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Plant lipoxygenases (LOX, EC 1.13.11.12) have been 
involved in processes such as stress responses and devel-
opment. The levels of these enzymes and tbeir corre-
sponding mRNAs are modulated during these processes as 
well as by different effectors such as jasmonic acid (JA), its 
methyl ester (MeJA) or abscisic acid (ABA). A new lipox-
ygenase (LOX) cDNA clone, PvLOX2, was isolated from a 
Phaseolus vulgaris nodule library and used to study the 
LOX mRNA accumulation pattern in some developmental 
stages and in plants subjected to hormone and stress treat-
ments. In nodules, LOX mRNA reaches a maximum level 
around day 14 to 16 after Rhizobium tropici inoculation, 
as compared with LOX mRNA present in uninoculated 
and inoculated roots at tbe same days. LOX antigen is 
detected in tbe nodule parenchyma and in the uninfected 
cells. During germination, bean LOX transcripts start to 
accumulate 48 h after imbibition, remains at tbe same level 
until 72 h after imbibition and tben declines. In bypocotyl, 
LOX mRNA is abundant in the growing region and almost 
absent in the mature region. After water stress or ABA 
treatment, this mRNA increases in tbe mature regio n and 
decreases in tbe growing region. In bean seedlings, LOX 
mRNA is accumulated in response to some types of stresses 
such as cold and desiccation. Wounding, MeJA or ABA 
treatment of mature leaves also induces LOX mRNA ac-
cumulation. These results indicate that in comnion bean 
plants LOX is required during development and stress 
conditions. 
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- Wounding. 

The enzyrne lipoxygenase (LOX, EC 1.13.11.12), 
catalyzes the hydroperoxidation of fatty acids containing a 
cis, cis-I-4 pentadiene structure. In plants, products of the 
LOX pathways include rnediators of the stress· response 
such as jasrnonic acid (JA) (Sernbdner and Parthier 1993), 
traurnatin (Zirnmerman and Coudron 1979) or six-carbon' 
volatiles (Bate and Rothstein 1998). These six-carbon vol-
atiles also have bactericidal activity (Croft et al. 1993). In 
addition, LOX has been associated with sorne develop-
mental stages since high levels of the enzyrne are found in 
rapidly growing tissues (Siedow 1991) and it has been 
shown that during gerrnination a LOX activity initiates the 
rnobilization of storage lipids (Feussner et al. 1995). There 
is also data indicating that LOX is used as ternporary 
storage of nitrogen during vegetative growth (Tranbarger 
et al. 1991). 

LOX gene expression is regulated by different effectors 
such as nitrogen (Staswick et al. 1991), phosphate (Sadka 
et al. 1994), JA (Bell and Mullet 1991), ABA (Melan et 
al. 1993); or different forrns of stress as wounding (Royo 
et al. 1996, Saravitz and Siedow 1996), touch stirnulation 
(Mauch et al. 1997), water deficiency (Bell and Mullet 1991) 
or pathogen attack (Meier et al. 1993, Melan et al. 1993). 
Several geno mié or cDNA clones have been isolated frorn 
different plant species showing differential organ-specific 
expression (Melan et al. 1993, Eiben and Slusarenko 1994, 
Royo et al. 1996, Saravitz and Siedow 1996). 

LOX mRNA or protein has been found in nodules of 
Vicia faba (Perlick et al. 1996), Pisum sativum (Gardner et 
al. 1996) and Lotus japonicus (Szczyglowski et al. 1997). 
The V.faba, VfLOX1, gene is expressed at high levels in 
nodules and epicotyls and· very weakly in roots. Tissue 
print experirnents show that in the nodule VfLOXl tran-
scripts are localized outside the infected tissues, in the 
nodule parenchyrna and around the root stele (Perlick et al. 
1996). In the pea, LOX antigen was found in the lurnen of 
the infection threads (Gardner et al. 1996). These localiza-
tion results allow the proposition, that LOX activity could 
be involved in a defense mechanisrn or that the protein 
could function as nitrogen store. 

In bean plants, the expression of two LOX genes 
has been analyzed. LOXl transcripts are found in young 
leaves, flowers, ernbryonic axes and 5-d old hypocotyls, but 
do not accumulate in nodules, or in leaves treated with 
MeJA or after pathogen infection (Eiben and Slusarenko 
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1994). pLOX3 is regulated by the presence of pathogens,
both in a compatible or incompatible interaction (Meier et
al. 1993).

To have a wider understanding of the role of LOX in
the common bean, a new Phaseolus vulgaris LOX cDNA
clone was characterized and the expression of the LOX
gene during nodule, root development, germination, and
seedling establishment as well as in response to stress con-
ditions and treatments with MeJA and ABA was exa-
mined.

Materials and Methods

Plant material and growth conditions—Bean seeds, Phaseo-
lus vulgaris L. cv. Negro Jamapa; (PRONASE, Mexico) were
surface sterilized in a commercial solution of sodium hypochlo-
ride at 15% (v/v) for 10 min, rinsed in running tap water for 2 h,
sown on water saturated paper towels and germinated in the dark
at 25°C and 100% relative humidity. Common bean plants were
grown in vermiculite or in a hydroponic system supplemented
with 50% nutrient solution (Somerville and Ogren 1982) in a
growth chamber under 16 h light and 8 h dark cycles and 12,000
lux at 25°C, until 21 d after germination when their two trifoliate
leaves were expanded.

P. vulgaris seedlings were inoculated 3 d after germination
with the Rhizobium tropici strain CIAT 899 (Martinez-Romero et
al. 1991) and grown in a growth chamber with 16 h photoperiod
at 24°C. Plants were watered every other day alternatively with
nitrogen-free nutrient solution and water.

cDNA isolation—A cDNA library from 21 d nodules con-
structed in the AZap vector (Stratagene) was screened with a PCR
fragment, obtained using the primers reported by (Bell and Mullet
1991), primer 1 is 5'-CACCCAATTTA(T/C)AAGCTTCT and
primer 2 is 5'-ATAGTTCTCAAATAAGCCTT, and total com-
mon bean DNA as template. To obtain the full-length cDNA
clone, a 15 d nodule cDNA library in AZap vector was screened
using a probe derived from the longest clone obtained in the first
screening (Probe A, Fig. 2).

Experimental treatments—Methyl jasmonate (MeJA) from
Apex Organics, Leicester, U.K. (>90% pure), was dissolved in
N./V-dimethylformamide to prepare a 100 mM stock solution.
Racemic cis-trans abscisic acid (ABA, 99% pure) from Sigma,
U.S.A., obtained through the Mexican distributor, was dissolved
in ethanol (100 mM stock solution). Both phytohormones were
subsequently diluted in nutrient solution to obtain 50 (iM final
concentration for treatment of plants in hydroponic cultures.
MeJA and ABA (100/^M added to the irrigating solution) treat-
ments were done for 24 h on bean seedlings grown in the dark for
4d.

Twenty-one d-old plants were wounded in one leaflet and
after 24 h the wounded leaflet and the two other leaflets in the
trifolium were collected separately. To test the systemic accumu-
lation of LOX mRNA, we also collected the upper, unwounded
trifolium. In a leaf, the levels of induction are the same for the
wounded leaflet and the other two leaflets, therefore in Fig. 6B
only the result corresponding to the wounded leaflet is presented.

For cold treatment, dark grown 4 d-old bean seedlings were
transferred to 4°C and maintained at this temperature for 24 h.
For the drought treatment, 5 d-old seedlings were transplanted to
vermiculite containing different amounts of water. The control
growth condition contained 5 ml of water per gram of vermiculite

CFW=— 0.074 MPa). The water deficit conditions corresponded
to !PW= -0.35 MPa, 1/12 x the amount of water in the control.
Twenty-four h later, seedlings were collected. Vermiculite was
maintained at a constant water potential throughout the experi-
ment. Bean hypocotyls were divided into discrete regions: growing
1 and growing 2 correspond to the elongating regions, growing 1
being the region closest to the insertion of the cotyledons and
growing 2, the section with the highest elongation rate. Mature
corresponds to the most basal region (for a detailed description
see Fig. 4a in Colmenero-Flores, et al. 1999).

