
Analysis of Loops

Florian Martin Martin Alt Reinhard Wilhelm Christian Ferdinand

Universit~it des Saaxlandes, Postfach 151150, 66041 Saarbriicken
Fon: +49-681-302-5571, Fax: +49-681-302-3065

{floria n laltlwilhelmtferdi}@cs.uni-sb.de

Programs spend most of their time in loops and procedures. Therefore, most

program transformations and the necessary static analyses deal with these. It

has been long recognized, that different execution contexts for procedures may

induce different execution properties. There are well established techniques for

interprocedural analysis like the call string approach. Loops have not received

similar attention in the area of data flow analysis and abstract interpretation.

All executions are treated in the same way, although typically the first and later

executions may exhibit very different properties.

In this paper a new technique is presented that allows the application of the

well known and established interprocedural analysis theory to loops. It turns out

that the call string approach has limited flexibility in its possibilities to group

several calling contexts together for the analysis. An extension to overcome this

problem is presented that relies on a similar approach but gives more useful

results in practice.

The classical and the new techniques are implemented in our Program Ana-

lyzer Generator PAG, which is used to demonstrate our findings by applying the

techniques to several real world programs.

Keywords: program analysis, program analyzer generator, loops, call string

approach, functional approach.

1 I n t r o d u c t i o n

In data flow analysis the meet over all paths solution is computed or approxi-

mated. In the presence of loops this means that for the body of a loop the data

flow value on the first entry is combined with the values upon return. Loops may

start in a state very different from that encountered in further iterations, so that

it could be useful to keep them distinguished in a data flow analysis.

To allow for this a solution is presented which relies on extensions of well

known interprocedural analysis techniques like the call string approach or the

functional approach described by Sharir and Pnueli [8]. This has the advantage

that similar problems -loops and procedures- can be treated in the same formal

framework. Furthermore this allows to use the existing theory and implementa-

tions of the interprocedural analysis for the analysis of loops.

The necessity for better loop analyses has also been claimed by Harrison

[5], who proposed to transform loops into procedures to use the techniques for

interprocedural analyses. Also in the area of compiler construction there are

several optimization techniques for loops (e.g. software pipelining).

81

The main idea of applying the interprocedural analysis to loops is to extend

the procedure concept to a special block structure in the control flow graph

for a program. Such blocks can be analyzed like procedures in interprocedural

analysis, thus allowing for a separation of the information for different paths

through the control flow graph.

As the number of paths is usually infinite, it is not possible to analyze all of

them separately. Therefore one has to partition the sets of paths into classes, in

order to analyze each of them at once. In the functional approach, this is done

by inspecting the data flow information at the entries of blocks dynamically at

the analysis time. In the call string approach, the paths are grouped statically

in advance.

The solution presented here allows not only for the application of the inter-

procedural techniques to loops but to arbitrary blocks of code. This paper shows

that the classical call string approach for the interprocedural analysis is not al-

ways well suited for the analysis of nested loops. We present a new improved

technique called VIVU.

The classical and the new approaches are integrated into the program an-

alyzer generator PAG [2]. Practical experiments with several real applications

show the applicability and the performance gains of the new approach with

respect to the classical approaches.

In the next section the motivation for the extension of the interprocedural

analysis techniques is given by taking a closer look at the analysis of loops in

the context of a practical application. In Sec. 3 two classical interprocedural

techniques are discussed. The VIVU approach is introduced in Sec. 4. In Sec. 5

the classical interprocedural techniques and VIVO are applied to an analysis

problem, and the results are compared and evaluated.

2 Mot ivat ion

As an example the analysis of loops is considered in the context of cache behavior

prediction [1, 4].

Caches are used to improve the access times of fast microprocessors to rel-

atively slow main memories. They are an upper part of the storage system hi-

erarchy and fit in between the register set and the main memory. They can

reduce the number of cycles a processor is waiting for data by providing faster

access to recently referenced regions of memory. Most modern workstations are

equipped with microprocessors that have cycle times of about 2 to 40ns and

DRAM (Dynamic Random Access Memory) that has a cycle time of 90ns and

m o r e [6].

