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ABSTRACT

This document describes routine DOAOP. DOAOP computes a least-squares
estimate of the three-axis attitude of a spacecraft at a single time point, tr .
It requires as input (1) a data set containing the body frame components,
V/\\Zi(tr) ,of i=1, ..., n 22 observed unit vectors and (2) a data set of the
A
geocentric inertial frame components, Vi(tr) , of these same unit vectors.
The least-squares estimate will be generalized to a weighted least-squares
one if the \/R\Zi(tr) and/or /‘}i (tr) are multiplied by weighting factors before
being passed to DOAOP,

The main body of the document is divided into two parts: the first part dis-
cusses the basic attitude determination algorithm which is used in DOAOP;

the second part discusses DOAOP itself, including the auxiliary computations
and operations which have been implemented to support the basic algorithm.
Appendix A of the document discusses a new, alternate algorithm for computing
a least-squares estimate of spacecraft attitude and describes simulation tests

which were performed recently using it.
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SECTION 1 -« INTRODUCTION

This document describes a digital computer routine, DOAOP, which computes
the three-axis attitude of spacecraft. DOAOP is an implementation of an

attitude-estimation algorithm which was derived originally in Reference 1.

The main input required by DOAQOP are (1) a data set containing the body frame
components ﬁ}i(tr) of i=1, ..., n 22 unit vectors and (2) a data set con-

A
taining the geocentric inertial frame components, Vi (tr) , of these same unit
vectors. The attitude which is computed by DOAOP will be a least-squares
estimate of the spacecraft's attitude at the single time point tr . This esti-
mate, however, will be generalized to a weighted least-squares one if the
V/‘\/i(tr) and/or the {\/'i(tr) are multiplied by weighting factors before being
passed to DOAOP.

In practice, the V/K\/i are observed vector components and the Qi are reference
vector components. The V/S\/i are obtained from onboard sensors, such as Sun
sensors, magnetometers, or star trackers. The Qi are obtained independently
of the V/X\/i . For a Sun observation, @i normally is obtained using an ephemeris
routine. For a magnetic field observation, $i is obtained from orbit data and

a magnetic field routine. For a star observation, @i is obtained from a star
catalog. When an onboard star tracker is employed, identifying the stars

which are observed can be a major problem. Star identification and all other
operations required in the generation of the 6\Vi and {\/'i must be performed

before passing their data sets to DOAOP.

As noted above, DOAOP requires n 2 2 separate observation vectors at each
time point, tr , Where attitude is to be computed. Spacecraft sensor systems
which actually observe many observations sifp}}}fgangeously are rare. The re-
quirement that the observations actually be}snnultaneous obviously is eliminated

if the spacecraft's attitude variation is negligible during the time spanned by

the available set of -observations. Also, spacecraft such as HEAO-A which
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contain highly accurate gyros c‘ans, in effect, obtain simultaneous cbservations
even though the attitude motion during the time spanned by the set of observa-
tions is nonnegligible. This is accomplished by using the gyro data to trans-
form the vector components ‘?}i(ti) ;i=1, ... , n into new components

A A

Wi(tr) . Except for transformation errors, the resulting Wi(tr) are the com-
ponents which would actually have been obtained if each observation i had been

made at tr instead of at ti .

Section 2 of this document presents the mathematics of the basic attitude de-
termination algorithm implemented in DOAGP. This section primarily is a
repeat of material given in Reference 1 with some alterations in notation,
mathematical details, and point of view. Section 3 discusses the DOAOP rou-
tine, including the auxiliary computations and operations which have been im-

plemented to support the basic least-squares algorithm.



SECTION 2 - LEAST-SQUARES ATTITUDE
DETERMINATION ALGORITHM

2.1 DERIVATION OF THE LEAST-SQUARES ATTITUDE DETERMINATION
ALGORITHM

2.1.1 Development of the Least-Squares Attitude Gain Function g(R)

ILet GCI be an inertially fixed reference frame and let B be a body-fixed
frame in the spacecraft. Let R be the unknown 3 by 3 attitude matrix of
frame B relative to frame GCI. That is, R transforms vector components
from frame GCI resolution to frame B resolution. The objective is to deter-
mine R at a selected time tr . It is assumed that observations of n = 2
distinct vectors have been obtained at the single time point tr . Let the sym-
bol \/ifi denote the observed components relative to frame B. Let @i denote
the reference components relative to frame GCI. It is emphasized that \/2\\7

i
and Qi (and all other vectors to be introduced subsequently) are not@cutaljfxi

vectors but 3 x 1 matrices that consist of the components of vectors; this defi-
N\ A\ N
nition of Wi and Vi will not preclude the use of the conventional vector cross

and dot product notation later.

The problem is to devise an algorithm for estimating R from the \/)\\7i and ﬁ'\]i .
A weighted least-squares approach will be taken. The optimal estimate of R

is defined to be the estimate which minimizes the following loss function £4(R) :

n
1 o A2
LR = = Z - R . -
(R) 2 4 ai HWl R ViH (2-1)
i=1
where || || signifies the Euclidean norm. The a, are optional weighting fac-

tors which can be assigned to the individual residuals.

Multiplying out the right side of Equation (2-1) yields three terms, two of which

can be dropped, hovx}ever, because they do not contain R and hence will not
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affect the value of R which minimizes the loss function. Reversing the sign

of the remaining term then yields a gain function which will be designated as
g(R) :
n

AT ~
gR) = ) a, W RV, (2-2)
i=1

where superscript T denotes transposition.

The problem now is to'find the R which maximizes g(R) . Before addressing

this problem, however, a slight simplification will be introduced into Equa-

tion (2-2) by eliminating the explicit appearance of the weighting factors a, .
Lo A

This could be done by absorbing them into the ‘Wi via the introduction of non-

—
unit vectors Wi .

— Py
W, =a W, (2-3a)
1 1 1

Alternatively, they could be absorbed into the ﬁi by introducing _\71 vectors

V.=a V. (2-3b)
1 1 1

Finally, they could be absorbed into both the \?/i and the ?/i , .8,

— e N
W, = \/Ta—i Wl
N (2~3c)
V.= /a, Vv
i i1



For generality, the following equations will use both nonunit vectors VTfi and

7 . This does not, however, make the mathematics inapplicable to the weight-
1

ing techniques shown in Equations (2-3a) and (2-3b). Equation (2-2) thus will

be written as follows: | oy g

2T
gR) = ) W, -R-V,
: i=1 "
¥ (‘ T W

2.1.2 Introduction of the Attitude Vector Y

It is necessary at this point to introduce some of the attitude vector concepts

of Reference 1. It is noted that the attitude least-squares problem being dis-
cussed here was posed first in Reference 2 in a slightly different form. (In
Reference 2, the problem was stated from an alibi point of view whereas this
document presents it in an alias form.) Several solutions to the problem later
were summarized in Reference 3. These solutions all involved a direct deter-
mination of the optimal R and were derived using matrix methods. The work
on the attitude least-squares problem in Reference 1 was motivated, at least in
part, by Reference 2. The approach presented in Reference 1 was quite differ-
ent from those in Reference 3. Reference 1 did not attack the problem through
matrix methods. Instead, 1§3}E1ized a vector-like variable, Y , which will be
defined subsequently. Reference 1 was devoted primarily to developing an al-
gebra for attitude representation using Y and, alternatively, using a similar

variable, Z . The least-squares problem was included primarily as an example

of the application of these techniques.

The quantity Y sometimes is called the Gibbs vector. It is defined as

N\
Y =X tan — (2-5)



§ and 6 are the parameters of a rotation which would rotate the axes of

frame GCI onto those of frame B. The unit vector 5(\ lies along the axis of

this rotation. The parameter 8 is the angle of the rotation. The polarity of

R is chosen so that 6 has the range 0 <8 =<7 . Inthe present Work Y and
3\( should not be regarded as vectors per se but as the components of vectors
along the axes of the B or GCI frames. (Since Y and 3\( both lie along the axis
of the rotation, their components along the B frame axes will be identical to

those along the GCI frame axes.)

The relationship between Y and R will now be developed. The following
two equations, which define R as a function of R and 6 , are well known

expressions:

R =cGI+[1-—cG]/}2e§T—s82 (2-6a)
3x3
|26 268 2684 QT 8 6¢ _
R—{c 5 s —2—}1+2s ZX X Zszczg (2-6b)

The symbols ¢ and s above signify sine and cosine, respectively. 1 is the
3 x 3 identity matrix. The wavy underbar signifies the usual 3 x 3 skew-

N 1° x2 5 x3 denote the compo-
nents of X, the full form of the third term in Equation (2~6a) thus is

symmetric arrangement of vectors. Letting x

0 —X3 X2
6% =50 0 2-7
sgX=s X3 —xl ( )
-—X2 X1 0
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N\

| T
The expression X }/i in Equation (2-6) signifies the outer product of X

with itself. The full form of the second term in Equation (2-6a) thus is

X

1
[1-ce]§\(-§§T=[1-ce] X, {xlxzxs}
3
- o 1 (2-8)
1 %1% 1%
=[1-cO] |x,X x2 X_X

It will be noted at this point that the vector cross and dot products will be indi-

cated in the usual manner in subsequent equations. In particular, the dot prod-

uct will be indicated as merely A-B , for example, rather than as AT - B.

By utilizing Equation (2-5) and performing some algebra, Equation (2-6b) can

be transformed into

1 e ,__:._xT e
R=—————{[1-Y.:.Y]I+2Y .Y -2Y 2-9
[1+5.Y] ] Y} (2-9)

Equation (2-9) specifies R as a function solely of Y and thus is a significant

expression.

2.1.3 Completion of the Derivation

To complete the derivation of the least-squares attitude algorithm of Refer-

ence 1, Equation (2-9) is first substituted into Equation (2-4), the least-squares
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gain function expression. Let the resulting Y-dependent function be designated

—om

as g(Y) . Thus,

n
Y) = W, | ———{[1-Y.Y]I1+2Y .Y -2Y}| .V. 2-10
g(Y) 1221: ; [{1+¥-y} 1T X ;2710
Some simple manipulations yield
- i
g(Y) = e {1-¥.71[W.-V.]
L+Y- vy i ol (2-11)

+ 2[\7&71 - Y] [?‘-T?‘i] +2Y - [_VVi fo‘i]}

Equation (2-11) and subsequent equations include product expressions such as

Wi . T? , which involve vector components along two different coordinate frames.
i

It is emphasized that no coordinate transformation is to be made before multi-

plying out these products.

.

The problem now is to determine the Y which maximizes g(Y). To accom-
plish this, the gradient of g(Y) is formed and this result is set to 0. If the
resulting equation can be solved for ? , it will establish the Y vectors which

produce the stationary values of g(Y) . To aid in the differentiation, the follow-

formulas are noted:

d e ra
—=[1+Y Y] L 2Y 5 (2-12a)
dy [1+Y.%]
d 3 —T
— [Y-Y]=+2Y (2-12h)
dy :
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[Wi - Y] [?-Vi] = [VTZi - Y] 71 + [ﬁ?-‘\?i] Wi (2-12c¢)

il

—m e —

Y [W.xV.]=W, xV,
1 1 1 1

(2-12d)

2=

For convenience, the present work regards the derivative of a scalar with re-
spect to a vector as being a column vector rather than a row vector. Differ-
entiating Equation (2-11) with the aid of Equations (2-12), setting the result

to zero, and performing some algebraic manipulation yields

- n
- _4Y N . e . e . — .
0= — =X }: (W, V.J+[W. - YJ[Y V]+Y«[W, xV, ]}
- = 2 4 i i i i 1 1
1+vy.v) i=1
(2-13)
n
2 — e — —- —m — e —- — .
44— [14+Y - Y] Z (W, - Y]V, +[Y -V,JW, +W, xV,}
> ~ £ 1 i 1 1 i 1
[1 +Y' Y] 1:1
Making a final minor rearrangement now yields
n
0.5[1+Y.Y V. . YIW, +(W, . Y]V, +W, xV,
R [ ]i;{[ L YIW AW YTV W, x V]
Y= (2-14)
n
?. A. XV + —_— .A . .A +A .A
i};li (W, xV,J+[V, - TILW, - FI+ W, - V]

Except for a few minor alterations in notation, Equation (2-14) is the equation

given on page 18 of Reference 1. Tt also is the relation implemented in DOAOP.

As discussed in Section 3.3, DOAOP solves Equation (2-14) by iteration using
an initial input ?1 . In the numerous runs which have been made with DOAOP

since its inception, the iteration technique reportedly has never failed to con-

verge,
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2.2 A SIMPLIFIED FORM OF THE LEAST-SQUARES ATTITUDE ALGORITHM

A significantly simplified form of Equation (2-14) was pointed out recently by
P. Davenport. A derivation of this new form is presented in this section. The

final equations of the new form are Equations (2-18), (2-22), and (2-26).

Consider first the summation term in the numerator of Equation (2-14). Writing

the summations separately yields
o —En . P + — —E . . + ) —lm -
YW IV, X1+ Y VLW, Y] 2 WXV, (2-15)

where, for simplicity, the range of the summations is omitted. A simple ma-

nipulation of the first two terms in Equation (2-15) yields
PSR B SS N A% 2-16)

Let the third term in Equation (2-16) be designated as Z
Z=3"W, «¥, (2-17)

and let the first term inside the brackets be designated as B .

B=). WV, =W, ., WLV, e, V] (2-18)

T
The second term inside the brackets in Equation (2-16) is B

T _ —= =T
B = Z v, W, (2-19)
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Substituting Equations (2-17), (2-18), and (2-19) into Equation (2-16) yields

[B+B 1Y +7 (2-20)

This is the new form of the terms inside the summation in the numerator of
Equation (2-14).

It is possible to compute 7 directly from B, rather than with Equation (2-17).
To derive the algorithm, let 6 be an arbitrary vector and consider the prod-
uct [BT -B]: a Substituting Equations (2-18) and (2-19) into this product

yields

- Y ¥, (W, Q) - 7, 09, - Q)

(2-21)
= X [V. XW :s w x“l XQ
2 @xIV W] (Z Wy X Vi e
=77 XQ‘—_—Z Q‘
Since 6 is arbitrary, the result obtained above demonstrates that
7=B'-B (2-22)

Thus, 7 canbe computed with Equation (2-22) rather than with Equation (2-17).
For any large number 6f observations, Equation (2-22) requires fewer numeri-
cal operations than the lengthy summation computations required by Equa-

tion (2-17). Forming the 3 X 1 vector 7 from its 3 x 3 skew symmetric

form 7Z is a minor step.

2-9



The following relation is noted at this point for use in a later paragraph:
Trace B = Z Wi . Vi (2-23)

Equation (2-23) can be developed from the second portion of Equation (2-18)

through use of the following two properties of the trace operator:

where the Ma are arbitrary square matrices and

2. Trace| P - N |=Trace[N - P]
mXn nxm

where N and P are also arbitrary except for dimensions.

