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Abstract: Optical devices with a slot configuration offer the distinct

feature of strong electric field confinement in a low refractive index

region and are, therefore, of considerable interest in many applications.

In this work we investigate light propagation in a waveguide-resonator

system where the resonators consist of slotted ring cavities. Owing to the

presence of curved material interfaces and the vastly different length scales

associated with the sub-wavelength sized slots and the waveguide-resonator

coupling regions on the one hand, and the spatial extent of the ring on the

other hand, this prototypical system provides significant challenges to both

direct numerical solvers and semi-analytical approaches. We address these

difficulties by modeling the slot resonators via a frequency-domain spatial

Coupled-Mode Theory (CMT) approach, and compare its results with a

Discontinuous Galerkin Time-Domain (DGTD) solver that is equipped with

curvilinear finite elements. In particular, the CMT model is built on the

underlying physical properties of the slotted resonators, and turns out to

be quite efficient for analyzing the device characteristics. We also discuss

the advantages and limitations of the CMT approach by comparing the

results with the numerically exact solutions obtained by the DGTD solver.

Besides providing considerable physical insight, the CMT model thus forms

a convenient basis for the efficient analysis of more complex systems with

slotted resonators such as entire arrays of waveguide-coupled resonators

and systems with strongly nonlinear optical properties.

© 2011 Optical Society of America
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onators: Modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256, 46–67 (2005).

1. Introduction

A popular strategy for solving Maxwell’s equations for a system with complex geometries

and/or material response is to develop flexible and versatile all-purpose methods that allow

for their direct numerical solution. Classic examples of this approach include the venerable

and well-established Finite-Difference Time-Domain method [1] and the standard Finite El-

ement method [2], both of which are continuously further developed and refined. Modern

all-purpose approaches include wavelet-based methods [3] and Discontinuous Galerkin Time-
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Domain methods [4–7]. These generic methods are applied to a huge variety of physical settings

such as linear and nonlinear optical wave propagation in waveguides, periodic structures, and

various scattering problems etc. Clearly, the price that has to be paid for such versatility is that

for certain classes of optical systems these methods become computationally rather expensive

and provide only limited insight into the underlying physical mechanisms.

Coupled waveguide-resonator systems represent one such particularly important class of op-

tical devices. In these systems, optical resonators such as circular micro-resonators (see Fig. 1)

provide a discrete set of resonances with high quality factors (Q) that allow for the efficient

trapping of electromagnetic energy. This unique property may be exploited for a number of

applications. For instance, the discrete nature of these resonances lend themselves for the re-

alization of compact filtering and multiplexing devices [8–11] and their dispersive properties

find use in dispersion compensation schemes [12]. Furthermore, these resonances are very sen-

sitive to the dielectric environment and may, therefore, be utilized for advanced sensing pur-

poses [13]. In addition, low-power nonlinear-optical devices such as optical diodes based on

arrays of coupled waveguide-resonator systems have been suggested [14]. The physical reason

for these effects lies in the fact that these devices are extremely sensitive to the phase of the light

field. From a modeling point of view this means that errors in the spatial discretization and/or

the time-stepping can easily lead to inaccurate and even unphysical results. As a result, efficient

and reliable simulations of coupled waveguide-resonator systems still represent a challenge for

direct numerical methods.

The situation becomes particularly demanding for the simulation of light propagation in slot-

ted resonators such as those depicted in Fig. 1. Such slotted configurations exploit the fact that

the introduction of a sub-wavelength slot in conventional ridge/slab waveguides leads — for

an appropriately polarized mode — to an extremely high electric field confinement inside the

(low-refractive index) slot region [15]. This property originates from the discontinuity of the

normal component of the electric field across material interfaces. The resulting strong field

confinement can be exploited by depositing highly nonlinear low-index material within the

slot region [16]. Moreover, by introducing such sub-wavelength slots into traditional resonator

structures, it becomes possible to combine the field enhancement inside the slot with the res-

onance trapping effect discussed above. This allows one to boost further the resonance field

enhancement. As a matter of fact, such slotted resonators have already been utilized for novel

sensing applications [17] as well as low-power optical modulation and detection [18]. In view of

the dramatic improvements in nano-scale fabrication, it is expected that slotted waveguide and

slotted resonator systems will develop into a novel platform for high-performance integrated

optics.

An analysis of curved slotted waveguides has shown that the position of the slot inside the

guiding core greatly influences the modal field properties of the waveguide [19]. Correspond-

ingly, all parameters of practical interest such as bending loss, peak field localization, power

confinement in various regions of the waveguide etc. sensitively depend on the position of

the slot. Therefore, we expect that when a slot is introduced into an ordinary micro-ring res-

onator, its position strongly affects the resonance frequencies and the associated Q-factors of

the resonator. From a modeling point of view, coupled waveguide-resonator systems, where

the resonators consists of slotted ring cavities thus provide a particularly challenging class of

optical systems. For instance, a numerical solver must keep under control not only any spatial

discretization errors in the representation of curved surfaces and efficiently resolve the sub-

wavelength slot, but must also be able to consistently handle the discontinuities in the fields. We

will demonstrate below that a Discontinuous Galerkin Time-Domain (DGTD) method [5–7,20]

enhanced with curvilinear finite elements [4] is able to address these challenges in a satisfactory

manner.
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However, even such sophisticated computational tools require long simulation times, there-

fore it makes perfect sense to develop a dedicated semi-analytical model that takes into account

the characteristic physical properties of the resonators and waveguides under consideration.

