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Programs spend most of their time in loops and procedures. Therefore, most 

program transformations and the necessary static analyses deal with these. It 

has been long recognized, that different execution contexts for procedures may 

induce different execution properties. There are well established techniques for 

interprocedural analysis like the call string approach. Loops have not received 

similar attention in the area of data flow analysis and abstract interpretation. 

All executions are treated in the same way, although typically the first and later 

executions may exhibit very different properties. 

In this paper a new technique is presented that allows the application of the 

well known and established interprocedural analysis theory to loops. It turns out 

that the call string approach has limited flexibility in its possibilities to group 

several calling contexts together for the analysis. An extension to overcome this 

problem is presented that relies on a similar approach but gives more useful 

results in practice. 

The classical and the new techniques are implemented in our Program Ana- 

lyzer Generator PAG, which is used to demonstrate our findings by applying the 

techniques to several real world programs. 

Keywords: program analysis, program analyzer generator, loops, call string 

approach, functional approach. 

1 I n t r o d u c t i o n  

In data flow analysis the meet over all paths solution is computed or approxi- 

mated. In the presence of loops this means that for the body of a loop the data 

flow value on the first entry is combined with the values upon return. Loops may 

start in a state very different from that encountered in further iterations, so that 

it could be useful to keep them distinguished in a data flow analysis. 

To allow for this a solution is presented which relies on extensions of well 

known interprocedural analysis techniques like the call string approach or the 

functional approach described by Sharir and Pnueli [8]. This has the advantage 

that similar problems -loops and procedures- can be treated in the same formal 

framework. Furthermore this allows to use the existing theory and implementa- 

tions of the interprocedural analysis for the analysis of loops. 

The necessity for better loop analyses has also been claimed by Harrison 

[5], who proposed to transform loops into procedures to use the techniques for 

interprocedural analyses. Also in the area of compiler construction there are 

several optimization techniques for loops (e.g. software pipelining). 
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The main idea of applying the interprocedural analysis to loops is to extend 

the procedure concept to a special block structure in the control flow graph 

for a program. Such blocks can be analyzed like procedures in interprocedural 

analysis, thus allowing for a separation of the information for different paths 

through the control flow graph. 

As the number of paths is usually infinite, it is not possible to analyze all of 

them separately. Therefore one has to partition the sets of paths into classes, in 

order to analyze each of them at once. In the functional approach, this is done 

by inspecting the data flow information at the entries of blocks dynamically at 

the analysis time. In the call string approach, the paths are grouped statically 

in advance. 

The solution presented here allows not only for the application of the inter- 

procedural techniques to loops but to arbitrary blocks of code. This paper shows 

that the classical call string approach for the interprocedural analysis is not al- 

ways well suited for the analysis of nested loops. We present a new improved 

technique called VIVU. 

The classical and the new approaches are integrated into the program an- 

alyzer generator PAG [2]. Practical experiments with several real applications 

show the applicability and the performance gains of the new approach with 

respect to the classical approaches. 

In the next section the motivation for the extension of the interprocedural 

analysis techniques is given by taking a closer look at the analysis of loops in 

the context of a practical application. In Sec. 3 two classical interprocedural 

techniques are discussed. The VIVU approach is introduced in Sec. 4. In Sec. 5 

the classical interprocedural techniques and VIVO are applied to an analysis 

problem, and the results are compared and evaluated. 

2 Mot ivat ion  

As an example the analysis of loops is considered in the context of cache behavior 

prediction [1, 4]. 

Caches are used to improve the access times of fast microprocessors to rel- 

atively slow main memories. They are an upper part of the storage system hi- 

erarchy and fit in between the register set and the main memory. They can 

reduce the number of cycles a processor is waiting for data by providing faster 

access to recently referenced regions of memory. Most modern workstations are 

equipped with microprocessors that have cycle times of about 2 to 40ns and 

DRAM (Dynamic Random Access Memory) that has a cycle time of 90ns and 

m o r e  [6]. 

Cache behavior prediction is a representative of a large class of analysis prob- 

lems that are of high practical relevance in the area of hard real time systems. 

These require a timing validation based on bounds of the execution time. Closely 

related is pipeline behavior prediction for which similar analysis requirements 

exist. 
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The goal of cache analysis is to compute a categorization for each memory  

reference tha t  describes its cache behavior. The categories are described in Fig. 1. 

