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Analysis of Local Decisions Using
Hierarchical Modeling, Applied to Home
Radon Measurement and Remediation
Chia-yu Lin, Andrew Gelman, Phillip N. Price and David H. Krantz

Abstract. This paper examines the decision problems associated with
measurement and remediation of environmental hazards, using the ex-
ample of indoor radon (a carcinogen) as a case study. Innovative methods
developed here include (1) the use of results from a previous hierarchical
statistical analysis to obtain probability distributions with local variation
in both predictions and uncertainties, (2) graphical methods to display
the aggregate consequences of decisions by individuals and (3) alterna-
tive parameterizations for individual variation in the dollar value of a
given reduction in risk. We perform cost-benefit analyses for a variety of
decision strategies, as a function of home types and geography, so that
measurement and remediation can be recommended where it is most ef-
fective. We also briefly discuss the sensitivity of policy recommendations
and outcomes to uncertainty in inputs. For the home radon example,
we estimate that if the recommended decision rule were applied to all
houses in the United States, it would be possible to save the same num-
ber of lives as with the current official recommendations for about 40%
less cost.

Key words and phrases: Bayesian decision analysis, hierarchical mod-
els, small area decision problems, value of information.

1. INTRODUCTION

1.1 Decision-making for Environmental Hazards

Associated with many environmental hazards is
a decision problem: whether to (1) perform an ex-
pensive remediation to reduce the risk, (2) do noth-
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ing, or (3) take a relatively inexpensive measure-
ment of the risk and use this information to decide
whether to (a) remediate or (b) do nothing. This de-
cision can often be made at the individual, house-
hold, or community level. Performing this decision
analysis requires estimates for the risks. In partic-
ular, the more precise are the local risk estimates,
the more feasible it is to construct localized decision
recommendations that allow attention and effort to
be focused on the individuals, households and com-
munities at most risk.

In this paper, we present an analysis of the
remediation–measurement decision problem in the
context of a hierarchical model for estimating risk
as a function of location and various covariates.
We develop and illustrate our method for the prob-
lem of home radon, a recognized cancer risk, for
which appropriate measurement and remediation
strategies have been and continue to be the subject
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of debate. In addition to its own importance, the
radon problem shares several features with other
environmental hazards: (a) the risks are geographi-
cally dispersed but have strong spatial patterns; (b)
information exists to identify risky areas, but one
cannot easily identify individual households at high
risk; (c) it is possible to perform local measurements
to identify the risks of individual households, but it
would be expensive to measure every household.

By “hierarchical model,” we mean a statistical
model in which a separate statistical parameter
is assigned to each predicted unit (each county, in
the present case). To clarify, consider a standard
nonhierarchical approach to predicting mean radon
concentrations by county: measured radon concen-
trations are regressed on, say, measured surficial
uranium concentration, and two regression coeffi-
cients (a slope and an intercept) are determined.
These coefficients are then used to predict mean
radon concentrations over an area such as the
United States, with uncertainties estimated by the
standard error of the regression. Although such an
approach yields a different predicted mean radon
level for each county, this is not a hierarchical model
because the underlying statistical parameters—the
regression coefficients—do not vary by county.

In contrast, a hierarchical model includes the re-
gression coefficients and also, for each county, an
additional coefficient allowing the predicted mean
for that county to differ from the regression predic-
tion. To see why this makes sense, consider a county
with many radon measurements, whose observed
mean concentration differs substantially from the
regression prediction. Using the regression predic-
tion in such a county is not reasonable, since (given
enough samples) the prediction is known to be erro-
neous. In the hierarchical Bayesian approach, each
county’s estimate is a compromise between the re-
gression prediction and the measured value, with
the relative weighting determined by the amount
of data in the county and the overall accuracy of
the regression predictions. Moreover, a hierarchical
model allows a separate uncertainty estimate for
each county.

1.2 Hierarchical Decision Analysis

Our approach to hierarchical decision analysis
has four steps. First, a hierarchical model is fit to
available data, resulting in a posterior distribu-
tion for exposure to the environmental hazard for
any given household, as a function of locality and
other household information. Second, the problem
of “decision-making under certainty” is formulated:
for example, for the radon remediation problem, the
tradeoff between dollars and lives implies a willing-

ness to remediate at an action level Raction, so that if
the true exposure were known, one would remediate
if and only if it exceeds Raction; depending on varia-
tions in risks and risk preferences, Raction can vary
among households. Third, the “decision-making un-
der uncertainty” problem is solved: for the radon
problem, the measurement–remediation decision
for any household is a function of its Raction and its
posterior distribution of exposure level. If additional
information is available at the household level—for
example, a previous radon measurement—this can
be incorporated into the posterior distribution. The
fourth step of our analysis is to evaluate the effect
of various decision recommendations, in terms of
expected lives saved and expected costs, if applied
within a larger geographic area (for example, the
entire United States). Results can also be expressed
in terms of expected marginal and aggregate cost
per life saved. As always in decision analysis, sensi-
tivity analysis is then done to see how the estimated
costs and lives saved vary when assumptions are
perturbed.

With the exception of the hierarchical modeling,
the above steps follow the standard paradigm of
expected-value or “Bayesian” decision analysis (see,
e.g., Dakins, Toll, Small and Brand, 1996, and En-
glehardt and Peng, 1996, for a recent review and
examples). The use of a hierarchical model for the
spatially varying hazard allows us to incorporate
modern Bayesian inference into a formal decision
analysis. The standard regression-modeling ap-
proach does allow recommendations to vary as a
function of the predictive variables and thus to
vary with location, but hierarchical modeling has
lower predictive error than standard regression ap-
proaches, and, more importantly, allows additional
variation in recommendations, related to spatially
varying uncertainties.

Our cost-benefit analysis of radon decisions
makes geographically variable recommendations.
The recommended localized actions are more cost-
effective than the current single nationwide recom-
mendation (see, in particular, Evans, Hawkins and
Graham, 1988, who recognize that precise modeling
of radon levels should allow targeted recommen-
dations), but care is required in summarizing the
decision analysis, which we do using maps and a
series of graphs indicating costs for various decision
options.

A characteristic of the hierarchical decision analy-
sis is that aggregate outcomes of decision strategies
can no longer be trivially derived from individual
recommendations. In statistical terms, aggregating
requires averaging over the predictive distribution
of the thousands of model parameters that indicate
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radon risk in the counties. We compute expected
costs and lives saved by simulation from our pos-
terior distribution.

1.3 Outline of This Paper

We develop our hierarchical approach to decision
analysis in the context of measurement and reme-
diation of home radon. Sections 2 and 3 of this
paper provide background on the indoor radon prob-
lem and our previous work using hierarchical mod-
eling of radon survey data to identify the houses
that are likely to have high radon levels given in-
formation at the geographical and house level. Sec-
tion 4 addresses the measurement and remediation
decision for individual homeowners, and Section 5
presents the estimated aggregate consequences of
following the recommended strategy and various al-
ternatives if applied throughout the United States.
For both the individual decisions and aggregate con-
sequences, we develop a series of graphical displays
that are potentially useful for hierarchical decision
problems in general. In Section 6 we explore the
sensitivity of our results to assumptions, and we
conclude in Section 7 with a discussion of the spe-
cific relevance of our methods to the indoor radon
problem and the general applicability to hierarchi-
cal decision problems.

2. THE RADON PROBLEM AND

DECISION OPTIONS

2.1 Health Effects

Radon is a carcinogen, a naturally occurring ra-
dioactive gas whose decay products are also radioac-
tive, known to cause lung cancer in high concentra-
tion and estimated to cause several thousand lung
cancer deaths per year in the U.S. (see Nazaroff and
Nero, 1988, for an overview of the radon problem;
Cole, 1993, for a discussion of the governmental re-
sponse to it; National Research Council, 1998, for
an influential official report).

The well-documented dose-dependent excess of
lung cancer among underground miners exposed
to radon has convincingly demonstrated that expo-
sure to very high concentrations of radon causes
lung cancer. Levels in homes are usually lower than
those in mines, miners are also exposed to other
carcinogens, miners are overwhelmingly smokers
and working miners generally breathe both harder
and more deeply than people at home, so sev-
eral assumptions and extrapolations are needed
to estimate cancer risk at typical home levels (see
National Research Council, 1991 and National
Research Council (BEIR VI), 1998, Tables 3–6).
These extrapolations (including an assumed linear

dose-response function) suggests that about 15,400
additional lung cancer deaths occur annually in the
United States due to radon, mostly among smokers,
though this number is based on an unrealistic com-
parison to the number of deaths that would occur if
nobody were exposed to any radon at all.

The miner studies demonstrate statistically sig-
nificant elevated cancer risk at doses equivalent to
lifetime residence in a home at about 20 picoCuries
per liter (pCi/L). (An alternative notation is the in-
ternational standard unit of Bequerels per cubic me-
ter; 1 pCi/L = 37 Bq/m3.) Estimates based on the
miner studies, on experiments on animals and on
biological and biophysical models suggest that, at
least at high levels, lifetime exposure to each ad-
ditional pCi/L of indoor radon adds a lifetime risk
of about 0.0134, 0.0026, 0.0088 and 0.0018 of lung
cancer for male ever-smokers, male never-smokers,
female ever-smokers, and female never-smokers, re-
spectively (National Research Council, 1998). See
Table 1 for the parameters that we use in this pa-
per for each sex–smoking category.

The dose-response at low concentrations is dif-
ficult to estimate, because all case-control studies
have been fairly small and because lifetime radon
exposures are poorly estimated. Although a linear
dose-response relation is plausible and is consistent
with case-control data, current data are also consis-
tent with a threshold model or even a small benefi-
cial effect at low doses (Cohen, 1995; Bogen, 1997;
Lagarde et al., 1997; Lubin and Boice, 1997).

Partly from necessity and partly for historical rea-
sons, radon researchers use a fairly large and con-
fusing assortment of units. For instance, the radia-
tion absorbed by the body (the “dose”) depends not
just on the concentration of radon in the air, but
also on the breathing rate and of course on the du-
ration of exposure, so there is no simple conversion
between radon concentration in indoor air and dose
absorbed by a human body. Moreover, radon’s decay
products, rather than radon itself, deliver most of
the radiation dose associated with radon, and the
differential removal of decay products and radon
itself can lead to variation in the relative concen-
trations of each. For clarity and convenience, we
write “the radon dose” when we mean “the dose from
radon and its decay products,” where standard pa-
rameter estimates have been used to make all of
the necessary adjustments. See Nazaroff and Nero
(1988) for an overview of many of these issues.

We present cumulative exposures in terms of
pCi/L-years, rather than the historical unit (also
non-SI) which is “working level months (WLM).”
The direct conversion, for breathing 1 pCi/L air for
a year, is 1 pCi/L-year = 0.26 WLM, but it is stan-
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Table 1

Estimated absolute and relative risks of lung cancer death for lifetime indoor exposure to radon*

Male Female

Ever-smoker Never-smoker Ever-smoker Never-smoker

Baseline absolute risk at 0 pCi/L 0.07409 0.00579 0.04349 0.00377
Excess relative risk for additional pCi/L 0.1149 0.2827 0.1280 0.2998
Excess absolute risk for additional pCi/L 0.0134 0.0026 0.0088 0.0018
Average numbers in U.S. households 0.30 1.07 0.27 1.16

*Derived from BEIR VI (National Research Council, 1998), which describes the absolute increment in lung cancer risk resulting from
exposure to indoor radon beyond that from exposure to outdoor-background concentration of radon, and under the assumption that a
person spends 70% of his or her time indoors. Model is absolute risk = baseline risk×�1+excess relative risk�, with excess relative risk
proportional to radon exposure. Average household populations by sex and smoking status are derived from the Statistical Abstract of

the United States and CDC (1994), combining populations of children and adults. An ever-smoker is defined as a person who has smoked
at least 100 cigarettes or the equivalent in his or her lifetime.

dard to assume that an individual is only at home
about 70% of the time, so that a home concentra-
tion of 1 pCi/L for a year leads to an exposure of
0.18 WLM.

2.2 U.S. Residential Radon Concentrations

and Measurements

Residential radon measurements are commonly
made following a variety of protocols. The most
frequently used protocol in the United States has
been the “screening” measurement: a short-term
(2–7 day) charcoal-canister measurement made
on the lowest level of the home (often an unoc-
cupied basement), at a cost of about $15 to $20.
(Under a more recent protocol, measurements are
taken on the lowest living area level of the home.)
Short-term measurements made at different times
during the same season have an approximately log-
normal distribution (i.e., the log measurements are
normally distributed) with a geometric standard
deviation (GSD, the exponential of the standard
deviation of the log measurements) of roughly 1.6,
primarily due to temporal variation in indoor radon
concentrations.

In addition, because short-term measurements
are usually made on the lowest level of the home
and during the season of highest indoor radon
exposure, they are upwardly biased measures of
annual living area average radon level. The magni-
tude of this bias varies by season and by region of
the country and depends on whether the basement
(if any) is used as living space (White, Clayton,
Alexander and Clifford, 1990; Klotz et al., 1993;
Price and Nero, 1996); our estimated correction fac-
tors for winter-season, lowest-level measurements,
known as “screening” measurements, appear in Ta-
ble 2. (If the short-term measurement is not made
in winter, then an additional seasonal correction

factor is needed.) Due to the large temporal vari-
ability and other sources of variation, a short-term
measurement can predict the long-term living area
concentration only to within a factor of 1.8 or so,
even after correcting for systematic biases.

A radon measure that is far less common than the
screening measurement, but is believed to be much
better for evaluating radon risk, is a twelve-month
integrated measurement of the radon concentration.
By monitoring on every living level of the home
(that is, on every floor in which people spend more
than a small amount of time each day), one can
measure the “annual living area average radon con-
centration,” or ALAA. For a typical home with two
stories used as living space, such monitoring costs
about $50. These long-term living area measure-
ments are not subject to the biases and effects of
day-to-day and seasonal variation that affect screen-
ing measurements. A national sample of ALAA mea-
surements was collected in the National Residential
Radon Survey (NRRS) (see Marcinowski, Lucas and
Yeager, 1994).