As a matter of fact, coupled-mode theory (CMT) is an established semi-analytical tool in the

area of integrated optics. For instance, it has been shown that the frequency-domain CMT-based

modeling of ordinary resonators provides a very accurate method that yields further insight into

the operation principles of conventional resonator-based devices [21]. Using the semi-analytic

modal solutions of the bent slotted waveguides [19], in the present paper we extend the CMT

approach to the modeling of slotted resonator systems. More precisely, by developing such a

CMT-based model, we capture the essence of the physical problem with reduced complexity,

and without ‘much’ loss of accuracy. Of course, just how ‘much’ loss of accuracy we incur has

to be determined by comparison with exact numerical solutions - in our case, DGTD equipped

with curvilinear elements. Once we have established the CMT model and the corresponding

limitations, we can push ahead and conduct parameter scans and investigate entire arrays of

coupled waveguide-resonator systems with slot configurations.

Consequently, in Sec. 2 we describe the CMT formulation of slotted resonator systems by

taking into account the interaction between a finite number of guided modes of straight coupling

waveguides and a finite number of modes of bent slotted waveguides. We present the simulation

results of this model in Sec. 3, where we also validate the applicability of the CMT approach

for the slotted resonator systems by comparing with the results of exact DGTD computations.

In Sec. 4 we conclude with a discussion of these results, comment on the insights provided by

our CMT approach, and discuss potential further developments.

2. CMT model of slotted resonators

In Fig. 1, we depict a prototypical slotted micro-ring resonator that is coupled to two straight

waveguides. Clearly, while other configurations such as coupling to a single straight waveguide

or to slotted waveguides as well as several coupled slotted resonators could be considered, they

do not present any further conceptual difficulties so that we will, in this work, restrict ourselves

to an exposition of the CMT approach for the above model system.

2.1. Overall device description

As seen from a device point of view, this coupled slotted-resonator waveguide system exhibits

two input ports (In-port and Add-port), and two output ports (Through-port and Drop-port). The

operating principle of this device is based on the coupling of the fields in the straight waveguides

to the cavity modes provided by the slotted resonator, and the subsequent interference between

these excited cavity modes with the fields in the various waveguides [22].

In what follows, we work in the frequency-domain and limit ourselves to a linear optics

setting [23]. Within this standard approach, the waveguides-coupled slotted resonator is con-

ceptually divided into two bent-straight waveguide couplers (the boxes (I) and (II) delineated by

dashed lines in Fig. 1) together with appropriate connections between the couplers via segments

of bent slotted waveguides. In addition, the individual couplers are connected to the input and

output ports described above, which are realized via straight waveguides. We assume that cou-

plers (I) and (II) are adiabatic so that back-reflections into the bent slotted waveguide segments

and straight waveguide ports can be neglected. This allows us to consider only uni-directional

wave propagation as indicated by the white arrows in Fig. 1. Clearly, this is one of the major

assumptions of coupled-mode theory whose validity has to be checked by a subsequent com-

parison with exact numerical simulations.

The couplers (I) and (II) represent finite interaction regions and outside these regions we

assume that the fields in the associated waveguides (bent slotted waveguides segments and

#141007 - $15.00 USD Received 13 Jan 2011; accepted 11 Mar 2011; published 19 Apr 2011

(C) 2011 OSA 25 April 2011 / Vol. 19, No. 9 / OPTICS EXPRESS  8644



In

T
h

ro
u

g
h

D
ro

p

A
d

d

B

b

A

B̃ Ã
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Fig. 1. Schematics for a slotted-resonator based 4-port device. The resonator consists of a

ring of outer radius R, width wtot, and refractive index nc, and contains a low-index slot of

width wslot and refractive index nslot < nc. The slot’s position inside the ring is described by

the asymmetry parameter η such that the width of the inner high-index ring layer is ηw and

that of the outer high-index ring layer is (1−η)w, where w = wtot −wslot [19]. This slotted

resonator is coupled to two identical straight waveguides of width ws and refractive index

ns that realize input and output ports. The minimal separation between resonator and the

straight waveguides are g and g̃, respectively. The entire device is embedded in a host ma-

terial with a background index nb and its performance may be characterized via the power

levels associated with the input ports, PI and PA (In- and Add-port), and the output ports,

PT and PD (Through- and Drop-port), respectively. Within a coupled-mode theoretical ap-

proach this device is further decomposed into several functional elements. Two couplers,

(I) and (II), delineated with dashed-line boxes, are connected via two identical segments of

bent slotted waveguides of length L and L̃ (at positions a, b, and ã, b̃, respectively) and each

of these couplers is further connected to two identical input and output port waveguides (at

positions A, B, and Ã, B̃, respectively).

straight waveguides ports) are uncoupled, i.e., that we may represent the fields through the

freely propagating modes associated with these waveguides. For definiteness and without loss

of generality, let us suppose that the bent slotted waveguides supports Nb guided modes, and the

straight waveguides support Ns guided modes and that these modes are power normalized [24,

Sec. 2.1], [25, Sec. 2.2.6].

