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Abstract: Highly constrained devices that are interconnected and interact to complete a task are being
used in a diverse range of new fields. The Internet of Things (IoT), cyber-physical systems, distributed
control systems, vehicular systems, wireless sensor networks, tele-medicine, and the smart grid are
a few examples of these fields. In any of these contexts, security and privacy might be essential
aspects. Research on secure communication in Internet of Things (IoT) networks is a highly contested
topic. One method for ensuring secure data transmission is cryptography. Because IoT devices
have limited resources, such as power, memory, and batteries, IoT networks have boosted the term
“lightweight cryptography”. Algorithms for lightweight cryptography are designed to efficiently
protect data while using minimal resources. In this research, we evaluated and benchmarked
lightweight symmetric ciphers for resource-constrained devices. The evaluation is performed using
two widely used platform: Arduino and Raspberry Pi. In the first part, we implemented 39 block
ciphers on an ATMEGA328p microcontroller and analyzed them in the terms of speed, cost, and
energy efficiency during encryption and decryption for different block and key sizes. In the second
part, the 2nd-round NIST candidates (80 stream and block cipher algorithms) were added to the
first-part ciphers in a comprehensive analysis for equivalent block and key sizes in the terms of
latency and energy efficiency.

Keywords: IoT; constrained devices; LWC; lightweight cryptography; Raspberry Pi; Arduino

1. Introduction

The Internet of Things (IoT) security is a strongly contested research topic. The IoT is a
type of network paradigm that uses sensor and Internet technology to transform everyday
items into smart devices [1]. Such devices give people the ability to be connected anytime,
anywhere, using any connectivity to benefit from a wide spectrum of services [2]. So, digiti-
zation is not an option anymore, where it is involved in our daily life activities, including
smart homes, smart cities, wearables, e-health, etc. [3]. The IoT end-devices are often oper-
ating in vulnerable environments, which leads to several security challenges that should
be taken into consideration [4]. To overcome such challenges, various researchers have
developed different cryptographic algorithms that can be used to secure IoT applications
in order to ensure data protection and data privacy. However, traditional cryptographic
algorithms are not suitable to be implemented in the resource-constrained devices used in
such an application. The concept lightweight cryptographic (LWC) schemes arose to reflect
the need of cryptographic algorithms that provide security with the use of an efficient
amount of resources [5]. This resource usage is determined by the key size, the number
of rounds, the block size, the memory usage (ROM and RAM), the structure, and the
execution time. The objective of the lightweight algorithms’ creation is to strike a balance in
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several aspects, such as performance, low resource demand, and cryptographic algorithm
strength and stability [6]. Various LWC algorithms were proposed as replacements for the
current standards, the Advanced Encryption Standard (AES0) [7], Rivest–Shamir–Adleman
(RSA) [8], etc., such as TWINE [9], PRESENT [10], SIMON and SPECK [11], QARMA [12],
block ciphers, hash functions, and the stream cipher, to enforce the security. In spite of the
expanding request in this new area of research, few research works presented the bench-
marking and comparison of the well-known LWC algorithms between different hardware
platforms of constrained devices. Moreover, no article presented nor involved the software
implementation with an analysis and a comparison of any lightweight cryptography on
Raspberry Pi compared to others. The objective of this research work is to provide a
comprehensive benchmarking of well-known lightweight cryptographic algorithms. These
benchmarking results are obtained by a software implementation of the chosen algorithms,
implemented on the microcontroller ATMEGA328P-Arduino (Uno) and the Raspberry Pi.
To the best of our knowledge and based on the literature review, this work is considered
the first to evaluate the performances of lightweight cryptographic schemes. A total of
119 different schemes were evaluated.

This project’s main contribution was to evaluate and benchmark lightweight symmet-
ric ciphers for resource-constrained devices. The evaluation is performed using two widely
used platform: Arduino and Raspberry Pi. In the first part, we implemented 39 block
ciphers on an ATMEGA328p microcontroller using the Arduino platform and on the Rasp-
berry Pi. The block cipher implementations were analyzed in terms of the speed, cost, and
energy efficiency during encryption and decryption for different block and key sizes. In the
second part, the 2nd-round NIST candidates (80 stream and block cipher algorithms) were
added to the first-part ciphers in a comprehensive analysis for equivalent block and key
sizes of latency and energy efficiency in encryption and decryption using the two boards.
Further, in this part, a method of referencing and comparing is reckoned that adds more
of an estimation approach of analysis. The motivation for analyzing the performance of
lightweight cryptography algorithms is to identify which algorithms are the most efficient
and secure for use in resource-constrained devices, such as IoT devices, mobile devices,
and embedded systems. This allows for the selection of the best algorithm for a given
application and for the optimization of the implementation of the chosen algorithm to
minimize resource usage and increase security. Additionally, it also helps in identifying any
weaknesses or vulnerabilities in the algorithm that could be exploited by attackers. The rest
of this paper is structured as follows: Section 2 provides a literature review about the work
conducted related to the implementation of an LWC using different hardware platforms.
Section 3 details the software and hardware setup performed, the measuring metrics used,
and the methodology applied to evaluate the communication and computation cost of
implementing such schemes. Section 4 presents the results of the experimentation, and
Section 5 analyzes and discusses the results achieved. Finally, Section 6 concludes the paper
and presents areas of interest for further research.

2. Background

The research and development of lightweight cryptography for use on resource-
constrained IoT devices have advanced quickly over the past decade. The main goal is to
create and use simple cryptographic algorithms that may be applied to such applications
while providing the appropriate levels of security. The implementations for IoT applications
can be categorized as either software or hardware solutions. For the hardware implementa-
tion, the speed, the area, and the energy consumption are taken into consideration. For the
software implementation, the required memory size (ROM and RAM) of the embedded
software is taken into consideration. When selecting the proper security algorithm to be
utilized for resource-constrained devices, these restrictions must be respected [13].

With a focus on LED [14], Piccolo [15], and PRESENT [16], the authors in [17] in-
vestigated various software implementations of lightweight ciphers for x86 processors.
First, they examined table-based implementations and then offered a theoretical model to
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forecast how different potential trade-offs will behave in relation to the processor cache
delay profile.

