLB, all comparisons to the susceptible genetic background H100 were significant 
at P < 9.3e -4  (N = 141; genotype R 2 =0.71); for SLB, all comparisons were significant at P < 1.6e -7  (N = 
147; genotype R 2 =0.76). 
 
Figure 6 | Maize leaf microbiomes (bacteria, left; and fungi, right) changed over the growing season 
regardless of disease pressure. All results are shown for four fields that are labeled according to the 
disease treatment they received (NLB/northern leaf blight, SLB/southern leaf blight, or none/control). (a) 
Partial distance-based redundancy analysis, constrained on the interaction between timepoint and field, 
shows that microbial communities in different fields became more distinct from each other over time. (b) 
Changes in relative abundance over time varied among fields for all taxa shown (likelihood ratio tests of 
negative binomial models with and without Timepoint*Field interaction term; FDR < 0.05). (c) The 
average magnitude of fold changes in relative abundance over time was similar between infected and 
non-infected fields. Fields with different letters were significantly different based on post-hoc Tukey tests, 
P < 0.05. Each point represents one taxon. The top, middle, and bottom lines of the boxes mark the 75th 
percentile, median, and 25th percentile, respectively; box whiskers extend 1.5 times the interquartile 
range above and below the box. The y-axis was truncated for clarity, obscuring several outliers. (d) 
Changes in alpha diversity (Shannon metric) and beta diversity (Distance to centroid) between timepoints 
differed among fields, but without regard to disease status (ANOVA, all P < 0.05; post-hoc Tukey tests, P 
< 0.05). 
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Supporting Information 
for “Analysis of leaf microbiome composition of near-isogenic maize lines differing in 

broad-spectrum disease resistance ” 
M.R. Wagner, P.E. Busby, & P.J. Balint-Kurti 

  
Table S1 | Maize lines used in this experiment. The eight "DRIL" lines were near-isogenic lines 
descended from crosses between the disease-susceptible inbred line H100 and one of two 
disease-resistant inbred lines (Ki3 or NC304; Fig. 2a). On average, these DRIL lines retained ~10% of 
their genome from the MDR donor line (Fig. S1). 

Line MDR parent (donor) MDS parent (recurrent) 
H100 --- H100 
Ki3 Ki3 --- 
NC304 NC304 --- 
DRIL32.063 Ki3 H100 
DRIL32.095 Ki3 H100 
DRIL32.134 Ki3 H100 
DRIL32.140 Ki3 H100 
DRIL62.030 NC304 H100 
DRIL62.032 NC304 H100 
DRIL62.054 NC304 H100 
DRIL62.127 NC304 H100 

  
 
 
Table S2 | Fields used for this experiment. All were located at Central Crops Research Station in Clayton, 
North Carolina, USA (Fig. 2). No pair of fields was separated by more than 2 km. 
 
Field 

 
Soil type 

 
Rotation (2014-2017) 

 
Data collection 

Disease Treatment 
(2017 only) 

A5B Wagram loamy sand Squash > Soybean > Corn > 
Corn 

2016-2017 Uninoculated control 

C10 Dothan loamy sand Soybean > Corn > Cotton > 
Corn 

2017 SLB 

D3 Gilead sandy loam Wheat/Fava bean > Cotton > 
Corn/Winter pea > Corn 

2017 NLB 

G4C Norfolk loamy sand Corn > Soybean > Corn > 
Tobacco 

2016 NA 

G5C Wagram loamy sand Corn > Tobacco > Cucumber > 
Corn 

2017 Uninoculated control 
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Table S3 | The 20 most abundant genera in leaves of 3-week-old (“early”) and 7-week-old (“late”) maize 
plants, with their relative abundances. Parentheses indicate groups that could not be identified at the 
genus level. 

 
 
Table S4 | Results of ANOVA of alpha diversity (ACE metric) for fungal and bacterial communities in the 
leaves of (a) maize seedlings three weeks after planting, and (b) adult maize seven weeks after planting. 
Linear mixed-effects models were fitted to log-transformed ACE values with predictors 
Genotype*Replicate while controlling for sequencing depth and batch effects; separate models were fit 
for the early and late timepoints. Least-squares mean estimates for each MDR genotype (relative to 
H100) are displayed in Fig. S5. 
(a) Early timepoint Fungi  Bacteria 
  F test P   F test P 
Genotype  F10,531 = 1.21 0.28   F10,477 = 1.47 0.15 

Rep  F5,38 = 25.91 2.7e -11   F3,477 = 6.36 0.00031 

Genotype x Rep  F48,527 = 1.68 0.0038   F30,476 = 1.43 0.070 
        

(b) Late timepoint Fungi  Bacteria 
  F test P   F test P 
Genotype  F10,542 = 1.68 0.081   F10,495 = 2.63 0.004 