In all cases plant material was frozen immediately in liquid
N2 after harvesting, and stored at — 80°C until used for RNA
extraction.

DNA sequencing and sequence analysis—DNA was se-
quenced by the dideoxy chain termination method (Sanger et al.
1977) using a Sequenase II kit (Amersham Pharmacia Biotech,
U.S.A., obtained through the Mexican distributor) following the
instructions of the manufacturer. PvLOX2-5 was sequenced using
fluorescence dideoxynucleotides and analyzed on a model 377-18
automated sequencer (PE Applied Biosystems, U.S.A.). Com-
puter analysis was performed with the Wisconsin Package Version
9.1, Genetics Computer Group (GCG), Madison, Wise.

DNA extraction and gel blot analysis—Genomic DNA was
extracted from embrionary leaves of seven d-old plants according
to Saghai-Maroof et al. (Saghai-Maroof et al. 1984). Approxi-
mately 20/ig of DNA were cleaved with £coRV, EcoRl, Bgtll and
Bamill (Boerhinger-Mannheim, Germany, obtained through the
Mexican distributor). After separation on a 0.7% (w/v) agarose
gel, DNA was denatured and transferred to Hybond-N+ mem-
brane (Amersham Pharmacia Biotech). The membrane was pre-
hybridized in 7% SDS, 0.3 M of NaH2PO4 pH 7.2 and 1 mM
EDTA and hybridized in the same buffer with the random-primed
32P-labeled 1.7 kb Bg/II fragment of the PvLOX2 cDNA clone.
After hybridization the membrane was washed twice with 0.4 x
SSC, 0.1% SDS at 65°C for 15 min and autoradiographed.

RNA extraction and analysis—RNA was extracted following
the protocol reported by Logemann et al. (Logemann et al. 1987).
Northern blot analysis was performed with 50 pt$ of total RNA
per lane, electrophoresed on 1% agarose-formaldehyde gels, trans-
ferred to Hybond-N+ membrane, and fixed both in a gel drier at
80°C for 2 h and with 0.05 M NaOH for 5 min. Hybridization and
washing was done the same way as the Southern blot.

Immunocytolocalization of LOX protein in bean nodule—
R. tropici induced nodules were fixed overnight in glutaralde-
hyde-formaldehyde solution (0.5-4%). Samples were dehydrated
in graded ethanol and ethanol-xylol series and embedded in par-
affin. Two ftm sections were used. Immunochemistry was done
with the Histostain SAP Kit (Zymed, U.S.A., obtained through
the Mexican distributor) and performed according to the manu-
facturer instructions. Primary antibody against soybean lipox-
ygenase-2 (Peterman and Siedow 1985) diluted 1 : 100 in T-PBS
was incubated overnight at 4CC. The blocking agent, levamisol
(Zymed), was included to inhibit the endogenous alkaline phos-
phatase. The chromogen-substrate used was AP-red, creating an
intense red deposit in the antigen-antibody-enzyme complex for-
mation site.

Results

LOX cDNA clones isolation and analysis—To under-
stand the role of LOX during developmental and stress
responses, we started by analyzing LOX gene expression in
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1994). pLOX3 is regulated by the presence of pathogens, 
both in a compatible or incompatible interaction (Meier et 
al. 1993). 

To have a wider understanding of the role of LOX in 
the common bean, a new Phaseolus vulgaris LOX cDNA 
clone was characterized and the expression of the LOX 
gene during nodule, root development, germination, and 
seedling establishment as well as in response to stress con-
ditions and treatments with MeJA and ABA was exa-
mined. 

Materials and Metbods 

Plant material and growth conditions-Bean seeds, Phaseo­
lus vulgaris L. cv. Negro lamapa; (PRONASE, México) were 
surface sterilized in a commercia1 solution of sodium hypoch10-
ride at 15% (v/v) for 10 min, rinsed in running tap water for 2 h, 
sown on water saturated paper towe1s and germinated in the dark 
at 25°C and 100% relative humidity. Common bean plants were 
grown in vermiculite or in a hydroponic system supplemented 
with 50% nutrient solution (Somerville and Ogren 1982) in a 
growth chamber under 16 h light and 8 h dark cycles and 12,000 
lux at 25°C, until 21 d after germination when their two trifoliate 
leaves were expanded. 

P. vulgaris seedlings were inoculated 3 d after germination 
with the Rhizobium tropici strain CIAT 899 (Martinez-Romero et 
al. 1991) and grown in a growth chamber with 16 h photoperiod 
at 24°C. Plants were watered every other day alternatively with 
nitro gen-free nutrient solution and water. 

cDNA isolation-A cONA Iibnu-y from 21 d nodules con-
structed in the lZap vector (Stratagene) was screened with a PCR 
fragment, obtained using the primers reported by (Bell and Mullet 
1991), primer 1 is 5'-CACCCAATTTA(T/C)AAGCTTCT and 
primer 2 is 5'-ATAGTTCTCAAATAAGCCTT, and total com-
mon bean ONA as template. To obtain the full-Iength cONA 
clone, a 15 d nodule cONA library in lZap vector was screened 
using a probe derived from the longest clone obtained in the first 
screening (Probe A, Fig.2). 

Experimental treatments-Methyl jasmonate (MelA) from 
Apex Organics, Leicester, U.K. (>90% pure) , was dissolved in 
N,N-dimethylformamide to prepare a 100 mM stock solution. 
Racemic cis-trans abscisic acid (ABA, 99% pure) from Sigma, 
U.S.A., obtained through the Mexican distributor, was dissolved 
in ethanol (100 mM stock solution). Both phytohormones were 
subsequently diluted in nutrient solution to obtain 50,uM final 
concentration for treatment of plants in hydroponic cultures. 
MelA and ABA (lOO,uM added to the irrigating solution) treat-
ments were done for 24 h on bean seedlings grown in the dark for 
4d. 

Twenty-one d-old plants were wounded in one leallet and 
after 24 h the wounded leaflet and the two other leallets in the 
trifolium were collected separately. To test the systemic accumu-
lation of LOX mRNA, we also collected the upper, unwounded 
trifolium. In a leaf, the levels of induction are the same for the 
wounded leallet and the other two leallets, therefore in Fig. 6B 
only the result corresponding to the wounded leaflet is presented. 

For cold treatment, dark grown 4 d-old bean seedlings were 
transferred to 4°C and maintained at this temperature for 24 h. 
For the drought treatment, 5 d-old seedlings were transplanted to 
vermiculite containing different amounts of water. The control 
growth condition contained 5 mi of water per gram of vermiculite 

('I'w= -0.074 MPa). Tbe w¡¡ter deficit conditions corresponded 
to 'I'w= -0.35 MPa, 1/12 x the amount of water in the control. 
Twenty-four h later, seedlings were collected. Vermiculite was 
maintained at a constant water potential throughout the experi-
ment. Bean hypocotyls were divided into discrete regions: growing 
1 and growing 2 correspond to the elongating regions, growing 1 
being the region c10sest to the insertion of the cotyledons and 
growing 2, the section with the highest elongation rateo Mature 
corresponds to the most basal region (for a detailed description 
see Fig. 4a in Colmenero-Flores, et al. 1999). 

In all cases plant material was frozen immediately in liquid 
Nz after harvesting, and stored at -80D C until used for RNA 
extraction. 

DNA sequeneing and sequenee analysis-ONA was se-
quenced by the dideoxy chain termination method (Sanger et al. 
1977) using a Sequenase 11 kit (Amersham Pharmacia Biotech, 
U.S.A., obtained through the Mexican distributor) following the 
instructions of the manufacturer. PvLOX2-5 was sequenced using 
fluorescence dideoxynucleotides and analyzed on a mode1 377-18 
automated sequencer (PE Applied Biosystems, U .S.A.). Com-
puter ana1ysis was performed with the Wisconsin Package Version 
9.1, Genetics Computer Group (GCG), Madison, Wisc. 