For IoT platforms, such as resource-constrained devices (8-bit AVR and 32-bit ARM
Cortex-M3) and Application-Specific Integrated Circuits, the authors in [18] studied the
lightweight properties of the HIGHT [19] block cipher and offered the optimized implemen-
tations of both software and hardware for IoT platforms, such as resource-constrained de-
vices (8-bit AVR and 32-bit ARM Cortex-M3) and Application-Specific Integrated Circuits.

Utilizing a unique, lightweight reconfigurable processor, the authors in [20] enabled
this comparison in their study. Six ciphers including AES, SIMON, SPECK, PRESENT,
LED, and TWINE were implemented in the hardware with a Register-Transfer-Level (RTL)
design [21] and in the software with a specially designed reconfigurable processor. A direct
comparison of the area, throughput, power, energy, and throughput-to-area (TP/A) ratio
was performed. Both hardware and software versions were implemented in an identical
Xilinx Kintex-7 FPGAs SIMON [22], a lightweight block cipher designed for hardware
implementation. Implementing, optimizing, and modeling the SIMON cipher design for
resource-constrained devices with a focus on energy and power were the goals of the
research conducted by the authors in [23]. The scalar and pipelines design implementations
FPGA technology were the two types that were explored in this research [24].

The hardware implementation of the block cipher RECTANGLE with various data
paths was the focus of the authors in [25]. They devised, constructed, and assessed the five
most effective RECTANGLE [26] cipher data paths for various data bus sizes. The same
implementation conditions were used for all of these data paths when they were imple-
mented on various FPGA platforms, and the results were compared across all performance
metrics. The ideal architecture for an application can be chosen based on the device and
desired performance metrics.

Meanwhile, in [27], the authors used Artix-7, Spartan-6, and Cyclone-V FPGAs to
implement the six NIST LWC round 2 candidate ciphers, SpoC, GIFT-COFB [28], COMET-
AES [29], COMET-CHAM [29], Ascon [30], and Schwaemm and Esch [31]. Among all
the schemes, it was clear that SpoC had the lowest area and power consumption, while
Ascon had the highest throughput-to-area (TPA) ratio. KLEIN-80, TWINE-80, Piccolo-80,
SPECK (64, 96), and SIMON (64, 96) were among the choices of lightweight block ciphers
that were implemented on the Atmega128 processor in the AVR studio 5.1 simulation
environment performed by the authors in [32]. The evaluation’s findings indicate that
the SPECK (64,96) cipher was the most energy efficient and is suitable for wireless sensor
networks. Meanwhile, the implementation of the TWINE-80 was the most appropriate
with regard to memory utilization.

The authors in [32] studied the efficiency of lightweight block ciphers when used in
resource-constrained environments. Specifically, the focus was on the “Saturnin” family of
ciphers. The study analyzed how well Saturnin performs when implemented in a specific
resource-constrained environment. In addition, to evaluate the results, a comparison with
the Advanced Encryption Standard (AES) was conducted using an experimental setup. The
findings showed that substantial performance improvements can be achieved as Saturnin,
which is based on the design of the AES, can be almost twice as fast as the AES in such
restricted environments.

In [33], the authors aimed to present an overview of the current state of the lightweight
cryptography algorithms used in IoT environments. A comprehensive review of the
literature was conducted to identify different algorithms and extract relevant data, such
as the level of security, encryption and decryption performance, execution time, memory
usage, clock speed, latency, and frequency. The data were then presented in comparison
tables for a further analysis, evaluation, and assessment. The study provided insight into
the performance of the lightweight cryptography algorithms used in IoT environments and
devices. Additionally, it suggested future research directions to build on the findings of
the study.
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Almost all the cited works were interested in the implementation of specific LWC
schemes, while in this work we performed a software implementation of almost 119
different schemes and compared their performance using two different hardware platforms.

3. Method and Experimental Setup

Software implementation is the targeted initiation of comparison between microcon-
troller and microprocessor platforms. The environment for such comparative analysis is
established upon a package of chosen algorithms and a batch of realized metrics entities
for measurements. However, these metrics are generalized as sizes of memory variety,
speed, throughput, and latency. Beyond, the energy measurement concept is considered
additionally for advanced comparison analysis.

3.1. Algorithms Used for Evaluation

Lightweight cryptography of various structures, key sizes, and block sizes were chosen.
A wide range of differences in key size, block size, and rounds were realized as essential for
analysis goals. A total of 39 different ciphers of 13 families shown in Table 1. Furthermore,
a package of 80 algorithms of 32 families presented in NIST round 2 competition [34] are
included in an extended study shown in Table 2. In Table 1, a rundown of the elected
lightweight block ciphers is provided, arranged in alphabetical order, with their type,
structure, block size in bits, key size in bits, and the number of rounds. NIST 2nd-round
candidates in competition are presented in Table 2, with family type, block size in bits,
key size in bits, the number of rounds, and some brief information. These candidates are
expected to be selected as a replacement of the traditional standards.

Table 1. Thirty-nine algorithms and AES as a relative reference.

Family-Cipher Algorithm Type Structure Block Size (bits) Key Size (bits) Rounds

Relative reference AES Block Cipher SPN 128 128/192/256 10/12/14

1-1 HIGHT Block Cipher
Generalized Feistel
Structure (GFS) 64 128 32

2-2/3/4 KATAN Block Cipher stream cipher like 32/48/64 80 254

3-5/6/7 KTANTAN Block Cipher Stream cipher like 32/48/64 80 254

4-8/9/10 LEA Block Cipher
Generalized Feistel
Network (GFN) 128 128/192/256 24/28/32

5-11 Piccolo Block Cipher GFN 64
80/128 only
80 chosen 25/31

6-12/13 PRESENT Block Cipher SPN 64 80/128 31

7-14 PRINCE Block Cipher SPN 64 128 12

8-15 QARMA Block Cipher SPN 64 64 27

9-16 RECTANGLE Block Cipher SPN 64 128 25

10-1726 SIMON Block Cipher Feistel 32128 64256 3272

11-2736 SPECK Block Cipher
Addition/Rotation/XOR
(ARX) 32128 64256 2234

12-37/38 TWINE Block Cipher
Type-2 Generalized
Feistel Network (GFN-2) 64 80/128 36

13-39 XTEA Block Cipher ARX 64 128 64
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Table 2. NIST 2nd-Round Candidates, 32 families of 80 algorithms.