Cache behavior prediction is a representative of a large class of analysis prob-

lems that are of high practical relevance in the area of hard real time systems.

These require a timing validation based on bounds of the execution time. Closely

related is pipeline behavior prediction for which similar analysis requirements

exist.

82

The goal of cache analysis is to compute a categorization for each memory

reference tha t describes its cache behavior. The categories are described in Fig. 1.

Category I Abb. [Meaning

always hit ah The memory reference will always result in a cache hit.

always miss am The memory reference will always result in a cache miss.

not classified nc The memory reference could neither be classified as ah nor am.

Fig. 1. Categorizations of memory references

Example 1.
Let us consider a sufficiently large da ta cache and the following program frag-

ment: In the first execution of the loop, the reference to v will result in a cache

/* Variable v not in the data cache */

for i:=1 to .. do

y:=v

end

begin]

- - - ~ f o r <-------

> [end

Fig. 2. Motivating example 1

miss, because v is not in the cache. In all further iterations the reference to v

will result in a cache hit, if the cache is sufficiently large to hold all variables

referenced within the loop.

The control flow graph for this program is shown in Fig. 2. An empty box

means tha t v is not in the cache, and a box with v means tha t v is in the cache.

In the classical approach, the first i teration and all further i terations are not

distinguished. The combination function which is needed to combine da ta flow

information for nodes in the control flow graph with several incoming edges is

for the cache analysis similar to set intersection. In the example the combination

83

function is used to combine the data flow information at the entry of the loop

with the data flow information from the end of the loop body to obtain a new

data flow value at the beginning of the loop. The combined data flow information

can not include the variable v, because v is not in the cache when the loop is

entered. The reference to the variable v will be classified as nc. For a WCET

(Worst Case Execution Time) computation this is a safe approximation, but

nevertheless not a good one.

3 I n t e r p r o c e d u r a l A n a l y s i s

The key idea of interprocedural analysis is that in general a procedure called more

than once will have different data flow elements calculated for these different

dynamic calls. The different data flow values for the calls of a procedure are

called calling contexts. The most precise analysis results are obtained if the

procedure is analyzed separately for each calling context. But this does not only

increase the complexity of the analysis, but may even lead to nontermination of

the analysis, if it can't be guaranteed that the procedure is analyzed only with

a finite number of different calling contexts. The strategies to overcome this

problem and to reduce the complexity of the analysis differ in the two following

classical approaches [8].

If for a procedure different calling contexts are known this can be used in

a subsequent optimization pass to create several optimized versions of the pro-

cedure which are specialized according to different contexts. If it is statically

known from the analysis which call contexts are produced by a call site then

this call can be replaced by a call to the version of the procedure specialized

according to these contexts.

3.1 Functional approach

The functional approach doesn't try to reduce the complexity of the analysis.

It analyzes each procedure once for every call context that arises during the

computation. This can be done by tabulating the different call contexts for each

procedure with the corresponding data flow element for the exit of the procedure.

So the tables for the procedures can be seen as functions which map incoming

data flow values to outgoing data flow values. They represent abstract versions

of the procedures.

Each time the iteration algorithm reaches a call node it looks up the call

context in the table of the called procedure. If an exit value is found, this is used

as the result of the call. If no exit value is found its calculation is triggered. Since

procedures can be (simultaneously) recursive this can trigger the calculation of

other values.

The tables for every procedure can't grow infinitely if the abstract domain

is finite. No other good sufficient termination conditions are known to us, if we

assume that there exists no compact representation for the abstract functions.

The disadvantage of the functional approach is that at the end of the analysis

84

the correspondence between paths and table entries is not known, so an efficient

specialization is not possible.

3.2 Call string approach

In the call string approach a partition of the dynamic calls for each procedure

is constructed in a pre pass of the analysis. During the analysis each procedure

is analyzed once for each class of dynamic calls.

The members of a class of dynamic calls for a procedure are chosen according

to the suffixes of the path they have taken through the dynamic call tree. (A call

string is a concatenation of calls c.) The hope is that only those dynamic calls

are in the same set which have a similar data flow behavior.