The denominator in Equation (2~14) now will be considered. Simple manipula~

tion converts it into
YD WXV, 3T, SoW A Y+ Y W -V, (2-24)
i i i i i i
Imserting Equations (2-17), (2-18), and (2-23) into (2~24) then yields

Y.Z+Y' -B.¥ +Trace B (2-25)

which is the desired simplified expression for the denominator of Equa-

tion (2-14).

2-10



To summarize, the simplified form of Equation (2-14) is

= _0.5[1+Y Y] [(B+B }.-YT+7]

Y (2-26)

?-§+?T + B -Y\+TraceB

In a routine which employs Equation (2-26), the matrix B would be computing

using

2 T
B=iZ::1 W, -V,

which was listed earlier as Equation (2-18).

7 then would be computed using

which was listed earlier as Equation (2-22).



SECTION 3 -~ LEAST~SQUARES ATTITUDE DETERMINATION
ROUTINE DOAOP ’

This section discusses the routine DOAOP which is an implementation of the
least-squares attitude determination algorithm described in Section 2. Sec-
tion 3.1 briefly discusses the application of DOAOP in a system which has been
employed for attitude determination studies on HEAO-A. Section 3.2 then
summarizes the main operations which are performed in DOAOP. That por-
tion of DOAOP which actually performs the least-squares attitude computation
is described in Section 3.3. Section 3.4 is a short section which denotes
the computation of Euler angles «, 8, 6 from the least-squares attitude
matrix R . These Euler angles are computed primarily for the convenience
of the user of the routine. Finally, Section 3.5 discusses the computation of
a preliminary attitude matrix Ro . This RO matrix is developed using a two-
observation technique. Ro is required as an input by that portion of DOAOP
which performs the least-squares attitude computation.
3.1 APPLICATION OF DOAOP IN HEAO-A ATTITUDE DETERMINATION
TEST SYSTEM
To illustrate the application of routine DOAOP as part of a more complete
attitude determination system, Figure 3-1 presents a baseline diagram of the
HEAO-A attitude acquisition test system. This system has been used in studies
employing simulated HEAO-A data. In the HEAO-A application, the observa-
tion vectors, @i , which are needed by DOAOP are obtained solely from a star
tracker. The gyro propagation technique is employed to obtain the data set of
simultaneous observation vectors @i(tr) i=1, ..., n which are needed by
DOAOQP at each attitude determination time tr . The system in Figure 3-1

does not include the capability of weighting the ﬁ]i or Qi vectors.

The two main operations performed by the system shown in Figure 3-1 are

(1) the star identification operation, which is performed through the ACQID
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subsystem and (2) the least~squares attitude computation, which is performed
through the AXES subsystem. As shown in Figure 3-1, DOAOP is called by
AXES, MAIN is the driver routine. The main operations performed by MAIN

are as follows (in sequential order):
1. Initialize parameter values
2. Read NAMELIST

3. Call SPHCAR to compute the unit Sun vector from its right ascension

and declination values, which are input through NAMELIST
4. Read the observed star data set
5. Read the catalog star data set

6. Call ACQID to match the observed star vectors 6\Vi to the catalog

AN\ AN
stars and generate the {Wi} and {Vi} data sets
7. Call AXES to compute spacecraft attitude

8. Call DELXY to compute the deviation of the least squares attitude

solution from a reference attitude
9. Exit
The unit Sun vector computed in SPHCAR is used solely in the star identification

operation. Star identification is not within the scope of this report and thus is

not discussed.

AXES is the driver for DOAQP. EULER, which also is called by AXES, com-
putes the 3-1-3 Euler angles from the attitude matrix, R, generated by
DOAOP. MXV (Figure 3-1) is a minor subroutine which merely multiplies a

3 X 3 matrix by a 3 x 1 vector. DQAOQOP itself calls one small subroutine,
CRPR, which calculates the cross product of two vectors. In addition to acting
as a driver in the system shown in Figure 3-1, AXES also computes the mean

N N
of the angular errors gbi between Wi and R - Vi .
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3.2 SYNOPSIS OF ROUTINE DOAOP
The main operations performed by DOAQOP are as follows:

1. Compute a preliminary attitude matrix, RO , using a two-

observation technique

a. Select the two observations, ﬁL s W K’ to be employed
b. Use W W_ to co te R
L, K mpu o
2. Compute a more accurate attitude matrix, R, using all the ob-
servations Wl’ caes Wn
a. Transform the reference vector components, —\?i , onto an
intermediate coordinate irame, BO , via ﬁi =R . \7
o) i
b. Compute the attitude vector, Y , relative to frame BO ’

using the weighted least-squares algorithm discussed in

Section 2

C. Transform Y into an attitude matrix, P (this matrix still

describes the attitude relative to frame Bo)
d. Compute the final attitude matrix, R, with R=P - RO
3. Compute Euler angles @ , B, 0 from R

These three computations are discussed in detail in the following subsections.
The description of the computation of R0 has been pléced after the descriptions
of the calculation of R and of the Fuler angles. This reverse order was chosen
because the least-squares calculation of R is of more present interest than

is the computation of Ro . Also, the discussion of the computation of Ro is

lengthy.



3.3 IMPLEMENTATION OF THE LEAST-SQUARES ALGORITHM IN DOAOP

After a preliminary estimate, RO , of the spacecraft's attitude matrix, R, is
obtained via the method discussed in Section 3.5, a more accurate estimate

of R is computed using the iterative/least—squares algorithm indicated pre-
viously as Equation (2-14). Figure 3-2 shows the implementation of this aigo-
rithm in DOAOP. With a few exceptions, the notation, computations, and flow
on this diagram have been made similar to, or identical with, those of the cod-
ing. It is noted in particular that the symbols SMA , TP , RP , etc. denote

single variables, not products.

In DOAOP, the Y vector used in the computations specifies spacecraft attitude
relative to the coordinate frame defined by the preliminary attitude estimate,
RO , rather than relative to the geocentric inertial frame, GCI . To explain
this, let B denote the spacecraft body-fixed frame and let BO denote the initial

estimate of frame B. The geometry is summarized in Figure 3-3.

To specify Y relative to frame Bb’ it is necessary to transform the frame GCI
vector components, {7\1 , into frame Bo components, ﬁi . This is the transfor-

mation

U, =R -V, ;i=1, ..., n (3-1)

shown in block A of Figure 3-2.

Equation (2-5) shows that Y is 0 when dealing with two coordinate frames
which are congruent. The first estimate of Y therefore is ?o =0. Equa-

tion (2-14) shows that the attitude estimation algorithm will be particularly
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Figure 3-3. Flow Diagram I[llustrating Coordinate
Frames GCI, BO, and B

simple for the first pass. That is, since —Yz =0 , the {irst new attitude esti-

mate, :le » will be merely

2 W, x U,
—a 1 ]_
- — (3-2)

U.

Y.._..
1 kzz"v'vz- .

This is the computation shown in bleck C of Figure 3-2. In subsequent attitude
computation iterations, the full algorithm, Equation (2-14), must be employed

because, in general, the input Y now will be nonzero.

The blocks on the second and third columns of Figure 3-2 make up the attitude
iteration loop. The main computations here are performed in block D. This
block is an implementation of Equation (2-14). A check of the equations in
block D will show that they are analytically identical with Equation (2-14) except
that the vector components, T/: , of Equation (2-14) are replaced in block D by

the transformed components _LT .
1

The variable designated as Y in Figure 3-2 is the input to block C for the latest
iteration pass; Y here is the attitude vector on the right~hand side of Equa-

tion (2-14). The term YP is the new attitude vector which is computed during
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this pass; ¥YP here is the term on the left-hand side of Equation (2-14). The
program iterates by performing the block D computations repeatedly until con-
vergence is achieved or until the maximum number of passes (1000) has been
made Without achieving convergence. The output, P s which is obtained in

any one pass through block D, serves as the input, Y , for the next pass.

The third column of Figure 3-2 shows the convergence check performed after
each pass through block D. The convergence test employs a parameter EPS
which is the square of the norm of the correction (?- S?P) generated in that

pass. Thus,

EPS = ||T - Y0P = (T - ¥P) - (¥ - TP) (3-3)

The iteration is considered to have converged whenever EPS hecomes less

than 10712,

The first step after convergence is to transform the final attitude vector, ?P s
into the corresponding attitude métrix, P . As shown in Figure 3~2, DOAOP
also performs this operation if 1000 passes are made without attaining conver-
gence, The YP + P transformation is shown in block F of Figure 3-2. The

equations listed in block ¥ are analytically identical with Equation (2-9).

As noted earlier, P does not specify spacecraft attitude relative to the

GCI frame, Instead, it specifies spacecraft attitude relative to frame BO of the
initial attitude estimate. Therefore, a transformation to yield attitude relative
to frame GCI is needed. With the aid of Figure 3-3, the transformation is seen

to be

R=P-R (3~4)

which is the computation shown in block G of Figure 3-2.



3.4 COMPUTATION OF EULER ANGLES IN DOAOP

Before returning, DOAOP computes the values of a set of Euler angles «, 8, 6.

These angles provide the routine's user with a subjective understanding of the

spacecraft's attitude. The equations for calculating «, §, & are shown in

block H of Figure 3-2. The variables rij in this block are the elements of

R in the usual situation of n>2 , where n is the number of observations.

In the degenerate case of n =2, the rij are the elements of the preliminary

attitude matrix RO .

A check of the equations given in block H shows that the rotational sequence

¢, 6, 8, when going from frame GCI to frame B, is as follows:

GCt

Figure 3-4. Flow Diagram Showing Euler Angles &, 8, &

Figure 3-5 illustrates the actual geometry. The validity of this interpretation

of &, £, b can be demonstrated by using Figure 3-4 to develop the matrix

expression R (o, 8, 8)

11

jsa]
i3
&)

21

31

12

22

32

13

Lo | = [B]X [Mj[cxlz (3-52)

33




" Yol

[ 6 SHOWN NEGATIVE

Figure 3-5. Geometry of Euler Angles «, 8, &
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Multiplying out yields

cach sacd s0
-sacf cacf
R= | -casbsB | -sasbdsB c0sh (3-5b)
sasf -casf
-casdcB | -sasbcf c0cf

Substitution of these rij (@, B, 6,) expressions into the right-hand sides of
the equations in block H will reduce these expressions to identities o = ¢

0=0, and A= B, thereby verifying the above interpretation of o, 6, and 8.

The above Euler angles, o, B8, 6, are particularly convenient for spacecraft
which are spinning about their x-axis, because &« and § then are the right
ascension and declination, respectively, of the spin axis, and B defines the
phase of the spacecraft in its spin cycle. These angles, however, are not
especially suited for the spinning mode of spacecraft such as HEAO-A which

spin about their z~axis rather than about their x-axis.
3.5 PRELIMINARY ATTITUDE COMPUTATION IN DOAOP

As stated previously, the least-squares attitude determination algorithm used
in DOAOP requires a preliminary attitude matrix, Ro , as an input, The com-~

putation of RO is discussed in this section.

DOAOP computes Ro with a two-star attitude determination algorithm. The

computation involves two distinct steps:

1. From the total of n available observations, select the two which

will be used

2. Calculate RO using these two observations

These two operations are discussed in the following subsections.
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3.5.1 Selection of the Two Observations

The selection of the two observations will be considered first. The algorithm
employed in DOAOP is summarized in Figure 3-6. The selection of the first
observation (denoted here and in the coding as observation L) is shown in the
first column of this figure. Perusal of this column shows that the first obser-
vation selected is the one whose reference vector V has the longest length:
that is, the observation which is to be weighted the heaviest in the weighted

least-squares attitude computation.

In most applications of DOAOP, the observations are not weighted. In this
case, all the —V>i nominally have unit lengths. At first glance, Figure 3-6
appears to indicate that the first vector in the block, Vi , will be selected.
However, this is not what aétually happens. Instead, the unit vectors, _\71 ’
which are passed to DOAOP will usually differ slightly from unity as a result

of numerical effects. In this situation, DOAOP will choose the V whose length
accidently is the longest. For example, in a test run using the system shown

in Figure 3~1, 25 observations (all of which supposedly had _\71 vectors of unit
length) were passed to DOAOP. The VL which was picked by the routine was
the 16th vector in the set. Supplementary computations verified that the length

of this vector was slightly greater than unity and that it was longer than that of

any other —‘71 in the set.

The selection of the second observation (denoted here and in the coding as ob-
servation K) is shown in the second column of Figure 3-6. When making this
selection, the program computes the cosine C¢Li of each of the angles wLi
between T/}J and the remaining n - 1 reference vectors Vi . Observation K
is selected to be the one whose cosine, cz,bLK , has the smallest algebraic
value. In other words, VK is the vector whose separation angle from VL

is the closest to m. For example, in the run noted in the previous paragraph,

the separation angle between VL and VK was 174.25%
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CONTINUE

Figure 3-6. Algorithm for Selecting the Two Observations
for the Preliminary Attitude Computation
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Selection of the VK closest tom radians from VL apparently is an unintended
imperfection in DOAOP. It is well known that the two-vector technique for
computing attitude is most accurate if the two vectors are m/2 radians apart.

Attitude cannot be computed at all if the two vectors are separated by 7 radians.

3.5.2 Two-Observation Attitude Determination Algorithm

Having selected VL and vK and having obtained the corresponding cbserva-
tion vectors WL and _VVK , the next step is to compute the preliminary attitude
matrix, RO . The RO computations which are used in DOAOP are summarized
in Figure 3-7. For simplicity, most of the straightforward operations of
normalizing nonunit vectors and/or of computing their lengths have been ex-
cluded from Figure 3-7. Most of the symbois in Figure 3-7, particularly UPi s

are similar to or identical with those of the coding. The vectors ﬁi in

Figure 3-7 are not the same vectors as the Gi used in Section 3. 3.

This discussion takes the point of view that the algorithm for computing the
preliminary attitude matrix, RO , can be divided logically into steps A, B, C,
and D, as shown in Figure 3-7. Step D is regarded as the basic attitude de-
termination algorithm. The function of steps A, B, and C is merely to gen-
erate the vectors [?Pj s ﬁj s j=1, 2, 3, which are used as inputs to block D.
A A
Disregarding the exact nature of the UPj , Uj vectors which are employed as
input to block D, the algorithm in this block is a well-known and commonly used
technique for computing attitude from a pair of observation vectors. It appar-

ently was first reported in Reference 4.