Number Algorithm Kind Block Size (bits) Key Size (bits) Num of Rounds Algorithm Info

1 ACE
Authenticated encryption with
associated data (AEAD)-block
cipher-hash algorithm

64 128 8 Tag size of 128 bits, digest (hash) of 256 bits

2 ASCON Authenticated encryption (AE)-block
cipher and hashing 64-128 128 30/32 Key size = tag size = security level 128 bits

3 COMET AE-block cipher 64-128 128 27/80 Block cipher mode of operation

4 DryGASCON AEAD-block cipher-hash algorithm 64-128 128/160/256 48 N/A

5 Elephant as
(Dumbo-Jumbo-Delirium) AE Family-block cipher Tweakable block

cipher 128 18/80/90 Nonce-based encrypt-then-MAC construction

6 ESTATE AE Family-block cipher Tweakable 128 40 Block cipher-based MAC then encrypt

7 ForkAE AE Family-block cipher 64 128 53/75/87 SKINNY primitive

8 GIFT-COFB AE Family-block cipher Tweakable 128 40 block cipher cryptographic primitive

9 Gimli AE-block cipher and hashing Tweakable 256 24 Cipher: 256-bit key, 128-bit nonce, 128-bit tag
Hash: with 256-bit output

10 Grain-128AEAD AEAD stream cipher Tweakable 128 160 Nonce (IV) of size 96 bits and key of size 128 bits

11 HyENA AE Family-block cipher Tweakable 128 40 Hybrid feedback based

12 ISAP AE Family-block cipher 64 128 32/33/48/56 Nonce-based AEAD

13 KNOT AEAD-block cipher-hash algorithm Tweakable 128/192/256 118/136/160/
208

Permutation-based and bit-sliced AEAD and
hashing algorithms

14 LOTUS-AEAD and
LOCUS-AEAD AEAD-block cipher 64 128 28 Block cipher-based AE scheme that employs

OTR style

15 mixFeed AE Family-block cipher 64 128 Based on any block cipher with some key
scheduling

16 ORANGE Sponge AE-block cipher and sponge
hash 128 128 12 Based on any permutation

17 Oribatida AE Family-block cipher Tweakable 128 26/34 Keyed permutation-based mode

18 PHOTON-Beetle AE-block cipher and hashing Tweakable 128 12 Sponge-based mode Beetle with the P256 (used
for the PHOTON hash)
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Table 2. Cont.

Number Algorithm Kind Block Size (bits) Key Size (bits) Num of Rounds Algorithm Info

19 Pyjamask Block cipher 96/128 128 14 SPN

20 Romulus AE Family-block cipher Tweakable 128 48/56 Based on a Tweakable block cipher (TBC)
Skinny

21 SAEAES AE Family-block cipher 128/192/ 256 128 10 AES-based AEAD

22 Saturnin MAC-block cipher-hash 256 256 10 N/A

23 SKINNY AEAD-block cipher-hash algorithm Tweakable 128 48/56 Tweakable block ciphers

24 SPARKLE (SCHWAEMM
and ESCH) AE-block cipher and hashing 128/192/ 256 128/196 /256 10/11/12 Permutations based on an ARX design

25 SPIX MAC-block cipher 64 128 72/144 Hybrid

26 SpoC AEAD-block cipher 192/256 128 108/ 144 Permutation-based mode

27 Spook AEAD-block cipher Tweakable 128/256 Sponge based

28 Subterranean 2.0 Hashing, MAC computation, stream
encryption, AE 128 128 N/A

29 SUNDAE-GIFT Block cipher 128 128 40 N/A

30 TinyJambu AE-block cipher 32 128/192/256 8 Based on a keyed permutation

31 WAGE AEAD-stream cipher 64 128 111 Permutation based on the Welch–Gong (WG)
stream cipher

32 Xoodyak Hashing, encryption, MAC, AE-block
cipher 128 128 12 Duplex object
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3.2. Compilation

This study was based on C language implementation as low language to reach an
adequate elimination of any software barrier between algorithms’ implementation and
execution. Hence, the study uses MinGW [35] as a container of GNU compiler collection
(GCC) [36]. MinGW is a free and open-source software development environment that
includes GNU compiler collection (GCC) and its libraries. It is used in this study in the
Linux operating system of the Raspberry Pi platform. As for Arduino platform, Arduino-
Integrated Development Environment (IDE) [37] is the best integration, superseding the
compiling and execution in this study.

3.3. Measuring Concepts and Metrics

Measurements for lightweight cryptography study were gathered depending on
related works and other similar research studies that analyzed and compared lightweight
cryptography ciphers. These measuring concepts and their metrics are summarized in
Table 3.

Table 3. Measurement of LWC and their metrics.

Measurement Metrics (in) Tool of Measuring for Arduino Tool of Measuring for Raspberry Pi

Key size bits Algorithm specs Algorithm specs

Block size bits Algorithm specs Algorithm specs

Rounds number number of
rounds Algorithm specs Algorithm specs

ROM occupation bits or bytes Arduino IDE Size command

RAM occupation bits or bytes Arduino IDE Valgrind

Code size Kbytes Size occupied on memory Size occupied on memory

Encryption (ENC) or
decryption (DEC)
speed throughput

Bytes/s Programming +
Equation (1)

Programming +
Equation (1)

ENC or DEC
speed latency

cycle/Block Programming +
Equation (3)

Programming +
Equation (3)

Key schedule
speed throughput

Bytes/s Programming +
Equation (2)

Programming +
Equation (2)

Key schedule
speed latency

cycle/Block Programming +
Equation (4)

Programming +
Equation (4)

ENC or DEC
power (throughput)

joules/s Current (power) sensor Current (power) sensor

ENC or DEC
energy (latency)

joules/bit Current (power) sensor +
Equation (7)

Current (power) sensor +
Equation (7)

Below is the briefing and the equations used in Table 3:

1. Arduino IDE is used during the uploading phase of C codes onto Arduino Board
to measure:

• ROM occupation: by observing “program storage space” where the Arduino
sketch is stored.

• RAM occupation: by observing the unused space for local variables, then the
used space would indicate the “global variable” of dynamic memory that is the
SRAM (static random-access memory), which is where the sketch creates and
manipulates variables when it runs.
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2. Encryption and decryption speed throughput are measured in bytes/s in both plat-
forms through programming loops and Equation (1).

Ps
τ

(bytes/s) (1)

Ps is the size of text in ENC or DEC in bits.
τ is the time taken during one ENC or DEC.