The exact relationship between the ALAA concen-
trations and the occupant exposures is not known;
people spend different amounts of time in differ-
ent areas of the home, long-term measurements are
still subject to some error, even on the same floor
different rooms can have slightly different radon
levels and so on. For the purposes of this paper,
we assume that an ALAA measurement (i.e., the
arithmetic mean of long-term measurements made
on each occupied level of the home) estimates each
resident’s exposure to within a multiplicative error
with a geometric mean (GM) of unity and a GSD
of 1.2.

The distribution of annual-average living area
home radon concentrations in U.S. houses, as mea-
sured in the NRRS, is approximately lognormal
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Table 2

Correction factors by which one must divide a short-term winter radon measurement to estimate annual-average living-area level*

No Basement is a Basement is not
Region basement living area a living area

New England 2.2 (1.3) 1.7 (1.1) 3.4 (1.3)
New York/New Jersey 1.6 (1.3) 1.6 (1.3) 3.0 (1.3)
Mid-Atlantic 1.6 (1.1) 1.6 (1.1) 2.8 (1.1)
Southeast 1.3 (1.1) 1.9 (1.1) 2.3 (1.1)
Midwest 1.2 (1.1) 1.6 (1.1) 2.2 (1.1)
South 1.3 (1.1) 1.8 (1.2) 1.7 (1.1)
Central Plains 1.5 (1.1) 1.7 (1.1) 3.1 (1.1)
Big Sky and Plains 1.2 (1.1) 2.1 (1.1) 3.1 (1.1)
Southwest 1.3 (1.1) 1.8 (1.2) 2.6 (1.1)
Northwest 1.2 (1.1) 1.9 (1.1) 4.0 (1.1)

*Geometric standard errors of estimation for the correction factors are in parentheses; even if the correction factors were known perfectly,
the annual average living area concentration would still be subject to large uncertainty due to temporal variability in the short-term
measurements. From Price and Nero (1996).

with geometric mean (GM) 0.67 pCi/L and geo-
metric standard deviation (GSD) 3.1 (Marcinowski,
Lucas and Yaeger, 1994). (Throughout, we use the
term “house” to refer to owner-occupied ground-
contact homes.) These data suggest that between
50,000 and 100,000 homes have radon concentra-
tions in primary living space in excess of 20 pCi/L.
This level causes an annual radiation exposure
roughly equal to the occupational exposure limit for
uranium miners. Thirty years’ occupancy of such a
house would yield an added estimated risk of lung
cancer of about 2.4% among never-smokers and
12.1% among ever-smokers. The lung cancer risks
from radon are very high compared with the risks
estimated for other kinds of environmental expo-
sures regulated by the EPA (for comparison, see
U.S. Congress, Office of Technology, 1993).

2.3 Radon Remediation

Several radon control techniques have been devel-
oped, tested and implemented (Henschel and Scott,
1987; Prill, Fisk and Turk, 1990), and long-term
performances of these systems were reported (Turk,
Harrison and Sextro, 1991). The currently preferred
remediation method for most homes, “sub-slab de-
pressurization,” costs about $1000–$1500 to install
and requires constant use of a small electric fan;
the net present value of such a system is about
$2000, including the heating and cooling costs as-
sociated with increased ventilation. Although long-
term experience with these systems is lacking, for
purposes of our analysis we will assume that such
a system remains effective for 30 years. We are
not aware of any large-scale randomized studies on
the effect of remediation on radon levels, but many
small nonrandomized studies have been conducted

and are summarized in an EPA report (Henschel,
1993). These studies suggest that almost all homes
can be remediated to below 4 pCi/L, while reduc-
tions under 1 pCi/L are rarely attained with conven-
tional methods, for homes with a very wide range of
preremediation levels. For simplicity, we make the
assumption that remediation will reduce radon con-
centration to 2 pCi/L. For obvious reasons, little is
known about effects of remediation on houses that
already have low radon levels; we will assume that
if the initial annual living area average level is less
than 2 pCi/L, then remediation has no effect.

Recommendations for radon remediation vary by
country, with Sweden setting a recommended action
level for the annual living area average (ALAA) in-
door radon concentration of 10 pCi/L and Canada
recommending action at 20 pCi/L, compared to the
U.S. level of 4 pCi/L. The current U.S. recommenda-
tions, if fully implemented, would cost on the order
of $10–$20 billion in measurement and remediation
costs (see Nero, Gadgil, Nazaroff and Revzan, 1990).
In Section 5, we discuss the efficiency of various
policies in terms of estimated dollars per life saved.

2.4 Individual and Public Decision Options

One can imagine an ideal world in which home-
owners make monitoring and remediation decisions
based on full knowledge of the current understand-
ing of radon risk and remediation costs and effec-
tiveness and taking into account their own risk tol-
erance and financial state. In the real world, though,
there is a substantial cost (in time and hassle) as-
sociated with reaching that level of expertise, and it
is reasonable for people to follow more general rec-
ommendations on whether to take action and what
sort of action to take.
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An important policy decision, well outside the
scope of this paper, is just how general such recom-
mendations should be in practice: should different
recommendations be made for smokers and non-
smokers, for old and young people, for large and
small families, and so on. Given the estimated risks
from radon, and the cost and effectiveness of reme-
diation, an individual homeowner (or home seller
or buyer) can make decisions about measurement
and remediation. In addition, national, state and
local governments can make recommendations for
individual decisions or, for stronger action, can re-
quire measurement or remediation of new houses
or existing houses, either in the entire country or
in targeted areas.

From a long-term public health perspective, an
approach that does not depend on household compo-
sition makes some sense; children are born, people
take up smoking, houses are sold to other owners
and so on, so that basing recommended actions on
average households is not totally unreasonable. Fol-
lowing the procedures of the present paper, one can
make household-specific recommendations based on
such factors, but we have not done so, choosing in-
stead to focus only on geographic variation and a
few house construction parameters. Realistically, we
think that if the EPA were to change its radon pol-
icy, the most likely change would be to make ge-
ographically specific recommendations rather than
to make recommendations that vary at the level of
individual households.

3. GEOGRAPHIC MODELING OF INDOOR

RADON LEVELS

3.1 Data Sources and Hierarchical

Regression Model

Although radon is thought to cause a large num-
ber of deaths compared to other environmental
hazards, the vast majority of houses in the United
States do not have elevated radon levels that would
be substantially reduced by remediation. Based on
the NRRS data, about 84% of homes have ALAA
concentrations under 2 pCi/L, and about 90% are
below 3 pCi/L. A goal of some researchers has
been to identify locations and predictive variables
associated with high-radon homes so that moni-
toring and remediation programs can be focused
efficiently. One such effort at the Lawrence Berke-
ley National Laboratory used Bayesian hierarchical
modeling to analyze indoor radon measurements.
These models include monitoring data, county indi-
cators, a measure of surficial radium concentration,
a climatological variable, and house construction
information and were fit separately in 10 regions of

the United States (Price, Nero and Gelman, 1996;
Price, 1997; Revzan et al., 1998). These models
were used to fit data from short-term measure-
ments, which were calibrated to long-term living
area averages as described by Price and Nero
(1996). Combining short- and long-term measure-
ments allowed us to estimate the distribution of
radon levels in nearly every county in the United
States, albeit with widely varying uncertainties
depending primarily on the amount of monitoring
data within the county.

Unfortunately (from the standpoint of radon mit-
igation programs), indoor radon concentrations are
highly variable even within small areas. Given
the predictive variables mentioned in the previ-
ous paragraph, the radon level of an individual
house in a specified county can be predicted only to
within a factor of at best about 1.9, with a factor
of 2.3 being more typical (Price, Nero and Gelman,
1996; Price 1996), a disappointingly large predic-
tive uncertainty considering the factor of 3.1 that
would hold given no information on the home other
than that it is in the United States. On the other
hand, this seemingly modest reduction in uncer-
tainty is still enough to identify some areas where
high-radon homes are very rare or very common.
For instance, in the mid-Atlantic states, more than
half the houses in some counties have long-term
living area concentrations over the EPA’s recom-
mended action level of 4 pCi/L, whereas in other
counties fewer than 0.5 percent exceed that level
(Price, 1996).

Various monitoring efforts demonstrate that the
distribution of indoor radon concentrations for an
area or region of almost any scale is reasonably well
represented by a lognormal distribution, or some-
times the sum of two such distributions (Nero, Gad-
jil, Nazaroff and Revzan, 1990). Further, a large
area’s distribution is effectively a mixture of the in-
dividual distributions of the composite subareas, all
of which are reasonably well represented by individ-
ual lognormal distributions, with geometric means
(GM’s) that vary from one subarea to another (see
Nero, Schwehr, Nazaroff and Revzan, 1986; Price,
Nero and Gelman, 1996, for example).

In each region of the country, a hierarchical linear
regression model at the level of individual counties
was previously fit to the logarithms of home radon
measurements (see Price, Nero and Gelman, 1996;
Price, 1997). We shall apply these models to perform
inferences and decision analyses for previously un-
measured houses i, using the following notation:

Ri = ALAA radon concentration in house i;
θi = log�Ri�;
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Xi = Vector of explanatory variables (including
county-level variables, house-level variables,
and county indicators) for house i;

β = Vector of regression coefficients;
τ2 = Variance component in the model correspond-

ing to variability between houses conditional
on the predictors;

σ2 = Variance component in the model correspond-
ing to measurement variability within a
house.

Then the unknown θi has the predictive distribu-
tion,

θi�X;β ∼ N�Xiβ; τ
2�:(1)

There is some uncertainty in the coefficients β (par-
ticularly for the indicators corresponding to coun-
ties with few observations) and a small amount of
posterior uncertainty in the variance components of
the model. For the purposes of this paper, we need
only know the predictive distribution for any given
θi, averaging over all these uncertainties; it will be
approximately normal (because the variance compo-
nents are so well estimated), and we label it as

θi ∼ N�Mi; S
2
i �:(2)

We write Mi = �Xβ̂�i, where β̂ is the posterior
mean from the analysis in the appropriate region
of the country. The variance S2

i includes the poste-
rior uncertainty in the coefficients β and also the
within-county variance τ2. The GSD of the unex-
plained within-county variation, eτ, is estimated to
be in the range 1.9–2.3 (depending on the region of
the country) which puts a lower limit on eS. To be
precise, the GSD’s eS of the predictive distributions
for home radon levels vary from 2.1 to 3.0, and they
are in the range �2:1;2:5� for most U.S. houses (the
houses with eS > 2:5 lie in small-population coun-
ties for which little information was available in the
radon surveys, resulting in relatively high predic-
tive uncertainty within these counties). The GM’s
of the house posterior predictive distributions, eM,
vary from 0.1 to 14.6 pCi/L, with 95% in the range
�0:3;3:7� and 50% in the range �0:6;1:6�. The houses
with the highest prior GM’s are houses with base-
ment living areas in high-radon counties; the houses
with lowest prior GM’s have no basements and lie
in low-radon counties. See Price and Nero (1996)
for more details on the characteristics of high- and
low-radon houses.

3.2 Using the Model as Input to Decision Analysis

This paper focuses on decisions, not modeling.
For the rest of the paper we work at the individ-
ual house level and use the posterior inference for

house i from the model discussed above as our prior
distribution for the subsequent analysis. Since we
are considering decisions for houses individually,
we suppress the subscript i for the rest of the paper.

The distribution (2) summarizes the state of
knowledge about the radon level in a house given
its county and basement information. Now suppose
a measurement y ∼ N�θ; σ2� is taken in the house.
(We are assuming an unbiased measurement. If
a short-term measurement is being used, it will
have to be corrected for the bias shown in Table
2, and for an addition seasonal correction factor,
if the measurement was not made in winter (e.g.,
see Mose and Mushrush, 1997; Pinel, Fearn, Darby
and Miles, 1995). In our notation, y and θ are the
logarithms of the measurement and the true ALAA
radon level, respectively. The posterior distribution
for θ is

θ�M;y ∼ N�3;V�;(3)

where

3 = M/S2 + y/σ2

1/S2 + 1/σ2
; V = 1

1/S2 + 1/σ2
(4)

(see, e.g., Gelman, Carlin, Stern and Rubin, 1995).
We base our decision analysis of when to measure
and when to remediate on the distributions (2)
and (3).

Before moving to the decision analysis, we briefly
discuss the relevance of the hierarchical aspect of
our radon model. In a classical regression model, the
estimated distributions of home radon levels vary
across counties because of the geographic variation
in the regression predictors (for our model, these
are listed in the first paragraph of Section 3). In the
hierarchical regression model, the county estimates
are allowed to vary from the regression prediction,
by an amount dependent on the observational data
in the county. As a result, the recommended deci-
sions within any county depend on the available
data for that county as well as on the estimated
regression coefficients.

4. INDIVIDUAL DECISIONS ON WHETHER TO

MONITOR OR REMEDIATE

The suggestion that every home should monitor is
highly conservative (we might also say highly “pro-
tective”), based on the knowledge that homes with
elevated radon concentrations have been found in
every state, so the only way to be sure that a home
does not have an elevated concentration is to test.
However, if the risk is low enough [i.e., if the pre-
dicted radon level Mi = exp�Xiβ� is low for house
i], then even the small cost of monitoring may not
be worthwhile.
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We now work out the optimal decisions of mea-
surement and remediation conditional on the pre-
dicted radon level in a home, the additional risk of
lung cancer death from radon, the effects of remedi-
ation and individual attitude toward risk. We follow
a standard approach in decision analysis (see, e.g.,
Watson and Buede, 1987) by proceeding in two
steps: first, decision-making under certainty—at
what level would you remediate if you knew R,
your home radon level?—and, second, averaging
over the uncertainty in R.