The UAPJ, are a new set of observation vectors. They are still resolved on the
spacecraft body frame B. Similarly, the ﬁj are a new set of reference vec-

tors; they still are resolved on the GCI frame. Unlike the actual observation

Y

o -y - N
and reference vector pairs, W_ , WK ; VL . VK , the three UP, vectors are
A

L AN A~ ]
orthonomal, as are the three Uj vectors. That is, [UPi UP2 fI\P?)'] is an

A

U

orthogonal matrix, as is [ﬁ ] . The algorithm used in block D requires

1 2 3
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Figure 3-7. Computation of Preliminary Attitude Matrix RO



matrices which are orthogonal, and this is the reason for transforming to the

A

I?Pj and Uj vectors.

ey
As is shown in block C, 33 and UP3 are computed by forming the crossprod-
N\ S

A ~ AN ~\ .
ucts of U1 s U2 and of UP1 , UPZ , respectively. The vectors U1 ’ U2 ’

I?Pl , and Up 9 are obtained by performing the orthonormalizing operations

shown in blocks A and B on VK R VL s WK . WL .

There is a continuum of ways in which 7}{ , f‘?L . —V?K . —VZ;L could be trans-

~ A
formed into orthonormal triads U_E and UPj . As will be discussed briefly
later, the technique used in DOAOJP is the optimal way; that is, the overall al-
gorithm shown in Figure 3-7 maximizes the gain function g(R) of Equation (2-4)

in the two vector (n = 2) case and hence is a weighted least-squares approach.

The remainder of this subsection will discuss the portion of the algorithm de-
noted here as step D. The orthonormalizing operations, steps A and B, will

be discussed in the following subsection.

As noted above, the Iﬁjj are transformed observation vectors which are
resolved on frame B, Similarly, the Uj are the corresponding transformed
reference vectors, resolved on frame GCI. For any single pair of vectors, UAPj
and Gj , there is an equation of the form

AN A i
UP, = R - U, + g,
j 0

j j _
3x1  8x3 3x1 (3-6)

where Ro is the unknown attitude matrix, and ?;,' is an unknown error vector
which results mainly from inaccuracy in the observation/computation of I?P. .
]
Since j =1, 2, 3, there are three equations of this form. They can be com-
bined into the following matrix format.
A\ a Y

N Ay S S m
U = e -
[ L UP, U 3] R [U1 2U3]+ [sl <, 63] (3-7)
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Omitting the error matrix and solving for RO yields

R =[Ub b Up.1- (0.0 0171 3-8
o 1 2 3 1 2 3 (3-8)
The matrices on the right-hand side of Equation (3-8) are orthogonal. The
equation can thus be simplified to

~ T

R =LUP. UP UP 1 [U. 0 07 3-9
o 1 2 73 12 °3 (3-9)

which is the algorithm shown in block D of Figure 3-7.

Analytically, it is possible to use W , W , v , V. directly in the attitude

L K L K
computation without an intermediate generation of the orthonormal vector
triads, 61 s U/\Pi . This approach employs
— —m, — Dt — — --1

]

R =[W J-[VKVLVM

0 Y (3-10)

which is of the same form as Equation (3-8). The new vectors WM and _\7M

are obtained with the simple block C approach

W =WK><V\7 (3-11a)
V. =V _xV (3-11b)

or else they are an independent vector pair selected from the remaining n - 2

vector pairs Wa’ V)az . With this approach, each Wj must be the same

l }

length as the corresponding Vj .

Techniques which transform to orthonormal vector triads are usually considered

to be superior to the approach in Equation (3-10) which works directly with
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nonorthonormal triads. One of the disadvantages of the technique in Equa-
tion (3-10) is that errors in WK s WL 5 VK

is not orthogonal. To be more specific, it can be shown that Equation (3-10)

5 7L tend to yield an RO which

cannot yield an orthogonal RO unless the angle z/)V between V‘L and VK
is identical with the angle ;bW between WL and WK ; errors in determining
V‘L s VK , W L’ WK , however, can prevent the condition ?’bW = zb"V from
being encountered exactly. Methods which fransform to orthonormal triads

before computing Ro are certain to generate an RO which is orthogonal.

3.5.3 Orthogonalization of the Observation and Reference Vectors

In DOAOP, the orthogonalization operation is divided into two steps (Figure 3-7).

In step A, VK 5 7L ’ —VT’K , and WL are transformed into intermediate vectors

_17'1 , _'Jé s fﬁ)’l , and [ﬁ"z . In general, these four intermediate vectors all will

have nonunit length. However, TUk‘l is perpendicular to ﬁé and 'Lﬁ):’l is per-

pendicular to U—f'z . In step B, these intermediate vectors U' , U' , UP! ,

UP:'2 are transformed into the final vectors U1 s U2 s UPl s UP2 , which are

employed to compute RO in steps C and D. As noted earlier, the four final
vectors are of unit length, with 61 perpendicular to 'L/J\z , and U/\P1 perpendic-
ular to U/\P2 . Step B is merely an implementation of the usual Gram-Schmidt

orthonormalization algorithm.

Steps A and B are redundant., That is, it is possible analytically to omit step B;
this would require merely normalizing [—Ih':’L s ﬁfz s Iﬁi , and fﬁ”z——-—a trivial
operation which is performed anyway. Alternatively, step A could be omitted
instead; this procedure would involve applying the Gram-Schmidt operation

firstto V. , V. i W
irst to VL , VK and then, independently, to WL . WK .

The main orthogonalization step is step A. An analysis summarized in Refer~
ence 5, pages 23 through 26, indicated that the algorithm formed by steps A, C,
and D constitutes an optimal weighted least-squares sclution to the attitude de~

termination problem in the case of two observation vectors. Therefore, in the
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least-squares sense, the step A approach apparently is the best of all possible

algorithms which could be used to traniform FK R VL , WK s WL into an

orthonormal observation vector pair UP'l , UP'2 , and an orthonormal reference
s A\

vector pair U'1 R ‘U'Z . The Gram-Schmidt operation, step B, has been included

in DOAQOP only to trim out any nonorthogonality which may be induced in the

step A results by numerical inaccuracies.
3.5.3.1 Gram-Schmidt Orthonormalization Step

The Gram-~Schmidt step, step B, will be discussed before step A. Only the
transformation from ﬁ'l s TT'Z to 61’ ﬁz in step B will be described specifically.
The other transformation in step B, from Lﬁ"l , ITiD'z to Iﬁﬁl s ITIDZ , 18 mathe-

matically identical with this one.

The first operation which is performed on ﬁ‘l B TJ\'Z in step B is to establish
their lengths U'1 s U'2 , and their corresponding unit vectors ﬁl' s ﬁ'z . These

are near-trivial computations which are not shown in Figure 3-7.

DOAOP next determines which vector, [_;1 or _17'2 , is the longer. The longer
of the two vectors is unaltered. That is, the projection operation which the
Gram-Schmidt procedure entails is performed on the shorter vector. For ex-
ample, if U'1 > Ué , the program uses

A N
U =U

! 3-12
1 - Y ( )

In this case, 6'2 is projected to yield a new vector, _62 , Which is perpendicular

to fj\'l . The geometry is illustrated in Figure 3-8, which shows that

) U (3-13)
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Figure 3-8. Gram-Schmidt Orthonormalization

Thus,

yU (3-14)

which is the computation shown in block B2 of Figure 3-7. The final operation

is to normalize ﬁé by the usual method

U
0. = el (3-15)
2 /U, " T,

If Uz‘ = U'1 , the computations are identical with those noted above except that

the 1 and 2 subscripts are reversed.
3.5.3.2 Main Orthogonalization Step

The discussion of the main orthogonalization step, step A, will not delve into
its least-squares optimality. Reference 5 presents a study which evidently
demonstrates that it does constitute a weighted least-squares solution to the

two-observation attitude determination problem when used in conjunction with
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steps C and D. The discussion herein shows simply that (1) [—ﬁl and [—ﬁ)'l ac-
tually are orthogonal to [—ﬁz and [73?"2 s respectively, as desired and that (2) the
step A orthogonalization operation does not induce any inherent error into the

attitude matrix, RO , to be computed in step D.

The analysis herein will start with the following transformation equations, which

are a generalization of those shown in block A3 of Figure 3-7:

U'1 =x V_+x.V (3=164a)
(3-16Db)
(3-16¢)
(3-16d)

It is evident that fjh'l and [—j; will be in the plane formed by VK and V\L ; to

be called the V-plane. Similarly, [Tf)'l and [ﬁ"z will be in the plane formed by
WK and WL : to be called the W~plane. The eight coefficients x, ..., q2 are
to be chosen to satisfy the constraints of the problem. This must be done in

such a way that the step A algorithm is generated exactly.

The constraints which the transformation must satisfy are of two types. First,
because [_J’; is suppo'sed to be perpendicular to TJ\'Z , and @i is supposed

!, it is necessary that

to be perpendicular to [Tf’z

=0 (3-17a)
+ UPL =0 (3-17h)
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Introducing Equations (3-16) into Equation (3-17) yields

= . 2
° + = -
X + [lez + ylxzj VK VL xzyz VL 0 (3-18a)

2
171 'k

2 - . 2
+4q.1 ° + =0 -1
Py Wi + Lpgdy tapp Wy Wy wpdy Wy (3-18b)
which are the first constraint equations that must be satisfied by the transfor-
mation. The parameters Vi Vg WL > WK above signify the lengths of

v.,V W and W__ respectively.
Voo Vi Wy i Tespectively
The present work regards the constraint on Equations (3-16) to be that the

transformation must not induce an inherent error into the resulting computed

. S )

attitude R . That is, when the vectors V_ , V., W_ , W__ are errorfree,

o L K L K
the resulting solution for Ro obtained with the Figure 3-7 approach should be
analytically equivalent to that obtained by the more straightforward method
(Equations (3-10) and (3-11)), which does not employ orthogonalization and which
is analytically perfect in the errorfree T/?)mew K case. In this context,

\—/\L——WWK can be considered errorfree if

V.-V, =W_- W 3-19
K . K 1 (3-19)

N
because this enables \/}K and @L to be rotated onto WK and X/)\VL , respectively,

by the same rotation

A

(w_w_1] = R [VK VL] (3-20)

(For the remainder of this document it is convenient to take an alibi point of

view and regard Ro as a rotation, The various vectors can be regarded best
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as actual vectors or as vector components on GCI frame.) When Equation (3-19)
is satisfied, the transformations in Equations (3-16) should be such that ﬁ'l
Fay Ve Ve
and U'2 are rotated onto UP'1 and UP‘Z respectively by this same rotation
‘R

o .

] (3-21)

Figure 3-9 is useful for comprehending the geometry of the rotation. Ro can
be regarded as being decomposed nonuniquely into two sequential parts: (1) a
rotation which rotates the V-plane onto the W-plane, and (2) an azimuth rotation
about the normal ﬁW to the W-plane. It is certain that Equations (3-16), when
used in conjunction with block D, will still rotate the V-plane onto the W-plane
as desired, because {J\' , fj\' and UAP' s U/\P"2 lie on the V and W planes, re-

1 2 1

spectively. Use of coefficients xl, veos q2 which yield vectors ﬁ\P'l, ceay ?J'z
that do not satisfy Equation (3-21), however, would result in the aximuth angle

about /ﬁW being established incorrectly.

The constraint imposed by the requirement discussed above now will be placed

in a usable mathematical form. First, let Equations (3-16) be manipulated into

the form:
1% Y1k
A~ A AN U]_ U2
[le U'z:l = [VK VL] (3-22a)
YV, Yo VL
U U
L 1 2 -
[P, W W
~ V2N o UPl UPZ
[UP! UPZZJ = [wK WL] (3-22b)
Po Wy 9 W
P P
_ UP, UPy ]
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where

= i + 2x1 X, Ve Vg, VK QL + X; vi]' ° (3-23a)
Uzz[yi"?<+2y1y2 KVLGK'{T\Ler;Vi].S (3-23b)
UP, = [p“i wi +2p Py W WL V/&\TK . V/&\TL +p§ wi - (3-23c)
UP, = [qi 12< 24, A, Wy W WK 6\VL + qg wi]' o (3-23d)

Now assume the validity of Equation (3-19) and substitute Equation (3-20) into
Equation (3-22b), and Equations (3-22a and b) into Equation (3-21). From this

result, it can be shown that Xl’ ceny Q

9 must be chosen such that the following

relations are satisfied

Kk P11V
- (3-242)
U, UP,
XV P W
“% L_ IZJP L (3-24b)
1 1
1%k 4k (3-240)
U UP
2
Y21 h 'L (3-24d)
U, UP
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Equations (3-24) constitute a second set of constraint equations. It should be
noted, however, that this set is not entirely independent of the two constraints
specified by Equations (3-18). In fact, geometrical considerations based on Fig-
ure 3-9 indicate that only one of the above relations is fully independent. Equa-
tions (3-24) are cumbersome due fo the complicated expressions for the UPi
and Ui_ terms. Two simpler equations are obtained by dividing Equation (3-24a)

by Eguation (3-24b) and Eguation (3-24c) by Equation (3-24d).

X, v p. W,

1 K _ 1K (3-25a)
w

oV PV

y. v g, w
K

yl —= ql WK (3-25b)
L 2L

Alsc, combining Equation (3~25a) and Equation (3-25b) yields the requirement

Xy, p.d, =X

1Yo Poy = %y, P4 (3-26)

2

The next step is to separate x o Gy into (1) a set of independent param-

1’
eters whose values can be selected arbitrarily and (2) a set of dependent pa-
rameters whose values are to be established via constraint equations. Using
Figure 3-9 as a guide and referring back to Equations (3-16), the development

is as follows:

1. ﬁi can be placed anywhere on the V-plane. Hence, X, and X,

are arbitrary except that both cannot be zero

2. I—f;‘z must be orthogonal to f?'l . Thus, one of the coefficients, (e.g.,
y2) of Equation (3-16b) can be given any arbitrary nonzero value and
the other, ¥y should be established by the orthogonality constraint

equations,
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3. [_ﬁ)'l is constrained to lie at the proper azimuth angle in the
W-plane. This means that one of the parameters, e.g., p 1 of
Equation (3-16¢) must be established through a constraint equa-
tion. The value of the other, Py cannot be zero, but otherwise
is arbitrary except for sign. This sign restriction is necessary
to guarantee that [_ﬁ)'l can lie in that half of the W-plane which is

required by the rotation.

4, [ﬁ)'z must be orthogonal to [ﬁ)‘l . Hence, the value of one of the
coefficients, e.g., q2 , of Equation (3-16d) should be established
through the orthogonality constraint equations. The value of the
other, q1 , cannot be zero but otherwise is arbitrary except for
sign. This sign restriction is necessary to guarantee that UP'Z

can lie in that half of the W-plane which is required by the rotation.