DNA extraetion and gel blot analysis-Genomic ONA was 
extracted from embrionary lea ves of seven d-01d p1ants according 
to Saghai-Maroof et al. (Saghai-Maroof et al. 1984). Approxi-
mately 20,ug of ONA were c1eaved with EeoRV, EeoRI, BgnI and 
BamHI (Boerhinger-Mannheim, Germany, obtained through the 
Mexican distributor). After separation on a 0.7% (w/v) agarose 
gel, ONA was denatured and transferred to Hybond-N+ mem-
brane (Amersham Pharmacia Biotech). The membrane was pre-
bybridized in 7% SOS, 0.3 M of NaHzP04 pH 7.2 and 1 mM 
EOTA and hybridized in the same buffer with the random-primed 
32P-labeled 1.7 kb BgnI fragment of the PvLOX2 cONA clone. 
After hybridization the membrane was washed twice with 0.4 x 

SSC, 0.1% SOS at 65 D C for 15 min and autoradiographed. 
RNA extraetion and analysis-RNA was extracted following 

the protocol reported by Logemann et al. (Logemann et al. 1987). 
Northern blot analysis was performed with 50 ¡.¡g of total RNA 
per 1ane, electrophoresed on 1% agarose-formaldehyde gels, trans-
ferred to Hybond-N+ membrane, and fixed both in a gel drier at 
80°C for 2 h and with 0.05 M NaOH for 5 mino Hybridization and 
washing was done the same way as the Southern b10t. 

Immunocytolocalization oi LOX protein in bean nodule­
R. tropici induced nodu1es were fixed overnight in glutara1de-
hyde-formaldehyde solution (0.5-4%). Samp1es were dehydrated 
in graded ethanol and ethanol-xylol series and embedded in par-
affin. Two ,um sections were used. Immunochemistry was done 
with the Histostain SAP Kit (Zymed, U.S.A., obtained through 
the Mexican distributor) and performed according to the manu-
facturer instructions. Primary antibody against soybean lipox-
ygenase-2 (Peterman and Siedow 1985) diluted·1 : 100 in T -PBS 
was incubated overnight at 4°C. The b10cking agent, 1evamisol 
(Zymed), was included to inhibit the endogenous alkaline phos-
phatase. The chromogen-substrate used was AP-red, creating an 
intense red deposit in the antigen-antibody-enzyme complex for-
mation site. 

Results 

LOX cDNA clones isolafion and analysis-To under-
stand the role of LOX during developmental and stress 
responses, we started by analyzing LOX gene expression in 
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P. vulgaris. A LOX-specific PCR fragment was synthesiz-
ed from bean total DNA as described in Materials and
Methods. The sequence of this fragment showed high ho-
mology (>99%) to LOXl (Eiben and Slusarenko 1994),
including the last whole intron of this gene. Therefore,
this fragment must correspond to the LOXl gene in the
cv. Negro Jamapa. A 21 d-old nodule cDNA library was
screened using this PCR fragment as probe. Six cDNA
clones of different sizes were obtained. Restriction map-
ping and partial sequence indicated that all of them derived
from the same gene. However, three of these clones seem
to use the same polyadenylation signal and the other three
use alternative signals. The clone with the longest 5'-end,
PvLOX2-2, was chosen for further characterization. This
clone was completely sequenced showing that the cDNA
length was 2,112 bp (Fig. 1).

According to the cDNA sizes of the LOX genes re-
ported, the PvLOX2-2 clone lacked around 700-800 bp in
the 5'-end. To obtain a complete LOX cDNA clone, a 15
d-old nodule cDNA library was screened. This time a 320

bp fragment of the most 5'-end region of PvLOX2-2 was
used as a probe (Fig. 2B, Probe A). From this screening, a
complete cDNA clone, named PvLOX2-5, was isolated
(Fig. 1). PvLOX2-5 contains the PvLOX2-2 clone with a
100% of identity. PvLOX2 encodes a protein of Mr 96.359
kDa. The comparison of the PvLOX2 derived amino acid
sequence with other P. vulgaris lipoxygenases revealed a
89.2% similarity and 85.5% of identity with the LOXl
protein (Eiben and Slusarenko 1994) and 75.8% similarity
and 68.1% identity with the pLOX3 protein (Meier et al.
1993). The differences in identity among these three se-
quences indicate that PvLOX2 is a new gene.

Southern analysis—Southern blot analysis was per-
formed to determine how many copies of the LOX gene
were present in the P. vulgaris genome. Common bean
DNA was isolated and digested with either £coRV, EcoRl,

BgHl and BamHl, and probed with a 1.7 kb BgRl fragment
of PvLOX2 (Fig. 2B, Probe B). The blot was washed at
high stringency. The results showed a major band most
probably corresponding to PvLOX2. In addition, weaker
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Y D E L S S N H Q K A Y L R T I T G K Y E A I V D L S V I E I L S R H A S D E V

TATCTKX3ACAGAGGGACAATCCTAATTGGACTGATGATACAMGGCTCTTCAAGCCTTTCAAAAGTTTGGAAACAAACTGAAGGAAATTGAGAATAAGATC
Y L G Q R D N P N W T D D T K A L Q A F Q . K F G N K L K E I E N K I L G R N N N

TCAAGTCTCAGAAACCGTGTTGGGCCAGTTAAGATGCCCTACACTCTGCTTCTTCCTACCAGT
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GTCTGTGGTTTAATGT^rroTCCTACTTTAKXXrrcAATACCAMTAATTATGTTTGCTTGTCTCTGCATAATTGTCGGGTO

ATTT4AjaiSAGTGGTATCATTTTGTGTTAAAAAAAAA 3038

120

240

360

480

600

720

840

960

1080

1200

1320

1440

1560

1680

1800

1920

2040

2160

2280

2400

2520

2640

2760

2880

3000

Fig. 1 Nucleotide and deduced amino acid sequence of PvLOX2. Numbers in the left and right margins refer to nucleotides residues.
A double underline shows the beginning of clone PvLOX2-2. (*) indicates residues involved in iron atom binding (Minor et al. 1993).
The putative polyadenylation site is underlined.
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P. vu/garis. A LOX-specific PCR fragment was synthesiz-
ed from bean total DNA as described in Materials and 
Methods. The sequence of this fragment showed high ho-
mology (>99%) to LOXI (Eiben and SIusarenko 1994), 
including the last whole intron of this gene. Therefore, 
this fragment must correspond to the LOXI gene in the 
cv. Negro Jamapa. A 21 d-old nodule cDNA library was 
screened using this PCR fragment as probe. Six cDNA 
clones of different sizes were obtained. Restriction map-
ping and partial sequen ce indicated that all of them derived 
from the same gene. However, three of these clones seem 
to use the same polyadenylation signal and the other three 
use alternative signals. The clone with the longest 5'-end, 
PvLOX2-2, was chosen for further characterization. This 
clone was completely sequenced showing that the cDNA 
length was 2,112 bp (Fig. 1). 

bp fragment of the most 5'-end regio n of PvLOX2-2 was 
used as a probe (Fig. 2B, Probe A). From this screening, a 
complete cDNA clone, named PvLOX2-5, was isolated 
(Fig.1). PvLOX2-5 contains the PvLOX2-2 clone with a 
100% of identity. PvLOX2 encodes a protein of M r 96.359 

kDa. The comparison of the PvLOX2 derived amino acid 
sequen ce with other P. vu/garis lipoxygenases revealed a 
89.2% similarity and 85.5% of identity with the LOX1 
protein (Eiben and Slusarenko 1994) and 75.8% simiIarity 
and 68.1% identity with the pLOX3 protein (Meier et al. 
1993). The differences in identity among these three se-
quences indicate that PvLOX2 is a new gene. 