3. Key schedule speed throughput concerning key expansion and Equation (2).

Ks
τ

(bytes/s) (2)

Ks is the size of text in expanded key in bits.
4. ENC and DEC speed latency are measured in B/s

(cycles/block) by using speed throughput Equation (2):

f
(1)/Bs

(Cycles/Block) =
f ∗ Bs ∗ τ

Ps
(Cycles/Block) (3)

f is the processor frequency in hertz.
Bs is the block size of the algorithm in bytes.

5. Key scheduling speed latency derived from Equation (2):

f ∗ K ∗ τ

Ks
(Cycles/Block) (4)

K is key size of the algorithm in bytes.
6. ENC and DEC power (throughput) measured in joules/s (j/s) by using a current

sensor (power sensor).
7. ENC and DEC energy (power latency) in joules/bit is measured by using energy

throughput and speed throughput as:

ETh(j/s)
(1) ∗ 8

(Jouls/bit) =
ETh ∗ τ

Ps ∗ 8
(Jouls/bit) (5)

ETh is energy throughput in j/s of ENC and DEC.

3.4. Methodology

1. The following methods were used while benchmarking the different metrics for the
selected cryptographic algorithms:

• Different Cryptographic Algorithms, Same Platform: Comparing different algo-
rithms on the same platform is performed by measuring the throughput in bytes
per second that would be satisfactory.

• Same Cryptographic Algorithms, Different Platform: Looking at timing infor-
mation mainly has one of two incitements, either the interest in comparing the
performances of two algorithms or the quantity of information being processed
through a particular platform. However, measuring in bytes per second has no
actual indication of algorithm performance on different platforms. Hence, it is
preferred to measure the processor clock cycle during the processing task of each
byte, indicated as cycles per bytes, which allows for more relevant comparisons.
It is performed simply by dividing the clock speed in hertz which is the cycles
per second (C/S) by the speed throughput of the algorithm in bytes per second
(B/S), yielding cycles per byte (C/B).

• Different Cryptographic Algorithms, Different Platform: The difference in key
size and block among cryptographic algorithms can be assessed using bytes per
second as a metric of measurement in the same platform. However, this cannot
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be used in different platforms (and neither can cycles per byte). Here, comes
the notion of using cycle per block as a comprehensive measure of comparison
between them.

2. Relative Reference (RR): Nevertheless, the last comparison measurement is restrained
by the enormous difference in results, speed throughputs, speed latency, and even that
of energy, as will be seen in Section 4. The relative reference algorithm (RR) is used
by taking the percentage of each measurement result (latency and throughput) of the
algorithms, then comparing them to 1 or 100%. On that account, AES-128block-128key,
AES-128-192, and AES-128-256 are selected, the traditional standard, which will be a
notable solution in this kind of comparison.

3. Repeating the Experiments: For numerous distinctive reasons, it can be decently
troublesome to obtain measuring results such as time and speed accurately in a single
iteration of coding. Frequently, internal clocks that the software or executed program
can read have some degree of asynchronous precision from the core processor clock.
More essentially, there is regularly a critical overhead included in such measuring
results, such as the cost of context switches and sometimes timing overhead. That
is, finding measurement of algorithms in this context should avoid procedure call
overhead. One method is to run the algorithm many times like loops in coding, then
averaging the total time to acquire the best indication of overall performance results.
Furthermore, the repetition of encryption or decryption process would smooth out
random effects such as IRQ (Interrupt request) signal due to external activity by
adjusting the loop to an experimental number attained.
On that account, the formulas of speed throughput of ENC and DEC followed by key
schedule formulas would be refined as:

Ps ∗ Nl
τ

(bytes/s) (6)

Ks ∗ Nl
τ

(bytes/s) (7)

Nl is number of loops.
4. Mean and Standard Deviation: As mentioned before, the algorithms’ speed and power

are the averages (averaging the total time) of many running times in loops (1000 times).
This process is repeated 100 to 1000 times as needed to reach an acceptable standard
deviation of the averages obtained (1000 of 1000). The means and standard deviations
related to speed and power, including key schedule speed of the algorithms, are
provided in the github.

5. Programming Libraries: We have implemented the needed formulas in one program-
ming library named metrics.h for both platforms. The metrics.h library contains the
implementation of Equations (3)–(7) for exclusive grouping results of the algorithms
in one hand pack. In addition, changing the number of loops would be very easy
using such a method for simplicity in work and other tasks. Furthermore, for the
Raspberry Pi platform, the metrics.hlibrary includes the exporting of the result in
“.csv” (a mode of extension file) in one hit for all studied algorithms in speed measures
that would help significantly in any re-benchmarking of the algorithms when needed.
Meanwhile, “.csv” exporting cannot work for the Arduino platform in programming.
A software tool as an add-on for Microsoft Excel is used called PLX-DAQ [38]. Parallax
Data Acquisition tool (PLX-DAQ) is a software that drops the numbers into columns
as they arrive from the PC’s serial port and it has the following features:

• Plot or graph data as it arrives in real-time using Microsoft Excel.
• Record up to 26 columns of data.
• Mark data with real time (hh:mm:ss) or seconds since reset.
• Read/write any cell on a worksheet.
• Baud rates up to 128K.
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Besides that, PLX-DAQ has shown a significant benefit in measuring power and
graphical observation of it.

6. Power Connection: Power (energy) is measured through the use of the Adafruit
INA219 [39] current sensor. This measuring process requires another Arduino board to
read the sensor data of measuring that is fed from the load to the platforms (Arduino
UNO and Raspberry Pi). The second Arduino board is used as a current-voltage
monitor. The monitoring process is combined by PLX-DAQ software tool through
EXCEL with the necessary Arduino programming. The circuit connection is shown in
Figure 1.

Figure 1. INA219 wiring with the second Arduino board.

7. Hardware Platform: We used two different hardware platforms in this study for
comparison and benchmarking purposes:

• ATMEGA328P is a single-chip microcontroller of the megaAVR family with an
8-bit RISC processor core architecture. It is used in basic Arduino boards, such as
Arduino UNO.

• Raspberry Pi 3 Model B V1.2 is the third generation of Raspberry Pi.
• Ammeter (power measurement) used: Power (energy) is measured through the

use of the Adafruit INA219 current sensor. One advantage about this sensor is
that it is inserted on the “high side” of the circuit instead of the ground side,
which is how many of those voltage and current display modules are wired. That
makes it ideal for use as a voltage and current display. It operates on a power
supply of 5 volts, which can be supplied by the Arduino UNO too.