Rep  F3,542 = 2.90 0.034   F3,496 = 9.02 8.0e -6 

Genotype x Rep  F30,542 = 1.33 0.12   F30,495 = 2.21 0.0003 
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Table S5 | Results of ANOVA of beta diversity (distance from centroid) for fungal and bacterial 
communities in the leaves of (a) maize seedlings three weeks after planting, and (b) adult maize seven 
weeks after planting. Linear mixed-effects models were fitted to each individual’s distance to centroid, 
with predictors Genotype*Replicate while controlling for sequencing depth and batch effects; separate 
models were fit for the early and late timepoints. LS mean estimates for each MDR genotype (relative to 
H100) are displayed in Fig. S6. 
(a) Early timepoint Fungi  Bacteria 
  F test P   F test P 
Genotype  F10,855 = 1.42 0.17   F10,536 = 1.37 0.19 

Rep  F5,60 = 23.08 7.8e -13   F3,537 = 8.16 2.5e -5 

Genotype x Rep  F50,855 = 1.34 0.063   F30,534 = 2.12 0.0006 
        

(b) Late timepoint Fungi  Bacteria 
  F test P   F test P 
Genotype  F10,555 = 3.19 0.0005   F10,509 = 0.93 0.50 

Rep  F3,555 = 7.99 3.2e -5   F3,509 = 33.93 5.2e -20 

Genotype x Rep  F30,555 = 2.33 0.0001   F30,508 = 1.33 0.11 
 
 
Table S6 | Negative binomial models identified dozens of microbial taxa that were differentially abundant 
in one or more MDR lines relative to the disease-susceptible parent line H100. Due to significant 
Genotype*Replicate interactions, estimates of log 2 -fold-changes differ among Replicates. Standard errors 
are provided for estimates of log2 -fold-changes. Data from the early and late timepoints were analyzed 
separately. P -values were adjusted to correct for multiple comparisons using the false discovery rate 
(Benjamini & Hochberg, 1995). The relative abundance of each taxonomic group across the full dataset 
during the timepoint in question is also provided. This table is provided as a separate file in tab-delimited 
format. 

 
 
Figure S1 | The introgressed MDR alleles 
carried by the eight NILs in this study had little 
overlap. The parent lines and NILs were 
genotyped using 245 or 270 informative markers 
(for the Ki3 x H100 cross and the NC304 x H100 
cross, respectively). Most alleles from the MDR 
parent were present in only one NIL or not at all; 
for both crosses, all four NILs carried the H100 
allele for >60% of markers. Observations of MDR 
alleles in the heterozygous state were scored as 
0.5 rather than 1. Data from Lopez-Zuniga et al. 
(2019). 
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Figure S2 | For diseased plants, we avoided lesions and targeted green tissue for microbiome analysis. 
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Figure S3 | The foliar fungal microbiome of three-week-old maize seedlings changed between years. 
Non-metric multidimensional scaling of Bray-Curtis dissimilarities reveals that the early-timepoint samples 
from 2016 (black circles) cluster apart from the early-timepoint samples from 2017 (red circles); however, 
all early-timepoint samples (black and red circles) cluster apart from late-season samples (red triangles). 
Partial distance-based redundancy analysis was used to remove the effects of sequencing depth variation 
prior to ordination. 
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Figure S4 | In seedlings growing in field “A5B”, the only field that was sampled in both years, many ASVs 
changed in relative abundance from 2016 to 2017. Grey points represent ASVs that did not change 
significantly between years; black points represent ASVs that were either more or less abundant in 2017 
relative to 2016 (shown to the right or left of the dashed red line, respectively; FDR < 0.05). The area of 
each point is scaled by the relative abundance of the ASV that it represents. 
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Figure S5 | Introgression of MDR alleles shaped maize leaf alpha diversity (ACE and Shannon metrics). 
For each MDR genotype, its estimated deviation from the disease-susceptible line H100 is shown (based 
on LS means from linear mixed-effects models with predictors Genotype, Replicate, and 
Genotype*Replicate). Positive values for a given genotype indicate that within-sample diversity was 
higher than it was for the disease-susceptible line H100; negative values indicate that within-sample 
diversity was lower relative to H100. Error bars = +/- 1 s.e.m. Open circles mark deviations from H100 
that were not significantly different from zero after P-value correction using Dunnett’s procedure; 
significant deviations from H100 are shown as asterisks. Corresponding ANOVA results are given in 
Table S4. 
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Figure S6 | Introgression of MDR alleles altered maize leaf beta diversity (mean Distance to Centroid). 
For each MDR genotype, the average Distance to Centroid is shown in relation to the disease-susceptible 
line H100 is shown (based on LS means from linear mixed-effects models with predictors Genotype, 
Replicate, and Genotype*Replicate). Positive values indicate that inter-individual variation within a 
genotype was higher than it was within the disease-susceptible line H100; negative values indicate that 
inter-individual variation was lower than in H100. Error bars = +/- 1 s.e.m. Open circles mark deviations 
from H100 that were not significantly different from zero after P-value correction using Dunnett’s 
procedure; significant deviations from H100 are shown as asterisks. Corresponding ANOVA results are 
given in Table S4. 
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Figure S7 | Within individual plants, temporal changes in community composition (top, quantified as 
Bray-Curtis dissimilarity between timepoints) and alpha diversity (bottom, quantified as the change in 
Shannon diversity between timepoints) did not correlate with disease resistance (linear regression, P > 
0.05 for all tests). For NLB, N = 115; for SLB, N = 118. 
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