Category I Abb. [Meaning 

always hit ah The memory reference will always result in a cache hit. 

always miss am The memory reference will always result in a cache miss. 

not classified nc The memory reference could neither be classified as ah nor am. 

Fig. 1. Categorizations of memory references 

Example 1. 
Let us consider a sufficiently large da ta  cache and the following program frag- 

ment: In the first execution of the loop, the reference to v will result in a cache 

/* Variable v not in the data cache */ 

for i:=1 to .. do 

y:=v 

end 

begin ] 

- - - ~  f o r  <------- 

> [ end 

Fig. 2. Motivating example 1 

miss, because v is not in the cache. In all further iterations the reference to v 

will result in a cache hit, if the cache is sufficiently large to hold all variables 

referenced within the loop. 

The  control flow graph for this program is shown in Fig. 2. An empty  box 

means tha t  v is not in the cache, and a box with v means tha t  v is in the cache. 

In the classical approach,  the first i teration and all further i terations are not 

distinguished. The combination function which is needed to combine da ta  flow 

information for nodes in the control flow graph with several incoming edges is 

for the cache analysis similar to set intersection. In the example the combination 



83 

function is used to combine the data flow information at the entry of the loop 

with the data flow information from the end of the loop body to obtain a new 

data flow value at the beginning of the loop. The combined data flow information 

can not include the variable v, because v is not in the cache when the loop is 

entered. The reference to the variable v will be classified as nc. For a WCET 

(Worst Case Execution Time) computation this is a safe approximation, but 

nevertheless not a good one. 

3 I n t e r p r o c e d u r a l  A n a l y s i s  

The key idea of interprocedural analysis is that in general a procedure called more 

than once will have different data flow elements calculated for these different 

dynamic calls. The different data flow values for the calls of a procedure are 

called calling contexts. The most precise analysis results are obtained if the 

procedure is analyzed separately for each calling context. But this does not only 

increase the complexity of the analysis, but may even lead to nontermination of 

the analysis, if it can't be guaranteed that the procedure is analyzed only with 

a finite number of different calling contexts. The strategies to overcome this 

problem and to reduce the complexity of the analysis differ in the two following 

classical approaches [8]. 

If for a procedure different calling contexts are known this can be used in 

a subsequent optimization pass to create several optimized versions of the pro- 

cedure which are specialized according to different contexts. If it is statically 

known from the analysis which call contexts are produced by a call site then 

this call can be replaced by a call to the version of the procedure specialized 

according to these contexts. 

3.1 Functional approach 

The functional approach doesn't try to reduce the complexity of the analysis. 

It analyzes each procedure once for every call context that arises during the 

computation. This can be done by tabulating the different call contexts for each 

procedure with the corresponding data flow element for the exit of the procedure. 

So the tables for the procedures can be seen as functions which map incoming 

data flow values to outgoing data flow values. They represent abstract versions 

of the procedures. 

Each time the iteration algorithm reaches a call node it looks up the call 

context in the table of the called procedure. If an exit value is found, this is used 

as the result of the call. If no exit value is found its calculation is triggered. Since 

procedures can be (simultaneously) recursive this can trigger the calculation of 

other values. 

The tables for every procedure can't grow infinitely if the abstract domain 

is finite. No other good sufficient termination conditions are known to us, if we 

assume that there exists no compact representation for the abstract functions. 

The disadvantage of the functional approach is that at the end of the analysis 
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the correspondence between paths and table entries is not known, so an efficient 

specialization is not possible. 

3.2 Call string approach 

In the call string approach a partition of the dynamic calls for each procedure 

is constructed in a pre pass of the analysis. During the analysis each procedure 

is analyzed once for each class of dynamic calls. 

The members of a class of dynamic calls for a procedure are chosen according 

to the suffixes of the path they have taken through the dynamic call tree. (A call 

string is a concatenation of calls c.) The hope is that only those dynamic calls 

are in the same set which have a similar data flow behavior. 

The idea can be understood as simulating the call stack of an abstract ma- 

chine which contains frames for each procedure call that has not yet finished. 