The values of the arbitrary parameters, x_ , xz s Y. . p_ s and q1 , how will

1 2772
be selected. Keeping in mind that the present derivation is intended to yield the

step A algorithm implemented in DOAQOP, the choices are

q. =0 (3-27)

1 2 2 2 1 2
where 01 =zx1
=1
9

Substituting Equations (3-27) into (3-16) and making some minor notational

changes (deleting the subscripts and replacing q by x) yields

=XV _~-V (3-28a)
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<

The orthogonality constraint equations, Equations (3-18), now are

2 U T
+ [x - .
vaK YJVK VL
po W2+[pX-O'CT v1W - W
2 K 12 K I

and Equations (3-24) through (3-26) are

XvKﬁpr
U UP
1 1
82 W
U UPp
1
vanasz
UP
Uy 2
o _Ev
v, UP,

3-28

2
- :0
L

2
“’G =
T Oy W, =0

(3-28D)

(3-28c)

(3-28d)

(3-29a)

(3-29b)

(3-30a)

(3-30b)

(3-30c)

(3-304)



= E__L K (3-31a)
L ™y,
yv oW
k Y2 %k
== (3-31b)
L L
=0 g —
p=00, (3-32)

The problem now is to utilize the above equations to establish x, y, p, and

the signs of O‘l and 02

Equation (3-32) shows that p must be +1 or -1. Equation (3-30d) shows that
x>0, Equation (3-30a) shows that X and p must have the same sign. Therefore,

p = +1.

It now follows from Equation (3-32) that o 1 and o 5 must have the same sign.

Therefore, the following work will utilize o = o, = 02 = %1,

Equations (3-29) now will be manipulated to obtain separate quadratic equations

=g_ , the result is

in x and y. After inserting p=+1 and o = 01 9

2
fx -~ax-b=0 (3-33a)
2
fy +tay~-b=0 (3-33b)
where
f=vo W - W. +OwWeV . V. (3-34a)
"k kL L 'K 'L

-w_v._] (3-34b)
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W oW, o +o0w V.oV (3-34c)

b2
. "k VL K 'K 'L

The unorthodox symbols £, a , b above were taken from the coding. Equa-

tions (3-33) can be golved for x and y

1 4 _
x=0 [afs] (3-35a)
. Mmlm[ma t g (3-35b)
X o F

where

§ = \/az + 4bf (3~35¢c)

Equations (3-31a or b) show that

_ kL

Y1, ¥k

(3-36)

Because x -~ 0, Eguation (3-36) shows that y > 0 .

Equations (3-35a and b) now will be employed to form xy . Ifif is assumed

that the same gign is used with the s term in both equations, the resulf is

2 e P —oZin s
7 } 3
| bvaJWKQ“L+OWKVKSVL \

= 2 .
@ + k2
Vi WK WL ow, VK VL
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The use of opposite signs with the s term in the two equations does not yield

a result that reduces to anything simple, and thus it is evidently not acceptable.

Assuming /\}K . @L = \Q’K . \%\IL enables Equation (3-37) to be manipulated into
the form
+
Wi V [VLWL Wi Vi o)
ey lv.w. g+v., w_ ] (3-38)
L KL L K K

Comparison of Equations (3-36) and (3-38) shows that o= +1 is required.

Use of 0= +1 in Equations (3-34) yields

f=VKWK- WL+WL VK- VL (3-39a)
2 2 2 2

a—wL L~ Yk Yk (3-39Db)

b=veW_ W +woV._ .V 3-39

LYk LT R KT L (3-39¢)

which are the relations implemented in DOAOP (step Al of Figure 3-7). Also,

use of 0 =p = +1 in Equations (3-28) yields

i1 = - -
U1 X VK VL (3-40a)
t o= V +V 3_4:0b
2 y K L ( )
P' =W, _ - -
U y L (3-40c¢)
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UP| = W +XW_ (3-40d)

which are the relations implemented in DOAOP (step A3 of Figure 3-7).

The only remaining problem is to determine the sign to be employed with the
s terms in Equations (3-35). It was noted earlier that x > 0 and y > 0.
Eguations (3-39a and c) show that £ and b can be either positive or negative,

depending on the separation angles lbv and lbw . However, it is certain that

@pv ~ @W and therefore f and b normally will have the same sign. Thus,
f b >0. From Equation (3-35c) it can be seen that s>|a|. To satisfy the

x>0, y>0 requirement, it thus is required that

~21¥[a+s3 if £>0

x=17
E[a-s] if f<0

and (3-41)
—l[—a+s] if £=0
g o |2 -

1
g - 3 <
2f[a s]if £<0

Equations (3-41) are identical with those shown in step A2 of Figure 3-7.

The study of the step A operation now is completed. The work verifies that the
algorithm does produce two orthogonal pairs of vectors without inducing inherent
errors in the attitude RO , to be computed in steps C and D. As noted earlier,
no attempt was made here to verify that the resulting RO will be the weighted
least-squares solution as was claimed in Reference 5. Generating a weighted

least-squares solution depends on the proper selection of the values of the
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parameters x. , X_ , Yo 1 Pg s q; - The current study regarded the values of

1 2
these parameters as arbitrary and selected them for concurrence with the values

used in the actual program.

The step A algorithm blows up if £f=0. The f=0 condition occurs when

the vector pairs already are orthogonal; that is, when 7L . 7}{ =0 and

WL . WK = 0 . Singularity at this condition is unfortunate, since it is the op-
timal condition for attitude determination. If step A is employed in a revised
version of DOAOP, it would be desirable to bypass the step whenever this con-

dition is encountered or approached.
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APPENDIX A- THE q-METHOD: A NEW LEAST-SQUARES
ATTITUDE DETERMINATION ALGORITHM

A.1 INTRODUCTION

The distinctive feature of the attitude determination algorithm which is imple-
mented in DOACP is the use of the vector-like variable Y to specify attitude.
Y is the attitude state variable used in deriving the algorithm, and it is the
quantity which is computed directly by the algorithm. For this reason, Ap-

pendix A refers to this technique as the Y-method.

The Y-method is not the only possible algorithm for solving the least-squares
attitude determination problem. References 3 and 5, for example, discuss
R-methods, presenting algorithms which employ the attitude matrix R in much
the same way that the Y-method uses the attitude vector Y. In addition, a new
least-squares algorithm which employs the attitude quaternion ?f has been
devised recently by P. Davenport. After a period of simulation testing, it was
incorporated into the HEAO attitude support system for operational use. This

new method is called the g-method in Appendix A.

The purpose of this appendix is to describe the g~method. Most of the infor-
mation presented is either based on or taken almost directly from unpublished

material provided by P. Davenport
A.2 SYNOPSIS OF THE g~-METHOD

This subsection summarizes the main features of the g-method and provides a
first look at the implementation of the method in a computer routine. Subsequent
subsections present a derivation of the algorithm and discuss its mathematics

in detail.



The two main operations which are performed in a computer implementation

of the g-method are as follows:

1. Computation of the elements of the symmetric 4 X 4 matrix, which

is designated in this appendix as matrix K

2. Computation of the normalized eigenvector ¢, which pertains to
N

the largest positive eigenvalue, Al , of K

al is the optimal attitude estimate; that is, the attitude quaternion which mini-

mizes the weighted least-squares loss function.
The algorithm for computing K is as follows:

n
1, i@t?T
=1 1

B =
3x3 i
2. SSBT+B

- _T
3(a) Z=B -B

e

(b} Obtain 7 from the 3 X 3 skew symmetric matrix Z

4, g = Trace B

Many algorithms exist for solving the eigenvector problem after ¥ is com-
puted. As noted earlier, only the eigenvector, '@1 , which is associated with

the largest eigenvalue, A, , of K is needed. The other three eigenvectors Ez s

1

s
{
[a]



d. , 31'4 , are not required, nor are any of the four eigenvalues. The so-called

3
power method or matrix iteration approach is one technique for computing q 10
and the analysis in this Appendix on the problem of extracting 31"1 from K

is devoted entirely to the power method. The power method is a well-known

technique for computing the largest eigenvalue and its eigenvector. It is de-

scribed in References 6 through 9 and in most texts on vibrations.

Because ﬁl is the only quantity which must be established in the present ap-
lication, the power method here can consist merely of sequential passes p

through the equation

— _p-1 )
¢ =K T (A-1)

The operation is continued until a convergence criteria is satisfied or until a
specified number of passes has been made without attaining convergence. The
significance of the prime on K in Equation (A-1) will be discussed later. The

input q for any pass is the normalized output of the preceding pass.

Except for one special situation that can be ignored here (namely, when the
a priori input ﬁo is orthogonal to 6]1), the technique discussed above will

converge to '(il if lkl | > lkz I, lKSI , X (Note that the eigenvalues are

| .
numbered such that Kl = Kz 2 KS = K4 <) It4is shown later that the condition
]Kl | > lkgl 2 Ikz | will always be encountered. This later work shows that
]K4] 2 IKSI = lkzl and, more significantly, that ]Kll 2 ]K4I . The condition
lkll = lk4l will be encountered if and only if (1) there are only two star ob-
servations, or (2) there are more than two observations, but they all must be
in a common plane. Convergence will not occur if \K1| = |K4l . Also, con-

vergence will be very slow if the ratio MLL/Kl] is close to its upper limit of

unity. A modification to the basic power method to handle this potential



convergence problem is therefore necessary. A simple technique for allevia-

ting the convergence problem is to use the following matrix K' rather than K
K'=K ~ sl

where s is a suitably chosen negative constant. It can be shown that the term
-8l will (1) shift all the eigenvalues of ¥ by s, (Aiq = ?\k ~ 8} thereby assur-
ing convergence and improving the convergence rate and (2) will not alter the

eigenvectors,

For a 4 X 4 matrix, the convergence characteristics of the power method can
be shown to be determined by the transient responses of three error modes.
The optimal value s* of s is normally considered to be the value which maxi-
mizes the speed of response of the slowest of these modes. It is possible to

prove that this s* is
gt == [+ ) (A-2)
2 2 4

Equation (A-2) is given tn References 7 and 10. It shifts the eigenvalues to

the point where i)\él = 1>\f21 .

Determination of s* presents a difficulty because kz and A 4 2re not known
a priori. An exact analytic solution for s* , however, can be generated in the
current application. The steps in this algorithm are as follows:

1. Compute C = BTB

2. Compute the coefficients of the cubic polynomial in v formed by

expanding Det [C-y1] =0



3. Obtain the middle eigenvalue, }/2 , of C with the exact analytic

solution of the above polynomial
* o= o
4, S /yz
The details of steps 2 and 3 are given in Section A.5. 3. 3.

Suboptimal algorithms for s can also be employed. One approach uses
noow, n
= kZT 'Vir—k;;vvi v, (A=3)

where Wi and vi are the lengths of Wi and V‘l , respectively, and k is a
selected constant. Two separate analytical studies have indicated the optimum
value of k to be 1/3 and 1/2, respectively. In the case in which the vectors

are unweighted (of unit lengths), Equation (A-3) reduces to
s =-kn (A-4)

The eigenvalue shifting téchnique noted above is not the only approach for as-
suring or accelerating convergence. One simple method which can be used to
supplement it consists merely of raising K' to a selected power, m , prior
to performing the power method iterations. This method will accelerate the

convergence rate without altering the final solution EIl .
A.3 DERIVATION OF THE gq-METHOD ALGORITHM

A.3.1 Derivation of the Least-Squares Gain Equation as a Function of g

The derivation starts with the weighted least-squares gain function which was

listed earlier as Equation (2-4)

n
g(R) = Z . (A-5)
i1
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The following 3 X n matrices will be employed:

W = [wl———wn] (A-62)
V= [Vl—-——Vn] (A~6b)

By forming the n X n matrix WT « R« V and multiplying it out in terms of the

‘vai and T/'\i , it can be demonstrated that Equation (A-5) can be written as

g(R) = Trace [w'r v (A=T)

Using a property of the trace operator which was listed in Section 2.2, Equa~-

tion (A=~7) can be rearranged into

g(R) = Trace [R V W] (A-8)

The following 3 X 3 matrix B now will be introduced

T - T
B=W:V -gwiovi (A=9)

B (above) is the same matrix B which was used in Section 2.2. Substituting

Equation (A-9) into (A-8) yields

T
g(R) = Trace R B (A~10)



The next step is to introduce the 4 X 1 column vector q which consists of the

Euler symmetric parameters.

., A 6
Q X sin—
3 %1 2
q = = 5 (A-11)
4 x1 q COoS ~—
1x1 2

q henceforth will be referred to as the attitude quaternion. It specifies the
orientation of frame B relative to frame GCI. The terms S\i and 6 are the

rotation parameters which were defined in Section 2.1.2.

Substitution of Equation (A-11) into Equation (2-6b) enables R to be written
as a function of 6 and q :

—

R=[¢"-§-QN+2T-Q -2q7 (A-12)

Equation (A-12) is a well-known relation.

Substitute Equation (A-12) into (A-10), and let the resulting gain function be
designated g(q) . A few manipulations yield

g@ =[q° -QQlo +2 Trace [G+ Q" + B ]~ 2q Trace [§-8]  (A-13)

where, for simplicity, the following new variable o has been introduced

n
0 = Trace B=) W +V, (A-14)
i=1

The second portion of Equation (A-14) was presented earlier as Equation (2-23).



The next step is to simplify the second and third terms on the right side of

Equation (A-13). Working first on the second term yields

2 Trace [@v@T . BT]= 2 Trace [§T~v BT@ 6]
(A-15)

=T T
:ZQ GB a

O
il
s)

where

T

S=B+B (A-16)

The third term on the right side of Equation (A-13) is more difficult. By ex~

pressing Trace [@ . BT] in scalar form, it can be shown that

— T e
Trace [% B ]=-Q - % (A-17)
where
23~ P32
Z= {by, ~b., (A-18)
P10 Poy

The b scalars above are the elements of B . To identify the vector designated

7 , let its skew symmetric form 7 be written out in full

0 boy - b12 gy ~big

il
o

12

21

13

31

(A-19)



Equation (A-19) shows that

- _.T
Z=B -B (A-20)

Comparison of Equation (A-20) with Equation (2-22) shows that the vector 7

introduced in Equation (A-17) is the same vector A employed in Section 2.2,

That is

n
7 =¥Wi XV, (A-21)
1:

Next, substitute Equations (A-15) and (A-17) into (A-13)

g@) = qu -Q - Qle +7§T - 8- Q+297:Q (A-22)

A simple rearrangement yields

‘ S-Io| Z Q
e(@) =-(Q‘T q (A-23)
T
7z o q
thus
g@ =q - K-q (A-24a)



where

(A-24b)

Equations (A-24) specify the least-squares gain criteria as a function of the
attitude quaternion g . The problem of solving this expression to obtain an
algorithm for the optimali attitude estimate is considered in the following sub-
sections. Equation (A-24a) is a very convenient form, since it is a quadratic
function of ¢ . The 4 X 4 matrix K is symmetric and its elements are con-
stanis. The set of equations which are needed to establish the elements of K

are Equations (A-9), (A-14), (A-16), and (A-20).