Southern ana/ysis-Southern bIot analysis was per-
formed to determine how many copies of the LOX gene 
were present in the P. vu/garis genome. Common bean 
DNA was isolated and digested with either EcoRV, EcoRI, 
Bg/ll and BamHI, and probed with a 1.7 kb Bg/ll fragment 
of PvLOX2 (Fig.2B, Probe B). The blot was washed at 
high stringency. The results showed a major band most 
probably corresponding to PvLOX2. In addition, weaker 

According to the cDNA sizes of the LOX genes re-
ported, the PvLOX2-2 clone lacked around 700-800 bp in 
the 5'-end. To obtain a complete LOX cDNA clone, a 15 
d-old nodule cDNA library was screened. This time a 320 

1 GGAAAACAGTGCAGGTAAGGTAATCATGTATCACTATCACCCTTACAAATGATCAAGGAATGGTGAGAGGCCATATTGCAATTTAGCAGAAAAATATCAGAAAA'l"rACTTCAGTAGAGAG 120 
121 AGGTAATTCAGCATTGGTTGAAATGACTTTGTTCTTGGAACACGTGATATTGATCTATAAATAGGGTGTTGTGGAGAGGGTAGAAGGCACAAACAAGGCACAAGGC'l"rTGAAGAAAGAAG 240 
241 AAGAGTGTGTGGTGTTGTG'l"r'l"rATTGGCAAAGATGTTTGGAATCCTAGGAGGAGGAAAGGGTCACAAGATAAAGGGAACAGTGGTGTTGATGACCAAGAATGTGTTGGACTTCAACGAA 360 

M F GIL G G G K G H K 1 K G T V V L M T K N V L o F N E 
361 GTAGTGTCCACTGCTGGTGGTGGTGTGCTTGGTATTGCTGGTGGCATCTTTGGAACTGCAAACAAAGTAGTCGGAGGAATAGTTGACGGCGCCACCGCCATCTTCAGCCGCAACATTGCC 480 

V v S T A G G G V L G 1 A G G 1 F G T A N K V V G G 1 V o G A TAl F S R N 1 A 
481 CTACAGTTGGTCAGCGCCACCAAGACTGATGGGCTTGGAAATGGAAAGGTTGGAAAGCAAACGTTTTTGGAGAATCATCTTCC'l"rCGTTACCAACC'l"rGGGAGATAGGCAAGATGCATTC 600 

L Q L V S A T K T o G L G N G K V G K Q T F L E N H L P S L P T L G o R Q 6 A F 
601 AATA'l"rTCTTTTGAATGGGATGAGAG'l"rTTGGAATTCCAGGAGCATTCTACATCAAAAACTTTATGCAAGCTGAGTTTTTCCTTGTGAGTCTCACTCTTGAAGACATTCCAAATCATGGA 720 

N 1 S F E W o E S F G 1 P G A F Y 1 K N F M Q A E F F L V S L T L E o 1 P N H G 
721 ACCATTCACTTTGTGTGCAACTCCTGGGTTTACAACGCAAAAAA'l"rACAAAAAGGACCGTAT'l"rTCTTTGTCAACAAGACATATGTTCCAAGTGAAACTCCAACTCCACTAG'l"rAAGTAC 840 

T 1 H F V C N S W v y N A K N Y K K o R 1 F F V N K T Y V P S E T P T P L V K Y 
841 AGAAAAGAAGAATTGGAAAACCTAAGAGGGGATGGAACTGGGCAGCGTAAGGTATCTGATAGGATCTATGATTATG~GTGTATAATGATTTGGGCAACCCAGACAAGAGTGCAGATCTG 960 

R K E E L E N L R G o G T G Q R K V S o R 1 Y o y o v y N o L G N P o K S A o L 
961 GCTCGTCCTG'l"rCTTGGAGGTTCTAGTGCCTATCCATACCCTCGCAGAGGAAGAACTGGGAGAAAAGCATCAAAAAGAGATCCTAAGAGTGAGGCACCAGCCAGCGACACTTACATTCCA 1080 

A R P V L G G S S A Y P Y P R R G R T G R K A S K R o P K S E A P A S o T y 1 P 
1081 AGAGATGAAAA'l"rTTGGTCAC'l"rGAAGTCATCAGACTTTCTTACATATGGAATAAAGTCCTTGGCTCAAAGTGTCTTACCTCAA'l"rTCAATCTGCA=TTTAAATGCTGAG'l"rTGAT 1200 

R o E N F G H L K S S o F L T Y G 1 K S L A Q S V L P Q F Q s A F G L N A E F o 
1201 AAGTTTGATGACGTTCGTGGATTCTTTGAAGGTGGAATTCATCTTCCTACAGACGTAATAAGCAACATTAGCCCCTTACCAGTGATAAAGGAAATCTTCCGCACTGATGGTGAACAAGTC 1320 

K P o o V R G F F E G G 1 H L P T o V 1 S N 1 S P L P V 1 K E 1 F R T o G E Q v 
1321 CTCAAGTTTCCACCACCTCATGTCATCCAAGTTAGTAAGTCTGCATGGATGACTGATGAAGAATTTGGAAGAGAGATGCTTGCTGGTGTTAATCC'l"rGCCTAATTCAACGCCTTCAAGAG 1440 

L K F P P P H V 1 Q v S K S A W M T o E E F G R E M LAG V N P C L 1 Q R L Q E 
1441 TTCCCTCCAAAGAGCAAGCTAGATGCCTCTGTGTATGGTGATCAAACTAGCACAATTACTAAAGAAAATTTGGAGATCAACCTTGGTGGACTCACTGTGGAAGAGGCATTGAATGGTAAC 1560 

F P P K S K L o A S V Y G o o T S T 1 T K E N L E I N L G G L T V E E A L N G N 
1561 AAACTGTTCATATTAGATCACCATGATGCATTCCTACCATATCTGAGGAAGATCAATGACCTACCCACCGCAAAGTC'l"rATGCCACAAGGACAATCC'l"r'l"rCTTGAAAGATGATGGCACA 16BO 

K L F 1 L o H H o A F L P Y L R K 1 N o L P T A K S Y A T R T 1 L P L K o o G T 
1681 TTGAAGCCATTGGCTATTGAATTAAGTCTTCCACATCCTAGGGGAGATGAGTTTGGTGCTGTTAGCAGAGTTATCTTGCCTGCAGACCAAGGCGCTGAAAGCACAATTTGGCTATTGGCT 1800 

L K P L A 1 E L S L P H P R G o E F G A V S R VIL P A o Q G"A E S T 1 W L L A 
1801 AAGGCTTATGTTGTAGTAAATGACTCTTGCTATCATCAACTCATGAGCCACTGGCTAAATACCCATGCCACAATTGAGCCCTTTGTCATAGCAACAAATAGGCATCTCAGTGTGCTCCAC 1920 

K A Y V V V N D S e y H* O L M S n* W L N T H A T r E P F V I A T N R H L S V L H 

1921 CCTATATACAAACTCTTGTCGCCTCACTATCGTGACACCATGAATATCAATGGACTTGCACGACAATCACTCATCAATGCAGGTGGTATTATTGAGCAATCATTT'l"rGCCCGGGCCATTC 2040 
P 1 Y K L L S P H Y R o T M N 1 N G LAR Q s L 1 N A G GIl E Q s F L P G P F 

2041 TCTGTGGAGATGTCTTCAGCAGTTTACAAAAGTTGGGTTTTCACTGATCAGGCTCTTCCTGCTGATCTTATTAAGAGAGGAATGGCAATTGAGGATCCATCCTCTCCACATGGCCTTCGT 2160 
S v E M S S A V Y K S W V F T o Q A L P A o L 1 K R G M A 1 E o P s s P H G L R 

2161 CTAGTGATTGATGACTACCCTTATGCTGTCGATGGACTAGAGATATGGAGTGCTATCCAGTCCTGGGTTAAAGACTATGTCTCACTGTACTATGCCACAGATGATGCAATTAAGAAAGAC 2280 
LVI o o y P y A V o G L E 1 W S A 1 Q S W V K o y v S L Y Y A T o o A 1 K K o 

2281 ACAGAACTCCAAACTTGGTGGAAGGAAGCTGTTGAGAAGGGTCATGGCGACTTGAAAGACAAGCCATGGTGGCCAAAGTTGAACACTCCTCAAAATCTGATTCACATT'l'GCAGCATTATA 2400 
T E L Q T W W K E A V E K G H GOL K o K P W W P K L N T P Q N L 1 H 1 C SIl 