4.1 Decision-making under Certainty

We shall express decisions under certainty in
three ways, equivalent under a linear no-threshold
dose-response relationship.

1. The dollar value Dd associated with a reduction
of 10−6 in probability of death from lung cancer
(the value of a microlife). If one applies a 5% per
year discounting of the value of a life and an
expected twenty-year lag to lung cancer death,
then Dd corresponds to a net present value of a
microlife of 1:0520Dd = 2:7Dd.

2. The dollar value Dr associated with a reduction
of 1 pCi/L in home radon level for a thirty-year
period (the equivalent dollar cost per unit of
radon exposure).

3. The home radon level Raction above which you
should remediate if your radon level is known.

We need to work with all three of these concepts be-
cause, depending on the context, either Dd, Dr or
Raction will be most relevant for individual decision-
making. In any case, the essence of the radon deci-
sion is a tradeoff between dollars and lives.

Initially, we make the following assumptions.

• The increase of probability of lung cancer death
is a linear function of radon exposure (consis-
tent with current concepts of dose effects in
high linear-energy-transfer radiation; see Upfal,
Divine and Siemiatychi, 1995). The added risk
differs for smokers and nonsmokers and for males
and females; we use estimates γg; s (g = male or
female, and s = ever-smoking or never-smoking)
for the additional lifetime risk per additional
pCi/L exposure as derived from the Committee
on Health Risks of Exposure to Radon (BEIR VI,
National Research Council, 1998); see Table 1.

• Remediation takes a house’s annual-average
living-area radon level down to a level Rremed if it
was above that, but leaves it unchanged if it was
below that. We shall assume that Rremed has the
value 2 pCi/L.

• Mitigation costs $2000, including the net present
value of future energy cost to run the mitigation
system.

• Decisions will be made based on the consequences
over the next 30 years.

• If a measurement is taken, it is a long-term mea-
surement that is an unbiased measure of annual-
average living-area exposure with a measurement
GSD of 1.2, and it costs $50.

We can now determine the equivalent cost Dr per
pCi/L of home radon exposure and the action level
Raction for remediation given the following individ-
ual information.

• The numbers of male and female ever-smokers
and never-smokers in the house, ng; s; see Table 1.

• The dollars Dd that would be paid to reduce the
probability of lung cancer death by one-millionth.
From the risk assessment literature, typical val-
ues for medical interventions are in the range of
$0.1 to $0.5 (see, e.g., Eddy, 1989, 1990; Owens,
Harris, Scott and Nease, 1996). Higher values are
often found in other contexts, for example, jury
awards for deaths due to negligence, values used
in legislating industrial risks and risk tradeoffs
between worker wages and fatality risks (see Vis-
cusi, 1992, for an excellent survey of values of
risks to life and health). However, we feel that
the lower values are reasonable in this case since,
like medical intervention, expenditure on radon
remediation is voluntary and is aimed at reduc-
ing future risk rather than compensating for job
fatality.

For any given household, the equivalent cost per
pCi/L, Dr, can be computed as a function of the
risk assumed above and the individual parameters
and Dd:

Dr =
30

70

(

∑

g; s

ng; sγg; s

)

106Dd;(5)

where the fraction 30/70 is the ratio of the thirty-
year decision period to a seventy-year life ex-
pectancy per occupant. For U.S. homes, the average
value of

∑

g; s ng; sγg; s is 0.0113 (see Table 1). We
can also compute the remediation concentration
Raction, given the equivalent cost and the above
assumptions of cost and effects of remediation:

Raction = $2000

Dr

+Rremed:(6)

4.2 Individual Choice of a Recommended

Remediation Level under Certainty

The U.S., English, Swedish and Canadian recom-
mended remediation levels are Raction = 4, 5, 10 and
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20 pCi/L, which, with Rremed = 2 pCi/L, correspond
to equivalent costs per pCi/L of Dr = $1000, $670,
$250 and $111, respectively. Setting the values
of ng; s to the average numbers of male and fe-
male ever-smokers and never-smokers in a U.S.
household implies dollar values per microlife of
Dd = $0:21, $0.14, $0.05 and $0.02, respectively.
This suggests that, to the extent that we believe the
standard estimates of radon risk and remediation
effects, the U.S. and English recommendations
are on the low end for acceptable risk reduction
expenditures, and the Canadian and Swedish rec-
ommendations are too cavalier about the radon
risk. However, this calculation obscures the dra-
matic difference between smokers and nonsmokers,
which arises entirely from the difference in risk per
dose associated with the two groups. For example, a
household of one male never-smoker and one female
never-smoker that is willing to spend $0.21 per per-
son to reduce the probability of lung cancer by 10−6

should spend $370 per pCi/L of radon reduction,
implying an action level of Raction = 7:4 pCi/L. In
contrast, if the male and female are both smokers,
they should be willing to spend the much higher
value of $1900 per pCi/L, because of their higher
risk per pCi/L and thus should have an action level
of Raction = 3:1 pCi/L.

Other sources of variation in Raction, in addition
to varying risk preferences, are (a) variation in the
number of smokers and nonsmokers in households,
(b) variation in individual beliefs about the risks
of radon and the effects of remediation, and (c)
variation in the perceived dollar value associated
with a given risk reduction. From a public policy
standpoint, one might wish to ignore the varia-
tion attributable to (a), since over the thirty-year
period of assumed remediation effectiveness the
household composition is likely to change, and in-
deed the house is likely to be sold to several sets of
new owners with possibly different smoking habits.
However, as a practical matter, the homeowners
are likely to perform remediation only if they fore-
see major risk reductions for themselves, or if they
are planning to sell their house and fear that an
elevated radon concentration will reduce its value.
As illustrated above, a male-female never-smoking
couple might choose an action level of 7.4 pCi/L or
higher, depending on their willingness and ability to
pay for risk reduction, whereas most smokers may
be more willing to risk lung cancer than are non-
smokers and thus might be unwilling to remediate
at levels as low as 3.1 pCi/L.

Through the rest of the paper, we use 4 pCi/L as
an exemplary value, but rational informed individ-
uals might plausibly choose quite different values

of Raction, depending on smoking habits, risk toler-
ance, financial resources and the number of people
in the household.

4.3 Decision-making under Uncertainty

Given an action level under certainty, Raction, we
now address the question of whether to pay for a
home radon measurement and whether to remedi-
ate. The decision of whether to measure depends
on the prior distribution, (2) of radon level for your
house, given your predictors X. The decision of
whether to remediate depends on the posterior dis-
tribution, (3) if a measurement has been taken or
the prior distribution, (2) otherwise. In our compu-
tations, we shall make use of the following results
from the normal distribution: if z ∼ N�µ; s2�, then
E�ez� = exp�µ+ �1/2�s2� and E�ez�z > a�Pr�z >

a� = exp�µ+ �1/2�s2��1 −8��µ+ s2 − a�/s��, where
8 is the standard normal cumulative distribution
function.

The decision tree is set up as three branches. In
each branch, we evaluate the expected loss in dollar
terms, converting radon exposure to dollars using
Dr = $2000/�Raction −Rremed� as the equivalent cost
per pCi/L for additional home radon exposure.

1. Remediate without monitoring. Expected loss
is remediation cost + equivalent dollar cost of
radon exposure after remediation,

L1 = $2000 +DrE�min�R;Rremed��
= $2000 +Dr

[

RremedPr�R ≥ Rremed�
+ E�R�R < Rremed�Pr�R < Rremed�

]

= $2000 +Dr

[

Rremed8

(

M− log�Rremed�
S

)

+ exp

(

M+ 1

2
S2

)

·
(

1 −8

(

M+S2 − log�Rremed�
S

))]

:

(7)

2. Do not monitor or remediate. Expected loss is the
equivalent dollar cost of radon exposure,

L2 = DrE�exp�θ�� = Dr exp
(

M+ 1
2
S2

)

:(8)

3. Take a measurement y (measured in log pCi/L).
The immediate loss is measurement cost (as-
sumed to be $50) and, in addition, the radon
exposure during the year that you are taking
the measurement [which is 1/30 of the thirty-
year exposure (8)]. The inner decision has two
branches.
(a) Remediate. Expected loss is computed as for
decision 1, but using the posterior rather than
the prior distribution,
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L3a = $50 +Dr

1

30
exp

(

M+ 1

2
S2

)

+ $2000

+Dr

[

Rremed8

(

3− log�Rremed�√
V

)

+ exp

(

3+ 1

2
V

)

·
(

1 −8

(

3+V− log�Rremed�√
V

))]

;

(9)

where 3 and V are the posterior mean and vari-
ance, from equation (4).
(b) Do not remediate. Expected loss is

L3b = $50 +Dr

1

30
exp

(

M+ 1

2
S2

)

+Dr exp

(

3+ 1

2
V

)

:

(10)

4.3.1 Decision of whether to remediate given a

measurement. To evaluate the decision tree, we
must first consider the inner decision between 3(a)
and 3(b), conditional on the measurement y. Let y0

be the point (in log space) at which you will choose
to remediate if y > y0, or do nothing if y < y0. (Be-
cause of measurement error, y 6= θ, so ey0 6= Raction.)
We shall solve for y0 in terms of the prior mean M,
the prior standard deviation S, and the measure-
ment standard deviation σ , by solving the implicit
equation

L3a = L3b at y = y0:(11)

The expected losses L3a and L3b depend on y0 only
through 3 = �M/S2 + y/σ2�/�1/S2 + 1/σ2�, and so
we can solve for y0 by first solving for 30 in (11),
then setting

y0 =
(

1 + σ2

S2

)

30 −
σ2

S2
M:(12)

Thus the relation between y0 and M is linear,
with the slope depending only on the variance ratio
σ2/S2.

Given σ2/S2 and Dr, we solve for 30 numeri-
cally, using the bisection method to converge on the
value of 3 that satisfies (11). Figure 1 shows the
measurement action level ey0 as a function of the
perfect-information action level Raction, evaluated at
values of the prior GM radon level eM ranging from

Fig. 1. Measurement action levels ey0 as a function of the perfect-

information action level Raction, evaluated at values of the prior

GM radon level eM ranging from 0:5 pCi/L to 4 pCi/L. For a

given Raction and prior GM, find the “measurement threshold”;

if the measured value exceeds this threshold, then remediation

is recommended. The threshold differs substantially from Raction

only for low prior GM and high Raction.

0.5 to 4.0. For this example, we have assumed that
σ = log�1:2�, and that S = log�2:3� for all counties.

4.3.2 Deciding whether to measure. We deter-
mine the expected loss for branch 3 of the decision
tree by averaging over the prior uncertainty in the
measurement y,

L3 = E�min�L3a;L3b��:(13)

Given �M;S;σ;Dr�, we evaluate this expression as
follows.

1. Simulate 5000 draws of y ∼ N�M;S2 + σ2�.
2. For each draw of y, compute min�L3a;L3b� from

(9) and (10).
3. Estimate L3 as the average of these 5000 values.

Of course, this expected loss is valid only if we as-
sume that you will make the recommended optimal
decision once the measurement is taken.

We can now compare the expected losses L1, L2,
L3, and choose among the three decisions. Figure
2 displays the expected losses as a function of the
perfect-information action level Raction for several
values of eM. As with Figure 1, we illustrate with
σ = log�1:2� and S = log�2:3�. For any value of
M and Raction, the recommended decision is the one
with the lowest expected loss.

For any Raction, we can summarize the deci-
sion recommendations as the cut-off levels Mlow
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Fig. 2. Expected losses in dollars (including the dollar value of the expected reductions in radon levels) of the three decisions: �1� re-

mediate, �2� do nothing, �3� monitor (take a measurement), as a function of the perfect-information action level Raction. The four plots

correspond to four different values of the prior geometric mean radon level eM.

Fig. 3. Recommended decisions as a function of the perfect-information action level Raction and the prior geometric mean radon level eM;

under the simplifying assumption that eS = 2:3. You can read off your recommended decision from this graph and, if the recommendation

is “take a measurement,” you can do so and then use Figure 1 (with interpolation or extrapolation if necessary) to tell you whether to

remediate. The horizontal axis of this figure begins at 2 pCi/L because remediation is assumed to reduce ALAA radon level to 2 pCi/L,
so it makes no sense for Raction to be lower than that value. Wiggles in the lines are due to simulation variability.

and Mhigh for which decision 1 is preferred if
M > Mhigh, decision 2 is preferred if M < Mlow,
and decision 3 is preferred if M ∈ �Mlow;Mhigh�.
Figure 3 displays these cut-offs as a function of
Raction, and thus displays the recommended deci-

sion as a function of �Raction; e
M�, once again under

the simplifying assumption that σ = log�1:2� and
S = log�2:3� for all counties. For example, setting
Raction = 4 pCi/L leads to the following recommen-
dation based on eM, the prior GM of your home
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radon based on your county and house type:

• If eM is less than 1.0 pCi/L (which corresponds to
68% of U.S. houses), do nothing.

• If eM is between 1.0 and 3.5 pCi/L (27% of U.S.
houses), perform a long-term measurement (and
then decide whether to remediate).

• If eM is greater than 3.5 pCi/L (5% of U.S. houses),
remediate immediately without measuring. Actu-
ally, in this circumstance, short-term monitoring
turns out to be (barely) cost-efficient: the reason
for the recommendation of immediate remedia-
tion is that the excess risk associated with oc-
cupying the home for a year while a long-term
measurement is made is not worth bearing, given
the high likelihood that the home will eventually
be remediated anyway. However, if a short-term
measurement is made and is sufficiently low, then
the home is unlikely to have such an exceptionally
high level that one additional year of exposure
carries a large risk. In this case, long-term moni-
toring can be performed to determine whether re-
mediation is really indicated. We will ignore this
additional complexity to the decision tree, since
it occurs rarely and has very little impact on the
overall cost-benefit analysis.

4.4 Decision-Making If a Short-term Measurement

Has Been Taken

We do not in general recommend taking short-
term measurements, because long-term measure-
ments are much superior in terms of both bias and
variance. However, short-term measurements are
quite popular (partly because these are often taken
as a condition of sale of a house), and so it is worth
considering the decision problem in this situation.