In general, the response of the couplers can be characterized by the coupler scattering matri-

ces S and S̃ for couplers (I) and (II), respectively, as

(

b

B

)

= S

(

a

A

)

,

(

b̃

B̃

)

= S̃

(

ã

Ã

)

. (1)

In the above expressions A, B, and a, b are amplitude vectors of lengths Ns and Nb, respectively,

that correspond to properly normalized ‘forward’ propagating guided modes at the respective

positions A, B, a, and b related to coupler (I). Here, for straight waveguides, the forward direc-

tion is defined as propagating from input to output port; whereas for the bent slotted waveguide

segments, the ‘forward’ direction is defined as the clockwise direction (cf. Fig. 1). Analogous

statements apply to the amplitude vectors Ã, B̃, ã, and b̃ pertaining to coupler (II).

For the subsequent analysis, it is advantageous to represent these abstract scattering matrices
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according to

S =

(

Sbb Sbs

Ssb Sss

)

, S̃ =

(

S̃bb S̃bs

S̃sb S̃ss

)

, (2)

where the sub-matrices Svw represent the coupling of mode w ∈ {b,s} to mode v ∈ {b,s} and

the indices b,s label the different classes of modes, i.e., the index b refers to the modes of the

bent slotted waveguide segments and the index s refers to the modes of the straight input- and

output-port waveguides.

Outside the coupler regions, the field propagating along the ring segments is described by

the bent slotted waveguide guided modes with their angular dependence given by the corre-

sponding mode propagation constants. These complex-valued propagation constants also take

into account the radiation loss due to bending [19]. As a result, we obtain

a = G b̃ and ã = G̃b, (3)

where G and G̃ are Nb × Nb diagonal matrices with entries Gp,p = exp(−iγbpL), G̃p,p =
exp(−iγbpL̃) for p = 1, . . . ,Nb, and L and L̃ are the lengths of the bent slotted waveguide seg-

ments (cf. Fig. 1). Here γbp = βbp− iαbp, p = 1, . . . ,Nb, denote the complex-valued propagation

constants of the bent slotted waveguide modes with corresponding phase and attenuation con-

stants, βbp and αbp, respectively.

If we specify the amplitudes of the input waveguides, Aq and Ãq, q = 1, . . . ,Ns, we can regard

Eqs. (1), (2), and (3) as a system of linear equations for the amplitudes of the output waveguide,

Bq and B̃q, q = 1, . . . ,Ns. In particular, if only the In-port waveguide feeds the system, i.e.,

Ãq ≡ 0, q = 1, . . . ,Ns, we obtain for the amplitudes in the Through- and Drop-port waveguides

B = (SsbGS̃bbG̃Ω−1Sbs +Sss)A,

B̃ = (S̃sbG̃Ω−1Sbs)A,

}

(4)

where Ω = I−SbbGS̃bbG̃.

Based on Eqs. (4), we can compute the overall spectral device characteristics, once the scat-

tering matrices S, S̃, and the cavity propagation constants γbp, p = 1, . . . ,Nb are available as

a function of the wavelength λ . By using semi-analytic arguments based on modal descrip-

tions of the bent slotted and straight waveguides, we can determine these parameters from first

principles as described in the following subsections.

At this point, we would like to note that the above overall device description based on

the functional decomposition of the resonator is valid for both two-dimensional and three-

dimensional settings. In order to avoid a cluttered notation, we will restrict ourselves in the

following to an analysis of the two-dimensional setting, i.e., to the case of propagation in xz-

plane as indicated in Fig. 1 without any variation of the material and structural parameters along

the y-axis. We comment on the extension to the fully three-dimensional setting in Sec. 4.

2.2. Bent slotted waveguide modes

For the two-dimensional setting described above, Maxwell’s curl equations decouple into two

sets of equations, one for the so-called transverse-electric (TE) and one for the so-called

transverse-magnetic (TM) polarization [24]. As we are chiefly interested in working with elec-

tric field enhancement effects within the slot, we consider the case of TM-polarized radiation.

For this polarization, the y-component of the magnetic field (Hy) and the in-plane components

of the electric field (Ex, Ez) — in the Cartesian co-ordinate system — or (Er, Eθ ) — in the

polar co-ordinate system — have to be considered. Clearly, as the normal component of the di-

electric displacement field is continuous across a material interface, we have for a bent slotted
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waveguide that the radial component of the electric field (Er) exhibits concurrent jumps from

low to high values as the radial position is scanned across jumps from high-index to a low-index

materials and vice versa (see Fig. 4).