240 1 ATATGGACTGCTTCAGCTCTCCATGCAGCTG'l"rAATTTTGGACAATACCCTTATGGAGG'l"rACATCCTAAACCGTCCAACTCTAACCAGAAGATTGATCCCAGAGCCAGGAACCAAAGAA 2520 

1 W T A S A L H· A A V N· F G Q y P y G G Y r L N R P T L T R R L 1 P E P G T K E 
2521 TATGATGAGCTGAGCAGCAATCATCAAAAGGCTTATCTGAGAACAATTACAGGAAAATATGAGGCCATTGTGGACCTTTCTGTGATAGAGATATTGTCAAGACATGCTTCTGATGAGGTC 2640 

y o E L S S N H Q K A Y L R T 1 T G K Y E A 1 V o L S V 1 E 1 L S R H A S o E V 
2 641 TATCTTGGACAGAGGGACAATCCTAATTGGACTGATGATACAAAGGCTCTTCAAGCCTTTCAAAAG=AAACAAACTGAAGGAAATTGAGAATAAGATCTTAGGAAGGAACAACAAT 2760 

y L G Q R o N P N W T o o T K A L Q A F Q K F G N K L K E r E N K 1 L G R N N N 
27 61 TCAAGTCTCAGAAACCGTGTTGGGCCAG'l"rAAGATGCCCTACACTGTGCTTCTTCCTACCAGTAAGGAAGGTCTCACTTTCAGAGGAATCCCCAACAGCATCTCTATTTAAGGAGTCTAC 2880 

S s L R N R V G P V K M P Y T V L L P T S K E G L T P R G 1 P N S 1 S r· 
2881 GTCTGTGGT'l"rAATGTCTGTCCTACTTTATCGCTCAATACCAAATAATTATGTTTGCTTG=ATAATTGTCGGGTGTATGCTTAAGTAATGTATGGGGATCTTACATGG=C 3000 
3001 AT'I"r~TATCATTTTGTG'l"rAAAAAAAAA 3038 

Fig. 1 Nucleotide and deduced amino acid sequence of PvLOX2. Numbers in the left and right margins refer to nucIeotides residues. 
A double underline shows the beginning of clone PvL0X2-2. (*) indicates residues involved in iron ato m binding (Minor et al. 1993). 
The putative polyadenylation site is underlined. 
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Fig. 3 LOX mRNA accumulation during nodulation. Total
RNA was extracted from uninfected roots, R. etli-infected roots
and the detached nodules at the days shown in the figure. RNA
was electrophoresed, transferred to nylon membrane, and hy-
bridized to the 1.7 kb Bg/II PvLOX2 fragment. Washing was as in
indicated Fig. 2.
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Fig. 2 Southern blot analysis of bean lipoxygenase gene family.
Bean DNA was digested with the following restriction enzymes:
(1) EcoRV, (2) EcoRl, (3) Bg/II, and (4) BamHl. Hybridization
was carried out using the 1.7 kb flg/II PvLOX2 fragment (Probe
B). The filter was washed at 65°C with 0.2 x SSC, 0.1% SDS. (B)
The figure shows the restriction sites of the PvLOX2-5 full length
clone. Probe A was used to screen the 15 dai nodule cDNA library
to obtain the full length PvLOX2 clone. Probe B, was used for the
Southern and northern analysis.

hybridization bands were also detected, suggesting the
presence of 2-3 LOX genes in P. vulgaris with low homok
ogy to PvLOX2 (Fig. 2A). This result may indicate that the
expression analysis done in this work mainly represents
the accumulation of PvLOX2 mRNA. However, the detec-
tion of transcripts from a different LOX gene could not
be discarded. Therefore, we prefer using LOX instead of
PvLOX2 to refer to these products.

Expression of lipoxygenase during nodule and root

development—It has been suggested that LOX could par-
ticipate in nodule growth and development, as part of the
defense mechanism and as a nitrogen store (Gardner et al.
1996, Perlick et al. 1996). To analyze the expression pattern
of LOX during nodule biogenesis, total mRNA isolated
from R. tropici infected roots, nodules, and uninfected
roots were examined. From dai 1 to 10, when no visible or
very small nodules are present, the whole root system was
collected. From dai 14 to 21, nodules were detached from

the root. Results in Fig. 3 show that, in uninfected roots,
LOX mRNA was very abundant in young tissue between
1-3 dai and progressively decreased with root age until 16
dai, increasing again between 19-21 dai. A similar tran-
script accumulation pattern was observed for RNA ob-
tained from infected roots. Whereas an increase was de-
tected around 14 and 16 dai nodules, as compared with
infected or uninfected roots of the same age (Fig. 3).

Tissue immunolocalization of LOX during nodule de-
velopment—To explore the accumulation and localization
of LOX protein during nodule development, immunolo-
calization experiments were carried out using 14, 16, 19
and 21 dai bean nodules, and lipoxygenase-2 antibodies
(Peterman and Siedow 1985). At 14-19 dai LOX protein
was detected in parenchyma and non-infected cells of the
central nodule tissue (Fig. 4A-C). At 21 dai, a decrease of
LOX protein accumulation in both types of cells was ob-
served (Fig. 4D). No reaction was detected with the second
antibody alone (Fig. 4E).

Expression of LOX during germination—The modu-
lation of LOX transcript accumulation during seed germi-
nation and seedling establishment, when a high nutrient
mobilization and turnover of cell structures occur, was in-
vestigated. Seeds were germinated and material was col-
lected at different times. Total RNA was isolated from the
axis of germinating seeds and seedlings. LOX mRNA be-
gan to accumulate within 48 h after imbibition, was main-
tained until 72 h, and declining after that time (Fig. 5A).
Higher levels of LOX and JA have been detected in actively
growing tissue (Siedow 1991), therefore LOX mRNA ac-
cumulation in different regions of the hypocotyl was ana-
lyzed. Bean hypocotyls were divided into discrete regions:
growing 1 and growing 2 correspond to the elongating
regions, growing 1 being the region closest to the insertion
of the cotyledons, and growing 2 the section with the
highest elongation rate. Mature corresponds to the most
basal region (Colmenero-Flores et al. 1999). In the germi-
nating hypocotyl, the LOX transcript is present in the
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Fig. 2 Southern blot analysis of bean lipoxygenase gene family. 
Bean ONA was digested with the following restriction enzymes: 
(1) EcoRV, (2) EcoRI, (3) BgnI, and (4) BamHI. Hybridization 
was carried out using the 1.7 kb BgnI PvLOX2 fragment (Probe 
B). The filter was washed at 65°C with 0.2 x SSC, 0.1% SOS. (B) 
The figure shows the restriction sites of the PvL0X2-5 fulllength 
clone. Probe A was used to screen the 15 dai nodule cONA library 
to obtain the fulllength PvLOX2 clone. Probe B, was used for the 
Southern and northern analysis. 
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Fig. 3 LOX mRNA accumulation during nodulation. Total 
RNA was extracted from uninfected roots, R. etli-infected roots 
and the detached nodules at the days shown in the figure. RNA 
was electrophoresed, transferred to nylon membrane, and hy-
bridized to the 1.7 kb BgnI PvLOX2 fragment. Washing was as in 
indicated Fig. 2. 

the root. Results in Fig.3 sbow tbat, in uninfected roots, 
LOX mRNA was very abundant in young tissue between 
1-3 dai and progressively decreased witb root age until 16 
dai, increasing again between 19-21 dai. A similar tran-
script accumulation pattern was observed for RNA ob-
tained from infected roots. Wbereas an increase was de-
tected around 14 and 16 dai nodules, as compared witb 
infected or uninfected roots of tbe same age (Fig. 3). 

Tissue immunolocalization 01 LOX during nodule de­
velopment-To explore the accumulation and localization 
of LOX protein during nodule development, immunolo-
calization experiments were carried out using 14, 16, 19 
and 21 dai bean nodules, and lipoxygenase-2 antibodies 
(Peterman and Siedow 1985). At 14-19 éIai LOX protein 
was detected in parenchyma and non-infected cells of the 
central nodule tissue (Fig. 4A-C). At 21 dai, a decrease of 
LOX protein accumulation in both types of cells was ob-
served (Fig. 4D). No reaction was detected witb tbe second 
antibody alone (Fig. 4E). 