Some general information about K and its eigenvalues and eigenvectors can

be presented at this point. Let the eigenvalues of K be designated as Al s

Az , AB , A4 . Since K= KT , all Ak will be real (Reference 11, Theorem 4. 6).
For convenience, it is assumed henceforth that the Ak are ordered such that
Alékz 2A32A4.

Since K = KT , a set of four orthonormal eigenvectors (designated here ’q'l cens

2'1'4) can be found for K (Reference 11, Theorem 4.7); and K can be diago-

nalized as follows (Reference 11, Corollary 4. 8)

A= QT KQ (A-25a)
where

A = Diag (Al, Az, AB’ A4) (A-25b)
4 X4

A-10



and

Q =I[g,q,d;,9,] (A-25¢)
4% 4

Using Equation (A-14), (A-16), and (A-24), it can be shown that
Trace K =90 (A~26)
From this, it follows (Equation (A-25) and Reference 11, Corollary 4.3) that

A1+>\2+k3+>\4z0 (A-27)

Because all Ak cannot be zero, it is certain therefore that /\1 > 0 and A4 < 0

and thus that K is indefinite.

A.3.2 Determination of the Least-Squares Atfitude Solution

This subsection considers the problem of determining the quaternion § which

maximizes the least-sguares gain function
- L -
ga)=q - K-g (A-28)
where K is a real, symmetric matrix;

T
K=K (A-29)

and q is subject to the constraint
g -q=1 (A-30)
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The constraint can be handled by the Lagrange multiplier approach. That is,

we seek to maximize

. _T _ T _
g@=q - K.q-x[q-q-1] (A-31)

where ) is the Lagrange multiplier. Differentiating Equation (A-31) with

respect to § and setting the result to 0 in the usual manner yields
A\g=K-+q - (A-32)

Thus, the attitude quaternions which produce stationary values of Equa-
tion (A-28) are the eigenvectors of K, and the Lagrange multipliers are the

corresponding eigenvalues. Equation (A-32) thus can be written as

)\qu=quk;k:1, 2, 3, 4 (A-33)

where the 'dk are the eigenvectors of K and the A, are the eigenvalues.

k
It has been shown thus far that the eigenvectors ’q'k produce stationary values
of g(q) . To show which one of the four will produce the largest g let Equa-
tion (A-33) be substituted into Equation (A-28) to yield

g@q) = 'ci;f LA g = (A-34)
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Hence, the four stationary g values, in decreasing order of value, are

S
By =Xy
(A-35)
8y =Ag
By =ry

The eigenvector which maximizes g , and which thus is the optimal attitude

estimate, is ﬁl , the eigenvector which pertains to the most positive eigen-

value )\1 .

It is noted that the extremum problem posed by Equations (A-28), (A-29), and
(A-30) also is solved in Reference 6, pages 117 through 118, using a more

cumbersome approach.
A.4 STUDY OF THE MAGNITUDES OF THE EIGENVALUES OF K

The material in the preceding subsection has demonstrated that the four eigen-

values, A, , of K are real and that Al + Az + A3 + >\4 =0 . By definition,

k b
> P p i < i

>\1 AZ A3 >\4 , and it follows therefore that Al >0 and A4 0 . Since Al

and >\4 have opposite signs, the condition >\1 > A4 thus does not necessarily

signify that 1x11> 1A4[ .

This subsection presents more information on the relative values and magnitudes
of the >\k . This information is useful for investigation of the main remaining
task in the g-method development: namely, selection of an algorithm for de-
termining the eigenvector ’cIl of K. The question of whether or not the con-
dition I)\l [ > D\jl ; =2, 3, 4 will be encountered in all situations is of

particular concern. This is because the power method of extracting eigenvalues
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and eigenvectors is a prime candidate for computing ¢ 17 and it is known that

the power method will converge to q 1 only if this condition is satisfied.

It can be shown that the >‘K are related to three scalars d1 E d2 2 d3 =0 by

the following equations:
A =d +d +d
1 1 2 3

=d, ~d_~-d
A 1 2

2 3
(A-36)
=-d, +d_ ~-d
>‘3 d1 2 3
=-~d ~d_+d
X4 d1 2 3
The desired information concerning relative values of the Ak and IAk] can

be obtained from Equations (A-36).

The three dj elements above are the positive square roots (d]_ = \/:}Z) of the
eigenvalues yJ of the matrix C = BTB . The derivation of Equation (A-36)
utilizes material in the R-method of solving the least-squares attitude problem.
The derivation is lengthy, and to avoid a major interruption in the present

material it has been relegated to Section A. 6 of this appendix.

The facts which can be deduced from Equations (A-36) and the relations

dl = c'l2 P d3 =0 are as follows:

. >0
1 >\1
2. >‘2 canbe >0, 0, or <0
3. )\3 £ 0 with equality encountered only if d3 =0 and d1 = d2
. <
4 A4 0
>
5. >\1 AZ ) K3 ) A4

6. A 2 ED 5 with equality encountered only if d 1= d2
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> . . . -4 =
7. Az A 4 with equality encountered only if d1 dz d3

8. A2 A 4 with equality encountered only if d2 =d

3 3
WE N
0. > Ik3l
11. ]All =Y 4\ with equality encountered only if d, =0
12. fle < ]x3f with equality encountered only if (a) d; =0 or
(b) d, =d, '

13. })\2! < ]A4| with equality encountered only if d, =d =d,

N

14, \R3l < \A4] with equality encountered only if d2 =d

3

In determining the above equalities and inequalities, the case d2 = d3 =0 was
not considered. This condition is encountered only if all Y/\i are colinear.

Thus it is a case for which attitude cannot be computed. It yields Al = Az =

Item 5 verifies that the least-squares attitude solution is unique. Items 9 to
11, however, are the most significant ones because they verify that the power

method will converge to ?q'l unless d_ =0 . The condition d3 =0 1s encoun-

3
tered (1) when there are only two reference vectors, V\i , or (2) when there

are more than two fol , but they all lie on a common plane. Because the 71
all lie close to a common plane in HEAO-A, it follows that the power method
will converge slowly in this application unless special provision to accelerate
convergence is made.

A.5 DETERMINATION OF EIGENVECTOR 51 OF K BY THE POWER
METHOD

A.5.1 Description of the Approach

As noted previously, the normalized eigenvector ¢ 1 which pertains to the

largest eigenvalue Al of K is the optimal attifude estimate. The analysis
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to date on the problem of extracting 61 has been devoted mainly to the power

method, a well-known technique which is described in References 6 through 9.

Because eigenvector Eil is the only variable which must be obtained in the
present problem, the power method here can consist merely of sequential

passes p through the equation

=K' q (A-37)

The significance of the prime on K above is discussed later. The input ¢

for any pass is the normalized output of the previous pass.

The power method requires a check to determine when convergence has
occurred. The recommended technique of testing for convergence utilizes

the guaternion properties of the Eip . With this method, the quaternion

T = ['q'_p_l] -1 c'1p is computed at thé end of each pass p using quaternion mul-
tiplication. T specifies the small rotation which would rotate the attitude frame
existing at the start of pass p onto that seen at the end of pass p . The angle,
€ , of this rotation then is computed from the vector portion, R , of T via
©=2arcsin VR *R. The approximation © =2 R« R is acceptable here,
since © is very small. Convergence is deemed to have occurred when € is

smaller than a selected input constant.
A.5.2 Convergence

A mathematical study of the conditions under which convergence to q, can be
expected and of the convergence rate has been relegated to Section A.5.4 to
avoid an undesirable interruption in the present material. Only the most per-
tinent conclusions regarding convergence and convergence rate will be noted

at this point.

The eigenvalue of K whose absolute value is greater than that of all other

eigenvalues is called the dominant eigenvalue )\D , and the eigenvalue of the
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next largest absolute value is called the second dominant eigenvalue ADZ .
Assuming that )\D is unique (that is, that p\Dt > IADZ]) , the power method
always will converge to the eigenvector ﬁD which pertains to )\D . (There is
one exception here, and it occurs when the a priori input vector (_lo is orthog-
onal to EiD .} This result is proved in References 6 and 7 and in Section A.5.5.
Section A. 4 showed that in the present application, A 1 is the dominant eigen-
value and )\4 is the second dominant eigenvalue. Thus, except for one special

situation described below, the conditions ])&1[ > ])\4{ > 1)&2\ , {)\3[ will be en-

countered and convergence to q 1 will be attained.

The case where )&D = =X presents a problem. This is the special situation

which was noted above. ]?Jzonvergence will not occur in this case (page 40 Refer~
ence 7). This case is encountered in the present problem with d 3= 0 and thus
A 4 —)\1 . A technique for surmounting the difficulty is discussed in the next
subsection.

It is demonstrated in the references and in Section A.5.4 that the most signifi-
cant factor affecting the rate of convergence is the ratio }ADZ | /])\D] . The
smaller this ratio, the faster the convergence rate. The ratio )t4/)\1 is of

prime concern in the present problem.

A.5.3 Improvement of Convergence by Eigenvalue Shifting

A.5.3.1 Introduction

A simple technique for alleviating convergence problems involves using the

following matrix K' in place of K
K'=K - sl (A-38)
where s is a suitably chosen negative scalar. It will be shown below that the

term -sI will (1) shift all the eigenvalues ot K by s (that is, )\1’{ = )\k -8),
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thereby assuring convergence and improving the convergence rate, and (2) will

not alter the eigenvectors "cik . This approach is recommended in Reference 7.

The above two claims concerning Equation (A~38) are easily proved. The proof

starts with the basic eigenvalue equation which was listed earlier as Equa~

tion (A-32).

(A~32)

where Ak signifies any of the four eigenvalues and ?ik is the corresponding

eigenvector. Subtracting s'qk from both sides produces
A - s1g =[K-s0lq

Introducing new notation yields

M G = KT
where

K'=K - sl

Al’{ = )xk -8

(A-39)

(A-40)

(A-41)

(A~42)

Equation (A-40) constitutes a new eigenvalue problem. The new eigenvalues

)ti{ are related to the eigenvalues, Ak , of the original matrix K, as indicated

in Equation (A-42); and the new eigenvectors are identical with those,

K.
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A.5.3.2 Criteria for Selecting the Shift s

Figure A-1 is a sample plot of the variation of the eigenvalues )\1'{ s k=114

and their absolute ratios ‘rJ‘l = ])\J‘1/P\‘1| ; j =2 to 4 with the eigenvalue shift
parameter s . Only negative s values are shown on the figure, since positive
values are not of current interest. The initial (s = 0) eigenvalue values, )\k ,

were chosen to be >\1 =1.0, A =.3,A_ =~-.4, )\3 = ~,9 . These values are

2 2
not intended necessarily to be typical of those encountered on HEAO-A. The

plots were obtained merely by the use of Equation (A-42).

Figure A-1 shows the positive eigenvalues K’l and )\‘2 increasing linearly as
s is made more and more negative. The negative eigenvalues )\é and )\ll
are driven linearly toward zero, they reach zero at s = )\3 and s = .\4 re-
spectively, and thereafter increase linearly. As a result, \r'2] increases in
size monotonically toward unity while iré] and ;r;t\ are driven to zero,
after which they also increase monotonically toward unity. Mathematically at

least, )\2 can be negative rather than positive. In such a case, the ]r’2] plot

would resemble the ]rél and \rlll plots on Figure A-1,

Figure A-1 shows that )\'2 will replace )\Ll as the second dominant eigenvalue
if s is made more negative than the value indicated as s* . By use of Equa-

tion (A-42) s* can be shown to be

s* = .5 D\2 + A4] (A-43)

This result concurs with the results given in References 7 and 10. The param-
eter s* can also be specified as a function of the elements dj by substitution

of Equation (A-36) into Equation (A-43) to yield

s* = -d (A-44)
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Figure A-1. Typical Variation of Eigenvalues and Their Ratios With s
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The parameter s* generally is considered to be the optimal value of s, since
it minimizes the magnitude of the largest lr‘\ ratio. The question of the opti-
mality of s* as defined is considered in Section A.5.4, where it is shown that
s* is not necessarily the s which minimizes the number of iterations needed
for convergence in any specific problem. The remainder of this appendix,

however, will regard s* as the optimum s.
A.5.3.3 Implementation of the Optimal Shift g*

Implementation of the optimal shift s* in a computer routine is usually not
possible, since the >\k are not known a priori. In the present attitude problem
however, it is possible to compute s* exactly. The technique involves use of

Equation (A-44).

It will be recalled that in Section A.4 the claim was made that

j:+\/7j i=1,2, 3 (A-45)

where the yj are the eigenvalues of the 3 X 3 matrix C

C=B B (A-46)
and
n
2 _‘AT
B=Y_ WV, (A-4T)
3X3 i=1

It follows that d2 , and thus s* , can be obtained easily from the eigenvalue

Yo of C . An algorithm for computing )’2 can be developed by expanding

det [C -¥I| =0 (A-48)
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to yield

y3 + mlyz + mzy + m3 =0 (A-49)
where
m1\=—[011+022+033] (A-502)
my =le)) 0yp +€1) Cag T Cpp Cag ™ cfz - ci:a } C;:s] (A-50k)
m, = [cll 023 *Cog cig tega ciz = €11 %9 %3~ 2¢,, g 023] (A-50c¢)

The scalars ¢ above are the elements of C. Eguation (A-49) can be solved
for ‘yl s )(2 s ‘}/3 using the analytical solution for a cubic polynomial. A suitable

form of this solution is expressed by the following set of equations

2

1
al = m2 oy ml (A-bla)
m, m
2 3 1772
bl = 5% m, -— + m3 (A-51b)
f = -~—al A-51
1 3 ( c)
3'b1
¢ = Arc cos 0<x¢<2m (A-52)
2 alfl
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. 6 . @
')/2— 3 —l[cos3 \/§sm3}

-m

-1 @ ; ﬂ
')/3 3 fl[cos3+\/§sm—é—

(A-53a)

(A-53b)

(A-53c)

Equations (A-47), (A-46), (A-50) to (A-52), (A-53b), (A-45), and (A-44) taken

in that order, constitute the full algorithm for computation of s* .

The above equations should always yield

The scalars a

1

2 3

b a

1 1
e 4 §— <
2 3 0

2y >
n=% ‘V320

and b1 above are the coefficients of the equation

3
X +alx+b1—0

A-23

(A-b4a)

(A=54b)

(A=54c)

(A-554a)



which is obtained by inserting the transformation

(A-55b)

into Equation (A-49).