The tracing of the call strings is done by encoding them into the domain of 

data flow values: if the original domain is D then a domain D* : F g -+ D is 

constructed, where F/( is the set of all call strings with length at most K. Then 

the transfer functions t f  : D ~ D are extended appropriately to a function 

t f * : D * - ~  D*. 

This approach has three ad~zltages compared to the functional approach: 

first it is possible to deal with data, flow domains of infinite cardinality. Second, 

it is easily possible to cut down the complexity of the analysis by selecting small 

values for K. And third, it is easily possible to find for each call context the set of 

paths through the call graph and therefore to replace a procedure by specialized 

versions. 

The disadvantages are: the call string approach can be less precise than the 

functional approach. And it is not very practical to encode the call strings into 

the analysis domain. 

4 E x t e n d i n g  I n t e r p r o c e d u r a l  A n a l y s i s  

In the interprocedural analysis pieces of code (procedures) are analyzed several 

times for the different incoming data flow values (calling contexts). This is done 

to get better analysis results for pieces of code that are executed in different 

contexts. As the motivating example of Sec. 2 has shown also the body of loops 

are executed several times with different contexts. Therefore the techniques for 

the interprocedural analysis are now extended such that they can be applied also 

to loops. 

To do so the concept of procedures is generalized to blocks. Blocks have entry 

and exit nodes, which are the only ways to enter or leave the block. Addition- 

ally, there can be edges from inside the block to the entry of other blocks (which 

correspond to procedure calls in the interprocedural context and are therefore 

referred to as call edges). For each of these call edges there has to be a corre- 

sponding edge from the exit of the called block back to a node inside the calling 
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x = 0 ;  

while (x<lO) ( 

x += 1; 

} 

a) 
I F 

b) 

C 

c) 

Fig. 3. A loop, the original CFG and the transformed CFG 

x = 0; 

loop(); 

void loop(void) { 

i~ (x<10) { 
x += 1 ;  

l o o p ( )  ; 

} 
} 

a) 

F T 

I 

b) 

Fig. 4. The transformation from a loop to a recursive procedure 

block (which will be ca]led return edges). Each node in the CFG belongs exactly 

to one block. 

The transformation of a loop to a block can be seen in Fig. 3. The loop in 

a) corresponds to the CFG in b) which is transformed to the CFG in c). The 

description above requires the edge r as correspondence to the edge c in the 

transformed CFG. This edge r in Fig. 3 c) allows the continuation of the calling 

block after the called block returns. But as a loop is "tail recursive" there is 

nothing to do after the return. Therefore the return edge degenerates to a self 

loop at the exit node. For comparison, Fig. 4 shows the code and CFG of the 

loop in Fig. 3 expressed as a recursive procedure. But although self loops can 
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be omitted for a standard data flow analysis, those edges are important for the 

transformation made in Sec. 4.1. 

A program with the described block structure and calling conventions is repre- 

sented by a supergraph. 

Defini t ion 1 Supergraph .  

A supergraph G* = (G, P) consists of a control flow graph G = (N, E) with a 

set of nodes N and a set of edges E and a partition P C 2 N of nodes, where 

each class Pi represents a block. Each block has unique entry and exit nodes 

(entry i, exki). The class P0 represents the main block and therefore entry o has 

no predecessors and exit0 no successors. Each edge from a node nl C Pi to entryj 

has a corresponding edge from exitj to an n2 E Pi. All other edges are intra 

partition edges. 

A block in the supergraph is said to be (directly) recursive if it has an edge 

to its own entry. A set of blocks in the supergraph is simultaneously recursive 

if their subgraphs are strongly connected. A supergraph is called recursive if it 

contains (a set of simultaneously) recursive blocks. In this paper only procedures 

and loops are used as blocks but the approach is not limited to them. It can be 

applied to each block of code with more than one entry. 

In the remainder of this section the static call graph approach from [2] is 

introduced and extended to blocks. It transforms a supergraph and a call string 

length K to an expanded supergraph. This expanded supergraph is a CFG on 

which the analysis problem can be solved by a standard intraprocedural algo- 

rithm. The static call graph approach can also be used for other interprocedural 

techniques than the call string approach. 