Expression 01 LOX during germination-Tbe modu-
lation of LOX transcript accumulation during seed germi-
nation and seedling establishment, wben a bigb nutrient 
mobilization and turnover of cell structures occur, was in-
vestigated. Seeds were germinated and material was col-
lected at different times. Total RNA 'was isolated from the 
axis of germinating seeds and seedlings. LOX mRNA be-
gan to accumulate within 48 h after imbibition, was main-

. tained until 72 h, and declining after that time (Fig. 5A). 
Higher levels of LOX and lA have been detected in actively 
growing tissue (Siedow 1991), therefore LOX mRNA ac-
cumulation in different regions of the hypocotyl was ana-
IYzed. Bean hypocotyls were divided into discrete regions: 
growing 1 and growing 2 correspond to the elongating 
regions, growing 1 being the region closest to the insertion 
of the cotyledons, and growing 2 the section with the 
highest eiongation rateo Mature corresponds to the most 
basal regio n (Colmenero-Flores et al. 1999). In the germi-
nating hypocotyl, the LOX transcript is present in the 
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Fig. 4 Light micrographs showing localization of LOX antigen in longitudinal sections of common bean nodules. A, B, C and D
correspond to 14, 16, 19 and 21 dai respectively. AP-red complex formation is observed in the parenchyma and non infected cells of
14,16, and 19 dai. At 21 dai de AP-red complex is scarcely detected. E, shows a 19 dai nodule control developed with the second
antibody alone, np, nodule parenchyma; vb, vascular bundle; in, infected cells; un, uninfected cells. Magnification of A, B, C and D,
20 x . Magnification of E, 10 x .

growing regions, with a higher abundance in region 1. In
contrast, almost no LOX transcript was detected in the
mature region (Fig. 5B, lanes C).

Stress induction of LOX mRNA accumulation in bean
seedlings and leaves—Since LOX has been involved in the
stress plant response, we asked whether the LOX transcript
accumulation in the common bean was affected by differ-
ent stress conditions such as.wounding, drought or cold.
When seedlings were subjected to drought or ABA treat-
ment, the pattern of accumulation in hypocotyls changed
dramatically compared with normal growing conditions
(described above). LOX mRNA decreased substantially in

growing region 1 and increased in the mature zone (see
Fig. 5B, lanes A, ABA and D, drought).

Stress conditions producing water stress such as
drought and low temperature were analyzed. The results in
Fig. 6A show that LOX mRNA accumulates in bean see-
dlings in response to water deficit, as well as low tempera-
tures (4°C), although to a lesser extent.

LOX mRNA accumulation in response to wounding
was analyzed in mature leaves by injuring only one leaflet
in a trifolium with forceps, as described in Materials and
Methods. Fig. 6B shows that LOX mRNA is induced in the
wounded leaflet as well as in the systemic trifolium. LOX
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Fig. 4 Light micrographs showing localization of LOX antigen in longitudinal sections of common bean nodules. A, B, C and D 
correspond to 14, 16, 19 and 21 dai respectively. AP-red complex formation is observed in the parenchyma and non infected cells of 
14,16, and 19 dai. At 21 dai de AP-red complex is scarcely detected. E, shows a 19 dai nodule control developed with the second 
antibody alone. np, nodule parenchyma; vb, vascular bundle; in, infected cells; un, uninfected cells. Magnification of A, B, C and D, 
20 x . Magnification of E, 10 x . 

growing regions, with a higher abundance in regio n 1. In 
contrast, almost no LOX transcript was detected in the 
mature regio n (Fig. 5B, lanes C). 

Stress induction 01 LOX mRNA accumulation in bean 
seedlings and leaves-Since LOX has been involved in the 
stress plant response, we asked whether the LOX transcript 
accumulation in the common bean was affected by differ-
ent stress conditions such as. wounding, drought or cold. 
When seedlings were subjected to drought or ABA treat-
ment, the pattern of accumulation in hypocotyls changed 
dramatically compared with normal growing conditions 
(described aboye). LOX mRNA decreased substantially in 

growing region 1 and increased in the mature zone (se e 
Fig.5B, lanes A, ABA and D, drought). 

Stress conditions producing water stress such as 
drought and low temperature were analyzed. The results in 
Fig.6A show that LOX mRNA accumulates in bean see-
dlings in response to water deficit, as well as low tempera-
tures (4°C), although to a lesser extent. 

LOX mRNA accumulation in response to wounding 
was analyzed in mature leaves by injuring only one leaflet 
in a trifolium with forceps, as described in Materials and 
Methods. Fig. 6B shows that LOX mRNA is induced in the 
wounded leaflet as well as in the systemic trifolium. LOX 
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Fig. 5 LOX mRNA accumulation in germinating seedlings. (A)
RNA extracted from common bean seeds germinated at the times
shown, was electrophoresed, transferred to nylon membrane and
hybridized to the 1.7 kb Bglll PvLOX2 fragment. Washing was as
indicated in Fig. 2. (B) Bean hypocotyls were divided into discrete
regions: growing 1 and growing 2 correspond to the elongating
regions, growing 1 being the region closest to the insertion of the
cotyledons and growing 2, the section with the highest elongation
rate. Mature corresponds to the most basal region. RNA was
extracted from untreated (C), ABA (A) or drought (D) treated
common bean hypocotyls, electrophoresed, transferred to nylon
membrane, and hybridized to the 1.7 kb Bglll PvLOX2 fragment.
Washing was as indicated in Fig. 2.

transcript was not detected in unwounded leaves.
We asked whether LOX mRNA accumulation re-

sponds to treatment with growth regulators that have been
involved in stress responses such as MeJA and ABA. To
answer that question, hydroponic cultures of common
bean plants were treated with 50 /uM MeJA or 50 /iM ABA
and total mRNA was extracted from leaves. The time-
courses of the LOX mRNA accumulation in response to
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Fig. 6 LOX mRNA accumulation after stress treatment. Com-
mon bean plants (A) or seedlings (B), were subjected to differ-
ent stresses as described in Materials and Methods. Total RNA
was extracted, electrophoresed, transferred to nylon membrane,
and hybridized to the 1.7 kb Bglll PvLOX2 fragment. Washing
was as indicated in Fig. 2. (A) C, untreated seedling; D, drought;
J, 50|/M methyl jasmonate; Cd, cold. (B) W = wounded leaflet;
S = systemic leaf.
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Fig. 7 LOX mRNA accumulation in response to MeJA and
ABA. Common bean plants grown in hydroponic conditions were
treated with (A) 50,uM MeJA or (B) 50//M ABA by adding these
compounds to the nutritive solution. Leaves were collected at the
times shown in the figure. Total RNA was extracted, electropho-
resed, transferred to nylon membrane, and hybridized to the 1.7
kb Bglll PvLOX2 fragment. Washing was as indicated in Fig. 2.

MeJA or to ABA is different. In response to MeJA a
transient LOX transcript accumulation was detected within
the first 6 h of treatment. This accumulation reached a
maximum level at 9 h and declined thereafter (Fig. 7A). In
the case of the ABA treatments,- a progressive accumula-
tion of LOX mRNA was detected after 6 h (Fig. 7B).

Discussion

In the present work, the isolation of a new LOX
cDNA clone (PvLOX2) from a common bean nodule
cDNA library, is reported. This cDNA was used to further
analyze LOX gene expression during normal development
and stress conditions. Two additional LOX DNA se-
quences have been reported for the common bean, LOXl

(Eiben and Slusarenko 1994) and pLOX3 (Meier et al.
1993) that show 84.2% and 72.7% homology, respectively,
to PvLOX2. Southern blot experiments carried out at high
stringency shows that a PvLOX2 probe detects one main
band and additional bands with less homology (Fig. 2A).
Although mainly PvLOX2 transcripts and antigen may be
detected in the analysis presented in this work, we decided
to use LOX to refer to these products, because it is still
possible that mRNAs or proteins coming from another
LOX gene could be detected by the probes and antibodies
used.