The idea can be understood as simulating the call stack of an abstract ma-

chine which contains frames for each procedure call that has not yet finished.

The tracing of the call strings is done by encoding them into the domain of

data flow values: if the original domain is D then a domain D* : F g -+ D is

constructed, where F/(is the set of all call strings with length at most K. Then

the transfer functions t f : D ~ D are extended appropriately to a function

t f * : D * - ~ D*.

This approach has three ad~zltages compared to the functional approach:

first it is possible to deal with data, flow domains of infinite cardinality. Second,

it is easily possible to cut down the complexity of the analysis by selecting small

values for K. And third, it is easily possible to find for each call context the set of

paths through the call graph and therefore to replace a procedure by specialized

versions.

The disadvantages are: the call string approach can be less precise than the

functional approach. And it is not very practical to encode the call strings into

the analysis domain.

4 E x t e n d i n g I n t e r p r o c e d u r a l A n a l y s i s

In the interprocedural analysis pieces of code (procedures) are analyzed several

times for the different incoming data flow values (calling contexts). This is done

to get better analysis results for pieces of code that are executed in different

contexts. As the motivating example of Sec. 2 has shown also the body of loops

are executed several times with different contexts. Therefore the techniques for

the interprocedural analysis are now extended such that they can be applied also

to loops.

To do so the concept of procedures is generalized to blocks. Blocks have entry

and exit nodes, which are the only ways to enter or leave the block. Addition-

ally, there can be edges from inside the block to the entry of other blocks (which

correspond to procedure calls in the interprocedural context and are therefore

referred to as call edges). For each of these call edges there has to be a corre-

sponding edge from the exit of the called block back to a node inside the calling

85

x = 0 ;

while (x<lO) (

x += 1;

}

a)
I F

b)

C

c)

Fig. 3. A loop, the original CFG and the transformed CFG

x = 0;

loop();

void loop(void) {

i~ (x<10) {
x += 1 ;

l o o p () ;

}
}

a)

F T

I

b)

Fig. 4. The transformation from a loop to a recursive procedure

block (which will be ca]led return edges). Each node in the CFG belongs exactly

to one block.

The transformation of a loop to a block can be seen in Fig. 3. The loop in

a) corresponds to the CFG in b) which is transformed to the CFG in c). The

description above requires the edge r as correspondence to the edge c in the

transformed CFG. This edge r in Fig. 3 c) allows the continuation of the calling

block after the called block returns. But as a loop is "tail recursive" there is

nothing to do after the return. Therefore the return edge degenerates to a self

loop at the exit node. For comparison, Fig. 4 shows the code and CFG of the

loop in Fig. 3 expressed as a recursive procedure. But although self loops can

86

be omitted for a standard data flow analysis, those edges are important for the

transformation made in Sec. 4.1.

A program with the described block structure and calling conventions is repre-

sented by a supergraph.

Defini t ion 1 Supergraph .

A supergraph G* = (G, P) consists of a control flow graph G = (N, E) with a

set of nodes N and a set of edges E and a partition P C 2 N of nodes, where

each class Pi represents a block. Each block has unique entry and exit nodes

(entry i, exki). The class P0 represents the main block and therefore entry o has

no predecessors and exit0 no successors. Each edge from a node nl C Pi to entryj

has a corresponding edge from exitj to an n2 E Pi. All other edges are intra

partition edges.

A block in the supergraph is said to be (directly) recursive if it has an edge

to its own entry. A set of blocks in the supergraph is simultaneously recursive

if their subgraphs are strongly connected. A supergraph is called recursive if it

contains (a set of simultaneously) recursive blocks. In this paper only procedures

and loops are used as blocks but the approach is not limited to them. It can be

applied to each block of code with more than one entry.

In the remainder of this section the static call graph approach from [2] is

introduced and extended to blocks. It transforms a supergraph and a call string

length K to an expanded supergraph. This expanded supergraph is a CFG on

which the analysis problem can be solved by a standard intraprocedural algo-

rithm. The static call graph approach can also be used for other interprocedural

techniques than the call string approach.