4.1 Static call graph approach 

To keep different call paths separated, each node in the supergraph is annotated 

with an array of data flow elements. A pair consisting of a node and an index 

to the array is called a location. For every block Pi, the number of data flow 

elements at nodes of this block is fixed and called its multiplicity written as 

rnul t(Pi) .  Moreover mult(Po) = 1, i.e. there is only one location in the main 

block, mult can be simply extended to nodes by defining: muft : N --+ N by 

mult(n) := mult(Pi), iff n is a node in Pi. 

A connector is a set of functions cone : {1, . . . ,  mult(P~)} --+ {1, . . . ,  mult(Pj)} 

that describe for each call edge c how the locations of the calling block axe 

connected to the locations of the called block. Different strategies like the call 

string strategy to construct connectors and multiplicities for a supergraph can 

be chosen. They will be discussed in detail in the next section. 

This leads to the definition of the expanded supergraph, a new kind of CFG, 

whose nodes are locations. The locations are connected along the edges of the 

supergraph. Within blocks the i-th location is connected with the i-th location 

of the successors. For call edges c cone determines how the data flow elements 

of the calling block are connected to the elements of the called block. At the 

corresponding return edges the inverse of cone is applied. 
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D e f i n i t i o n  2. The expanded supergraph for a supergraph G* = ((N, E) ,  P) ,  a 

function mult : N -+ N and a connector conc is defined as 

GE = (N*, E*), with 

• N* = {(n,i)ln 6 N , i  6 {1 , . . . ,mul t (n)}}  

• ((nl, i l) ,(n2,i2)) 6 E*, iff e = (nl ,n2)  6 E and one of the following 

conditions hold: 

i.) n2 = E n t r y  Pj and i2 = cone(il) 

ii.) nl  = E x i t  Pj and il  = COnc(i2), where c is the corresponding call 

edge to e. 

iii.) il = i2 and n,  # Ex i t  P and n2 # En t ry  P 

Figure5  is an example for an expanded supergraph with rnult(P1) = 

1, mult(P2) = 2, COrlcl (1) = 1, cone2(1) = 2, and COnc2(2) = 2. 

P2 

call call 

P I  

C] C a l l  FAC 

Return 

. . . .  Return ~--~ ~--] 

rettgn 

Fig. 5. Connector example 

To solve a data  flow problem with expanded graphs, it is necessary to find 

suitable conc and muir functions. With these it is possible to tune the analysis: 

the higher the multiplicity the bet ter  the precision that  can be achieved, but  the 

more time and space are needed. 

4.2 Connec tors  

In this section some methods to determine pairs of multiplicity and connectors 

are explained. 
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Simple connec tor  In the simplest case, the multiplicity of each block is one, 

and the conc functions are the identity. So the standard control flow graph is 

obtained. 

Call  s t r i n g  c o n n e c t o r  The call string approach for a fixed length K of the 

call strings can be simulated with the static call graph approach. This method 

allows to avoid the calculation of the call strings during the solution procedure 

by precalculating the paths through the call graph. Also the encoding of the call 

string in the analysis domain is avoided. This is done by the following static 

calculation: whenever the analysis passes a call edge (n, entryi) the call string 

approach would append the node n to the actual call string. This can be simu- 

lated by encoding the call strings as numbers that correspond to locations: every 

call edge c is assigned a unique number between one and M - 1, where M is 

the number of call edges in the given program. Then a call string 7 = cil . . .  ciK 

corresponds to a K digit number m to base M ( m  = i l  . . .  iK) .  This number can 

be converted to the decimal system by multiplying the n-th digit by M n and add 

this for all digits (m' = ~ l < j < u  ij • MJ). So m is between zero and M g where 

zero denotes the empty call string c. Fortunately not all of these call strings are 

valid for each procedure. By deleting all non valid numbers for a procedure the 

number of locations can be reduced, so that every location is used. 

Call  s t r ing  1 connector  The call string approach for K = 1 can also be 

described as follows: count the number of incoming edges to entryp to take this 

as the multiplicity of P .  Then the cOn(n,entryp) functions project all data flow 

elements of n to a single fixed position in the vector of data flow elements of 

entryp. 

4.8 VIVU 

It has turned out in practice that the call string approach is not optimal for 

nested loops. Even if the length of the call string is chosen to be the level of the 

nesting depth of the loops many paths are separated which are not interesting. 