We determine the required propagation constants for TM-polarized modes in bent slotted

waveguides with constant curvature via the analytical model presented in Ref. [19]. Within this

approach, we represent the fields in each of the piecewise constant refractive index regions in

terms of appropriate Bessel/Hankel functions. Using the boundary conditions of the fields at the

material interfaces together with bounded, outgoing wave boundary conditions at infinity, we

obtain both, the propagation constants γbp and the associated field distribution {Ebp,Hbp} of the

bent slotted waveguide modes for a given vacuum wavelength λ . Owing to the lossy nature of

these modes, their propagation constants are complex-valued and so are the associated effective

indices which are defined as neff, bp = γbp/k, where k represents the wave number k = 2π/λ (see

Ref. [19] for further details).

2.3. Bent slotted - straight waveguide couplers

After having determined the mode structure of the bent slotted waveguides, we combine this

with the mode structure of the straight waveguides for the analysis of the bent slotted - straight

waveguide couplers which we have delineated in Fig. 1. For the subsequent discussions, we

apply the spatial coupled-mode approach of Ref. [21] to the present situation and provide in

Fig. 2 a more detailed representation of such a coupling region.

For a given wavelength λ , the spatial coupled-mode approach constructs the fields in the

coupler region by using the modal solutions of the uncoupled constituent waveguides. Conse-

quently, for the straight waveguides we use the well-known modal solutions [26] and for the

bent slotted waveguide we employ the analytical model as described in Sec. 2.2 above together

with an appropriate transformation from polar (r,θ) to Cartesian (x,z) co-ordinates that are

better suited for representing the coupler geometry. Here x = r cosθ , and z = r sinθ . Explicitly,

we use the modal solutions for the fields {Esq,Hsq} and associated propagation constant βsq for

straight waveguides with refractive index profiles ns(x) (or, equivalently, relative permittivity

profiles εs(x) = n2
s (x)) in a non-magnetic system as

(

Esq

Hsq

)

(x,z) =

(

Ẽsq

H̃sq

)

(x)e−iβsqz. (5)

The corresponding modal solutions for the fields {Ebp,Hbp} and propagation constants γbp of

bent slotted waveguides with refractive index profiles nb(x,z) (or, equivalently, relative permit-

tivity profiles εs(x,z) = n2
s (x,z)) in non-magnetic systems are

(

Ebp

Hbp

)

(x,z) =

(

Ẽbp

H̃bp

)

(r(x,z))e−iγbpRθ(x,z), (6)

where R is the bend radius as defined in Fig. 1, and θ = tan−1(z/x) is the polar angle corre-

sponding to the radial position r =
√

x2 + z2 [24].

At this point, we would like to recall our basic assumption (or approximation) that the cou-

plers are adiabatic, i.e., we assume that we can ignore back reflections and can restrict ourselves

to uni-directional wave propagation. As a result, from the above modal solutions, we retain only

the forward propagating modes, i.e., for the geometry described in Fig. 2 we retain only those

waveguide modes that propagate in the positive z-direction.

Within the frequency-domain coupled-mode theoretical approach, the interaction between

the bent slotted waveguide and the straight waveguide is restricted to a coupling region defined

by [xl ,xr]× [zi,zo] (see Fig. 2). Outside this region the fields propagating in each waveguide are
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Fig. 2. Detailed representation of the bent slotted - straight waveguide couplers delineated

in Fig. 1. The coupler is defined via the domain [xl ,xr]× [zi,zo], in which the interaction

between the bent slotted waveguide and the straight waveguide takes place. Outside this

coupling region, we assume that the modes of the constituent waveguides are uncoupled.

The minimal separation between the waveguides is g and the amplitudes of the input modes

at z = zi are denoted by a and A, respectively. The corresponding amplitudes of the output

modes at z = z0 are denoted by b and B, respectively. See Fig. 1 for further details.

assumed to be uncoupled so that the individual modes propagate undisturbed according to their

respective harmonic dependence. Within the coupler region, the corresponding fields {E,H}
are approximated by a superposition of the uncoupled modal fields, {Ebp,Hbp} and {Esq,Hsq}
of the forward propagation modes of the uncoupled bent slotted and straight waveguides, re-

spectively. Explicitly, this reads as

(

E

H

)

(x,z)≈ ∑
v=b,s

Nv

∑
i=1

Cvi(z)

(

Evi

Hvi

)

(x,z) (7)

with the a priori unknown, z-dependent amplitudes Cvi. Here, the index v ∈ {b,s} identifies the

type of waveguide (b: bent slotted waveguide, s: straight waveguide) and the index i runs over

the corresponding number of guided modes, i.e., i = 1, . . . ,Nv and v ∈ {b,s}.