4.1 Static call graph approach

To keep different call paths separated, each node in the supergraph is annotated

with an array of data flow elements. A pair consisting of a node and an index

to the array is called a location. For every block Pi, the number of data flow

elements at nodes of this block is fixed and called its multiplicity written as

rnul t(Pi) . Moreover mult(Po) = 1, i.e. there is only one location in the main

block, mult can be simply extended to nodes by defining: muft : N --+ N by

mult(n) := mult(Pi), iff n is a node in Pi.

A connector is a set of functions cone : {1, . . . , mult(P~)} --+ {1, . . . , mult(Pj)}

that describe for each call edge c how the locations of the calling block axe

connected to the locations of the called block. Different strategies like the call

string strategy to construct connectors and multiplicities for a supergraph can

be chosen. They will be discussed in detail in the next section.

This leads to the definition of the expanded supergraph, a new kind of CFG,

whose nodes are locations. The locations are connected along the edges of the

supergraph. Within blocks the i-th location is connected with the i-th location

of the successors. For call edges c cone determines how the data flow elements

of the calling block are connected to the elements of the called block. At the

corresponding return edges the inverse of cone is applied.

87

D e f i n i t i o n 2. The expanded supergraph for a supergraph G* = ((N, E) , P) , a

function mult : N -+ N and a connector conc is defined as

GE = (N*, E*), with

• N* = {(n,i)ln 6 N , i 6 {1 , . . . ,mul t (n)}}

• ((nl, i l) ,(n2,i2)) 6 E*, iff e = (nl ,n2) 6 E and one of the following

conditions hold:

i.) n2 = E n t r y Pj and i2 = cone(il)

ii.) nl = E x i t Pj and il = COnc(i2), where c is the corresponding call

edge to e.

iii.) il = i2 and n, # Ex i t P and n2 # En t ry P

Figure5 is an example for an expanded supergraph with rnult(P1) =

1, mult(P2) = 2, COrlcl (1) = 1, cone2(1) = 2, and COnc2(2) = 2.

P2

call call

P I

C] C a l l FAC

Return

. . . . Return ~--~ ~--]

rettgn

Fig. 5. Connector example

To solve a data flow problem with expanded graphs, it is necessary to find

suitable conc and muir functions. With these it is possible to tune the analysis:

the higher the multiplicity the bet ter the precision that can be achieved, but the

more time and space are needed.

4.2 Connec tors

In this section some methods to determine pairs of multiplicity and connectors

are explained.

88

Simple connec tor In the simplest case, the multiplicity of each block is one,

and the conc functions are the identity. So the standard control flow graph is

obtained.

Call s t r i n g c o n n e c t o r The call string approach for a fixed length K of the

call strings can be simulated with the static call graph approach. This method

allows to avoid the calculation of the call strings during the solution procedure

by precalculating the paths through the call graph. Also the encoding of the call

string in the analysis domain is avoided. This is done by the following static

calculation: whenever the analysis passes a call edge (n, entryi) the call string

approach would append the node n to the actual call string. This can be simu-

lated by encoding the call strings as numbers that correspond to locations: every

call edge c is assigned a unique number between one and M - 1, where M is

the number of call edges in the given program. Then a call string 7 = cil . . . ciK

corresponds to a K digit number m to base M (m = i l . . . iK) . This number can

be converted to the decimal system by multiplying the n-th digit by M n and add

this for all digits (m' = ~ l < j < u ij • MJ). So m is between zero and M g where

zero denotes the empty call string c. Fortunately not all of these call strings are

valid for each procedure. By deleting all non valid numbers for a procedure the

number of locations can be reduced, so that every location is used.

Call s t r ing 1 connector The call string approach for K = 1 can also be

described as follows: count the number of incoming edges to entryp to take this

as the multiplicity of P . Then the cOn(n,entryp) functions project all data flow

elements of n to a single fixed position in the vector of data flow elements of

entryp.

4.8 VIVU

It has turned out in practice that the call string approach is not optimal for

nested loops. Even if the length of the call string is chosen to be the level of the

nesting depth of the loops many paths are separated which are not interesting.