In fact, the above decision framework is immedi-
ately adaptable to a homeowner who has already
taken a short-term measurement. The only change
that needs to be made is that the prior distribu-
tion (2) needs to be updated given the information
from the short-term measurement. We thus replace
M and S2 in the above formulas by

Mnew = M/S2 + �yst − log b�/σ2
st

1/S2 + 1/σ2
st

;

S2
new = 1

1/S2 + 1/σ2
st

;

(14)

where yst is the logarithm of the short-term mea-
surement, b is the correction factor derived from
Table 2 and σst = log�1:8�. If the short-term mea-
surement was not made in winter, then a seasonal
correction factor will also apply; see, for example,
Mose and Mushrush (1997) and Pinel et al. (1995).

At this point, we can return to the procedure de-
scribed in the previous sections.

4.5 Summary of the Individual Decision Process

Ideally, an individual homeowner in the United
States can now make a remediation decision using
the following process:

1. Determine the radon level Raction above which
you would remediate, if you knew your home
radon level exactly. This value can be chosen in
its own right or by choosing a value of Dr based
on the perceived gains from lowering radon level
or by assigning a dollar value Dd to a millionth
of a life and computing based on the number
of ever-smokers S and never-smokers N in the
house. As discussed in Section 4.2, current un-
derstanding of the risks of radon and the effects
of remediation suggest that the EPA’s recommen-
dation of 4 pCi/L is a reasonable catch-all value,
with 8 pCi/L being a more reasonable value for
nonsmokers.

2. Look up eM and eS, the GM and GSD of the poste-
rior predictive distribution for your home’s radon
level, as estimated from the hierarchical model
described in Section 3.

3. If a short-term measurement has been taken, up-
date the prior distribution using (14) and the bias
correction from Table 2 (and possibly an addi-
tional seasonal correction).

4. Calculate the expected losses of decisions (1), (2)
and (3) from the formulas in Section 4.3 and, if
decision (3) is chosen, the recommended mea-
surement action level ey0 . The recommended
decision—that with the lowest expected loss, cor-
responds to that indicated in Figure 4.3.2 (with
slight alterations depending on the exact value
of S).

5. If decision (3) is chosen, perform a long-term
measurement. In one year, the measurement ey

is available. Remediate if ey > ey0 .

We are in the process of setting up a website at
http://www.stat.columbia.edu/radon to automate
the steps listed above and supply other information
about decision-making for radon hazards.

5. AGGREGATE CONSEQUENCE OF

DECISION STRATEGY

Now that we have made idealized recommenda-
tions, we consider their aggregate effects if followed
by all homeowners in the United States. In par-
ticular, how much better are the consequences
compared to other policies such as the current one,
implicitly endorsed by the EPA, of taking a short-
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Fig. 4. Map (a) showing fraction of houses in each county for which measurement is recommended, given the perfect-information

action level of Raction = 4 pCi/L; (b) expected fraction of houses in each county for which remediation will be recommended, once the

measurement y has been taken. For the present radon model, within any county the recommendations on whether to measure and whether

to remediate depend only on the house type: whether the house has a basement and whether the basement is used as living space. Apparent

discontinuities across the boundaries of Utah and South Carolina arise from irregularities in the radon measurements from the radon

surveys conducted by those states, an issue we ignore in the present paper.

Fig. 5. Map (a) showing fraction of houses in each county for which measurement is recommended, given the perfect-information action

level of Raction = 8 pCi/L; (b) expected fraction of houses in each county for which remediation will be recommended, once the measurement

y has been taken. As with the previous figure, the decision recommendations depend only on county and house type.

term measurement as a condition of a home sale
and performing remediation if the measurement is
higher than 4 pCi/L?

5.1 Estimated Consequences of Applying the

Recommended Decision Strategy to the

Entire United States

Figures 4 and 5 display the geographic pattern of
recommended measurements (and, after one year,
recommended remediations), based on action levels
Raction of 4 and 8 pCi/L, respectively. These recom-
mendations incorporate the effects of parameter
uncertainties in the models that predict radon

distributions within counties, so these maps would

be expected to change somewhat as better pre-
dictions become available. Note that these maps
are not based on a single estimated parameter
such as “the probability that a home’s concentra-
tion exceeds 4 pCi/L.” Although a discrete action
level does play a role in the decision process (af-
ter all, each home must either monitor or not, and
remediate or not) the benefit of remediation is a
continuous function of the initial radon concen-
tration, and that concentration is assumed to be
drawn from a continuous distribution. It is the con-
fluence of these continuous distributions and the
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discrete willingness-to-remediate point that give
rise to the fairly complex expressions for expected
loss in Section 4.3.

From a policy standpoint, perhaps the most sig-
nificant feature of the maps is that even if the EPA’s
recommended action level of 4 pCi/L is assumed to
be correct—and, as we have discussed, it does lead
to a reasonable value of Dd, under standard dose-
response assumptions—monitoring is still not rec-
ommended in most U.S. homes. Indeed, only 28%
of U.S. homes would perform radon monitoring. A
higher action level of 8 pCi/L, a reasonable value
for nonsmokers under the standard assumptions,
would lead to even more restricted monitoring and
remediation: only about 5% of homes would perform
monitoring.

5.2 Decision Strategies Considered and

Evaluation Criteria

In this section, we shall consider various decision
strategies.

1. Follow the recommended strategy from Section
4.3 (that is, monitor homes with prior mean es-
timates above a given level, and remediate those
with high measurements).

2. Perform long-term measurements on all houses
and then remediate those for which the measure-
ment exceeds a specified level: ey > Raction.

3. Perform short-term measurements on all houses
and then remediate those for which the bias-
corrected measurement exceeds a specified level:
eyst/b > Raction (with b defined as described in
Section 4.4).

4. Perform short-term measurements on all houses
and then remediate those for which the uncor-
rected measurement exceeds a specified level:
eyst > Raction.

We evaluate each of the above strategies in terms
of aggregate lives saved and dollars cost, with
these outcomes parameterized by the radon action
level Raction. Both lives saved and costs are con-
sidered for a thirty-year period. For each strategy,
we assume that the level Raction is the same for
all houses (this would correspond to a uniform na-
tional recommendation) and that 0.30 male and
0.27 female ever-smokers and 1.07 male and 1.16
female never-smokers live in each house (or, rather,
that these are the averages over the thirty-year
period).

We also evaluate strategies based on the esti-
mated cost per life saved. This aggregate cost per
life is different from the marginal cost per life used
to set the action level Raction in Section 4.2. For ex-
ample, as discussed previously, an action level of
Raction = 4 pCi/L approximately corresponds to a
net present value of $0.21 per microlife, which corre-
sponds to a marginal cost of $210,000 per life saved.
However, if the optimal recommendation is followed
for the entire country, the estimated aggregate cost
per life saved is only $87,000: the aggregate cost
averages over the whole population, ranging from
mitigations that are barely cost-effective through
mitigations that are highly efficient in terms of risk
reduction for a given cost. See also Figure 10 for a
comparison of aggregate and marginal costs per life
saved.

5.3 Modeling the Variation in the Population of

U.S. Homes

Because we use inferences from a hierarchical
model, we are able to give different recommen-
dations for different houses in the population as
characterized by location as well as continuous
covariates.

Thus, aggregate effects are determined by adding
up the individual decisions over all the ground-
contact homes in the country. Considering 3078
counties with three house types within each, we
have 3078 × 3 pairs of �M;S� obtained from the
hierarchical model fit to the national and state
radon survey data as described in Section 3. Given
�M;S;Raction�, the decisions of whether to moni-
tor and whether to measure are made as described
in Section 4.5, and expected number of lives saved
and cost spent are assessed if remediation is imple-
mented.

For any of the decision strategies, in any given
house, we evaluate the total cost,

Expected cost = $50 Pr�measurement�

+ $2000 Pr�remediation�;
(15)

where

Pr�measurement�

=







1�Mlow<M<Mhigh�; for strategy 1;

1; for strategies 2, 3 and 4,
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and

Pr�remediation�

=







































































































































































Pr�M > Mhigh�
+ Pr

(

�Mlow < M < Mhigh� and �y > y0�
)

= 1�M>Mhigh� + 1�Mlow<M<Mhigh�

·
(

1−8

(

3−y0√
V

))

; for strategy 1;

Pr�y > log�Raction��

= 1 −8

(

3− log�Raction�√
V

)

;

for strategy 2;

Pr�yst − log b > log�Raction��

= 1 −8

(

Mnew − log�Raction�
Snew

)

;

for strategy 3,

Pr�yst > log�Raction��

= 1 −8

(

Mnew − log�Raction + log b

Snew

)

;

for strategy 4

(with $50 replaced by $15 for strategies 3 and 4 in
which short-term measurements are used), and we
evaluate the expected lives saved,

Expected lives saved

= A · E�max�eθ −Rremed;0��remediation�
· Pr�remediation�

= A ·RreducedPr�remediation�;

(16)

where

Rreduced = exp�3+V/2�8
(

3+V− log�Rremed�√
V

)

−Rremed8

(

3− log�Rremed�√
V

)

;

and A is the expected lives lost in a thirty-year pe-
riod per pCi/L of home radon exposure, given by
Dr/Dd from equation (5) for any home, and equal
to 0.0113 for the “average household” of 0.3 male
ever-smokers, 1.07 male never-smokers, 0.27 female
ever-smokers and 1.16 female never-smokers. In the
above formulas, 3 and V are given by (4), and Mnew

and Snew are given by (14).
We evaluate the expectations in (15) and (16) by

simulation. First, we simulate 5000 draws of y ∼
N�M;S2+σ2� (for strategies 1 and 2) or y ∼ N�M+
log b; S2+ = σ2

st� (for strategies 3 and 4). Second,
for each draw of y, we compute A · Rreduced under

the constraints of M > Mhigh or ��Mlow < M <

Mhigh� and �y > y0�� or y > log�Raction�, and then
estimate (16) and (15) as the average of these 5000
draws. Simulations average over uncertainties in
home radon levels R and variability in measure-
ments ey (or eyst ). For these calculations we used
the actual model estimates of S, rather than set-
ting them all equal to a single value as was done
for illustrative purposes in the previous section.

We then multiply by the total number of ground
contact houses for each �M;S�, that is, for each
house type and for each county, and sum them up
to get expected total costs and lives saved over a
thirty-year period in the United States.

5.4 Results

For the present county-level radon model, within
each county monitoring is recommended for some
subset of homes: for all homes, for all homes with
basements, for all homes with living-area base-
ments or for no homes. The maps in Figure 4
display, for each county, the fraction of houses that
would measure and the estimated fraction of houses
that would remediate if the recommended decision
strategy were followed everywhere with Raction = 4
pCi/L. About 26% of the 70 million ground-contact
houses in the United States would monitor. This
would result in detection of and remediation of
2.8 million homes above 4 pCi/L (74% of all such
homes), and 840,000 of the homes above 8 pCi/L
(91% of all such homes). Some additional estimates
of the program’s effectiveness are presented in Ta-
bles 3 and 4, and Figure 5 displays similar maps
for an 8 pCi/L action level.

In order to understand the effects of the differ-
ent decision strategies on aggregate outcomes, we
have developed a series of graphs. Figures 6 and
7 illustrate the efficiency of the recommended re-
mediation strategy by showing the overall distribu-
tions of radon levels (and total radon exposures) and
the distributions of homes to be monitored and re-
mediated. As is apparent in the figures, even with
the large uncertainties in individual county distri-
butional parameters the recommended program is
quite effective at focusing on the homes with the
highest indoor radon concentrations.

Figure 8 displays the trade-off between expected
cost and expected lives saved over a thirty-year pe-
riod for the four strategies listed in Section 5.2.
The numbers on the curves are action levels Raction.
This figure allows us to compare the effectiveness
of alternative strategies of equal expected cost or
equal expected lives saved. For example, the rec-
ommended strategy (the solid line on the graph) at
Raction = 4 pCi/L would result in an expected 83,000
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Table 3

Some summary statistics on the effectiveness of various home radon measurement and remediation strategies

for the 4 pCi/L action level*

Strategy

1 2 3 4

Fraction of all U.S. homes that would measure 26% 100% 100% 100%
Fraction of all U.S. homes that would remediate 5% 6% 8% 17%
Fraction of all homes over 4 pCi/L that would remediate 74% 89% 74% 92%
Fraction of all homes over 8 pCi/L that would remediate 91% 100% 95% 99%

Total cost ($ billion) 7.32 11.56 12.20 25.06
total cost of measuring 0.97 3.50 1.06 1.06
total cost of remediation 6.35 8.06 11.14 24.00

Expected lives saved 84,000 97,000 88,000 110,000
ever-smokers 49,000 57,000 51,000 64,000
never-smokers 35,000 40,000 37,000 46,000

Aggregate $ cost per life saved 87,000 119,000 138,000 228,000

*(1) recommended strategy based on decision analysis using the hierarchical model, (2) long-term measurements on all houses, (3) bias-
corrected short-term measurements on all houses, (4) uncorrected short-term measurements on all houses. All are based on an action
level of Raction = 4 pCi/L. Costs and lives saved cover 30 years.