We obtain the governing equations for C(z) = {Cvi(z)} by combining the above ansatz (7)

with the variational formulation of Maxwell’s equations

F (E,H) =
∫∫

[(∇×E) ·H∗− (∇×H) ·E∗+ iωµ0H ·H∗+ iωε0εE ·E∗] dxdz. (8)

In the above equation, the stationarity of the functional F (E,H) implies that E and H sat-

isfy Maxwell’s curl equations ∇×E = −iωµ0H and ∇×H = iωε0εE. Following the usual

variational arguments [21], we arrive — as a necessary condition for the stationarity of the

variational formulation — at the coupled-mode equations

∑
v=b,s

Nv

∑
i=1

Mvi,w j

dCvi

dz
− ∑

v=b,s

Nv

∑
i=1

Fvi,w j Cvi = 0, (9)

for all j = 1, . . . ,Nw, and w ∈ {b, s}. In the above equation, we have introduced the ab-

breviations Mvi,w j(x,z) =
∫

ez ·
(

Evi(x,z)×H∗
w j(x,z)+E∗

w j(x,z)×Hvi(x,z)
)

dx, and Fvi,w j(x,z) =

−iωε0

∫

(ε(x,z)− εvi(x,z))Evi(x,z) ·E∗
w j(x,z)dx, where ez denotes the unit vector in z-direction,

the superscript ‘∗’ stands for complex conjugation, and ε(x,z) represent the full relative per-

mittivity profile for the entire coupler region. For a given value of z, the integration is carried

out over the pre-defined coupler region in x-direction [xl ,xr].
Upon rewriting the coupled-mode equations [Eq. (9)] in matrix form, we obtain

M(z)
dC(z)

dz
= F(z)C(z). (10)
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Next, we define the transfer matrix T(z j) at z = z j which connects the unknown amplitudes

C at the position z = zi with the amplitudes at position z = z j according to C(zj) = T(z j)C(zi).
By exploiting the linearity of Eq. (10) with respect to C, we may thus reformulate the problem

in terms of the transfer matrix T(z) as a set of coupled differential equations

dT(z)

dz
= M(z)−1 F(z)T(z), (11)

with initial condition T(zi) = I. Here, I denotes the identity matrix. Upon solving Eq. (11) on an

a priori defined domain [xl ,xr]× [zi,zo] via standard integrators (we typically use a fourth-order

Runge-Kutta method), we determine the transfer matrix T(zo), which gives the coupler’s output

amplitudes C(zo) at position z = zo in terms of the coupler’s input amplitudes C(zi) at position

z = zi according to C(zo) = T(zo)C(zi).

Projection corrections

At this point, we would like to note that the above coupler analysis is carried out on an a priori

defined coupler domain [xl ,xr]× [zi,zo]. For a meaningful simulation of these coupler regions,

it is essential to make sure that the coupler domain is appropriately selected. By examining the

spatial extent of the mode profiles of the constituent waveguide modes in the direction normal

to the waveguides, we can straightforwardly determine an appropriate length of the coupler

domain in x-direction [xl ,xr] (see the mode profiles depicted in Fig. 4).

However, obtaining an estimate for the length of the coupler domain in z-direction is less

straightforward. A choice of [zi,zo] will be justified, if the corresponding simulation results

validate the assumption that the modes of the constituent waveguides are uncoupled outside

the coupler domain. In order to verify this numerically, we consider a system where only the

fundamental mode of the straight waveguide is excited, i.e., C(zi) ≡ 0 except for Cs0(zi) = 1.

Then by matching the fields at the output position z = zo, we determine the amplitudes of the

straight waveguide modes B = C(zo). Keeping z = zi fixed and varying the other end z = zo,

allows us to monitor the evolution of the straight waveguide’s fundamental mode amplitude

Bs0. If the assumption of uncoupled modes is satisfied, we expect that this amplitude’s absolute

value |Bs0|= |Cs0(zo)| attains a stationary value.

In Fig. 3, we display the results of a corresponding computation. For this field matching

procedure, we observe a strong oscillatory behavior of |Bs0| even for relatively large values of

zo (dashed lines). Although, these oscillations will eventually be damped out for large values

zo, this would lead to undesirably large coupler domains. Therefore, the ‘naive’ field-matching

approach described above is rather unsatisfactory, and we should not directly use the trans-

fer matrix T(zo) as the required coupler scattering matrix S for the CMT model described in

Sec. 2.1.