8. Methodology for conducting the performance analysis The methodology for conduct-
ing a performance analysis of lightweight cryptographic algorithms implemented on
a Raspberry Pi or Arduino UNO can involve the following steps:

(a) Selection of algorithms: Identify and select a set of lightweight cryptographic
algorithms that are relevant to the application and that can be implemented on a
Raspberry Pi/UNO.

(b) Implementation: Implement the selected algorithms on a Raspberry Pi/UNO
using a programming language such as Python or C. Data collection: Collect
performance data by running the implemented algorithms on the Raspberry Pi
and measuring the execution time and memory usage for each algorithm.

(c) Data analysis: Analyze the collected data to determine which algorithms are the
most efficient and secure for the given application. This may involve comparing
the execution time and memory usage of the algorithms, as well as analyzing
any security weaknesses or vulnerabilities in the algorithms.
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(d) Optimization: Based on the analysis, optimize the implementation of the chosen
algorithm to minimize resource usage and increase security. Reporting: Prepare
a report detailing the performance analysis and optimization results, including
any recommendations for further research or improvement. The whole process
is illustrated below:

Selection
Imple-

mentation
Data

collection
Data

analysis
Opti-

mization

4. Results

This section presents the main benchmarking observations. For each metric, the best
ten and the worst five performing algorithms are selected in a quick and brief overview.
The focus will be on the following measurements:

• The ROM, RAM, code size, and key schedule speed throughput and latency of the
39 ciphers.

• The number of rounds, encryption/decryption speed throughput/latency, and energy
throughput/latency of all the 119 ciphers.

In addition, the measurement tools used are stated briefly for each metric.

1. Analysis of the number of rounds: As part of the algorithm design, modern ciphers
increase their security (confusion and diffusion) through the repeated execution (n
times) of a simple round function. In block ciphers, the input and output of the round
function are equal to the cipher block size in general. As a standard rule, increasing
the number of rounds n increases the security level, while decreasing the number of
rounds would play a significant role in shortening the execution time of the encryption
and decryption, which is one of the essences of lightweight cryptography. In this
project, the range interval of the number of rounds of the studied algorithms is [8, 254],
as shown in Figure 2. Among the five ciphers with the largest number of rounds,
the Katan–Ktantan family is designed with the highest, while the Ace-64-128 and
TinyJambu families are with the least among the smallest 10.

Figure 2. 19 algorithms of smallest N of rounds and 13 of the biggest.

2. Analysis of code size: The code size is the size of the algorithm code written in C
language. It is the occupied space on the disk or memory. Moreover, it might project
the occupation of the ROM and RAM sizes. Many of the cipher implementations
were optimized in coding for different considerations, among them, of significant
importance, was changing the plaintext declaration in a way that takes no more space
than what is required. According to the results illustrated in Figure 3, the range
intervals of the code sizes are [3.6, 21] and [3.49, 17.3] in Kbytes for UNO and Pi,
respectively. Of the 10 smallest code sizes, the least are Katan-32-80 and Present-
64-128, whereas the biggest are Piccolo-64-80 and Rectangle-64-128 in UNO and Pi,
respectively.
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(a) (b)

(c)

Figure 3. Code size of algorithms used in benchmarking. (a) The 10 algorithms of DEC smallest code
sizes and 5 of largest. (b) The 10 algorithms of smallest ENC code sizes and 5 of largest. (c) The
10 Algorithms of smallest code sizes and 5 of largest.

3. Analysis of ROM size: Read-only memory or ROM is a non-volatile memory. Data
stored in ROM are generally the code and the tables that do not need modifications.
The Arduino Uno (ATMEGA328P) ROM size (Flash) used is 32 Kbytes in size, while
the Pi’s is a variable SD card where 64 Gbytes is used in this project. The Arduino IDE
fulfills the ROM measurement requirement that gives the occupied size of the storage
space. However, in Pi, the “size” command is used in the terminal (Linux OS) as a
tool to obtain the text, data, Block Started by Symbol (BSS) (Block Started by Symbol
is the space that contains all the uninitialized data), and DEC sizes (DEC = text + data
+ BSS) of the compiled code file in an Extensible Linking Format (ELF) extension. The
range interval is [1.48, 6.05] and [3.81, 9.67] in Kbytes for UNO and Pi, respectively.
Figures 4 and 5 show the least cipher-demanding ROM among the 10 smallest which
are the LEA family/Prince-64-128 and Present-64-80, respectively, for UNO and Pi,
while the biggest demand is Piccolo-64-80 for both platforms.

Figure 4. The 10 smallest ciphers demanding ROM and 5 largest for UNO.
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Figure 5. The 10 smallest ciphers demanding ROM and 5 largest for PI.

4. Analysis of RAM occupation: Random-access memory (RAM) is the short-term
memory where data are stored to be processed by the processor. Data are stored in
the RAM in the form of a heap and stack. The size of UNO’s RAM (SRAM) used is
2Kbytes, whereas the Pi’s is 1Gbytes. The Arduino IDE is sufficient for obtaining the
RAM usage by the ciphers. However, the Valgrind [40] tool is used to measure the
RAM occupation in Pi. Valgrind is a tool suite for debugging and profiling, and the
Massif profiler tool of the Valgrind is used to measure the RAM. Figures 6 and 7 show
the 10 smallest and 5 largest RAM size occupations in UNO and Pi, respectively. As it
can be seen, the range intervals are [264, 994] in bytes and [1.03, 21.34] in Kbytes of
UNO and Pi, respectively. The least are the LEA and the Simon–Speck families, and
the largest are the Ktantan family and Rectangle-64-128 in UNO and Pi, respectively.

Figure 6. The 10 smallest ciphers RAM usage and 5 largest for UNO.

Figure 7. The 10 smallest ciphers RAM usage and 5 largest for PI.