Table 4

Some summary statistics on the effectiveness of various home radon measurement and remediation strategies

for the 8 pCi/L action level*

Strategy

1 2 3 4

Fraction of all U.S. homes that would measure 5% 100% 100% 100%
Fraction of all U.S. homes that would remediate 0.7% 1.4% 2.5% 7.0%
Fraction of all homes over 4 pCi/L that would remediate 12% 26% 37% 67%
Fraction of all homes over 8 pCi/L that would remediate 44% 87% 70% 91%

Total cost ($ billion) 1.11 5.54 4.63 10.94
total cost of measuring 0.19 3.50 1.06 1.06
total cost of remediation 0.92 2.04 3.53 9.84

Expected lives saved 27,000 50,000 51,000 82,000
ever-smokers 16,000 29,000 30,000 48,000
never-smokers 11,000 21,000 21,000 34,000

Aggregate $ cost per life saved 42,000 110,000 90,000 133,000

*(1) recommended strategy based on decision analysis using the hierarchical model, (2) long-term measurements on all houses, (3) bias-
corrected short-term measurements on all houses, (4) uncorrected short-term measurements on all houses. All are based on an action
level of Raction = 8 pCi/L. Costs and lives saved cover 30 years.

lives saved at an expected cost of $7.3 billion. Let us
compare this to the EPA’s implicitly recommended
strategy based on uncorrected short-term measure-
ments (the dashed line on the figure). For the same
cost of $7.3 billion, the uncorrected short-term strat-
egy is expected to save only 32,000 lives; to achieve
the same expected savings of 83,000 lives, the un-
corrected short-term strategy would cost about $19
billion.

Figure 9 displays these results in another way,
as estimated cost per life saved, as a function of ex-
pected cost, for the four strategies. Finally, Figure

10 displays the estimates for both marginal and
average cost per life saved, for the recommended
decision strategy, as a function of the radon ac-
tion level Raction. The average cost per life saved
is estimated as described above, and the marginal
cost per life saved is simply 106Dd (as defined in
Section 4.1). Average cost per life saved is always
lower than marginal cost because, for any action
level, the average includes all houses at or above
that level, and remediations are more efficient (in
terms of lives saved per dollar) in the higher-radon
houses.
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Fig. 6. Estimated distributions of annual living area average radon concentrations in (upper, solid line) all U.S. houses, (middle, dotted

line) all houses where measurement is recommended under the optimal strategy (with Raction = 4 pCi/L), and (lower, dashed line) all

houses where remediation is recommended immediately or after measurement.

Fig. 7. Fraction of total radon exposure, as a function of indoor radon concentration. Where the previous plot shows f�θ�; this plot shows

θf�θ�. Curves are shown for (upper, solid line) all U.S. houses, (middle, dotted line), all houses where measurement is recommended

under the optimal strategy (with Raction = 4 pCi/L) and (lower, dashed line) all houses where remediation is recommended immediately

or after measurement.

6. SENSITIVITY TO ASSUMPTIONS

Our results are subject to potential error in:

• Estimates of annual average living area radon ex-
posure (and its variation) from home radon mea-
surements and the hierarchical model (including
basement information and geographic predictors).

• The magnitude of cancer risk from a given radon
concentration (including the assumed linearity of
cancer risk as a function of radon level).

• The effects of remediation.

In this section, we consider each of these issues in
turn and then discuss other factors, involving indi-
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Fig. 8. Expected lives saved versus expected cost, for vari-

ous radon measurement–remediation strategies discussed in Sec-

tion 5:2. Numbers indicate values of Raction. The solid line is for

the recommended strategy of measuring only certain homes; the

others assume that all homes are measured. All results are esti-

mated totals for the United States over a thirty-year period.

vidual preferences and behavior, that might affect
the decisions.

Statistical model of home radon levels. The model
has been extensively validated (see Price, Nero and
Gelman, 1996; Price and Nero, 1996; Price, 1997).

Fig. 9. Estimated cost per life saved versus expected cost (over a

thirty-year period), for various radon measurement–remediation

strategies discussed in Section 5:2. The solid line is for the recom-

mended strategy of measuring only certain homes; the others as-

sume that all homes are measured. For comparison, remediating

every house without making any measurements has an estimated

cost per life saved of $2.2 million.

Fig. 10. Estimated average and marginal costs per life saved

versus action level Raction for the recommended decision strategy.

Average cost per life saved is computed averaging over the distri-

bution of U.S. houses, as displayed in Figure 8. Marginal cost per

life saved is 106D (as defined in Section 4.1) based on a household

with 0:3 male and 0:27 female ever-smokers and 1:07 male and

1:16 female never-smokers. Marginal cost is always higher than

average cost because the marginal houses are those for which it

is just barely cost-effective to remediate.

In general, the model behaves well; cross-validation
indicates that the uncertainty intervals are approx-
imately correct, for example. However, it is likely
that the lognormality assumption (for homes in a
given county, with a given set of explanatory vari-
ables) underestimates the number of homes in the
high tail of radon concentrations for some counties.
For instance, Hobbes and Maeda (1997) suggest that
some counties in southern California might be bet-
ter fit as a mixture of two lognormals, one with a
low geometric mean for most of the homes and one
with a high geometric mean for the small fraction of
homes on a particular geologic deposit. Similar high-
radon pockets or exceptionally high within-county
variability are known to occur in a few counties in
Florida, New York, Washington and elsewhere.

From the standpoint of individual decisions, an
underestimate of the size of the very high tail of
radon concentrations would generally have a small
effect: as long as the cumulative exposure for homes
exceeding the action level is not seriously in error,
the recommendation of whether or not to monitor
will not be affected, so if the fraction of homes over
4 pCi/L or 8 pCi/L is fairly accurately estimated us-
ing the lognormal approximation, the exact distri-
bution of a small number of very high homes is not
critical. The fraction of homes over 4 or 8 pCi/L is
fairly well estimated under the lognormal approxi-
mation for most of the counties with GM’s over 1 or
2 pCi/L, respectively, and most counties with GM’s
lower than that have such low numbers of homes



LOCAL DECISIONS USING HIERARCHICAL MODELING 323

over the action level that even a large relative error
in their prevalence would probably not change the
monitoring recommendations. Given the large num-
ber of counties in the United States (over 3000) it
is very likely that there are at least a few for which
nonlognormality is a significant issue, but it is un-
likely to seriously affect most of our results.

This whole issue becomes more important,
though, if the action level is set very high (e.g.,
for a female nonsmoker living alone); we would not
trust the model’s exact predictions when estimat-
ing the frequency of rare cases such as homes over
20 pCi/L.

On a different model-related topic, it is possi-
ble that the model can be improved by including
more spatial or geological information (see, e.g.,
Boscardin, Price and Gelman, 1996; Geiger and
Barnes, 1994; Mose and Mushrush, 1997; Miles and
Ball, 1996), which would cause predictions for indi-
vidual homes to become more precise and the prior
standard deviations S to decrease. For instance,
radon mapping within counties would allow recom-
mendations to discriminate more precisely among
houses and thus increase expected lives saved for
any given dollar expenditure. Indeed, such targeted
recommendations may already be possible in lo-
calized (subcounty) areas that can be confidently
identified as having disproportionate numbers of
high-radon homes.

Magnitude of cancer risk from radon exposure.

There is disagreement as to the estimate of lung
cancer risk attributable to radon exposure, despite
the efforts of the BEIR committee to thoroughly re-
view the data available. The main issue is whether
the results from the analysis of the data for min-
ers could be generalized and applied to the progeny
of radon in homes (Lubin and Boice, 1997). Even if
a linear no-threshold model is appropriate, the co-
efficients (the risk per unit exposure) are uncertain
by at least a factor of 1.4. In addition, the model
of discrete risks for smokers and nonsmokers is a
simplification since smoking levels vary and many
nonsmokers are exposed to secondhand smoke.

Linearity of the dose-response function. Exper-
iments on animals, plus epidemiological studies
with miners and others exposed at very high doses,
suggest that at high doses the dose-response is ap-
proximately linear (see Nazaroff and Nero, 1988,
Chapters 8–9). However, there are really no good
data at low doses. The Environmental Protec-
tion Agency assumes the function is linear all the
way to zero, but others have suggested that there
are a threshold (an exposure below which there
are no effects) or even a protective effect at low
concentrations (Cohen, 1995; Bogen, 1997).

Case-control studies suggest that, if there is a pro-
tective effect at low levels, it cannot be large, but
mild protective effects, or a threshold so that lev-
els below 5 pCi/L or so have no effect, cannot be
ruled out. However, in spite of claims to the con-
trary by Cohen (1995), we are confident that long-
term exposure to 2 pCi/L is safer than exposure to,
say, 10 pCi/L (see, e.g., Lubin and Boice, 1997).

Moreover, our results are less sensitive than one
might suppose to nonlinearities in the dose-response
function at low concentrations. This is because we
assume that remediation reduces radon levels to 2
pCi/L, so the dose-response below that concentra-
tion is irrelevant. For instance, if long-term expo-
sure at 2 pCi/L were actually safer than no exposure
at all, that would have no effect on our analysis un-
der the present assumptions.

To get some idea of the sensitivity of our results
to the details of the dose-response relationship at
low doses, we consider the effects of a relationship
with a threshold at 4 pCi/L, so that exposure below
that level has no health effect. One might examine
this issue in several ways. For instance, we could
ask what the optimal strategy would be under this
modified dose-response relationship and see how
the recommended actions (e.g., which homes should
monitor and which should remediate) would change
compared to the recommendations based on the
linear dose-response. Instead, we look at how the
number of lives saved would change if the strategy
based on the linear dose-response were imple-
mented; that is, if all of the same homes monitor or
remediate as for the linear dose-response, but if the
dose-response actually has a threshold. This seems
to us to be the more relevant question, since our
goal is to understand the robustness of the present
analysis rather than to seriously propose analy-
ses under alternative dose-response functions. Also,
alternative recommendations would merely entail
further restrictions on which homes are candi-
dates for monitoring, so determining exactly which
homes those are is not likely to be particularly
instructive.

Given a threshold at 4 pCi/L, remediations in
homes close to that threshold are mostly wasted
(and all remediations are less beneficial), so we
expect a reduction in lives saved. Some summary
statistics are given in the columns labeled (b)
in Table 5. As expected, the resulting number of
lives saved substantially changes according to this
assumption; compared to the situation with a lin-
ear dose-response, 37% fewer lives are saved for
Raction = 4 pCi/L, and 23% fewer are saved for
Raction = 8 pCi/L. Costs per life saved are still
lowest under the recommended strategy 1.
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Table 5

Sensitivity analysis: expected total lives saved and cost per life saved under four strategies for a grid of Raction, under three

different models*

Action
Total lives saved (30 years)

Total cost
Aggregate dollars per life saved

Level Strategy (a) (b) (c) ($ billion) (a) (b) (c)

2.5 pCi/L 1 116,000 59,000 108,000 18.4 158,000 310,000 169,000
2 119,000 60,000 113,000 20.6 172,000 342,000 183,000
3 108,000 57,000 105,000 22.0 204,000 380,000 210,000
4 119,000 60,000 126,000 39.7 332,000 664,000 317,000

3 pCi/L 1 105,000 57,000 94,000 12.9 122,000 222,000 136,000
2 113,000 60,000 102,000 16.5 145,000 273,000 161,000
3 102,000 56,000 95,000 17.7 175,000 314,000 185,000
4 116,000 59,000 119,000 33.6 288,000 565,000 282,000

4 pCi/L 1 84,000 53,000 73,000 7.3 87,000 138,000 101,000
2 97,000 59,000 84,000 11.6 119,000 195,000 136,000
3 88,000 53,000 80,000 12.2 138,000 231,000 151,000
4 110,000 57,000 108,000 25.1 228,000 430,000 232,000

6 pCi/L 1 48,000 37,000 40,000 2.7 57,000 74,000 66,000
2 68,000 51,000 59,000 7.2 105,000 141,000 123,000
3 67,000 45,000 59,000 7.0 104,000 157,000 119,000
4 95,000 54,000 89,000 15.8 165,000 289,000 177,000

8 pCi/L 1 27,000 22,000 22,000 1.1 42,000 51,000 49,000
2 50,000 40,000 43,000 5.5 110,000 137,000 129,000
3 51,000 37,000 45,000 4.6 90,000 126,000 104,000
4 82,000 49,000 73,000 10.9 133,000 219,000 148,000

12 pCi/L 1 8,000 7,000 7,000 0.2 28,000 32,000 33,000
2 29,000 25,000 25,000 4.3 148,000 171,000 173,000
3 32,000 25,000 28,000 2.7 83,000 107,000 97,000
4 61,000 41,000 54,000 6.3 103,000 153,000 117,000

*(a) cancer risk without threshold and postremediation radon level 2 pCi/L; (b) cancer risk with threshold 4 pCi/L and postremediation
radon level 2 pCi/L; (c) cancer risk without threshold and postremediation radon level with a lognormal distribution with GM equal to
the square root of the preremediation radon level and GSD of 1.3. The four strategies are (1) recommended strategy based on decision
analysis, (2) long-term measurements on all houses, (3) short-term measurements on all houses, adjusted for bias, (4) unadjusted
short-term measurements on all houses, uncorrected.

Effect of remediation. We have assumed that re-
mediation reduces a home radon level to 2 pCi/L.
This cannot be accurate for several reasons. First,
the postremediation radon level must, in reality,
vary among houses. In the context of our linear
dose-response model, we can account for variation
by considering the assumed postremediation level
as an expected radon level, averaging over houses.
Second, the assumed reduction level of 2 pCi/L is a
rough estimate from sparse data on remediation ef-
fects. Raising or lowering this postremediation level
would correspondingly raise or lower the recom-
mended action level Raction and raise or lower the
estimated costs per life saved. Third, the postreme-
diation level must certainly, in reality, depend on the
initial radon level in a more complex way than sim-
ply E�postremediation level�R� = min�R;Rremed�.
In particular, we would expect that, for some houses
with initially low radon levels (below 2 pCi/L), re-
mediation might still have an effect. Unfortunately,

available data on remediation effectiveness have
been collected only for houses with fairly high
preremediation levels; see Henschel, 1993, for ex-
amples.