A more efficient approach utilizes a projection of the complete field distribution inside the

coupler onto the modes of the uncoupled straight waveguide in order to extract the amplitude

Bs0 and all other amplitudes. In Fig. 3, we also display the results of this projection technique

(solid line) and observe a superior performance relative to the naive field matching technique

(dashed line). For a detailed explanation of this projection technique and reasoning behind its

effectiveness we would like to refer the reader to Ref. [21]. Here, we only would like to point

out that this projection operation is essential for obtaining stable results for the amplitudes of

the straight and bent slotted waveguides modes outside the coupler domain. In addition, the

corresponding results (see solid line in Fig. 3) also validate the assumption of a finite coupler

region in Sec. 2.1. Finally, we obtain the required coupler scattering matrix S by incorporating

these projection corrections into the results of the transfer matrix T(zo).
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Fig. 3. Dependence of the straight output waveguide’s fundamental mode amplitude Bs0

on the coupler length in z-direction when the input straight waveguide is excited with its

fundamental mode. These results have been obtained with the ‘naive’ field-matching ap-

proach (dashed line) and with the projection correction technique (solid line). The coupler

parameters (see Fig. 2) are: nc = ns = 2.1, nslot = nb = 1, wtot = 1 µm, wslot = 0.2 µm, ws =

0.4 µm, λ = 1.55 µm, g= 0.4 µm, η = 0.5, R = 5 µm, [xl ,xr] = [1 µm,8 µm], zi =−8 µm

is fixed, and zo is varied from [−8 µm,8 µm]. The numerical computations have been per-

formed with discretizations hx = 0.005 µm and hz = 0.1 µm along the x- and z-directions

respectively.

2.4. Evaluation of the spectral response

By following the procedures in Secs. 2.2 and 2.3 we can compute the bent slotted waveguide

propagation constants and the coupler scattering matrices for a given wavelength λ . Via a sub-

sequent evaluation of the expressions [Eq. (4)], we can then compute the complete response

of the slotted-resonator device at that wavelength. Upon repeating this procedure for a series

of wavelengths, we can determine the entire spectral response of the device with considerably

reduced effort relative to a full-fledged exact numerical simulation. In order to further reduce

the computational efforts within the CMT approach, we employ a speed-up technique which is

based on analytical arguments and interpolation.

More precisely, the (original) scattering matrix obtained in Sec. 2.3 exhibits fast oscillations

when the wavelength is varied and, therefore, is ill-suited for an interpolation between wave-

lengths. However, by separating these oscillations into fast oscillations (which are mainly due

to phase changes in the mode propagation) and slow oscillations (which are mainly due to the

coupling effects), we can construct a modified scattering matrix that is suitable for interpolation

(see Ref. [21] for details). In practice, we perform the complete coupled-mode based computa-

tions for the bent slotted waveguide’s propagation constants and the coupler scattering matrices

only at pre-selected nodal wavelengths. Then, we determine the parameters that are required

for intermediate wavelengths via cubic interpolation and, again, utilize expressions [Eq. (4)] in

order to evaluate the device characteristics. All the subsequent CMT-based computations utilize

this highly efficient speed-up technique. If the desired wavelength interval contains only a few

resonances (as in our case, e.g. see Fig. 5), then no special consideration is required for a selec-

tion of nodal wavelengths. Otherwise, as one expects from the increasing interpolation errors

away from the nodal points, the interpolated spectral results are reliable only in the vicinity of

the nodal wavelengths.
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Fig. 4. Transverse profiles of selected waveguide modes that are used for the CMT-based

simulations of the couplers in Sec. 2.3. The first column depicts the real part of Hy and

Ex for the straight waveguide TM0 mode. The TM0 modes of the bent slotted waveguides

for various values of η are depicted in the second, third and fourth column (see inset).

The fifth column depicts the TM1 mode for the bent slotted waveguide for η = 0.5. All

these modes are computed at λ = 1.55 µm, and the corresponding effective indices are

(columnwise) neff=1.4335343, 1.53462− i 3.50971× 10−8, 1.4221− i 2.92095× 10−6,

1.48579− i 8.3777×10−9, and 1.19039− i 1.69572×10−3 respectively.

3. Simulation results

As an illustration of our CMT approach to slotted resonator devices, we consider a specific

system: A micro-ring of radius R = 5 µm and width wtot = 1 µm which is made of silicon

nitride (refractive index nc = 2.1) is micro-structured to exhibit a slot of width wslot = 0.2 µm

that is filled with air (refractive index nslot = 1). As depicted in Fig. 1, the position of the

slot inside the ring resonator is controlled by the asymmetry parameter η . This slotted ring

resonator is coupled to two identical straight silicon-nitride waveguides (refractive index ns =
2.1) that are ws = 0.4 µm wide. The minimal separation between these bus waveguides and the

ring resonator is g = g̃ = 0.4 µm. Finally, we assume that the entire device is placed in an air

background (refractive index nb = 1) and study its spectral response in the wavelength range

[1.5 µm,1.6 µm]. For these settings, the uncoupled straight waveguide is mono-modal, whereas

for the uncoupled bent slotted waveguide we have to take into account all the modes which

exhibit a real part of their effective index that is above ‘cutoff’, i.e., for which ℜ(neff)≥ nb. We

have found that for the above settings this corresponds to the fundamental and the first-order

mode.