The above technique, in conjunction with Equations (A-36), enables all the

eigenvalues Kl ... A of K tobe established. A potential alternative to the

4
power method in the present problem involves using )&1 , as computed above,

in the equation

[K - 1>\1] e =0 (A-56)

which could be solved algebraically for "é]l .
A.5.3.4 A Suboptimal Technique for Computing the Shift

This section derives a suboptimal algorithm which has also been proposed for
computing the eigenvalue shift s . The derivation starts with the matrix B

which was employed previously.

n T
B ='}:i LA (A=5T7)
1"..':

Now note the following approximate relation

=
Q
< 2

R - *\7“1 (A-58)
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where LA and v, are the lengths of \7\71 and 71 , respectively. The above

relation omits system errors, particularly those due to the star tracker.

stituting Equation (A-58) into (A-57) produces

Yi s T
B~ Z —{7: R - Vi . Vi
Moving R outside the summation yields
B~ R+ A

where A is a newly defined 3 X 3 matrix which is

Z—-—-—V V

lThe trace of A is

W,

TraceA:Z—V—IVZ'V\i:ZWiVi
»i

Sub-

(A-59)

(A-60)

(A-61)

(A-62a)

In the special case where the observation and reference vectors are unweighted,

this reduces to

Trace A=n

(A-62b)

where n is the number of observations. Equations (A-62) will be employed to

compute trace A in the final s algorithm.
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Let the eigenvalues of A be designed as o, , & , @43 . It is trivial to show

1 2

from Equation (A-61) that A = AT . Therefore, &1 s Oy y Uy will be real. Let

the subscripts be ordered such that czl ER e 9 z 5343 . By forming the product
ET ¢ A« X, where X is an arbitrary vector of dimension 3 and A is defined
by Equation (A-61), it can be shown that A is at least positive semi-definite.

h . = z zQ .
Therefore al &2 @43 0

Recall the matrix C which was introduced earlier

—~

and recall from Section A. 4 that the eigenvaiues of T are ’}/1 . ')/2 s 73 where

}/j = dj2 , and d 2 d2 = d3 = (. Substitution of Equation (A~60) into (A-63)

1
yields

T T
C%ARRA,xAZ {A~64)
Applying a well known result in matrix theory (Reference 12) to Equation (A-64)
yields )/j “ﬁajz and hence aj.z ~ djz . Since @zj z 0 and dj z (0, it follows that

a/j & dj . Using the relation

= + + & -
Trace A a, &2 3 (A-65)

it therefore follows that

A +d +d = ~66
Trace A dl g T4 Al (A-66)
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where the second part of Equation (A-66) was obtained from Equation (A-36).
Applying a previously mentioned relation, >\1 + >\2 + >\3 + >\4 =0, to Equa~
tion (A-66) now yields

-.5 Trace A~ .5 [Az + A3 + >\4] (A-67)

The optimum eigenvalue shift was shown earlier to be s* =.5 sz + >\4] . From

Equation (A-67), it is obvious that use of the relation
1
8 = ~~2—Trace A (A-68)

will provide a very rough approximation to the optimal shift. This equation,
however, will usually cause an overshift because of the undesirable >\3 term

in Equation (A-67). The relation

-1
8§ = - -ngrace A (A~69)

often should be better. Equation (A-69) utilizes the approximation >\3 =.5 D\Z +
X 4] , while Equation (A-68) employs the approximation >\3 =0,

In summary, the operations required by the suboptimal eigenvalue shift method

are as follows:

1. Compute Trace A with Equation (A-62a) or, when applicable, (A-62b)
2. Compute the shift s with Equation (A-68) or (A-69)

A.5.4 Analysis of Convergence and Convergence Rate

This subsection considers the convergence and convergence rate of the power
method at a more detailed mathematical level than has been done to this point.

The work is devoted mainly to the derivation of Equation (A-79), which specifies

A-27



the relationship between eigenvalue ratios, initial conditions, and convergence

properties. Material from References 6 and 7 has been used in the study.

Recall that )\k and 'oIk » k=1 to 4, are the eigenvalues and eigenvectors of

K . Therefore, they satisfy the equation
Ak Gy = K- C (A=70)

Through manipulation of Equation (A-70), it is possible to obtain the more gen-

eral relation

P- _ P - 3
AquwK (A-T1)

where superscript p is an arbitrary positive integer signifying that Ak and

K are to be raised to the pth power.

In the present work, the qk have unit length by definition. Since K is real

and symmetric, it follows that

(A-T72)

Ol
~
teli
i
=8

where ka is the Kronecker delta. The multiplication which is used in Equa-
tion (A-72) and in later equations of this subsection is the usual Euclidean inner

(dot) product.

Since the four qk are linearly independent (orthonormal, to be more precise,
as indicated im Equation (A-72)), they can be regarded as a setibas1s vectors

4 . .
in a real Euclidean vector space R~ . It thus is certain that any vector q in
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4 . — —
R~ can be expressed as a linear combination of the qk . Letting qo be the
a priori attitude estimate which is employed in an application of the power
method, therefore
-0 -

=c. q, + +
4 7¢; 9 764 ey

= — _
dq T C, d, (A=T73)
The c¢'s above are constants which depend on ?1‘0 and the ﬁk ; the precise

relation can be obtained easily from Equations (A-72) and (A-73)

1T .0

¢ "G o d (A-T4)

<

The first pass through the power method equation yields

=K-J (A-T75)

Ignoring, for simplicity, the normalizing operation which (in the current appli-
cation of the power method) is performed at the end of each pass, successive

applications of Equation (A~75) yield

F-xP. g (A=76)

where “Eip is the resultant at the end of the pth pass. (In the present notation,
superscript p, when used with scalars and matrices, signifies that these
quantities are to be raised to the pth power except where noted otherwise in
the text. Superscript p is used with vectors, however, only as a label to

designate pass or iteration number. )
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Next, premultiply Equation (A-73) by Kp . Application of Equations (A-74)

and (A-71) and use of the obviously valid assumption that the dominant eigen-

value, A_ , is not zero yields

1

AP AP A
ERTARNL BOC R ) R
1 1 %1 2\ )\ 2 3\ 3 4\ X 4

Equation (A-77) is the basic result of the present derivation. It can be made
applicable to the shifted-eigenvalue application by merely adding primes to the

Xk.

X\ A\ LV
_OIp:D\']p [c q, +c 2 g, +c 3 q, +c 3 q (A-78)
1 e T AP - AP YV A B AV A

Recall that, by definition, >\1 2 >\2 2 >\3 2 K4 . It can be shown that when the
star observation set contains at least two noncolinear vectors, the eigenvalue
shifting technique ()\1'{ = Xk - §) can always yield ]X’ll > IX‘ZI , 1)&;51 , !Xlli .
In this case, Equation (A-78) shows that

lim @ = Duljp c, (A=T9)

p-°

if , # 0 . This, in effect, means convergence toward 'd:l since the computed

’qp always can be normalized to unity. If ¢, =0 the power method obviously

1
will not converge to Q‘l . Equation (A-74) shows that the condition c 1 0 will

be encountered only if ﬁo is accidently chosen orthogonal to a_'l .
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Assuming <, # 0 , Equation (A-78) can be expressed in the form

4
7 =[x Pe g, + E ffp) q, (A-80a)
17 11 i 1
where
c. ! P
P {;})(—9—) (A-80b)
) /M1

(p)

The superscript p is used in €j

(p)

above only as a label.

The three ¢ "o]j terms in Equations (A-80) can be regarded as transient

response modes. Equation (A-80a) shows that the rate of convergence of the
power method is determined entirely by the rates at which the amplitudes €j(p)
of these three modes attenuate toward zero, and Equation (A-80b) shows that
these three attenuation rates are determined solely by the eigenvalue ratios
)t]l/)t'l . The Aj/)t'l ratios, however, are not the only phenomena which deter-
mine the number of iterations required to converge (that is, to reach a selected
converge criteria) in any specific application. Equations (A-74) and (A-79Db)
show that the selected initial condition ﬁo affects the necessary number of
iterations via the initial mode amplitudes ej(o) = cj/c1 .

It will be recalled that the optimal value s* of the eigenvalue shift parameter

s shifted the eigenvalues to the point where )\2 = -\ Equations (A-80) show

4
that this approach causes the mode 2 and mode 4 responses to decay at the same
rate. By doing this, it maximizes the speed of response of the slowest of the

three transient modes.

In any specific application, however, s* is not necessarily the s which will

yield convergence in the minimum number of iterations. This phenomena was
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seen in the simulation runs discussed in Section A.7 and was not understocd

prior to the present analysis. Figure A-2 illustrates the phenomena. As
(o) A

shown in Figure A-2, the initial value, 54 = @4/01 , of Mode 4 is much larger
A .' 7
than €;O) = 02/01 of Mode 2. For simplicity, the initial value €;O} of Mode 3

is assumed negligible. As a result, overshifting s beyond s* to produce a
very rapid decay of Mode 4 has the potentiality of producing convergence in a
lesser number of iterations than would be obfained by use of &% . Iteration NQ
in the sketch is, roughly, the crossover iteration number, That is, the s < g*
approach will produce faster convergence than the s = 8* one if it can achieve
convergence in fewer than NC iterations. Otherwise, the s = s* method is
the faster one.

(0)

Equations (A-80) show that the transient mode values g] will switch signs
on each successive iteration if /\]!//\i is negative. This is the case with
Modes 3 and 4 in the present application (no attempt was made to portray the
effect in Figure A.2). Thus, large deviations in the computed "dp values will
be seen on each successive iteration whenever the amplitudes of Modes 3 or 4
are significant compared to that of Mode 2. This phenomenon was encountered
frequently in the simulation runs discussed in Section A.7 and was not under-
stood prior to the present analysis. The phenomenon has some potential for

disturbing the usual convergence criteria methods which utilize the § resulis

obtained on successive iterations.

A.5.5 Improvement of Convergence Rate by Raising K' to a Power

The eigenvalue shifting technique discussed in Section A.5.3 is not the only
approach for enhancing the convergence rate of the power method. A simple
approach that can be used to supplement the eigenvalue shifting technique con-
sists of raising K' to a power, i.e., m , and performing the power method
computations on [K']m rather than on K' . This approach was recommended
for the present High Energy Astronomy Observatory (HEAO) application by

B. Gambhir. It is noted briefly and favorably in References 9 and 10.
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Figure A-2. Sample Transient Response
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It is possible to show that when the power method computations are performed
on K'm , the dynamic response equations corresponding to Equation (A-80a)

for the simple K' case are

4
@ =P [ + (P) = o A-81la
q ¢, L4, ;;5 Gj qj] ( )
where now
e/ mp
€j(p ) - (ﬁ—) (ﬁ) (A-81b)
1 1

This method's potential for reducing the required number of iterations is evi~
dent, since the eigenvalue ratios are raised to the power mp rather than
merely to the power p . If applied to an actual application, such as HEAO,

some study would be needed to establish a criteria for selecting m .

A.5.6 An Alternate Algorithm for Computing "d[l

The technique discussed in the preceding subsections for extracting the first
eigenvector "czl from K' treats K' as a general real symmetric matrix and
51 as a general real eigenvector., That is, the technique does not make direct
use of the facts that 6[1 is a rotation quaternion and that K' can be logically
separated into the submatrices indicated in Equation (A-24b). The present
subsection summarizes the main features of a method recommended by

P. Davenport which does utilize these special features of "oIl and K'.

As in the DOAOP routine, the approach utilizes an intermediate body coordinate
frame BO obtained from an a priori attitude estimate RO ; the coordinate
frame relationships shown earlier in Figure 3-3 are applicable here. In a

preliminary operation, the algorithm transforms the matrix B of Equation (A-9)
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via B« B . RZ . This operation, in effect, transforms the catalog vectors

Vi onto Frame B0 resolution. As a result, the quaternion g which is estab-
lished by the basic algorithm defines the orientation of the spacecraft body
frame B relative to Bo . The operations which are necessary to transform
q into the desired attitude matrix, R, of Frame B relative to Frame GCI

are straightforward and will not be delineated here.

Since q is a rotation quaternion, it is representable in the form shown earlier

as Equation (A-11).

2 6
—= sin =
_ 13 2
= = ~-11
9= 19 9 (A-11)
COoS 9

Assuming that the a priori attitude estimate Ro is reasonably accurate, the

rotation angle 6 will be small, thus cos (8/2)~ 1.

The algorithm is an iterative one much like the power method. At each itera-
tion p it computes an estimate /\}') of the dominant eigenvalue using a special-
ized form of the Rayleigh quotient approximation (Reference 7). The basic

Rayleigh equation is

aT LK'e g
A~ p—rlr "p-1 (A-82)
P — —
qp_l ° qp"'l

The p's above designate pass or iteration number. For convenience, the
present subsection presents the p's as subscripts rather than as superscripts,
as is done elsewhere in the report. Equation (A-82) computes the true eigen-

value exactly if ap—l is the exact eigenvector.
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Let the 'q“p 1 in Equation (A-82) be broken into components 6}) 1 and qp_1
as indicated in Equation (A-11) and let K' be broken into the submatrices

specified in Equation (A~24b). The result, after multiplying out, is

Qq -8‘6 +2 g fT'aT +0o! 2
A= p-1 p-1 p-1 p-1 qp‘l A-83
D Gy — 5 ( )
{Qp__l . mel + qpml]

where for simplicity we have used S'=S -1 (0+s) and ¢ =0~ 8

-

Recall now that 6/ q =Y where Y is the Gibbs vector used in DOAOP. | Equa-

tion (A-83) can be expressed in terms of Y by simple manipulation

-1 -1 -
- L p-1 (A-84)

Equation (A-84) is the equation actually used to compute Xp in the algorithm.

Consider next the basic equation of the power method

AL &~ K"cip (A-85)

with exact equality being encountered when )\b and '@p are an exact eigenvalue
and its associated eigenvector. The Efp on the right side of Equation (A-85)
will be replaced by ap—l in order to develop an algorithm which employs ‘
iteration. Separating ?ip__ 1 and K' into their components as was done before

and multiplying out yields

+Za, 4 (A-86a)



=== | Z e + o' A-86b
LAY [ Q1 qp_ll ( )
p
Manipulation of Equation (A-86a) produces
. 1 q --1_ — o
Y= 5 223 [or Yo 7] (A-87)
p\ %

As noted earlier, cos (6/2)~ 1 because of the transformation to Frame B
o
resolution and ~ ~ 1 . Thus, /q_ is very close to unity and
qul qp qp_1 a, y ty

Equation (A-87) can be approximated by

o

1 = .=
= —— te -
Y, X (s Yot A (A-88)

which is the equation actually employed in the algorithm.

In summary, the algorithm consists basically of Equations (A-84) and (A-88).

These are to be employed iteratively, as in the usual power method.