For a sensitivity analysis, we consider a model
in which the postremediation radon level is log-
normally distributed with GM equal to the square
root of the preremediation radon level (in pCi/L)
and GSD of 1.3, further constrained to not exceed
the preremediation level. This rule is arbitrary, of
course, but it behaves reasonably in that postreme-
diation radon levels are variable and are sometimes
above 2 pCi/L for houses originally above 4 pCi/L.
Under this model, high-radon houses are typically
not remediated all the way down to 2 pCi/L, so it is
not surprising that the effects of the measurement–
remediation strategy are less, with reductions of
12% and 17% of estimated total lives saved for
Raction = 4 and 8 pCi/L, respectively (see columns
(c) of Table 5).
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Additional modeling and decision issues. We have
made several simplifying assumptions and choices
regarding what parameters to calculate. These in-
clude the following:

1. Examining benefits in terms of “lives saved”
rather than, say, “quality-adjusted life-years
saved.”

2. Ignoring the influence of age and latency on per-
sonal risk: it takes several to many years for lung
cancer to develop and to kill, once it has been
initiated, so there is little benefit of remediation
for, say, 70-year-old persons. If a cancer has al-
ready been initiated then remediation is too late,
whereas if they don’t yet have cancer then they
are likely to die of another cause before a cancer
can kill them.

3. Ignoring possible interactions of radon exposure
and age (e.g., children may have a different dose-
response from adults).

4. Assuming risk is a function of cumulative thirty-
year exposure: if risk per dose is highly nonlinear
then details of the temporal variation in radon
exposure become important (so, for example, the
effect of people moving from home to home must
be considered).

5. Ignoring the distinction between remediating to
reduce personal risk and remediating a house
that is to be sold (thus reducing the risk to future
occupants).

6. Implicitly assigning zero cost to the hassle and
stress of performing radon testing and remedi-
ation (a simplification that could be handled by
adjusting the associated dollar costs).

7. Ignoring the pattern of residential mobility: if
people currently living in high-radon homes
remediate their houses, the majority of the re-
sulting health benefits will accrue to future
occupants of their homes (Warner, Courant and
Mendez, 1995; Warner, Mendez and Courant,
1996).

All of these issues, and more, could in principle be
addressed by adding additional parameters to the
overall model of risks and values. We chose instead
to keep the model relatively simple, since our main
goals are to illustrate how the hierarchical radon
model can feed into a cost-benefit analysis and to
begin to bridge the gap between modeling of haz-
ards and recommendations of actions; for both of
these goals our conceptually straightforward model
seemed appropriate. In particular, we think the EPA
might be persuaded to make geographically specific
recommendations and possibly even to make rec-
ommendations that vary for smokers and nonsmok-
ers, but is very unlikely to make recommendations

that vary by household size, age and so on, in part
because more complicated recommendations might
lead to considerable confusion.

7. DISCUSSION

We have used a Bayesian hierarchical model to
analyze radon data in the United States, thereby
generating estimated distributional information,
and uncertainties, for different types of homes in
every state of the conterminous United States. We
used these results, along with estimates of radon
risk taken from epidemiological data, to construct
a formalism by which monitoring and remediation
programs can be evaluated, allowing for individual
variation in risk tolerance. To illustrate the use of
this formalism, we examined the implications of a
policy derived from the current EPA recommenda-
tion that sets 4 pCi/L as a remediation level, but
that takes account of the wide variation in radon
levels among counties. This sort of analysis can in
principle be used by individuals trying to decide
what actions to take but, more importantly, can
be used by policy-makers to decide what actions to
recommend or legislate.

As for the results themselves, under the assump-
tions used in this paper, radon is indeed a major
cause of lung cancer in the United States, associ-
ated with thousands of extra lung cancers per year,
and yet, we recommend monitoring only for 26%
of the population (or less, if separate action lev-
els are to be used for smokers versus nonsmokers),
and remediation is recommended only for homes in
the highest few percent of all homes in the United
States. Our baseline recommended strategy (based
on Dd = 0:21, equivalent to a marginal cost per
life saved of $210,000), would save only approxi-
mately 3,000 lives per year out of the estimated
15,000 radon-related deaths per year at an aver-
age cost per life saved of $140,000. The problem
is that because of the lognormality of the radon
distribution, most of the total exposure (and thus,
most of the expected radon deaths) is in people ex-
posed at low levels of radon that cannot be substan-
tially reduced by remediation (see Figure 7). That
is unfortunate from the standpoint of cancer pre-
vention but fortunate from the standpoint of our
analysis since it renders our recommendations rel-
atively insensitive to the dose-response at very low
concentrations. However, if cancer risk is a strongly
nonlinear function of radon concentration for con-
centrations in the range of 2–10 pCi/L, then both
the details of the dose-response and the effects of re-
mediation for low-radon homes are crucial unknown
quantities in the decision. Unfortunately, we see lit-
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tle hope for clarification of the dose-response issue
for many years to come.

7.1 Policy Implications

As discussed in this paper, smokers are thought
to be at much higher risk of radon-induced lung
cancer than are nonsmokers. This makes radon a
peculiar issue from the standpoint of public policy,
as noted by Ford et al. (1998). Under the assump-
tions made in this paper, a large majority of remedi-
ations should be performed by smokers, but smokers
might be willing to accept more risk for lung cancer
than are never-smokers. As Nazaroff and Teichman
(1990) comment in an article that touches on many
issues of radon risk reduction, “it seems unlikely
that most smokers would make the necessary in-
vestment to reduce the radon-related risk of lung
cancer when the dominant cause of their risk is
smoking.”

The results presented above incorporate un-
certainties in the county radon distributions and
explicitly allow for estimation using different as-
sumptions about risk tolerance. As illustrated in
the discussion of sensitivity analysis, it is also pos-
sible to tinker with the dose-response function and
the assumptions about remediation effectiveness.
An optimal decision strategy, within the framework
of the model, can be determined for any choice of
these parameters, but any such strategy is optimal
only in the simplified world of the model. Reality
differs from the model in many ways: not all people
will act rationally or follow the recommendations of
the model; it may be politically difficult to call for
radon testing in some areas and not others, since
doing so may lower property values; similarly, it
may be difficult to call for different action levels for
smokers and nonsmokers, though in some sense it
clearly makes sense to do so; people are impatient
and may vastly prefer short-term tests to long-term
ones and so on. In the policy world, psychologi-
cal, political and economic considerations can be
at least as important as the scientific and statisti-
cal issues considered in this paper. Moreover, even
some scientific issues (most notably, uncertainty in
the dose-response relation) are not fully addressed
in our results.

However, this is not to say that our scientific
and statistical results are useless. To the contrary,
some conclusions are so clear that we think that
policy can and should be changed to reflect them.
Even considering possible nonlognormality within
counties and variation in risk tolerance, there is no
plausible scenario in which it makes sense to mon-
itor every house in the country with a short-term
measurement. The fact that high-radon homes (i.e.,

over 4 pCi/L) have been found in every area of the
country, which the EPA states when recommending
universal testing, is true but irrelevant. Someone
living in a nonbasement home in Louisiana surely
has many risk-reduction options that are vastly
more efficient uses of money and time than is per-
forming a radon test (e.g., buy a smoke detector, get
the car’s brakes checked, visit a doctor, etc.). This
is true even if we use the EPA’s recommended re-
mediation level of 4 pCi/L. As we have seen, that
action level itself is not unreasonable, but it does
not justify monitoring every home. Of course, we
say this with the luxury of having a great deal
more information on the geographical distribu-
tion of radon than was available when the EPA’s
recommendations were first promulgated.

7.2 Generalizations to Other Decision Problems

In the Bayesian approach to decision analysis,
decision options are evaluated in terms of their ex-
pected outcomes, averaging over a probability dis-
tribution that is assigned jointly to all unknown
quantities. The probability distribution is typically
obtained by elicitation from experts, literature re-
view, and sometimes data analysis (in which case it
is identified as a posterior rather than a prior distri-
bution). However, it is not yet common for decision
analyses to use the sorts of hierarchical models that
are becoming standard in Bayesian statistics (see,
e.g, Carlin and Louis, 1996; Gelman et al., 1995), as
we have done in the present paper. Indeed, we are
unaware of any other case in which spatially vary-
ing recommendations have been made based on the
output of a hierarchical model, with correct incorpo-
ration of spatially varying statistical uncertainties.

A nonhierarchical model that has geographic
variation would allow spatially varying recommen-
dations, but, given the (inevitable) existence of
spatial variation unexplained by the model, would
yield less accurate predictions and thus yield de-
cision recommendations that were not as well
calibrated locally. The hierarchical model, in con-
trast, allows parameter estimates and uncertainties
to vary by area, so that location-specific recom-
mendations can be made, and the influence of
recommended actions within local areas can be
assessed.

More generally, we suspect that hierarchical
modeling can be combined with decision analy-
sis in a wide variety of problems, which we hope
will make the data analysis more useful and the
decision-making more individually focused. We
also anticipate more sophisticated methods for
computation (since, in general, the hierarchical pos-
terior distributions that are input to these decision
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analyses will be summarized by simulation) and
graphical display of the varying decision recom-
mendations, continuing on the work developed in
this case study.
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Comment
Bradley P. Carlin

First, congratulations to the authors on a fine pa-
per, which shows quite clearly how formal Bayesian
decision-theoretic tools may be combined with mod-
ern hierarchical modeling techniques to produce
clear and sensible guidelines in an important en-
vironmental health problem setting. Of course,
Bayesians have long argued that their techniques
offer significant advantages over the traditional,
more informal analytic procedures often used by
decision makers, but only with the advent of mod-
ern Markov chain Monte Carlo (MCMC) computing
methods in the last decade or so can these bene-
fits be fully realized. As seen in the present paper,
the Bayesian engine does not obviate the need
for a variety of (potentially highly influential) as-
sumptions in the analysis, but it does provide a
framework in which these assumptions can be
carefully structured, and their impact assessed.

Before commenting on specific aspects of the
authors’ work, it is worth mentioning a possible
confusion in the use of the term “Monte Carlo anal-
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ysis” by the risk assessment and applied Bayesian
camps. As already mentioned, to the latter group
this typically refers simply to the integration meth-
ods used to evaluate the “denominator integral” in
Bayes’ Rule; that is,

p�u�y� = p�y�u�p�u�
∫

p�y�u�p�u�du
;(1)

where y denotes the observed data and u the vec-
tor of unknown parameters. However, to risk as-
sessors, “Monte Carlo analysis” is an approach by
which a sample of potential risk or exposure values
is obtained by first specifying distributions relat-
ing the various observed and unobserved quantities
in the model and then simulating values from the
resulting hierarchical risk model. While my read-
ing of this literature is admittedly only cursory, this
seems to be the approach taken in several risk as-
sessment textbooks (e.g., Vose, 1996), and one that
has been recently codified by an EPA panel assem-
bled to “promote scientific consensus on risk assess-
ment issues and to ensure that this consensus is
incorporated into appropriate risk assessment guid-
ance” (Environmental Protection Agency, 1997). But
to Bayesians, this approach is tantamount to “sam-
pling from the prior”; the Monte Carlo method is
being used only to simulate values from assumed
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distributions, not to assist in the formal prior-to-
posterior updating of (1) above. To be fair, the usual
approach does encourage using observed data when
determining distributions for unknown quantities
whenever possible, and the literature is beginning
to distinguish the variability in unknown quanti-
ties (which is sometimes called “uncertainty”) from
the variability of observed quantities given the un-
knowns (which instead is called “variability”; see,
e.g., Rai and Krewski, 1998). Still, with a few no-
table exceptions (Taylor, Evans and McKone, 1993;
Brand and Small, 1995; Dakins, Toll, Small and
Brand, 1996), the risk assessment literature seems
in need of more formal Bayesian thinking, for which
the present work (and the earlier work of Wolpert,
Steinberg and Reckhow, 1993) may well serve as a
blueprint.

One way in which the risk assessment literature
is ahead of that in statistics is in its willingness to
discuss the value of human life on a dollar (or some
other meaningful quantitative) scale. In clinical
trials, for instance, real advances in decision theo-
retic solutions to the interim monitoring and final
analysis problems have been stymied by the unwill-
ingness of most statisticians, epidemiologists and
clinicians to even contemplate such a mapping
(though a few brave first attempts have been made
by Berry and Ho, 1988; Stangl, 1995). An impor-
tant feature of the present paper is the authors’
description of how already established government
guidelines for what constitutes a radon exposure
level worthy of remediation implicitly determines
dollar values per microlife (Section 4.2). Clearly
such a linear scale is not appropriate when we
move far from the origin (no reasonable person
would surrender one million of his own microlives
for any dollar amount), but discussions of this sort
may well have beneficial impact in risk assessment
strategies far beyond environmental settings, if in
no other way but informing decision-makers as to
what implicit values their recommendations are
placing on fractions of lives.

Turning then to specific comments on the authors’
approach, given the power of modern MCMC tech-
niques I was surprised that the model components
considered in Section 3 were essentially confined to
normal distributions. The model apparently treats
the variance parameters τ2 and σ2 (as well as a vari-
ety of tuning parameters in Section 4) as constants,
instead of more plausibly assuming distributions for
them. Indeed, some of the modeling is not even be-
ing shown: (2) is written as a prior (or a “predictive”
in the authors’ nomenclature), but in fact it must
be the result of a preliminary prior-to-posterior cal-
culation, combining some prior on the regression

parameters b with some preliminary data y∗ on
typical radon concentrations in U.S. homes. What
is this preliminary data and model? Do its residu-
als suggest any evidence of lingering spatial corre-
lation? Also, the two-stage implementation of the
preliminary (Section 3.1) and house-specific (Sec-
tion 3.2) models is odd, since it forfeits the usual
Bayesian advantage of a single unifying model that
enables all sources of variability and uncertainty to
correctly propagate throughout its levels.