In Fig. 4, we display characteristic transverse profiles of some of these modes for different

slot positions within the ring resonator, i.e., for several different values of η . The correspond-

ing properties of the bent slotted waveguide modes strongly depend on the slot’s position. In

particular, the first-order TM1 mode is moderately lossy only if the slot is symmetrically po-

sitioned within the ring (η = 0.5). For instance, at λ = 1.55 µm, we obtain its effective index

neff = 1.19039− i 1.69572×10−3. For the first-order mode, asymmetric positions of the slot ei-

ther lead to a very lossy mode or a mode located close to ‘cutoff’. For instance, at λ = 1.55 µm

for TM1 we obtain for η = 0.4 an effective index neff = 1.09129− i 9.96678× 10−3 and for

η = 0.7 we find neff = 1.13048− i 1.49073×10−2.

With these modes, we simulate the couplers on the domain defined by [xl ,xr] = [1 µm,8 µm]
and [zi,zo] = [−3 µm,3 µm] by using discretizations of hx = 0.005 µm and hz = 0.1 µm along

the x- and z-direction, respectively. Following the procedure outlined in Sec. 2.4, we calculate

the spectral response of the slotted resonator over the entire wavelength range [1.5 µm,1.6 µm]
via a cubic interpolation technique that utilizes computations at the nodal wavelengths 1.5 µm,

1.55 µm, and 1.6 µm.
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Fig. 5. Spectral response of the slotted resonator device depicted in Fig.1 for the TM polar-

ization and various slot positions within the ring (see the text for details on the device pa-

rameters). The results of the coupled-mode theoretical (CMT) approach are compared with

the results of exact numerical computations via a Discontinuous Galerkin Time-Domain

(DGTD) method that has been equipped with curvilinear elements.
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Fig. 6. Meshes that have been used for the DGTD computations of the slotted resonator

device sketched in Fig. 1. From left to right, the slot position corresponds to η = 0.4, η =
0.5, and η = 0.7 respectively. The computational domain is enclosed by perfectly matched

layers as indicated by the finite-width outermost box. In order to determine the spectral

response of the device a broad-band pulse for is injected in the upper left waveguide. The

flux through the output ports is recorded and subsequently Fourier-transformed.

In Fig. 5, we display the resulting spectral response of the slotted resonator device for TM-

polarized mode and various values of the asymmetry parameter η . In particular, each dip in

the through-power PT corresponds to a particular TMn,m cavity mode resonance of the slotted

resonator, where the indices n and m denote radial and angular mode number, respectively. The

prominent sharp dips correspond to the resonances of the fundamental cavity modes TM0,m and

they exhibit wildly varying quality factors (see discussion below). In addition, for the symmetric

case η = 0.5, we also find further secondary dips, which, in general, correspond to higher-order

cavity modes — in the particular case we are considering — they correspond to the first-order

TM1,m modes. Consistent with our discussion above, we find that in the case of η = 0.4 and

η = 0.7, the TM1 bent slotted waveguide modes are very lossy and, therefore, fail to appreciably

contribute to the overall spectral response of the device.

In order to assess the validity and accuracy of the coupled-mode approximations discussed

above, we have compared the CMT results with those obtained from a Discontinuous Galerkin

Time-Domain (DGTD) method [4–7]. We have chosen this particular method because of its

ability to employ unstructured meshes in conjunction with high-order spatial basis functions.
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Fig. 7. Spectral response of the slotted resonator device depicted in Fig. 1 for a symmetric

slot position (η = 0.5) for various minimal separations g and g̃ of the straight waveguides

from the slotted resonator (see the text for details on the device parameters). The results

of the coupled-mode theoretical (CMT) approach are compared with the results of exact

numerical computations via a Discontinuous Galerkin Time-Domain (DGTD) method that

has been equipped with curvilinear elements.

These features allow to properly resolve the fields in the sub-wavelength slot and to handle

the discontinuous fields without requiring unreasonable simulation times. In contrast to earlier

computations of similar systems [6], we have equipped the DGTD method with curvilinear

elements which provides an excellent representation of the true ring geometry. In Fig. 6, we

depict the corresponding meshes used for the DGTD computations.

In all of our subsequent DGTD computations we have utilized a spatial expansion order of

p = 6 (see Ref. [5]). For time-stepping, we have used a suitably selected fourth-order low-

storage Runge-Kutta scheme. At this point, we would like to note that we have carried out

extensive convergence studies with higher and lower spatial discretization orders. In addition,

we have compared the CMT and DGTD spectra with results from computations based on the

freely available FDTD implementation meep [27]. From those studies and comparisons, we

can safely conclude that our DGTD results are accurate to at least four significant digits. Upon

comparing the spectra of CMT and DGTD computations (see Fig. 5) we observe reasonable

agreement for the fundamental resonances. However and notably for the symmetric case of

η = 0.5, the CMT and DGTD results differ significantly for the lossy first-order resonances.