5. Key scheduling speed: The key schedule is a process of key expansion that expands
a short key (40 to 256 bits) to a larger key (or to a number of round keys) (100
to 1000 s bits) for use in encryption and decryption algorithms. This process in
ciphers has a direct impact on the security of the cipher. The key schedule speed was
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measured using C programming routines that calculate the time taken. Formulas
(2) and (4) mentioned in Section 3.3 are used for the throughput in bytes per second
and latency in cycles per block, respectively. Figures 8–11 exhibit the 10 largest and
5 smallest algorithms for the key schedule speed in UNO and Pi, respectively. The
range intervals are [0.99, 400,000] in Kbytes/s and [0.029, 106.667] in Gbytes/s of
UNO and Pi, respectively, for the throughput. The best is Prince-64-128, and the worst
is the Ktantan family in both UNO and Pi. Further, the range intervals for the latency
are [0.00032, 161.34] in Kcycles/block and [0.18, 412.02] in cycles/block of UNO and
Pi, respectively. The best is XTEA-64-128, and the worst is the Ktantan family in both
UNO and Pi.

Figure 8. The 10 largest speed throughput in key schedule and 5 least in UNO.

Figure 9. The 10 least speed latency in key schedule and 5 biggest in UNO.

Figure 10. The 10 largest speed throughput in key schedule and 5 least in Pi.
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Figure 11. The 10 least speed latency in key schedule and 5 biggest in Pi.

6. Encryption and decryption speed: The encryption or decryption speed measuring tool
is by the internal programming (C) of the time taken. Formulas (6) and (3) mentioned
in Section 3.3 are used for the throughput in bytes per second and latency in cycles
per block, respectively.
Figures 12–15 reveal the 10 largest and 5 smallest algorithms for the ENC speed in
UNO and Pi, respectively. The range intervals are [0.1, 64.1] in Kbytes/s and [0.009,
6.99] in Gbytes/s of UNO and Pi, respectively, for the throughput. The best are Hight-
64-128 and LEA-128-128; however, the worst are Jumbo-128-128 and Ktantan-32-80
in UNO and Pi, respectively (here the biggest is the fastest). The range intervals
for the latency are [2, 2490.24] in Kcycles/block and [1.44, 864.65] in cycles/block
of UNO and Pi, respectively (for the latency, the smallest is the best and the fastest).
The best are Hight-64-128 and Speck-48-72, though the worst are Jumbo-128-128 and
ISAP-K-128-64-128 in UNO and Pi, respectively.

Figure 12. The 10 largest speed throughput in ENC and 5 least in UNO.

Figure 13. The 10 least speed latency in ENC and 5 biggest in UNO.
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Figure 14. The 10 largest speed throughput in ENC and 5 least in Pi.

Figure 15. The 10 least speed latency in ENC and 5 biggest in Pi.

7. Encryption and decryption power and energy consumption: Energy utilization is the
measure of the electrical effort used during the execution of an operation (algorithm),
and the whole energy consumed is the time integral of the power. In lightweight
cryptography, energy consumption per unit operation of the algorithm defines good
metrics for designing. The measuring tool used for energy in this project is the
Adafruit INA219 current sensor through a connection of a second Arduino board
used as a current-voltage monitor. The monitoring process is combined by the PLX-
DAQ software tool through EXCEL with the necessary Arduino programming. The
provided Formula (5) in Section 3.3 is used for the energy in joules per byte while
the mean power obtained from sensor monitoring is the power throughput in joules
per second.
Figures 16–19 show the 10 smallest and 5 largest algorithms for the ENC power. The
range intervals are [0.959, 14.28] in mj/s and [168, 303] in mj/s for the power. The
least are SUNDAE-GIFT-0-128-128 and XTEA-64-128. However, the worst are Simon-
128-256 and DryGASCON128k56-128-128 in UNO and Pi, respectively. The range
intervals for the energy are [0.097, 67.4] in µj/byte and [35.4, 26,870] in nanoj/byte (or
[0.035, 26.87] in µj/byte) of UNO and Pi, respectively. The least are SUNDAE-GIFT-0-
128-128 and Speck-128-128, though the worst are Rectangle-64-128 and Ktantan-32-80
in UNO and Pi, respectively.
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Figure 16. The 10 least power in ENC and 5 biggest in UNO.

Figure 17. The 10 least energy in ENC and 5 biggest in UNO.

Figure 18. The 10 least power in ENC and 5 biggest in Pi.

Figure 19. The 10 least energy in ENC and 5 biggest in Pi.
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To summarize, we presented the benchmarking of the code size, ROM, RAM oc-
cupation, and key schedule for the first-part algorithms of 39. Then, we presented the
benchmarking of the speed throughput, speed latency, power, and energy for the first
combined by the second part of the algorithms to be 122 (plus the AES). The code size and
ROM occupation are approximately the same in value with a slight change from the unit
(Kbyte) point of view for both platforms, whereas the RAM, key schedule speed, ENC/DEC
speed, and energy differ thousands of points (Kilo) with Pi taking the lead. In general,
Raspberry Pi is scoring as the best in all measuring metrics throughout all the ciphers.

5. Discussion

Some of the algorithms’ measured speed and power latencies (plus the key schedule)
of the ENC are presented in the following figures as a percentage to the RR (AES). They are
grouped in two ways: block or key sizes. Some groups with their corresponding figures
are as follows:

• The 128-bits block size and 96-bits key size RR% groups of the key schedule speed
latency presented in Figures 20 and 21.

Figure 20. Group of 128-bits block size algorithms measuring key schedule speed latency with respect
to RR% in UNO versus Pi.

Figure 21. Group of 96-bits key size algorithms measuring key schedule speed latency with respect
to RR% in UNO versus Pi.

• The 32-bits block size and 256-bits key size RR% groups of the ENC speed latency
presented in Figures 22 and 23.
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Figure 22. Group of 32-bits block size algorithms measuring ENC speed latency with respec to RR%
in UNO versus Pi.

Figure 23. Group of 256-bits key size algorithms measuring ENC speed latency with respect to RR%
in UNO versus Pi.

• The 128-bits block size (all of the 128-bits key size) and 80-bits key size RR% groups of
ENC energy (power latency) presented in Figures 24 and 25.

Figure 24. Group of 128-bits block and key sizes algorithms measuring ENC energy with respect to
RR% in UNO versus Pi.
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Figure 25. Group of 80-bits key size algorithms measuring ENC energy with respect to RR% in UNO
versus Pi.