The analysis of the LOX transcript accumulation pat-
tern during bean-Rhizobium interaction shows that LOX
mRNA is present at all times tested. A maximum accumu-
lation is detected in young tissue between 1-3 dai, sugges-
ting that LOX is required in actively growing tissues, in

Common bean lipoxygenase mRNA accumulation 855 

A et o 6 12 24 48 72 96120144 t(h) 

8 Growing 1 

A e D 

Mature 

A e D .. - _ .. - -
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involved in stress responses su eh as MeJA and ABA. To 
answer that question, hydroponic cultures of common 
bean plants were treated with 50,uM MeJ A or 50,uM ABA 
and total mRNA was extracted from leaves. The time-
courses of the LOX mRNA accumulation in response to 

A C J o Cd 

B C w s 

Fig. 6 LOX mRNA accumulation after stress treatment. Com-
mon bean plants (A) or seedlings (B), were subjected to differ-
ent stresses as described in Materials and Methods. Total RNA 
was extracted, electrophoresed, transferred to nylon membrane, 
and hybridized to the 1.7 kb BgnI PvLOX2 fragment. Washing 
was as indicated in Fig. 2. (A) e, untreated seedling; D, drought; 
J, 50 tlM methyl jasmonate; Cd, cold. (B) W = wounded leaflet; 
S = systemic leaf. 
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Fig. 7 LOX mRNA accumulation in response to MeJA and 
ABA. Common bean plants grown in hydroponic conditions were 
treated with (A) 50 tlM MelA or (B) 50 tlM ABA by adding these 
compounds to the nutritive solution. Leaves were colJected at the 
times shown in the figure. Total RNA was extracted, electropho-
resed, transferred to nylon membrane, and hybridized to the 1.7 
kb BgnI PvLOX2 fragment. Washing was as indicated in Fig. 2. 

MeJA or to ABA is different. In response to MeJA a 
transient LOX transcript accumulation was detected within 
the first 6 h of treatment. This accumulation reached a 
maximum level at 9 h and declined thereafter (Fig. 7A). In 
the case of the ABA treatments,· a progressive accumula-
tion· of LOX mRNA was detected after 6 h (Fig. 7B). 

Discussion 

In the present work, the isolation of a new LOX 
cDNA clone (PvLOX2) from a common bean nodule 
cDNA library, is reported. This cDNA was used to further 
analyze LOX gene expression during normal development 
and stress conditions. Two additional LOX DNA se-
quences have been reported for the common bean, LOX1 

(Eiben and Slusarenko 1994) and pLOX3 (Meier et al. 
1993) that show 84.2% and 72.7% homology, respectively, 
to PvLOX2. Southern blot experiments carried out at high 
stringency shows that a PvLOX2 probe detects ane main 
band and additionaI bands with les s homology (Fig.2A). 
Although mainly PvLOX2 transcripts and antigen may be 
detected in the analysis presented in this work, we decided 
to use LOX to refer to these products, because it is still 
possible that mRNAs or proteins coming from another 
LOX gene could be detected by the probes and antibodies 
used. 

The analysis of the LOX transcript accumulation pat-
tern during bean-Rhizobium interaction shaws that LOX 
mRNA is present at all times tested. A maximum accumu-
latian is detected in young tissue between 1-3 dai, sugges-
ting that LOX is required in actively growing tissues, in 
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agreement with data already reported (see (Siedow 1991)
and references therein). Further, a progressive decrease of
LOX mRNA levels occurs until 16 dai, followed by an in-
crease between 19-21 dai (Fig. 3). Although we can con-
clude that this increase is not a consequence of Rhizobium

infection, since it is observed in infected and uninfected
roots, the factors involved in the re-induction of LOX
transcript accumulation are unknown. In nodules, LOX
mRNA (Fig. 3) increases around 14 dai, as compared with
what is found in roots. Also, LOX antigen is detected at
14-19 dai and is almost undetectable at 21 dai. Most pro-
bably this pattern is associated with cell elongation, be-
cause 14-19 dai nodules, but not 21 dai nodules, are in
the growing stage. In common bean nodules, nitrogenase
acetylene-reducing activity is low around 14 dai and very
high at 21 dai (Padilla et al. 1987). Therefore it is not likely
that nitrogen levels regulate LOX mRNA accumulation in
the nodule as it has been suggested (Gardner et al. 1996,
Perlick et al. 1996). The localization of LOX in nodule
parenchyma (Fig. 4A-C) suggests a defensive role for this
enzyme against possible pathogen invasion, as it has been
proposed (Perlick et al. 1996).

We do not know if soybean lipoxygenase-2 antibodies
used in the immunolocalization experiments may detect
PvLOX2 and/or other LOX proteins. The time course of
LOX protein accumulation in a western blot analysis of
nodule protein extracts, using the same antibodies, paral-
lels the results of the immunolocalization experiments.
Only one band, with Mr around 97 kDa was observed (data
not shown). Furthermore, only PvLOX2 cDNA clones
were found after the screening of two nodule libraries with
two different probes (see Results). In addition, RT-PCR
experiments with gene-specific primers, revealed the pres-
ence of PvLOX2 transcripts in nodule total RNA. Neither
LOXl (Eiben and Slusarenko 1994) mRNA nor transcripts
belonging to the clone pLOX3 (Meier et al. 1993) were
detected in these RT-PCR experiments (H. Porta, in prep-
aration). All these results suggest that PvLOX2 is the main
isoform in nodule. Nevertheless, we can not discard the
existence of another isoform in this organ.

A LOX mRNA transient accumulation during germi-
nation was found in common beans (Fig. 5A). Diverse roles
for LOX throughout this process have been suggested:
lipid mobilization, defense, and JA synthesis for growth
regulation. However, none of these have been clearly
proven (Kato et al. 1992, Melan et al. 1994, Park et al.
1994).

The presence in common beans of LOX mRNA in
actively growing tissue was examined in different hypocotyl
growing regions. The results indicate a clear correlation
between LOX mRNA levels and the developmental stage of
the tissue. Higher LOX transcript levels were detected in
the growing region than in the mature region (Fig. 5B).
Common bean LOX mRNA levels in the different hypo-

cotyl regions resemble those reported for the LOX antigen
(Eiben and Slusarenko 1994). A similar distribution was
observed for JA levels: hook > elongating region > ma-
ture region (Creelman and Mullet 1995).

When common bean seedlings are subjected to
drought or treated with ABA, the pattern of mRNA accu-
mulation changes radically. LOX mRNA levels are higher
in the mature region than in the growing region. This
contrasting expression pattern could be the result of a
decrease in the seedlings growth rate provoked by drought
or ABA treatment (Creelman et al. 1990, Colmenero-
Flores, et al. 1999). In addition, the increase in LOX
transcript levels in the mature region, suggest that LOX
mRNA increase is responding to the water status in
this hypocotyl region, which after the water stress treat-
ment shows the highest lost of turgor Cd!Ppma[ure=2.05;
^"/Pgrowing=0.63) (Colmenero-Flores, J.M. Ph.D. thesis).
Since ABA treatment induces a similar LOX transcript ac-
cumulation pattern, it could be hypothesized that ABA
acts as a mediator in this response. Our results are dis-
similar to those reported by Bell and Mullet (Bell and
Mullet 1991), since they found a higher level of LOX
transcript in the mature region than in the growing region,
and this relationship inverts during water deficit. These
results do not agree with the observation that LOX pro-
tein and activity are abundant in actively growing tissue
(Siedow 1991). It is possible that different lipoxygenases
could have specific functions under distinct physiological
situations. Therefore, PvLOX2 could have a different role
than that detected by Bell and Mullet (Bell and Mullet
1991). Further experimentation should be performed to
clarify the function of the different LOX proteins in the
plant cell.