Figure 6 shows an example for two nested loops. The call edges are labeled 

with ]1, f2 ,  ol, o2 where ] stands for the first calls and o for other calls. Possible 

call strings which reach loop2 are ]1(]2o~ol)* f2o~.  

The call string approach with K = 2 considers all suffixes of length two of 

the paths. These (and their interpretation) are: 

- f l  ]2 (first iteration of the outer and inner loop) 

- f2o2 (second iteration of the inner loop) 

- 0202 (iteration > 3 of the inner loop) 

- ol]2 (iteration > 2 of the outer loop first of the inner) 

If an analysis problem is assumed for which initialization effects can be expected 

then it is not important to separate the second and all other iterations, but the 
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I exit0 

entry0 ] [--1 

f l l .  " i '  o~ 
i 

t 

~ntry !0°P~ ~ .......... .......... ::'t" " ' :  ..... . 

/ 
/ 
/ 
/ 

// 
/ /  

! 
i / 

/ /  
/ / 

/ /  
I t I I I,,~.-" .../ / 

Fig. 6. Call string approach for two nested loops 

first from all other iterations. This leads to the following more appropriate sep- 

aration scheme: 

outer loop inner loop 

first first 

first other 

other first 

other other 

For the two nested loops this results in the expanded supergraph in Fig. 7. 

For programs with direct recursion the formal mapping and multiplicity con- 

struction looks as follows: the multiplicity of a block P~ is the sum of all blocks 

Pj except P~ that have an edge to the entry of P~. If P~ is recursive this has to 

be multiplied by two. For a recursive edge from P~ to P~ the cone function is 

defined as 

j' rnult(Pi)/2 + x if x < mult(P + i)12 
COne(X) 

l x otherwise 

For the non recursive edges all non recursive edges to the entry of Pi have to 
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exit0 

en t ryo  

~ntry ----loop~ ~ i ~'~j[~ .......................................................................... "]iit .... ..... i,,., ]]]]"" ........... 

l --1 
... / 
i / 
/ /  
/ i 
i /  

.,, .: 

/ / 
,, .r 
/ / 
/ / 
! / 

/ / 
! / 

~ 1 ! ]  ~...-J.ji ............ ' ......... / '  

I 'i::::::):::i?iiii2 ............................................... ............... "",. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " "  

F i g .  7. VIVU for two nes t ed  loops 

be numbered from 1 to n. Then for the k-th edge ck 

k-1  

COnc~ (x) = x + ~ mult(Pj) 

j = l  

if Pj is the source block of the j- th call. 

For non recursive procedures this method simulates full inlining, and for 

recursive ones it separates the first pass through it from all other passes through 

it. This is where the name for this mapping comes from: Virtual Intining (of 

procedures) and Virtual Unrolling (of loops). 

For supergraphs with simultaneously recursive blocks the complete "virtual 

inlining" has to be given up as follows: first a "call graph" G has to be constructed 

with the blocks as nodes and an edge between P~ and Pj iff ~(n, entryj) E E : n E 

P~. In this graph the strongly connected components have to be calculated and 

considered as a single node in a collapsed call graph G/. To this acyclic call graph 

G t the method described above for the simple recursive case can be applied. The 

collapsed call graph G ~ has to be expanded again. In this expansion process 

every block in strongly connected component inherits the multiplicity from the 

summary node. An example is shown in Fig. 8. 
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1 3 

* *  " o - . .  o - . .  

2 

l 3 

- - 9  3 

Fig. 8. The calculation of the multiplicity for simultaneous recursive supergraphs. The 

numbers on the edges mean the numbers of edges to the entry, and the numbers at the 

nodes are the calculated multiplicities, e.g. the edge block 2 to block I means that 

there are two edges from nodes in block 1 to the entry of block 2. 

Name Description 

fdct 

matmult 

ndes 

djpeg 

matsum 

stats 

dhrystone 

Instr. ' 

JPEG forward discrete cosine transform 370 

50x50 matrix multiplication 154 

data encryption 471 

JPEG decompression (128x96 color image) 1760 

fast Fourier transformation 1810 

100xl00 matrix summation 135 

two arrays sum, mean, variance, standard deviation 456 

& linear correlation 

Dhrystone integer benchmark 447 

Fig. 9. Test programs 

5 Pract ical  Evaluat ion 

The VIVU connector has been applied to the cache behavior prediction analysis 

for all loops and functions and has sho~aa very good results. Figure 9 shows some 

of the test  programs we used. These are all executables in the a.  ou t  format.  