After an adequate observation over all these groupings and their results between UNO
and Pi, it was realized that for more than 85% of the algorithm throughout, the metrics used had
gone better in Pi. For example, Lea-128-192 was 1673% to the RR in the key schedule for UNO,
whereas it became 47% for Pi. Statistically, in the key schedule, there were 10 algorithms below
100% for UNO, while they became 33 algorithms for Pi; in the ENC speed latency, there were
28 algorithms below 100% for UNO, whereas the number became 79 algorithms for Pi; and in
the ENC energy, there were 33 algorithms below 100% for UNO, whereas the number became
65 algorithms for Pi. Consequently, Raspberry Pi is revealing more lightweight features and
behavior of the designed lightweight algorithms that might be explained “because of the
Hardware and Software Architecture of the Raspberry Pi”. The 67 winners in each group of
the block or key arrangement throughout the key scheduling speed latency, ENC/DEC speed
latency, and ENC/DEC energy are listed in Table 4. It can be concluded that 36 (84%) of 39 of
the algorithms are faster (fewer cycles) in the key schedule, 106 (94%) of 110 of the algorithms
are faster (fewer cycles) in the ENC, and 95 (86%) of 110 have taken less power in Pi compared
to UNO, as shown in Table 4 with an additional statistical comparison.

Table 4. Overall comparison of algorithms’ numbers and percentage in UNO versus Pi.

Condition Key Schedule
Speed UNO (39)

Key Schedule
Speed Pi (39)

ENC Speed UNO
(110)

ENC Speed Pi
(110)

Energy UNO
(110) Energy Pi (110)

Unit Normal
Comparison

Kbytes/Kcycles
per s Gbytes/cycles per s Kbytes/Kcycles

per s
Gbytes/cycles

per s
[0.097,67.4]

µj/byte [0.035,26.87] µj/byte

Overall sum of % 30,760 6032 77,014 6114 68,138 42,308

Overall sum of %
decreases from

UNO to Pi
↘80% ↘92% ↘ 40%

# of algorithms
decreases in RR %

3 (all of 64 Block
size) 36 (92%) 6 (4 of key size 80) 106 (94%) 15 (8 of 9 of key

size 80) 95 (86%)

# of algorithms
<100% in RR % 10 (25%) 33 (84%) (+23

added) 28 (25%) 79 (72%) (+51
added) 33 (30%) 65 (60%) (+32 added)

Overall sum of % Is the sum of all the algorithms percentage in RR

↘ The number of algorithms decreases

<100% Number of algorithms that are below 100% in RR

Moreover, it was realized as a quick observation that most of the algorithms that were
worse in Pi compared against UNO were of an 80-bits key, like in the energy ENC. That
may indicate a reliance on the 80-bits key in the algorithms’ design is not preferable, but
this should take further investigation to deduce such a conclusion.

A Score Table is presented in this section for some measuring metrics. The scores (or
cards) are given to each algorithm in each of the selected measures: ROM, ENC speed
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(throughput and latency), and ENC energy (throughput and latency). The algorithm with
the least sum of all the scores would be considered as the best. For the first list of algorithms
presented in Table 1, Figure 26a,b clearly show that LEA-128-128, OMET-64-CHAM-64-128,
and Hight-64-128 are the best in UNO, while Speck-48-72, Speck-64-128, and XTEA-64-128
are the best in Pi. Regarding the final list presented in Table 2, Figure 26c,d clearly show that
Schwaemm-256-128, GIFT-COFB-128-128, and Schwaemm-128-128 are the best in UNO, while
Xoodyak-128-128, TinyJAMBU-192-32-192, and TinyJAMBU-128-32-128 are the best in Pi.

(a) (b)

(c) (d)
Figure 26. NIST best algorithms in UNO vs. Pi. (a) Best 3 For UNO. (b) Best 3 For Pi. (c) Best 3 for
UNO. (d) Best 3 for Pi.

Finalists of NIST

NIST, in 2021, announced ten finalists as ASCON, Elephant, GIFT-COFB, Grain128-
AEAD, ISAP, Photon-Beetle, Romulus, Sparkle, TinyJambu, and Xoodyak during the work
of this project. These 10 families are of 28 algorithms of different block and key sizes that
were presented before in Table 2. The corresponding % RR comparison between UNO and
Pi of the best eight are presented in Figures 27 and 28 for the speed latency and energy. The
best for the ENC latency are GIFT-COFB-128-128 and TinyJAMBU-128-32-128 in UNO and
Pi, respectively. The best for the ENC energy is Schwaemm-128-128 in both UNO and Pi.

Figure 27. Best 8 Algorithms of NIST finalists in ENC speed latency with respect to RR % for both
UNO and PI.
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Figure 28. Best 8 Algorithms of NIST finalists in ENC energy with respect to RR % for both UNO
and Pi.

In addition, the best three are presented using the “Score Table” in both UNO and Pi
and are shown in Figures 29 and 30 as a radar graph. The best are Schwaemm-256-128,
GIFT-COFB-128-128, and Schwaemm-128-128 in UNO and Xoodyak-128-128, TinyJAMBU-
192-32-192, and TinyJAMBU-128-32-128 in Pi.

Figure 29. Radar graph of the three NIST finalists winners in 5 measures in UNO.

Figure 30. Radar graph of the three NIST finalists winners in 5 measures in Pi.
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This section provided the analysis and results of 122 ciphers in the RR and Score Table
plus the announced NIST finalists analysis alone. The RR percentage showed significant
importance in a comparative analysis between the different platforms besides the latencies’
metrics cycle per byte and joules per byte. Moreover, one of the reasons that worsens the
algorithm is the high number of rounds, as presented in Figures 31 and 32, that provide the
worst and best algorithms with their related number of rounds. During the RR analysis,
it was realized that most of the algorithms that were worse in Pi than in UNO were of an
80-bits key size.

Figure 31. The best algorithms and worst throughout with their corresponding number of rounds.
Brown color indicates the worst algorithms in previous measures.

Figure 32. All algorithms of NIST finalists with their corresponding number of rounds. Brown color
indicates the worst algorithms in previous measures.

During this work, a number of problems were encountered:

1. The first problem encountered was the exceeding of the Arduino UNO ROM size by
a handful of the algorithms. This issue led to the code optimizing of these algorithms.
Some simple code optimization and changes in the declaration minimized most of the
exceeded algorithms. For example, in Katan and Ktantan, where the encoders were using
unint64tPtext. We used to change it to unint8t and the size collapsed to fit the SRAM
and ROM of Arduino UNO, besides the Pi, and also by decreasing the code size for both
boards. ESTATETweGIFT128-128-128, Romulus-M1-128-128, Romulus-N1-128-128,
SKINNY-AEAD-M1-128-128, SKINNY-AEAD-M2-128-128, SKINNY-AEAD-M3-
128-128, SKINNY-AEAD-M4-128-128, SKINNY-AEAD-M5-128-128, and SKINNY-
AEAD-M6-128-128 although were minimized but still could not fit the Arduino ROM,
and they were eliminated from the Arduino benchmarking only.