The algorithm provided by Equations (A-84) and (A-88) now will be compared
with the simplified DOAOP algorithm which was presented earlier in Section 2.2
and was summarized as Equation (2-26). In order to make the comparison,
Fquation (A-84) is first substituted into Equation (A-88). The definitions of S’
and o' are then introduced

S =B+BT -1[o+s] (A-892)

o'=0-8 (A-89Db)
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where

o = Trace B (A~89c)

and some minor manipulations are made to yield

— —— T — —
S501+Y .Y JH{B+B -I(+s)}-Y . +2]
o p-1 p-1 p-1
Yp = — — (A-90)
o Z + . - + . +. ~
Yo Yo 1 (B-.51(0+s)] Y, *8 lo-s]

The similarity between Equation (2-26) and Equation (A-90) is immediately
evident. In fact, if the eigenvalue shift parameter s is given a value of -0,
Equation (A-90) reduces to Equation (2-26) exactly. Therefore, the algorithm
(Equations (A-84) and (A-88)) discussed in this subsection can be regarded as
a generalization of the algorithm of Section 2.2 (and of the algorithm used in
DOAOP) to include a variable value of s . Conversely, the DOAOP algorithm
can be regarded as a special s = -0 implementation of Equations (A-84) and
(A-88).

A.6 PERTINENT MATERIAL ON THE R-METHOD

The main purpose of this section is to derive Equations (A-36), upon which the
preceding study of the power technique convergence in the g-method application
depended heavily. The only way this derivation can be performed involves
going through the main steps in the development of the R-method of solving the

least-squares attitude problem. Material on the R-method was presented

previously in References 3 and 5.

The development can start with Equation (A-10)

g(R) = Trace R BT = Trace BT R (A~-10)



The problem is o determine (directly) the matrix R which maximizes g .

Since R 1s an attitude matrix, it is subject to the constraints

RIR -1 (A-91)

Det R = +1 (A-92)

If Equation (A-91) is satisfied, it is certain that Det R = £1 . Thus, the effect
of the constraint specified by Equation (A~92) would be to eliminate some solu~

tions for R which otherwise would be acceptable.

The constraint imposed by Equation (A-91) can be handled by the usual Lagrange
multiplier approach. In the present problem, the Lagrange multipliers can be
arranged in a symmetric 3 X 3 matrix H and incorporated into the least-squares

gain function, Egquation (A-6), as follows

g'(R) = Trace B'R - .5 Trace [H{R R - 1}] (A-93)

Equation (A-93) is different from the usual static optimization problem, sinyce
a matrix R, rather than a vector, is to be optimized. However, the present
problem can be handied by an analogous technique; a gradient matrix method.
The necessary gradient matrix expressions can be obtained from Reference 13

or can be developed using index notation. The expressions are

3, T
3R Trace RB =B (A-94)
G N
— Trace (H{R R - 1}] =2 RH (A=95)
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When developing (A-95), use was made of the previously mentioned restriction

T
H=H .

Differentiating Equation (A-93) with respect to R, employing Equations (A-94)
and (A-95), and setting the result to zero yields

B = RH (A-96)

The problem posed by Equation (A-96) is to factor B into the product of (1) an
orthogonal matrix R of Determinant + 1 and (2) a symmetric matrix H. The

resulting matrices R will yield stationary values of g(R) in Equation (A-10).

The gain function g can be expressed as a function of {1 . The derivation con-
sists merely of premultiplying Equations (A-96) by RT and transposing to
obtain

H=B R (A-97)
Comparison of Equations (A-10) and (A~-97) shows that
g = Trace H (A-98)

Equation (A-98) will be employed later.

The problem which will be pursued now is to develop a technique for establish-
ing H . For this work, it will be convenient to introduce the following new

3 X 3 symmetric matrix C.

T T T <8%n aT T
C=B'B-VW WV =9 2 [W W1V .V, (A-99)
i1j1 - 3t
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The second and third portions of Equation (A-99) follow from the definition of
B provided by Equation (A-9). Substitution of Equation (A-96) into (A-99) and
utilizing H = HT yields

C=H (A-100)

The eigenvalues of C are all real, since C = CT (Reference 11, Theorem 4. 6).
Let the eigenvalues of C be designated as '}’j and let them be numbered such
that 'yl e '}’2 = %3 . The matrix C will be nonnegative definite, since it is fac-
torable into B B (Reference 11, Theorem 4.18). Therefore 'yl 2 '}’2 2 73 =)
(Reference 11, Definition 4.9). Rank C will be equal to Rank B (Reference 11,
Theorem 3.15 and Problem 3.12). Therefore, the number of zero eigenvalues

~

of C is (3 - Rank B).

Since C = CT , orthogonal matrices U exist which will diagonalize C with a
congruence transformation, even if the yj are not all distinct (Reference 11,
Corollary 4.8). The columns ﬁj of U are the normalized eigenvectors of C ,
and the nonzero elements of the resulting diagonal matrix I" are the eigen-

values 'yj . Thus

0
’Vl 0
T

=10 ',v20 =U = C-U (A-101a)

0 0 v3

where

= 4 Q4 A-101Db
U [ul a, u3] ( )
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and

U -U=1I (A-101c)
Equation (A-101a) can be inverted to yield
, T
C=U0-T-U (A-102)

The following new diagonal matrix D now will be defined

Hy d1 0 0
D= d 0 -
0 u,z 9 (A-103)
0
0 u‘3 d3

where

d =+ /v A-104a
J VY ( )

and

po=%1 (A-104b)

—

The motivation for introducing D should soon become apparent. The d, are
J
nonnegative by definition. Since ’)/1 zy 9 z '}/3 = (0, it is obvious that

zd =d_=
d1 d2 d3 0.
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There are eight possible triads {ul u2 “’3} . Thus, when dl3 # 0 , there are

eight possible D matrices. Let the triads be numbered as follows:

(w popd =11, 1, 1] (b byt =11, 1, -1]
(B Hghgdy =11, -1, -1 (b bou b =1, -1, 1]
(oMb, =1-1, 1, -1] pou, 3 =0-1,1,1]

{Hluzug}éjt:{”l, '""1’ 1} {Hluzp‘a}S:{—l’ ._19 N]‘}
Comparison of Equations (A-101a) with (A-103) and (A-104) shows that

D°=T (A-106)

for all D matrices. Using Equations (A-100), (A-102), and (A-106), it is trivial

to show that

H =U-D U (A-107)

Equation (A-107) can be solved for H. This solution must satisfy the supple-

T
mentary requirement H = H . The result is

T
H=U-D-U (A-108)

The validity of Equation (A~108) can be verified by multiplying H by itself and
employing UTU =1 to reproduce Equation (A-107).

Equation (A-108) establishes H as a function of the eigenvalues )/j and eigen-

vectors Gj of C= BTB . However, it yields up to eight possible H matrices
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corresponding to the eight possible {pj} sets of Equation (A-105). The prob-
lems now are to establish (1) which ones can be eliminated because they yield
attitude matrices R with determinant of ~1 and (2) which of the remaining ones

yields the largest value of the least~squares gain function g .

Taking the determinant of Equation (A-108), employing (A-103), and utilizing
the relation Det U = %1 yields

= =d_ d_d A-109
Det H=Det D 1 9o Ao 1y By g ( )

Taking the determinant of Equation (A-97) and inserting (A-109) produces

dd.d =Det B D -110)
19595 1y i, = Det B Det R (A-110)

For Det R =+1 , it therefore is necessary that

d d = -
d1 2d3 “1“2“3 Det B (A-111)

A supplementary analysis which will not be delineated here indicated that the
condition Det B <0 will never be encountered. ({The analysis used the A matrix
of Section A.5.3.4 and, in particular, Equations (A-60) and (A-61). Thus,

Det B =20 . Itis not difficult to show that all dj are nonzero when Det B £ 0 .
Therefore, Equation (A-111) demonstrates that for the usual case of Det B> 0 ,
the condition Det R = +1 necessitates that (1) all uj be positive or (2) two yj
be negative and the remaining one be pesitive. This requirement thus eliminates
the {u} triads numbered 5 through 8 in Equations (A-106). Triads 1 to 4 yield

Det R = +1 and thus are acceptable.

The development in the paragraph above is not applicable when Det B =0 .

The previously mentioned study which employed the A matrix of Section A.5.3.4
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indicated ihat the condition Det B = 0 will be encountered oniy if (1) all refer-
ence vectors V: are colinear (Rank B = 1) or (2) all Vl lie in a common plane
(Rank B = 2). It can be shown that the first of these cases implies d1 > d2 =

d 3= 0 . This case is of no interest here, since it is known that attitude cannot
be computed uniquely in this condition. The second case, however, is of inter-
est, since it includes the common condition where only two observation vectors
are available; it is known that attitude can be established uniquely in this situa-
tion. It is possible to verify that the condition Rank B = 2 implies d 1 = d2 >

d3 = (0, When d3 =0, the sign of /.13 is meaningless. Inspection of Equa-
tions (A-105) should show that when d 5~ 0 , the only four distinct {uj} sets
are the ones numbered 1 through 4. A supplementary study, which also will
not be detailed here, verified that it is possible to obtain a separate solution

for R, with determinant of +1 , for each of these four {uj} sets in the d3 =0

case.

To determine which one of the four "acceptable' H matrices (those which pertain
to [uj} sets 1 to 4) yields the largest value of the least-squares gain function
g , take the trace of Equation (A-108) and utilize (A-103)

T T
Trace H = Trace [UDU" ]= Trace [ DU UJ]= Trace D

(A-112)
= d, +yg d_+ d
Hy G THaGg THg &
Comparison of Equations (A-98) and (A-112) shows that
= d d -11
B =Hy Ay THydy b ug dg (A-113)
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Since there are four acceptable {uj} triads (Triads 1 to 4 of Equations (A-105)),
Equation (A-113) shows that there are four stationary gain values g Equa-

tions (A-105) and (A-113) show that these are

g =d +d, +d, (A-114a)
g, =d -d, -d, (A-114b)
gy = —dy ¥ d2 - d3 (A-114c)
g, = d -d, +d, (A-114d)

i z2d =d_ = i - Z2g 2o =
Since Cl1 d d3 0 , Equations (A-114) show that g =8, 8y =8, -

2
Therefore, the condition By ™ uz = u3 =+ 1 is the one which produces the
largest value of the least-squares gain function, and thus is the condition which

should be used in Equation (A-103) to establish D .

The derivation of the algorithm for computing R for the case d3 # 0 now can
be completed. (The d3 = ( case requires special procedures which are not
discussed here.) Suitable equations for R can be obtained by either substitut-

ing Equation (A-108) into (A-97) and solving for R

T -1 T
R=[B"] " uDU (A-115)

or, optionally, by substituting (A-108) into (A-96) and solving for R

-1_T
R=BUD U (A-116)
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To summarize, with the R-method the attitude matrix can be computed using
either Equations (A-115) or (A-116). The matrix B in these two equations is
specified by Equation (A-9). The matrix U is made up, columnwise, of the
orthonormal eigenvectors ﬁj of BTB . The non-zero elements dj of the
diagonal matrix D are the positive square roots of the eigenvalues )/j of BTB .
Use of negative signs with two of the dj elements when forming D yields an
attitude matrix with determinant of +1 which stationizes, but does not maxi-

mize, the least-squares gain function g ; the values of g for these three cases

are indicated by Equations (A-114 b through d).

The four 8; equations, Equations (A-114), are of more immediate interest

than is the overall R-method of attitude computation. These equations indicate
the four stationary values 8 of the least-squares gain function g . They are
produced by four attitude matrices Rk . It was demonstrated in Section A. 3
that g also is stationized by the four normalized eigenvectors qk of the ma-
trix K. The pertinent equations were Equations (A-35). The Tik are the atti-
tude quaternions, and the stationary values, 8 > of g are the corresponding
eigenvalues, >‘k , of K. The stationary values 8, produced by the Rk are
identical to the corresponding stationary values 8, produced by the ﬁ'k because
the Rk and the corresponding qk are merely different parameterizations of

the same attitude. From Equations (A-35) and (A~114), thus
=A,=d +d_+d
By =Ay=dptdy g

-y =d -d -d
gy =A,=d -d -dg
(A-117)

=\ =-d +d -d
Bg=Ag=-d *d,

3 3

=X =-d -d +d
g, =r, =4 -dy+dg
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These are the relations listed earlier as Equation (A-36) and employed in the
subsequent studies of the feasibility of determining the dominant eigenvector of

K by use of the power method.
A.7 SIMULATION TESTS OF THE g-METHOD~-INTRODUCTION

A computer routine (SNAPLS) of the g~method was coded and several series of
test runs were made. The purposes of the runs were to verify the basic validity
of the g-method of attitude determination, to evaluate its performance in the
HEAO-A application, and to determine whether or not it should be included as

part of HEAO~A's operational attitude support system.

In the first version of SNAPILS, the attitude eigenvector 'c"ll of XK' was com=-
puted by the power method approach discussed in Section A.5. The eigenvalue
shift (A' =X - s) technique was employed to enhance the convergence rate.
The shift parameter s was calculated via the suboptimal technique of subsec-
tion A.5.3.4. The so-called K’m method, discussed in subsection A.5.5, in
which convergence rate is further enhanced by raising K' to a power m be-
fore performing the matrix iterations was not used. Only the direct method of
solving the eigenvector problem was implemented. That is, the alternative
technique described in subsection A.5.6, in which Y is computed rather than

ql was not employed.

The test runs used simulated star observations similar to those which will be
obtained in the spinning mode of HEAO-A. The simulated observations all lay
close to a common plane, the spacecraft's spin plane. Figure A-3 portrays
the geometry. For convenience, the spacecraft spin axis, /Z\B , was chosen
to coincide with the celestial north pole in the runs. With this /Z\B attitude,
the projected location of any observed star, (e.g., star i), on the spacecraft
spin plane can be specified by the right ascension angle, ozi , of the star, and

the location of the star above or below the spin plane is the declination 61 .
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Figure A-3. Geometry of Simulated Star Observations
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Runs were made with perfect star observations and also with noisy observa-
tions. In the latter runs, no attempt was made to duplicate precisely the noise
characteristics expected on HEAO. Specifically, the noise and inaccuracy which
will result, in the actual HEAO system, when the star observations are rotated

via imperfect gyro data were not modeled directly.
A.7.1 Summary

The first runs made using the power method were all plagued by extremely slow
convergence. In these early runs, the maximum number of iterations at first
was limited to 50, This limit, however, proved to be far too low; the indica-
tions were that typically a thousand or so iterations might be needed in the

HEAO application,

In order to cbtain a better understanding of the convergence rate difficulties,
a series of runs was made in which the power method was replaced by a pack-
aged subroutine which computed all four eigenvalues and eigenvectors of K .
This subroutine was EIGRS, which is part of the International Mathematical
and Statistical Library (IMSL). With the EIGRS approach, the symmetric ma-
trix K is first reduced to a symmetric tridiagonal matrix T by means of the
Householder method. The eigenvalues and eigenvectors of T then are com-
puted using the QL method. The eigenvalues of K are identical to those of
T . The eigenvectors of K are computed, in the final operation performed by
the routine, by backtransforming those of T . One of the minor advantages of
FIGRS is that, unlike the power method, EIGRS does not require the external

generation of an initial attitude estimate 'c'{o .