This discrepancy can be explained as follows. As mentioned in Secs. 2.1 and 2.3, the CMT

model of the resonator assumes that the constituent bent slotted - straight waveguide couplers

are adiabatic, so that the field propagating in one part of the coupler experiences a slowly in-

creasing presence of the other waveguide. Based on this, we have assumed uni-directional wave

propagation, and the set of a priori unknown coupled mode amplitudes Cvi in Eq. (7) are as-

sumed to be z-dependent only. These assumptions are violated if the modes of the bent slotted

waveguides are not anymore well confined to the waveguide core (e.g., the TM1 bent slotted

waveguide mode displayed in Fig. 4) and the constituent waveguides in the coupler are not

sufficiently separated. Therefore, we expect that increasing the minimal coupler separations,

g and g̃, leads to an improvement of the CMT model’s accuracy, notably regarding the sec-

ondary resonances associated with the first-order modes. In order to validate this reasoning, we
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Fig. 8. Resonance field distributions (real part) of the magnetic field Hy of the slotted res-

onator device depicted in Fig. 1 for various values of the asymmetry parameter η (see the

text for details on the device parameters). The three leftmost panels depicts the resonator’s

TM0,30 resonances for η = 0.4, η = 0.5, and η = 0.7, respectively. The rightmost panel

depicts the resonator’s TM1,25 resonance for η = 0.5. These field distributions have been

obtained with the CMT model.

have computed the spectral response of the symmetric slotted resonator device (η = 0.5) for

larger values of the minimal separations g and g̃, and display the results in Fig. 7. Indeed, we

find that the discrepancy between the results of the CMT model and the DGTD computations

are strongly reduced for larger values of the separation. These results provide a very reliable

method for determining the validity and/or accuracy of the adiabatic coupling assumption of

the coupled-mode approach.

In order to obtain a better perspective of the various resonances appearing in Fig. 5, we have

also determined the corresponding field distributions. Specifically, we have traced the slotted

resonator’s TM0,30 resonance as the asymmetry parameter η is varied and display the results

in Fig. 8. We observer that, for η = 0.4, the principal field component Hy is neatly localized in

the outer high-index layer of the ring cavity. When the slot is placed symmetrically within the

core of the ring, i.e., when η = 0.5, we still observe a significant localization of the magnetic

field Hy in the outer high-index ring. However, we cannot anymore neglect the magnetic field

in the inner ring. For even higher values of, say, η = 0.7, the magnetic field is predominantly

localized in the inner high-index layer of the ring. This strong confinement of the field is the

primary reason for the sharp resonances which we have observed for η = 0.7 as compared to

the resonance for η = 0.4,0.5.

The sharpness of these resonances is measured in terms of the quality factor Q, which is

defined as a ratio of the central resonance wavelength to the full-width-at-half-maximum value.

The corresponding Q-values of this TM0,30 resonance for η = 0.4,0.5, and 0.7 are approxi-

mately 900, 1200, and 26000 respectively. This demonstrates that a careful positioning of the

slot is of particular importance when cavities with high quality factors are desired. Finally, in

the far-right panel of Fig. 8 we depict the field distribution that corresponds to the (weak) sec-

ondary resonance of the slotted resonator’s TM1,25 mode for η = 0.5. Due to the lossy nature

of this mode, the field is only weakly confined and a considerable amount of the field resides

outside the actual cavity.

4. Conclusions

In conclusion, we have developed a CMT approach for slotted-resonator based systems. For a

two-dimensional model problem we have compared its accuracy with exact numerical compu-

tations based on a DGTD solver. In particular, within the CMT approach we decompose the

system into input and output ports, connecting waveguide segments, and couplers between the

different types of uncoupled waveguides. For these uncoupled waveguides, we utilize analyti-
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cally available results and for the description of the coupler, we use the corresponding modes

as an expansion basis for the fields. The corresponding expansion coefficients are determined

via a variational formulation that utilizes an adiabatic approximation and allows us to define

an appropriate transfer matrix. Using a projection correction, we then determine the coupler’s

scattering matrix. Finally, we combine these ingredients along with an interpolation speed-up

technique into a framework that allows us to determine the spectral response of the slotted

resonator device with just a few computations.

For truly adiabatic coupling, the comparison of the CMT model with the rigorous direct

numerical simulation results of the DGTD approach shows very good agreement. In addition,

the CMT model provides considerable insight into the underlying physical mechanisms based

on the properties of the various waveguiding modes. In particular, we have found that the ex-

act location of the slot within the resonator has a strong influence on the quality factor of the

resonances. In turn, this provides valuable information for the design of optimized sensor con-

figurations and nonlinear optics applications.

While we have demonstrated the working of the CMT model in a two-dimensional frame-

work, there is no conceptual difficulty in extending the CMT model to 3D systems. This has,

for instance, already been demonstrated in Ref. [28] for conventional micro-resonators. The

CMT model thus forms a convenient basis for the efficient analysis of more complex systems

that contain slotted resonators and/or slotted waveguides. For instance, we anticipate that entire

arrays of coupled waveguide-resonator systems, arrays of coupled resonators and systems with

strongly nonlinear optical properties can be treated within the above CMT approach. In addi-

tion, an extension of the CMT model to plasmonic resonators, photonic-crystal based resonators

and waveguiding structures is conceivable.
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