Figure 6 shows an example for two nested loops. The call edges are labeled

with]1, f2 , ol, o2 where] stands for the first calls and o for other calls. Possible

call strings which reach loop2 are]1(]2o~ol)* f2o~.

The call string approach with K = 2 considers all suffixes of length two of

the paths. These (and their interpretation) are:

- f l]2 (first iteration of the outer and inner loop)

- f2o2 (second iteration of the inner loop)

- 0202 (iteration > 3 of the inner loop)

- ol]2 (iteration > 2 of the outer loop first of the inner)

If an analysis problem is assumed for which initialization effects can be expected

then it is not important to separate the second and all other iterations, but the

89

I exit0

entry0] [--1

f l l . " i ' o~
i

t

~ntry !0°P~ ~ ::'t" " ' :

/
/
/
/

//
/ /

!
i /

/ /
/ /

/ /
I t I I I,,~.-" .../ /

Fig. 6. Call string approach for two nested loops

first from all other iterations. This leads to the following more appropriate sep-

aration scheme:

outer loop inner loop

first first

first other

other first

other other

For the two nested loops this results in the expanded supergraph in Fig. 7.

For programs with direct recursion the formal mapping and multiplicity con-

struction looks as follows: the multiplicity of a block P~ is the sum of all blocks

Pj except P~ that have an edge to the entry of P~. If P~ is recursive this has to

be multiplied by two. For a recursive edge from P~ to P~ the cone function is

defined as

j' rnult(Pi)/2 + x if x < mult(P + i)12
COne(X)

l x otherwise

For the non recursive edges all non recursive edges to the entry of Pi have to

90

exit0

en t ryo

~ntry ----loop~ ~ i ~'~j[~ .. "]iit i,,.,]]]]""

l --1
... /
i /
/ /
/ i
i /

.,, .:

/ /
,, .r
/ /
/ /
! /

/ /
! /

~ 1 !] ~...-J.ji ' / '

I 'i::::::):::i?iiii2 "",. " "

F i g . 7. VIVU for two nes t ed loops

be numbered from 1 to n. Then for the k-th edge ck

k-1

COnc~ (x) = x + ~ mult(Pj)

j = l

if Pj is the source block of the j- th call.

For non recursive procedures this method simulates full inlining, and for

recursive ones it separates the first pass through it from all other passes through

it. This is where the name for this mapping comes from: Virtual Intining (of

procedures) and Virtual Unrolling (of loops).

For supergraphs with simultaneously recursive blocks the complete "virtual

inlining" has to be given up as follows: first a "call graph" G has to be constructed

with the blocks as nodes and an edge between P~ and Pj iff ~(n, entryj) E E : n E

P~. In this graph the strongly connected components have to be calculated and

considered as a single node in a collapsed call graph G/. To this acyclic call graph

G t the method described above for the simple recursive case can be applied. The

collapsed call graph G ~ has to be expanded again. In this expansion process

every block in strongly connected component inherits the multiplicity from the

summary node. An example is shown in Fig. 8.

91

1 3

* * " o - . . o - . .

2

l 3

- - 9 3

Fig. 8. The calculation of the multiplicity for simultaneous recursive supergraphs. The

numbers on the edges mean the numbers of edges to the entry, and the numbers at the

nodes are the calculated multiplicities, e.g. the edge block 2 to block I means that

there are two edges from nodes in block 1 to the entry of block 2.

Name Description

fdct

matmult

ndes

djpeg

matsum

stats

dhrystone

Instr. '

JPEG forward discrete cosine transform 370

50x50 matrix multiplication 154

data encryption 471

JPEG decompression (128x96 color image) 1760

fast Fourier transformation 1810

100xl00 matrix summation 135

two arrays sum, mean, variance, standard deviation 456

& linear correlation

Dhrystone integer benchmark 447

Fig. 9. Test programs

5 Pract ical Evaluat ion

The VIVU connector has been applied to the cache behavior prediction analysis

for all loops and functions and has sho~aa very good results. Figure 9 shows some

of the test programs we used. These are all executables in the a. ou t format.