The version of SNAPLS which included EIGRS in place of the power method
computed attitude correctly in the test runs and encountered no noticeable
problems. To save time in developing the operational attitude support software
for HEAO-A, this version of SNAPLS was incorporated into the operational

gsystem. That is, it was considered preferable to code the least-squares
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altitude estimation portion of the operational system immediately with this
version of SNAPLS, rather than to delay the coding with further attempts to

solve the power method's convergence rate problem.

Later simulation runs and analyses verified that the slowness of convergence
of the power method in the early runs was caused by the fact that the simulated
stars were not spread out over a large region of the celestial sphere. Instead
they were bunched in a small clump. The selected maximum separation angle
in declination, AGMX = GMX - OMM , between observations generally was

8 degrees to 19 degrees in the runs. The 19~degree value is considerably
larger than the 8-degree limit which will actually be encountered on HEAO-A.
However, the selected maximum separation angle in right ascension, AaMX =
an - al , was only 2 degrees to 20 degrees. This is much narrower than the
values, generally about 20 degrees to 360 degrees, which normally can be an-

ticipated in the operational HEAO-A problem.

Data presented in the next subsection shows that when the observed stars all
lie close to a common plane but are spread out over a large separation angle
in this plane (A0

small, Ax X large) the values of the eigenvalues Xi of

MX

K are such that lr2! s 1r3l<<1vfl and {r4] ~1 . (The present section uses
the notation rj = Xj /A 1 and rJ{ = Nj /X'l) . The eigenvalue shifting approach

(/\{ = Ai - 8) can be quite effective in enhancing convergence in this case. That
is, it can yield ]r‘2§ , ]ré] , }r&\ << 1. However, when the observed stars

all lie in a small clump (A6 small, MMX small), the condition |r

MX 2‘ ’
Ir3] , lr4l ~ 1 will be encountered. In this case, the effectiveness of the

eigenvalue shifting method is very limited because it is not possible to make
all three ratios |r3 l<<1 . This provides an explanation for the slowness of

power method convergence seen in the simulation tests.

It is currently believed that use of the K™ approach of Section A. 5.5 would
enable the power method to converge accurately in a reasonable number of

iterations, even under geometrical conditions as adverse as those of the early
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simulation runs. Simulation runs to test this belief, however, were not made

in the present study.

There is considerable evidence that the rate of convergence encountered in the
simulation runs was significantly slower than that of DOAOP. DOAOP always

converges in far fewer than 1000 iterations even when dealing with clump sizes
of only a few degrees. The question, however, was not explored in the present

work,

A.7.2 Discussion of the Final Series of Runs

This subsection discusses the final series of simulation runs made in the study.
The primary purpose of this series was to check the effect of maximum planar

separation angle A on the convergence properties of the power method.

MX
Both the power method and the EIGRS method were used. The main function

of EIGRS here was to establish the eigenvalues >\1 to >\4 . Knowledge of >\1
to >\4 is essential for analysis of results produced by the power method, since

the power method's convergence properties depend heavily upon them.

Twelve runs were made in the series. Only the last seven, however, are
described here. All inputs were identical for the seven runs except for the

spacing in right ascension, Aai = o between observations. Ten ob-

i-1
servations were simulated, their declination values 61 being ag follows: 0, 1,
2, 8, 4, 2, 0, -2, -3, -4 degrees. All the observations were made error-free
and were given the same least~squares weighting factor a; = 1.0 . The obser-

vation spacing in right ascension RA is delineated in the following tabulation.

Separation in RA between

Separation in RA between first and last observation
Run each observation (DEG) A MX (DEG)
6 1 9
7 2 18
8 4 36
9 8 72
10 . 16 144
11 32 288
12 40 360
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The number of iterations actually required by the power method for conver-
gence and the final error in attitude are shown in Table A-1. In these runs,
convergence occurred, by definition, when ep <0 where Sp is the angular

MIN
rotation during iteration p and eM was setto .6 X 10 degrees. The con-~

vergence numbers in Table A-1 haveﬂ\; tolerance of roughly 5. The variable
s* is the optimal shift value which yields >\'2 = —Kll . The values of s* in
runs 6 to 12, respectively, were -.037, -.109, -.400, -1.47, -4.39, ~4.50,
The variable s = -3.33 above is a suboptimal value which was computed using

Equation (A-4), with the gain factor k set to 1/3.

Table A-1 provides sample values of the relationship between AaMX and NC .
The results cannot be accepted as universal, however, because NC is depen-
dent on eMIN and also on the initial attitude estimate “qo . For the input
conditions which were used, convergence was achieved in a reasonably small
number of iterations when AaM % > 70° . For MMX < 70° the suboptimal
eigenvalue-sghift method produced faster convergence than the optimal method,
at the expense of a larger final attitude error. Increasing Aon x beyond 90°

evidently does not alter the convergence response significantly.

(0)

Table A~2 shows the initial conditions € , =2, 3, 4 of the three transient
response modes discussed in Section A.5.4. These G;O) values were calcu-
lated using Equations (A-74), (A-80b), and the eigenvectors ﬁk generated by
EIGRS. The € ?0) results are heavily dependent on the relation between the
initial attitude gstimate 'OIO and the true attitude ('1‘1 . However, they are also
influenced significantly by the observation geometry, as Table A-2 demon-

strates.

The remaining data to be presented in this subsection were obtained from the
eigenvalues >‘i which were computed by EIGRS. Table A-3 shows the values

of the three dj .
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76-v

Table A-1.

Number of [terations for Convergence

s =g =_3.33
Aoy
RUN
(DEGREES) {TERATIONS FINAL ATTITUDE ITERATIONS FINAL ATTITUDE
TO CONVERGE (N) ERROR (DEGREES) | TO CONVERGE (N ) ERROR (DEGREES)
6 9 1020 29 E~4 340 88 E~2
7 18 420 35 E~4 220 34 E-2
8 36 130 21E—-4 90 A1 E=2
9 72 40 B2 E-5 30 29 E-3
10 144 10 47 E—4 20 51 E—6
11 288 10 A7 E—4 20 54 E—6
12 360 10 30 E~4 20 51E-6




Table A-2. Initial Values of the Transient Response Modes
A mx o (o)

RUN (DEGREES) 100 62 100 63 100 64

6 9 -.073 ~1.280 200

7 18 156 1.110 ~ 654

8 36 316 945 — 831

9 72 594 703 ~914

10 144 853 -.083 —974

11 288 831 018 — 996

12 360 593 —.638 —~961
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Table A~3. Results of dl , d

2

, and d

3

Ao px

RUN (DEGREES) a1 d2 d3
6 9 0.956 0367 00722
7 18 9.881 .1089 00972
8 36 9.589 4004 01278
9 72 8522 1.468 01015

10 144 5.612 4.380 .00830

11 288 5.607 4.393 00073

12 360 5.496 4.500 00380
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The dj are the positive square roots of the eigenvalues of BTB and they are
of fundamental importance as indicators of the basic attitude determination
geometry. Table A-3 shows that the condition d3 << d | was encountered in
all runs. This is because all the star observations lay close to a common
plane. Table A-3 also shows that the condition d2 << d1 was encountered
when Ay was small, but that d2 became comparable in size to d1 for

MX

MMX 2 90° . This result tends to validate an earlier assertion that a single

observation or multiple colinear observations will yield d2 = d3 =0.

The eigenvalues Xi of K and their ratios rj =>\j/>\1 are shown in Table A~4.
This table shows that the expected result A 1 > >\2 > >\3 >\ 4 Was encountered
in all runs. However, for AOLMX < 18 degrees the deviations between the four

absolute values Iki\ are small. Increasing Aw causes >\2 and >\3 to

move in toward the origin but produces a negligibll/faAgfect of >\1 and A 4 Each
of the three transient response modes decays in proportion to [rj]p , Where

p is the iteration number and is to be interpreted as a power. Table A-4
therefore indicates that the basic power method (without eigenvalue shifting)
would not converge adequately for any of the runs. For small AQ/MX , conver-
gence of all three modes would be unreasonably slow. For /_\OzMX of 70 de~
grees or more, modes 2 and 3 would decay with sufficient rapidity, but the

rate of mode 4 would not be improved at all. As an example of the slowness of
convergence which Table A-5 indicates, for an rj of .9980, approximately

1150 iterations would be needed to attenuate a modal amplitude €J_ to 10 per-

cent of its initial value.

The improvement in convergence rate which can be affected by the eigenvalue
shifting technique is shown in Table A-5. These results tend to confirm the

results shown in Table A-1 which were obtained with the power method in the

simulation runs. When aMAX> 70 degrees or so, Table A-5 indicates that
convergence should have been rapid for both the s = s* and the s = -3.33
cases, since all three ratios IrJ'[ are much less than unity. When AaMX is



small, however, the table indicates that convergence should have been slow

because r?z was close to unity in both cases.
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Table A-4. Eigenvalues A, and Their Ratios

i
Aa MX

RUN  I(DEGREES) M ) A3 A 2 —r3 T4

6 9 10.0000 9.912 9.926 9986 || 9912 9926 9986

7 18 10.0000 9.763 9.782 9.981 9763 09782 9981

8 36 10.0000 9.179 9.199 9979 9179 9199 9979

9 72 10.0000 7.044 7.065 9.980 7044 7065 9980

10 144 10.0000 1.223 1.240 9.983 1223 1240 9983
1 288 10.0000 1.213 1.215 9.9985 1213 1215 99985

12 360 10.0000 992 1.000 9.992 0992 11000 9992
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Table A-5. Ratios of Shifted Eigenvalues

05-v

Acyyy s =s* =-3.33

RUN (DEGREES) o e o . L
2 4 3 2 3 4

6 9 .991 —.9854 .993 —.494 499
7 18 976 —.957 982 —.483 499
8 36 921 —.846 938 —.440 498
9 72 742 —.488 778 —.280 .498
10 144 .390 218 341 157 499
11 288 .390 221 341 159 .500
12 360 .379 241 324 175 499




GLOSSARY

See Figure 3-7, Block Al

Weighting factor. See Equations (2-1), (2-2)
See Equation (A-61)

See Equations (A-51a), (A-55a)

See Equation (2-18)

Body-fixed reference frame in spacecraft

Frame aligned with the preliminary estimate
ure 3-3

See Figure 3-7, Block Al
See Equations (A-51b), (A-55a)

Cosine

-T .0
ql( © q

BTB

Diagonal matrix of the eigenvalues of H
Absolute value of eigenvalue j of H; d]_ :ﬂ
See Equation (A-51c)

See Figure 3-7, Block Al

Geocentric inertial coordinate frame

Least-squares gain function

Symmetric matrix of Lagrange multipliers.
tion (A-72)

3 % 3 Identity matrix

and (2-3)

of B. See Fig-

See Equa-



K!

4()

Ps Pyo p2
9 qZ

O

i

See Equations (A-24)

K - sl

Least-squares loss function

See Equations (A-49), (A-50)

Number of iterations required for convergence

Number of observations to be used in the least-squares atti-
tude computation

Attitude matrix indicating the orientation of frame B relative
to frame BO . See Figure 3-3

Coefficients used in the study of the main orthogonalization
operation in the preliminary attitude computation; see Equa-
tions (3-16) and (3-28)

Matrix whose columns are the eigenvectors of K

The vector part of quaternion @

The scalar part of quaternion g

Attitude quaternion

Eigenvector k of K

Attitude guaternion and first eigenvector of ‘K

Initial estimate of al

Estimate of . obtained from pth pass through the power
method equation

Attitude matrix indicating the orientation of frame B relative
to frame GI

The initial estimate of R. See Figure 3-3

The elements of R



/\j//\l 1 j=2, 8, 4

A;/x'l j=2,3,4

BT + B

Negative scalar employed to shift the eigenvalues Kk of K
Sine

See Figure 3-7, Block Al

The optimum value of s

The actual time at which Observation i was performed
The time at which attitude is to be computed

Matrix comprised of the eigenvectors ﬁj of C

The jth eigenvector of C

Ro . Vi

The transformed reference vectors in the preliminary atti-
tude computation. See Figure 3-7

The transformed reference vectors generated by the main
orthonormalization operation in the preliminary attitude com-
putation. See Figure 3-7

The transformed observation vectors in the preliminary atti-
tude computation. See Figure 3-7

The transformed observation vectors generated by the main
orthonormalization operation in the preliminary attitude com~
putation. See Figure 3-7

o X n matrix comprised of the reference vectors Tf‘i
Unweighted (i.e., unit) reference vector (frame GI resolution)

Weighted reference vector (frame GI resolution)

First reference vector selected for the preliminary attitude
computation
G-3



Second reference vector selected for the preliminary attitude
computation

The length of reference vector if:

3 X n matrix comprised of the observation vectors Wi
Unweighted (i.e. unit) observation vector (frame B resolution)
Weighted observation vector (frame B resolution)
The length of observation vector Wi

Unit vector along the axis of the rotation which rotates
frame GCI onto frame B

See Figure 3-7, Block A2

See Equation (A-55)

See Equations (3-16)

The attitude vector. See Equation (2—5)

The predicted Y during DOAOP's iterative attitude compu-
tation. See Figure 3-2, Block D

The first ¥ vector which is passed to the iterative attitude
computation loop of DOAOP. See Figure 3-2, Block C

See Figure 3-7, Block A2

See Equations (3-16)

See Equations (2-17) and (2-22)

Euler angles. See Figures 3-4 and 3-5
Eigenvalue j of A

Separation angle, in spacecraft spin plane, between first and
last observed star

Amplitude of transient response mode j at end of iteration p



T Diagonal matrix of the eigenvalues 71 of C

‘}/j The jth eigenvalue of C
? Observation error vector. See Equation (3-6)
]
o The angular magnitude of the rotation which rotates frame GCI

onto frame B

A Diagonal matrix of the eigenvalues 7\k of K
?Lk The kth eigenvalue of K
)\i'{ The kth eigenvalue of K' ; A;( = Ak - s
u, t1. See Equation (A-82)
J
o, 01 , 02 *1
) Trace B
) See Equation (A-52)
Angle b V. and V

szi ngle between VL an Vi

s ~
lPV Angle between VL and VK

N - FaN
&bw Angle between WL and WK

[ ] Absolute value

(A) 3 X 1 Unit vector

(.A) 3 X 1 Nonunit vector

() 3 X 3 Matrix

L] Matrix, not necessarily 3 x 3

(_>) 3 X 3 skew symmetric matrix arrangement of a vector

1 Euclidean norm



[=7]

10.

11.

12,

13.
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