As the authors mention, the paper’s main focus is
on the decision analysis in Section 4. Here there are
any number of assumptions with which one could
quibble (the flat $2000 to remediate any home re-
gardless of location, the 70-year life expectancy for
every occupant, etc.); one could either place dis-
tributions on these quantities as well, or simply
undertake a variety of sensitivity analyses (as the
authors describe in some detail in Section 6). While
I don’t wish to nitpick further here, I did find the ap-
proach for “discounting the value of a life,” described
near the beginning of Section 4.1, to be somewhat
confusing. At first blush, if Dd is the amount we
are willing to pay to save one microlife now, then
since lives saved 20 years in the future are worth
less, it seems the revised Dd should be decreased

(not increased) by a factor of 1:0520. However, recall
that the paper does not really specify Dd from first
principles, but rather “backs it out” by viewing the
$2000 remediation cost as fixed. Thus if the value
of the lives saved decreases, our cost per life saved
must go up. Yet even here, it seems that the appro-
priate increased cost must be backed out from (5)
and (6) as well, discounting each future year’s risk
separately in the thirty-year decision period rather
than applying a single inflation factor to Dd.

Of course, the actual dollar amount any given
person would spend per microlife saved is proba-
bly more a function of their own financial resources
and aversion to risk than any governmentally rec-
ommended remediation levels. I am personally
acquainted with a suburban couple with three chil-
dren who, after reading an early report on the
alleged dangers of living near high-voltage electri-
cal lines like the ones near their home, immediately
sold the place and moved. Because they did this at
just the time when popular concern over this po-
tential risk was at its zenith, their total financial
loss in the transaction (including moving expenses
and remodeling their new home) was in the neigh-
borhood of $80–100,000: in the light of more recent
data on the subject, a colossal amount spent per
expected microlife saved. In the language of (6), for
this couple Dd (hence Dr) was essentially infinity
for this perceived risk, and thus Raction ≈ Rremed.
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Looking again at Figure 3, this means the couple
would not consider taking a new risk measure-
ment, and apparently the decision minimizing their
expected loss was to remediate (i.e., move) immedi-
ately. While this is obviously an extreme example,
I would venture to guess that many middle- to
upper-class persons would adopt a similar strategy
for radon remediation, especially given the rela-
tively small cost involved here (only $2000, though
this does not include the headaches of getting the
work done and then maintaining the fan system
once installed).

Finally, in Section 4.3.1, the authors correctly rec-
ognize that the “inner decision” of whether to reme-
diate or not given the future observation y must
be considered first; only then can we decide the
broader question of whether to take this extra mea-
surement at all (versus simply deciding based on
the prior) by integrating over the possible values
of y we might see. This approach is a special case
of the general Bayesian decision-theoretic approach
to sequential analysis problems, backward induc-

tion (see, e.g., DeGroot, 1970, Chapter 12), in which
multistage decision problems are decided by “work-
ing backward” through the potential future obser-
vation stages, alternately minimizing expected loss
and integrating over the as-yet-unseen data values.
It is easy to show (and intuitively clear) that it is al-
ways better to continue sampling if there is no cost
associated with obtaining these new samples. Still,
backward induction is seldom used in practice, due
to the explosion in analytical and bookkeeping com-
plexity as stages are added to the model. Recently,

however, Carlin, Kadane and Gelfand (1998) have
proposed a “forward sampling” algorithm that sub-
stantially eases the analytic and computational bur-
den and can be used to identify the best member of
a plausible class of strategies when backward in-
duction is infeasible. Such an approach has obvious
appeal in clinical trial monitoring (where a moni-
toring board wishes to check the trial’s progress at
various intervals and stop the trial as soon as the
best decision is clear) and might also be useful in
environmental settings where a series of measure-
ments is anticipated, with remediation an available
option at each interval.

In summary, this paper makes important method-
ological contributions to the field of environmental
decision analysis and similarly important contribu-
tions to the substantive problem of radon remedia-
tion (indeed, homeowners would do well to consult
this paper and its Web site rather than simply rely
on any of the “one-size-fits-all” government guide-
lines). I look forward to future developments in fully
Bayesian decision analysis and its further incorpo-
ration into the practice of risk assessment.
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Comment: In Praise of Decision Analysis in
Environmental Health
Carl V. Phillips

If we knew all the right decisions ex ante, then
making public health policy (or advising individ-
uals making decisions) would be relatively easy.
If we had no information to inform a certain deci-
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sion, then any new test or study could be useful
and it would be difficult to predict what new study
would be the most useful. For most public health
questions, of course, our knowledge lies somewhere
between these extremes: we do not know enough
to make a definitive decision or recommendation,
but we know (or would know if we looked carefully)
what further studies or tests would help make the
decision. Yet somehow, most of the public health lit-
erature fails to recognize the implications of this.
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The failures include implicit assumptions that no
further data is available (making policy recommen-
dations prematurely), the next study will inevitably
clear up all uncertainty (ignoring the need to figure
out what the next study should focus on), and fur-
ther data gathering cannot be targeted to subpopu-
lations based on existing data. (Sadly, to the extent
that targeted data collection is recommended, it is
often focused on the subpopulation that is judged to
be most “at risk.” This is often the population that
is least in need of further study, since existing data
is sufficient to warrant intervention with a high de-
gree of confidence.)

Lin, Gelman, Price and Krantz (1999) do a great
service by reminding us, using a wonderfully clear
example, how ex ante knowledge helps us target fur-
ther data gathering and thereby helps assess when
the benefits exceed the costs. They observe that our
priors about the risk from household radon exposure
vary by geography and household characteristics,
and that we can use this convenient data to dra-
matically improve the efficiency of decisions about
testing and remediation. The addition of previous
measurements further improves the precision of the
geographic estimates, and thus the value of the rec-
ommendations. (Decision analysis could still be used
without this addition, just using the predicted mean
county radon concentrations and household charac-
teristics, since they vary enough to produce differ-
ent recommendations. It might be, however, that the
precision would be so lowered that the benefits of
decision analysis would be diluted.)

Social scientists and policy analysts have long
discussed how to use existing information to decide
about gathering further information or to make dif-
ferent recommendations for different individuals
(e.g., Stokey and Zeckhauser, 1978). But the critical
importance of quantifying underlying probability
distributions and sources of uncertainty—indeed,
the understanding that decision-makers can even
use such information—has been overlooked by
other health researchers. This has created the sad
situation where policy analysts are waiting for
probability data for use in decision analysis, while
health researchers are providing only the point esti-
mates that they apparently assume to be preferable
and useful.

An issue like radon testing provides a useful
way to introduce the social value of data gather-
ing into public health without the medical arena’s
limits of allowable practice. Medical testing is func-
tionally equivalent to other areas of public health,
such as radon testing or finding out how safe a
highway is by building it and watching what hap-
pens. But the culture of medicine and the legal

climate complicate things. While allowing the gath-
ering of patient data for the social good, the current
culture makes it difficult to perform tests with ex-
pected social benefits but a net expected cost to the
particular patient, or to withhold tests that have
negative expected value but have any chance of im-
proving a diagnosis. Indeed, it is sometimes difficult
to even discuss making more efficient decisions in
the medical arena. An environmental health issue
like radon allows socially optimal recommendations
because most people are amenable to persuasion
about the right choice, given their underlying lack
of knowledge, the relatively low individual costs
and risks and the noninvasiveness of most actions.
At the same time, the social costs and risks are
fairly high, and it is worth the effort to try to
minimize them.

One major policy advantage of the situation de-
scribed by Lin et al. (one which should probably
be given more attention in the research literature
and policy process) is that it allows individuals
with different tastes for risk to take different ac-
tions. Unlike public health decisions that must be
made by a central authority for everyone (cases
ranging from effluent regulation to airplane safety
features), the decision about radon parallels the
decisions about medical care and consumption. If
someone is more willing to risk disease or less will-
ing to spend money to avoid it (or does not believe
that the risk is actually real), then he has the op-
tion of making a different decision than the official
recommendation. This would be particularly rea-
sonable if, as suggested by Lin et al., EPA made
recommendations that ignored household composi-
tion. Single nonsmoking assistant professors could
rationally choose to ignore the radon risk in their
homes.

An extension of these principles in a different di-
rection (and into more controversial areas) is to as-
sess what population-level research would be most
useful given our current data and priors (Phillips
and Maldonado, 1999). Epidemiologic studies, along
with most quantitative health research, tend to con-
clude by calling for more research, but very seldom
assess exactly what the further research should do.
Further research can be used to eliminate some of
the measurement error, simply assess the level of
measurement error, eliminate confounders, measure
confounders or just increase the sample size. Within
all these choices, there are continuous ranges of
choices along multiple dimensions. Yet the decision
analysis principles are still the same as those in
Lin et al. By fully assessing what we know and what
more we would be likely to know following future re-
search, we can better determine when to act, when
to walk away or what more we want to know.
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Given the clear policy prescriptions in an analysis
like Lin et al., it is crucial that authors are careful
to identify what policy question they are answering
and get certain key social-science-based parameters
right. It is here that I take some issue with the ar-
ticle. (It should be emphasized that this criticism
is an indication that Lin et al. are victims of their
own success. Criticism at this level would not be
worthwhile if the article did not have such great
potential for guiding policy.) The key number relat-
ing to human preference, the value of a life saved,
is too low. There is, of course, no clear number for
the value of a life saved, and willingness to pay for
a probabilistic saved life (by a consumer or regula-
tory agency) varies wildly. Nonetheless, the implicit
values of $100,000 to $500,000 per life saved pre-
ferred by Lin et al. are low by almost an order of
magnitude compared to the typical discussion in the
economics-of-health or economics-of-regulation liter-
ature. This has a substantial impact on the recom-
mended policy. The choice of discount rates also af-
fects the decision through the same pathway and is
always controversial in policy discussions. The use
of 5% for discounting lives saved will be criticized by
some as being high (though others have used even
higher values).

Lin et al. allude to the difference between public
and private health impacts of remediation, partic-
ularly in their acknowledgment of simplifying as-
sumptions. But they understate the importance of
this issue, which is probably the most important
challenge to actual decision making, dwarfing the
practical implications of their other assumptions or
sensitivity analyses. Most houses change residents
many times over two or three decades. Israeli and
Nelson (1992) report that the mean total residence
time for U.S. households is less than five years, and
for people who own their home it is about eleven
years. The medians are considerably lower. It is also
likely that tenure is lower among those who would
be most inclined to remediate (the relatively young
and affluent). If the radon exposure were perfectly
capitalized into the value of a house, then the pri-
vate and public decision would be the same (set-
ting aside the different impacts of radon based on
the number, age, and smoking habits of the resi-
dents). The remaining benefit from a remediation
expenditure would be captured by the current owner
when the house was sold (or rented) and so the pri-
vate optimization decision about remediation would
achieve the social optimum.

However, there is little chance that this perfect
capitalization will occur. Currently, most consumers
ignore radon risk when making housing choices,
while a few overreact to it. Greater attention to the

risk in the media or by the government would tend
to increase the level of concern. But there is no rea-
son to believe that it will get to the “correct” level
of concern (or that if it does, that it will not shoot
past it into widespread overreaction). In general,
the vaunted invisible hand of microeconomics can
only promise that prices will be set correctly when
there is room for someone to make an arbitrage
profit from someone else’s miscues. If you under-
price the wheat you are selling, I can make a profit
by buying it. But if you underprice the value of pro-
tecting yourself from radon, there is no way for me
to make a profit, and thus no market pressure for
the price to rise to its proper level. Thus, the major
decision variable for individual homeowners, per-
haps more important than even the concentration
of radon, is likely to be how long they plan to stay
in the house, a variable which is omitted from the
analysis.

Given the failure of perfect capitalization, the op-
timal public health result could still be achieved by
requiring all property owners to take the steps rec-
ommended by the decision analysis, regardless of
personal taste or plans to leave the house. However,
this would be such an implementation nightmare
that it is not even worth discussing. The analysis in
Lin et al. does not clearly position itself as either a
recommendation to the homeowner (in which case
it should consider expected tenure in the house and
level of capitalization from the risk) or for some na-
tional public health initiative (in which case, issues
of implementation, social attitudes toward risk, and
politics will probably dominate the rational assess-
ment).

Despite addressing some of the uncertainty be-
tween households through the hierarchical model,
Lin et al. cannot do much to deal with the great
underlying uncertainty of how risky low-dose radon
really is, especially for nonsmokers. In many cases,
policy should be made based on the best-available
estimates of important values. However, there are
limits to this approach. On a practical level, even
with an impeccably flawless decision analysis, it
may be difficult to get consensus on a precise ac-
tion point for a decision tree when there is huge
disagreement about the value of the central param-
eter. Apart from this, when certain actions have
irreversible costs (such as $1500 to install a radon
remediation system), it may pay to wait for more
information, in case the new information might
suggest a different optimal action. (In economics,
this concept is known as option value.) This, in
turn, creates another layer of optimization decision
based on our priors about what new information
will emerge and when.
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Before paralysis sets in about the enormity of the
task of optimizing our decisions under risk and un-
certainty, we should remember the value of a high-
quality analysis that covers most of the important
options and sources of uncertainty. Such an analy-
sis is much more likely to produce good decisions
than is taking rhetorical refuge in the complexity of
the decision and resorting to rules of thumb, politi-
cal pressure or simple inertia. Lin et al. show how
to conduct such an analysis, and (modulo our dis-
agreement about economic parameters and the com-

plication of individual versus social decisions) carry

it out. Their analysis is part of an important trend

in health research toward considering all costs and

benefits of an action and seriously analyzing what

we would learn from further data gathering. This is

a huge improvement over the standard practices of

either making policy recommendations as if a given

study were the last word in an area or assuming

that we will have all the answers soon and refusing

to make a recommendation until then.

Rejoinder
Chia-yu Lin, Andrew Gelman, Phillip N. Price and David H. Krantz

1. INTRODUCTION

We thank both discussants for their comments,
especially for their explorations of the connections
between statistical modeling, decision analysis and
public health outcomes. Our paper has two main
goals: to illustrate the benefits of hierarchical mod-
eling in probabilistic decision analysis and to de-
termine an improved radon recommendation that
would have a chance of actually influencing the gov-
ernment’s radon policy. In this rejoinder, we respond
to the specific comments of the discussants in the
context of our major concerns about radon and de-
cision analysis in general.