2. Measuring the performance power of the algorithms on the targeted platform requires
setting a baseline power for the measured platform in an idle state, i.e., working on no
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load or process. After that, the power consumed by the measured algorithm would
be the difference between the baseline and the mean measured power.

Powerconsumed = Measuredpower − Idlepower (8)

However, during the measuring procedure of the Arduino platform, the resulting
algorithms’ power started to diminish until they changed to negative values. This
problem led to rolling back to check the precision of the baseline power. Thus, the
tactic was measuring over time (1 h), from the cool down, the behavior of the platform
power in idle mode and then with the load mode (algorithm). The resulting graphs of
UNO are shown in Figures 33 and 34 in the two modes.

Figure 33. 1 h running Arduino in idle mode.

Figure 34. 1 h running Arduino in load mode.

The Raspberry Pi has gone through the same process where Figures 35 and 36 reveal
the resulting graphs. The graphs show that after 25 min of starting Arduino in the idle
mode, a plateau is observed, whereas in the load mode the graph goes to a plateau
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after 30 min. Consequently, repeating the measurement by respecting 30 min intervals
from the start led to the results interpreted in Section 4, while the Pi graphs show no
need for a repeat or respecting any criteria. Furthermore, the speed measurement of
UNO was re-benchmarked respecting a 30 min interval.

Figure 35. 1 h running Pi in idle mode.

Figure 36. 1 h running Pi in load mode.

As a summary, in power, Arduino requires a warm up of about 30 min while Pi does
not. The code optimization is essential for Arduino, while for Pi it is not because of the
limited memory space in Arduino. In the analysis, an approach of referencing named RR
is presented for a comparison between the two targeted platforms. Consequently, if the
criteria of comparing a designed LWC algorithm to a standard one like the AES, indicating
whether it is LW or not, then according to our work (RR results) it must not depend on the
result for only one platform.
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6. Conclusions and Future Work

Lightweight cryptographic algorithms are important in the IoT because they allow
for secure communication on devices with limited processing power and memory. These
devices, such as sensors and actuators, often have limited resources and cannot handle the
computational demands of traditional cryptographic algorithms. Lightweight algorithms
provide a balance between security and performance, making them suitable for use in IoT
devices. They are used to secure data transmission, storage, and processing. They play
a vital role in ensuring the security of communication and data in IoT-enabled systems.
Lightweight cryptographic algorithms are gaining the interest of researchers due to the
increasing number of IoT devices being connected to the Internet. IoT devices are becoming
more prevalent in a wide range of applications, such as smart homes, industrial automation,
and transportation systems. As these devices are often battery powered and have limited
processing power, the use of traditional cryptographic algorithms is not always feasible.

In conclusion, lightweight cryptography is challenging work research through the last
few years to reach the vision of being lightweight. To our knowledge, what is done in this
work is considered unique up to now, by evaluating the performance of the cryptographic
algorithms using a variety of metrics and test cases to ensure that the selected algorithms
are suitable for use in a wide range of IoT devices. The evaluation process takes into account
factors such as the performance on a variety of devices. In this project, a set of 122 ciphers
were evaluated and benchmarked using widely used platforms: Arduino and Raspberry Pi.
LEA-128-128, COMET-64_CHAM-64-128, Hight-64-128, Speck-48-72, Speck-64-128, and
XTEA-64-128 were the most promising among the 122 compared algorithms in the power,
speed, and ROM measurements. Furthermore, Schwaemm-256-128, GIFT-COFB-128-128,
Schwaemm-128-128, Xoodyak-128-128, TinyJAMBU-192-32-192, and TinyJAMBU-128-32-
128 are the best performing ciphers among the NIST finalists selected on 29 March 2021. The
work/analysis conducted here can be used during the communication occurring between
different layers as in the one presented by the authors for a Social IoT architecture [41]
and the work conducted by the authors in [42]. As future work or a recommendation, the
following aspects can be considered as extensions and enhancements of this work.

1. Arduino mega could be considered in the analysis for the algorithms that exceeded
the memory ROM in ATMEGA328P UNO.

2. The NIST finalists were not compared between UNO and Pi with respect to the key
schedule, ROM, RAM, and code size, so as a future work these comparisons could
be performed.

3. Stream ciphers and hash functions algorithms could be added to the analysis.
4. Using the AES as a relative reference was taken as a linear approach. As future work, it

could be established from another approach or approximation after adequate research
in such a field and also depending on the behavior of the chosen algorithms.

5. It is important to note that the performance of the algorithm can also be affected by
environmental factors, such as the temperature of the Pi/UNO. So, this factor should
also be considered while conducting the performance analysis in future works.
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Abbreviations
The following abbreviations are used in this manuscript:

LWC Lightweight Cryptography
LW Lightweight
AE Authenticated Encryption
AEAD Authenticated Encryption with Associated Data
AES Advanced data Encryption Standard
ARM Advanced Reduced Instruction Set Computing Machine
ARX Addition/Rotation/XOR
AVR Alf and Vegard’s RISC
DEC Decryption
DES Data Encryption Standard
DF Diffie–Hellman key exchange
ENC Encryption
FN Feistel Networks
GFN-2 Type-2 Generalized Feistel Network
GFS Generalized Feistel Structure
HIGHT High security and Light Weight
UNO Arduino
LEA Lightweight Encryption Algorithm
MAC Message Authentication Code
MD5 Message Digest 5
MSP Main distribution/Service Panel
P Permutation
RAM Random-Access Memory
RFID Radio Frequency Identification
ROM Read-Only Memory
RPi or Pi Raspberry Pi
RR Relative Reference
LD Linear Dichroism
SHA-2 Secure Hash Algorithm 2
specs Specifications
SPN Substitution-Permutation Network
XTEA eXtended Tiny Encryption Algorithm
IDE Integrated Development Environment
Ps The size of text in ENC or DEC.
τ The time taken during one ENC or DEC.
Ks The size of text in expanded key.
f The processor frequency in hertz.
Bs The block size of the algorithm in bytes.
ETh Energy throughput in j/s of ENC and DEC.
Nl Number of loops.
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