In common bean seedlings, drought and cold induce
LOX mRNA accumulation (Fig. 6A). This increase could
be related to the membrane deterioration occurring during
water deficit. It has been reported that water deficit induces
a rise in the content of hydroperoxides in the membrane
lipids and in the LOX activity that leads to membrane
damage (Maccarrone et al. 1995). Alternatively, a LOX
mRNA increase in P. vulgaris could be required for JA
synthesis in response to drought stress (Creelman and
Mullet 1995). A different requirement of LOX during di-
verse types of stress can be suggested, since lower LOX
transcript levels are accumulated after drought or cold
stress than with MeJA application or wounding.

This work shows that in P. vulgaris wounding of ma-
ture leaves triggers a LOX mRNA increase (Fig. 6B). This
increase could also be related to several factors, such as the
formation of JA, a mediator in this response (Farmer
1992), membrane damage (Siedow 1991), or to the syn-
thesis of six-carbon volatiles (Croft et al. 1993, Bate and
Rothstein 1998). Additionally, a systemic wound-induced
LOX mRNA accumulation was observed (Fig. 6B). In
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agreement with data already reported (see (Siedow 1991) 
and references therein). Further, a progressive decrease of 
LOX mRNA levels occurs until 16 dai, foIlowed by an in-
crease between 19-21 dai (Fig.3). Although we can con-
clude that this increase is not a consequence of Rhizobium 

infection, since it is observed in infected and uninfected 
roots, the factors involved in the re-induction of LOX 
transcript accumulation are unknown. In nodules, LOX 
mRNA (Fig. 3) increases around 14 dai, as compared with 
what is found in roots. Also, LOX antigen is detected at 
14-19 dai and is almost undetectable at 21 dai. Most pro-
bably this pattern is associated with ceIl elongation, be-
cause 14-19 dai nodules, but not 21 dai nodules, are in 
the growing stage. In common bean nodules, nitrogenase 
acetylene-reducing activity is low around 14 dai and very 
high at 21 dai (Padilla et al. 1987). Therefore it is not Iikely 
that nitrogen levels regulate LOX mRNA accumulation in 
the nodule as it has been suggested (Gardner et al. 1996, 
Perlick et al. 1996). The localization of LOX in nodule 
parenchyma (Fig. 4A-C) suggests a defensive role for this 
enzyme against possible pathogen invasion, as it has been 
proposed (Perlick et al. 1996). 

We do not know if soybean Iipoxygenase-2 antibodies 
used in the immunolocalization experiments may detect 
PvLOX2 and/or other LOX proteins. The time course of 
LOX protein accumulation in a western blot analysis of 
nodule protein extracts, using the same antibodies, paral-
lels the results of the immunolocalization experiments. 
Only one band, with M r around 97 kDa was observed (data 
not shown). Furthermore, only PvLOX2 cONA clones 
were found after the screening of two nodule libraries with 
two different probes (see Results). In addition, RT-PCR 
experiments with gene-specific primers, revealed the pres-
ence of PvLOX2 transcripts in nodule total RNA. Neither 
LOXI (Eiben and Slusarenko 1994) mRNA nor transcripts 
belonging to the clone pLOX3 (Meier et al. 1993) were 
detected in these RT-PCR experiments (H. Porta, in prep-
aration). AH these results suggest that PvLOX2 is the main 
isoform in nodule. Nevertheless, we can not discard the 
existence of another isoform in this organ. 

A LOX mRNA transient accumulation during germi-
nation was found in common beans (Fig. 5A). Oiverse roles 
for LOX throughout this process have been suggested: 
Iipid mobilization, defense, and JA synthesis for growth 
regulation. However, none of these have been clearly 
proven (Kato et al. 1992, Melan et al. 1994, Park et al. 
1994). 

The presence in common beans of LOX mRNA in 
actively growing tissue was examined in different hypocotyl 
growing regions. The results indicate a clear correlation 
between LOX mRNA levels and the developmental stage of 
the tissue. Higher LOX transcript levels were detected in 
the growing region than in the mature regio n (Fig.5B). 
Common bean LOX mRNA levels in the different hypo-

cotyl regions resemble those reported for the LOX antigen 
(Eiben and Slusarenko 1994). A similar distribution was 
observed for JA levels: hook > elongating regio n > ma-
ture region (Creelmap and Mullet 1995). 

When common bean seedlings are subjected to 
drought or treated with ABA, the pattern of mRNA accu-
mulation changes radicaIly. LOX mRNA le veis are higher 
in the mature region than in the growing region. This 
contrasting expression pattern could be the result of a 
decrease in the seedlings growth rate provoked by drought 
or ABA treatment (Creelman et al. 1990, Colmenero-
Flores, et al. 1999). In addition, the increase in LOX 
transcript levels in the mature region, suggest that LOX 
mRNA inerease is responding to the water status in 
this hypocotyl region, which after the water stress treat-
ment shows the highest lost of turgor (L! 'l'Pma,ure=2.05; 
L! 'l'Pgrowing=0.63) (Colmenero-Flores, J.M. Ph.D. thesis). 
Since ABA treatment induces a similar LOX transcript ac-
cumulation pattern, it could be hypothesized that ABA 
acts as a mediator in this response. Our results are dis-
similar to those reported by BelI and Mullet (Bell and 
Mullet 1991), since theyfound a higher level of LOX 
transcript in the mature region than in the growing region, 
and this relationship inverts during water deficit. These 
results do not agree with the observation that LOX pro-
tein and aetivity are abundant in actively growing tissue 
(Siedow 1991). It is possible that different lipoxygenases 
could have specific functions under distinct physiological 
situations. Therefore, PvLOX2 could have a different role 
than that detected by Bell and Mullet (Bell and Mullet 
1991). Further experimentation should be performed to 
cIarify the funcHon of the different LOX proteins in the 
plant cell. 

In common bean seedlings, drought and cold induce 
LOX mRNA accumulation (Fig.6A). This increase could 
be related to the membrane deterioration occurring during 
water deficit. It has been reported that water deficit induces 
a rise in the content of hydroperoxides in the membrane 
Iipids and in the LOX activity that leads to membrane 
damage (Maccarrone et al. 1995). Alternatively, a LOX 
mRNA inerease in P. vulgaris could be required for JA 
synthesis in response to drought stress (Creelman and 
Mullet 1995). A different requirement of LOX during di-
verse types of stress can be suggested, since lower LOX 
transcript levels are accumulated after drought or cold 
stress than with MeJA application or wounding. 

This work shows that in P. vulgaris wounding of ma-
ture leaves triggers a LOX mRNA increase (Fig. 6B). This 
increase could also be related to several factors, such as the 
formation of JA, a mediator in this response (Farmer 
1992), membrane damage (Siedow 1991), or to the syn-
thesis of six-carbon volatiles (Croft et al. 1993, Bate and 
Rothstein 1998). Additionally, a systemic wound-induced 
LOX rnRNA accumulation was observed (Fig.6B). In 
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Solanaceae, the systemic response is regulated by systemin,
a 18 aa peptide, synthesized after wounding, which acti-
vates this response by inducing JA synthesis (Pearce et al.
1991, Pena-Cortes et al. 1995). In common beans, systemin
has not been found. However, the systemic response could
be mediated by a molecule with an equivalent function.

Finally, in agreement with the role of JA and ABA as
mediators of abiotic and biotic stress responses, LOX
mRNA accumulation after application of these regulators
was analyzed. The results of these experiments show that
MeJA and ABA activate LOX mRNA accumulation (Fig. 7),
suggesting their involvement in the response of common
beans to adverse conditions, such as cold, drought or
wounding.
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Solanaceae, the systemic response is regulated by systemin, 
a 18 aa peptide, synthesized after wounding, which acti-
vates this response by inducing lA synthesis (Pearce et al. 
1991, Peña-Cortés et al. 1995). In common beans, systemin 
has not been found. However, the systemic response could 
be mediated by a molecule with an equivalent function. 

Finally, in agreement with the role of lA and ABA as 
mediators of abiotic and biotic stress responses, LOX 
mRNA accumulation after application of these regulators 
was analyzed. The results of these experiments show that 
MelA and ABA activate LOX mRNA accumulation (Fig.7), 
suggesting their involvement in the response of common 
beans to adverse conditions, such as cold, drought or 
wounding. 
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