Phillips points out that we never stated exactly
what policy question we are attempting to answer,
and that it is unclear whether we are making recom-
mendations to individuals or to policy-makers. The
answer to the latter question is that we are hop-
ing to influence government radon policy; we do not
expect our recommendations to reach a substantial
number of individual homeowners. We do think that
the government, that is, the Environmental Protec-
tion Agency, or perhaps state health departments,
could recommend use of some house- and occupant-
specific information in making radon decisions, but,
as discussed below, the complexity of the decisions
would probably be kept very low. Of course, even
though it is the government’s radon policy that we
are attempting to influence, the eventual costs and
benefits (and decisions) would still be up to indi-
vidual homeowners (except for a few government-
owned buildings such as schools and military base

housing, some of which have already been moni-
tored and remediated).

As to our not explicitly stating the policy ques-
tion that we were trying to answer, that’s certainly
a valid point. Rather than claim that what we did
is “right,” we will explain why we did the analysis
the way we did, since we think the same issues will
apply to many other decision analyses.

2. RADON POLICY

We did not set out to answer the open-ended
question of what the U.S. government’s radon pol-
icy should be, which is such a complicated question
that it is hard to see how to directly address it
with a decision analysis. For instance, the question
of whether radon policy should be set by the fed-
eral government, state health departments or local
zoning boards, is both a political question and a
matter of organizational efficiency that we have no
clear way to analyze. In practice, the radon policy
can only be chosen from within a universe of pos-
sible policies, and we don’t even know what that
universe encompasses.

However, we have had several years of experience
analyzing radon data with the goal of identifying
high-radon homes, as part of a project sponsored by
the EPA, the Department of Energy, and the U.S.
Geological Survey. During this time we grew dissat-
isfied with several aspects of the current U.S. radon
program. For instance, many people make decisions
about radon remediation decisions (and even deci-
sions about what house to buy) based on short-term
monitoring in the basement, which bothers us since



334 LIN, GELMAN, PRICE AND KRANTZ

we know that this protocol leads to a very large frac-
tion of “false positive” results. Also, when we found
that some large areas of the country have nearly
no high-radon homes, it seemed silly to recommend
monitoring everywhere. Finally, there’s the risk dif-
ference between smokers and nonsmokers, which
certainly seemed as though it ought to influence
decisions.

2.1 Why Not Look for the Optimal

Policy for Individuals?

Once we begin to consider the factors that can
affect people’s decisions, it seems appropriate to an-
alyze the whole problem from the perspective of
individual homeowners, but this approach quickly
becomes extremely complicated. To fully model risk,
one should consider, in addition to the predicted in-
door radon concentration, at least the number of
occupants, and the sex, age and smoking status of
each occupant (or in the case of young nonsmokers,
the probability that they will become smokers). Of
course, all of this is in addition to the very large un-
certainty in the dose-response relation, particularly
at low doses.

Also, in contrast to our simplified model, both the
costs of remediation and the postremediation radon
concentration are variable (and unknown). As far as
costs are concerned, some unknown fraction of the
remediation cost is, or ought to be, recovered upon
sale of the home, which takes place after a vari-
able and uncertain time period, with the recovered
cost dependent on both the risk tolerance of the new
buyers and the makeup of their household.

In short, attempting to determine the best course
of action for a particular person or home is a mess.
We could, of course, create models and distribu-
tions for all of the factors listed above and gener-
ate individual recommendations, but to what end?
There’s no chance that any sizable fraction of home-
owners would actually do the work needed to de-
termine what we recommend they should do, and
we also can’t picture radon policy-makers sifting
through the resulting reams of analysis in order
to try to formulate a new radon policy. And per-
haps they shouldn’t; would the benefits of having a
better-targeted, but much more complicated, radon
policy outweigh the ill effects of added confusion and
complexity?

2.2 What Do Governments Think a Radon Policy

Should Look Like?

Most governments that have official radon poli-
cies (this includes most of the “developed” nations)
have a single recommended action level, or some-
times two or three separate target levels, for exist-

ing, rebuilt and new buildings (Cole, 1993). In the
United States, EPA and state health department of-
ficials have told us that when people ask them for
radon advice, they don’t want to have to think about
a lot of different issues; they just want to know what
a “safe” radon level is. Whether or not the policy-
makers are right about the need for simplicity, it
is clear that official radon recommendations will in
fact be based on quite simple monitoring and reme-
diation criteria. So when it came to deciding what
policies to analyze, we decided to restrict ourselves
to fairly simple variations on the EPA’s current rec-
ommendations. We make no claim that the result-
ing policies are the best of all possible ones; we only
claim that they would be improvements to the cur-
rent recommendations.

3. VALUE OF A MICROLIFE

3.1 Why We Used the Values We Used

The discussion of which simple policies should
be considered leads us to one of the specific issues
raised by the discussants. Phillips objects to the low
“value of a microlife” that we used, and Carlin says
that our derivation of it from the EPA’s recommen-
dations is confusing.

We considered three parameterizations (value of
a microlife, or a radon action level, or a dollar value
associated with reduction of 1 pCi/L), and it is pos-
sible to perform the analysis conditional on any of
these. One reason for allowing decisions to be ana-
lyzed in terms other than “cost per life saved” was
to allow more direct treatment in, say, a regulatory
framework in which decisions are made based on
an action level. Of course, a value for any of the
three parameters determines values for the others,
so there is no escaping that any decision implies a
marginal cost per life, but, as a practical matter,
radon decision-makers might prefer to work with
one of the other parameterizations.

Our analytical results were worked out with the
parameter values unspecified, but when we plugged
in example values we chose them for a reason. As
a practical matter, retaining the action level is im-
portant. There is probably no stone tablet in Wash-
ington that reads “Thou shalt use a 4 pCi/L action
level,” but there might as well be: the EPA has al-
ready faced significant heat from nonbelievers who
think that breathing radioactive gas is good for you,
or at worst harmless, and there is no chance that the
action level will be decreased. On the other hand,
there is also little chance that the EPA will com-
pletely abandon its long-standing 4 pCi/L threshold
in favor of a higher threshold, particularly in view of
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the fact that under conventional dose-response mod-
els it is not a very protective standard; as we show
in the paper, the implied marginal cost per life saved
is only around $200,000, which, as Phillips notes, is
very low compared to the values people usually use.

However, interpreting this implied marginal cost
is a bit tricky. The radon decision is about paying
now to reduce the risk of lung cancer death between
5 and 35 years in the future (under our assumption
that remediation is effective for 30 years and as-
suming 5 years between the cancer initiation event
and death). On average, ignoring the age distribu-
tion of the population for the moment, performing
remediation now can be thought of as saving a frac-
tion of a statistical life at the middle of that period,
or 20 years. This delay can also be interpreted in
terms of “discounting” of the future; in our paper,
we suggested that a discount rate of 5% leads to a
“net present value” of a life of 1:0520Dd = 2:7Dd,
but that is actually slightly wrong. We should have
used

∫ 35
5 1:05tDd dt = 2:9Dd. However, we prefer to

avoid this discounting formulation and rather sim-
ply recognize that the lives saved by radon remedi-
ation will be on the order of 20 years in the future.
Another way of analyzing the decision, consistent
with the medical decision analysis literature, is to
look at years of life saved. If lung cancer deaths
from radon are approximately uniformly distributed
across the population of smokers, this gives on the
order of 25 years of life saved, so that, for example,
$200,000 per life corresponds to about $8,000 per
undiscounted year of life.

Getting back to Phillips’ comment that these
dollar amounts are an order of magnitude lower
than typical values in the economics-of-health or
economics-of-regulation literature, we note that in
addition to the discounting issue discussed above,
in many health and regulatory decisions there is a
potential for prescribing the action to be taken: re-
quiring (by law) that insurance companies pay for
a particular procedure, or that companies reduce
their emissions below a certain level. In contrast,
with a few exceptions radon recommendations are
just that—recommendations—and the fact that
most people do not now remediate, or even moni-
tor for radon, suggests that there would be little
point to determining a radon policy based on a
higher value per microlife with its correspondingly
lower recommended action level. We hope that an
improved radon policy will also meet with better
compliance with the recommendations of that pol-
icy, and if so then the action level could be revisited,
but for now a lower action level would probably
simply not be respected.

3.2 Variation in the Value of a Microlife

Carlin suggests that the amount people are actu-
ally willing to spend is “probably more a function
of their own financial resources and aversion to
risk than any governmentally recommended reme-
diation level.” Actually, we think all three of these
factors are important. In practice, based on am-
ple anecdotal evidence, many people do take the
recommended action level of 4 pCi/L into account
when deciding on whether to remediate (though
they do not necessarily follow the EPA’s recom-
mendations; see Evdokimoff and Ozonoff, 1992),
and many radon mitigation companies guarantee
that the long-term postremediation concentration
will be below 4 pCi/L and will perform additional
remediation if that standard is not met.

However, Carlin’s point is well taken. If “risk-
aversion” is measured in dollar terms, then it may
be more a measure of financial resources than of
psychological attitude toward risk. Consider the
most extreme case of avoiding certain risks. Carlin
points out that a linear scale of value per microlife
is “not appropriate far from the origin since no rea-
sonable person would surrender one million of his
own microlives for any dollar amount.” Although
true, the question that is more relevant to our anal-
yses is not how much someone would have to pay
you in order for you to tolerate a given risk, but
rather how much you would pay to avoid a given
risk. There is clearly a finite answer to this latter
question: you cannot pay money that you cannot
raise. The theoretical “ability to pay” to save a mil-
lion of your own microlives might be a couple of
million dollars for a reader of this journal, up to
many tens of billions of dollars for, say, Bill Gates.

4. THE ROLE OF FORMAL “DECISION

ANALYSIS” IN DECISION-MAKING

Formal decision analysis requires setting up a
decision–uncertainty tree, estimating the costs and
probabilities associated with the potential outcomes,
setting up a value–utility function for the outcomes
and evaluating the tree using averaging and max-
imization. It is often said that the most important
parts of formal decision analysis are (a) explicitly
setting down the possible decisions and outcomes
and (b) revealing possible incoherence in existing
decision procedures.

The key difficulty of using a decision analysis to
make an actual recommendation is that the inputs
to the analysis may be more controversial than the
outputs. For example, in our analysis, any home-
owner can obtain a recommendation to remediate
simply by increasing the value of a microlife past
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a certain value. To put it another way, there may
be as much arbitrariness in choosing the relative
values of money and life as there is in setting a
perfect-information remediation threshold, or even
in making a measurement–remediation decision. As
with the medical decision-making literature, we can
use decision analysis as a tool to produce best esti-
mates of costs in dollars and lives, which then must
be balanced by policymakers and individuals.

In the radon example, the clearest benefit of the
decision analysis is in allowing us to construct a spa-
tially varying family of decision recommendations
that we expect would save more lives at a lower
cost than a uniform national recommendation. In
addition, the formal analysis allows us to calibrate
decision thresholds (in pCi/L) in terms of dollars
per microlife. Both these benefits require a realistic
statistical model of measurements and home radon
levels.

5. DECISION ANALYSIS AND

HIERARCHICAL MODELING

To see the connection between statistical models
and decision analysis, we consider how decision rec-
ommendations change as the underlying statistical
models become more complex.

The simplest decision analyses are uniform across
the population and are expressed as, for example,
Should a patient with a certain medical condition
undergo the risk of a certain diagnostic test? The
recommendation might then be in terms of dollars
per life saved, or even simply as positive or nega-
tive expected lives saved. More sophisticated analy-
ses allow relevant probabilities to depend on known
covariates, so that the question of undergoing the
diagnostic test might be conditional on the age, sex,
and some assessment of the health status of the
patient.

From a statistical standpoint, conditional deci-
sion recommendations correspond to interactions
between treatment effect and covariates, and they
can have important practical considerations. For
example, optimal recommendations for cancer
screening depend on age, with the particular age
recommendations depending on the pattern of can-
cer onset (see, e.g., Eddy, 1990), and in economics,
a program that has a negative effect on the popu-
lation can be estimated to have a highly positive
effect if targeted on the individuals with covari-
ates that predict a highly positive interaction with
treatment (Dehejia, 1998).

In response to Carlin’s comments about the un-
derlying statistical model: yes, we previously fit a
fully Bayesian model to a large set of short- and

long-term radon measurements, along with other in-
formation on houses in the dataset and counties in
the United States. We used the posterior distribu-
tion of that analysis as the prior distribution for the
analysis in this paper. For each county and house
type, we used the posterior simulation draws from
our previous analysis to compute a prior mean and
standard deviation for the mean log radon level for
those counties and house types. We then assumed
that the standard deviations of the measurements
within that county and house type were estimated
to a high precision (and could thus be summarized
by posterior point estimates?), which is not too bad
an approximation given the large datasets used to
construct that posterior distribution. If we were less
confident that the posterior distribution was close to
normal, then we would have worked with the simu-
lation draws themselves, but in this case, we wanted
the convenience of the normal approximation, which
allowed some of the steps of the decision analysis to
be performed analytically. Another approach would
be to use the normal approximation, but then check
it (or correct for it) at the end of the analysis, using
importance sampling.

Finally, we believe it is important to link the con-
cerns of statistical modeling to those of decision
analysis. Sensitivity analysis is already recognized
as a crucial step in any practical decision analy-
sis. In addition, the iterative steps of modeling, fit-
ting and model-checking are as relevant for decision
analysis as for inference. In particular, in a deci-
sion problem, it makes sense to check that the deci-
sion recommendations for the model applied to the
data are consistent with what would be expected
under the model; that is, decision recommendations
can be used as test variables in predictive checks
as in Gelman, Meng and Stern (1996). In the radon
example, other natural predictive checks arise from
concerns expressed with the model; for example, are
there pockets of high-radon homes in otherwise low-
radon counties, beyond that predicted by the model?
More generally, the decision analysis should guide
the model-checking as well as the inference and the
modeling itself.
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