The  number  of machine instructions is shown in the last column. In Fig. 10 one 

can see the percentage of instructions for each program tha t  has been classified 

as hi ts/misses or neither of them both for the traditional analysis and for the 

VIVU connector. For most  programs there is a definite precision gain of VIVU 

over the tradit ional  method,  and for some programs VIVU allows to predict the 

cache behavior precisely. Of course VIVU can increase the number  of analyzed 

contexts but  the observation from our experiments was tha t  this increase is quite 

moderate .  Indeed all the test  programs could be analyzed within a few seconds 

on a Sun SPARCstat ion 20. The  analysis times are shown in seconds as well for 
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Name 

fdct 

matmult 

ndes 

djpeg 

fft 

matsum 

stats 

dhrystone 

Traditional VIVU 

ah am 22nc% t ime_70 ah am I nc time 
74.86% 2.43% 0.04 86.90% 13.10% 0.00% 0.03 

80.20% 12.87% 6.93% 0.05 89.70% 10.30% 0.00% 0.05 

77.72% 3.25% 19.02% 0.39 89.87% 7.65% 2.49% 0.20 

73.51% 2.03% 24.46% 2.46 88.86% 0.60% 10.54% 24.38 

71.71% 3.23%25.07% 3.30 75.86% 1.94%22.21% 7.72 

76197% 16.45% 6.58% 0.03 85.83% 14.17% 0.00% 0.03 

73.50% 7.69%18.80% 0.37 79.12% 8.17%12.71% 0.2if. 

70.99% 6.09%22.92% 0.21 80.44%10:94% 8.62% 0.02 

Advantage 

22.70% 

6.93% 

16.53% 

13.92% 

2.86% 

6.58~, 

6.09% 

14.30% 

Fig. 10. Evaluation of VIVU for cache analysis for a superSPARC instruction cache. 

The time is the analysis time in seconds. 

the traditional approach as for VIVU analyses. 

By applying the VIVU connector to the example of Sec. 2 one can see in 

Fig. 11 that clearly for the first iteration the reference to v will be a miss and 

that for all other iterations it will be a hit. 

6 Related work 

The technique proposed here to analyze loops should not be confused with several 

code motion techniques to move loop invariant code out of loops. These are 

special data flow analyses which fit in the classical data flow framework, whereas 

the proposed technique is a general framework which can be applied to all data 

flow analyses in order to obtain more precise analysis results. 

Structure based analyses like interval analysis [7] are orthogonal to the tech- 

nique presented here. They are used to solve data flow problems efficiently in the 

presence of loops. They can be used to solve a VlVU problem on the expanded 

supergraph instead of iterative algorithms. 

In [9] a property oriented expansion of a program model was developed. This 

aims toward similar goals as the analysis presented in this paper: Separation 

of program states at a program point that have different properties and are 

generated through different program paths. In [9] this is reached by unfolding 

all paths that result in different properties. To terminate this method requires 

the set of all properties to be finite. But even then the worst case complexity 

is worse than the one of the functional approach, since the expansion is not 

limited to certain call edges but is applied to each node which has more than 

one predecessor. 

The fundamental work for interprocedural analysis was presented in [8] which 

discusses the functional and the call string approach in a theoretical way. A 

practical comparison can be found in [3]. 
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I entry0 ] 

t entry loop 

~ while 1 

w I exit loop 

exito 

Fig. 11. Example for cache prediction 

7 Conclusion 

Motivated by poor results of several analyses in the practice we have presented 

a generalization of the interprocedural analysis for loops and arbitrary blocks. 

By extending the existing methods through the static call graph technique it 

is possible to focus the analysis effort to the points of main interest. Especially 

for loops it allows to distinguish the first from all other iterations. 

The applicability of our methods has been shown by our practical exper- 

iments. The newly developed VWU approach makes it possible to predict for 

example the cache behavior of programs within much tighter bounds than the 

conventional analysis methods. 
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