The number of machine instructions is shown in the last column. In Fig. 10 one

can see the percentage of instructions for each program tha t has been classified

as hi ts/misses or neither of them both for the traditional analysis and for the

VIVU connector. For most programs there is a definite precision gain of VIVU

over the tradit ional method, and for some programs VIVU allows to predict the

cache behavior precisely. Of course VIVU can increase the number of analyzed

contexts but the observation from our experiments was tha t this increase is quite

moderate . Indeed all the test programs could be analyzed within a few seconds

on a Sun SPARCstat ion 20. The analysis times are shown in seconds as well for

92

Name

fdct

matmult

ndes

djpeg

fft

matsum

stats

dhrystone

Traditional VIVU

ah am 22nc% t ime_70 ah am I nc time
74.86% 2.43% 0.04 86.90% 13.10% 0.00% 0.03

80.20% 12.87% 6.93% 0.05 89.70% 10.30% 0.00% 0.05

77.72% 3.25% 19.02% 0.39 89.87% 7.65% 2.49% 0.20

73.51% 2.03% 24.46% 2.46 88.86% 0.60% 10.54% 24.38

71.71% 3.23%25.07% 3.30 75.86% 1.94%22.21% 7.72

76197% 16.45% 6.58% 0.03 85.83% 14.17% 0.00% 0.03

73.50% 7.69%18.80% 0.37 79.12% 8.17%12.71% 0.2if.

70.99% 6.09%22.92% 0.21 80.44%10:94% 8.62% 0.02

Advantage

22.70%

6.93%

16.53%

13.92%

2.86%

6.58~,

6.09%

14.30%

Fig. 10. Evaluation of VIVU for cache analysis for a superSPARC instruction cache.

The time is the analysis time in seconds.

the traditional approach as for VIVU analyses.

By applying the VIVU connector to the example of Sec. 2 one can see in

Fig. 11 that clearly for the first iteration the reference to v will be a miss and

that for all other iterations it will be a hit.

6 Related work

The technique proposed here to analyze loops should not be confused with several

code motion techniques to move loop invariant code out of loops. These are

special data flow analyses which fit in the classical data flow framework, whereas

the proposed technique is a general framework which can be applied to all data

flow analyses in order to obtain more precise analysis results.

Structure based analyses like interval analysis [7] are orthogonal to the tech-

nique presented here. They are used to solve data flow problems efficiently in the

presence of loops. They can be used to solve a VlVU problem on the expanded

supergraph instead of iterative algorithms.

In [9] a property oriented expansion of a program model was developed. This

aims toward similar goals as the analysis presented in this paper: Separation

of program states at a program point that have different properties and are

generated through different program paths. In [9] this is reached by unfolding

all paths that result in different properties. To terminate this method requires

the set of all properties to be finite. But even then the worst case complexity

is worse than the one of the functional approach, since the expansion is not

limited to certain call edges but is applied to each node which has more than

one predecessor.

The fundamental work for interprocedural analysis was presented in [8] which

discusses the functional and the call string approach in a theoretical way. A

practical comparison can be found in [3].

93

I entry0]

t entry loop

~ while 1

w I exit loop

exito

Fig. 11. Example for cache prediction

7 Conclusion

Motivated by poor results of several analyses in the practice we have presented

a generalization of the interprocedural analysis for loops and arbitrary blocks.

By extending the existing methods through the static call graph technique it

is possible to focus the analysis effort to the points of main interest. Especially

for loops it allows to distinguish the first from all other iterations.

The applicability of our methods has been shown by our practical exper-

iments. The newly developed VWU approach makes it possible to predict for

example the cache behavior of programs within much tighter bounds than the

conventional analysis methods.

94

References

1. Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Cache

Behavior Prediction by Abstract Interpretation. In Radhia Cousot and David A.

Schmidt, editors, SAS'96, Static Analysis Symposium, volume 1145 of Lecture

Notes in Computer Science, pages 51-66. Springer, September 1996. Long ver-

sion accepted for SAS'96 special issue of Science of Computer Programming.

2. Martin Alt and Florian Martin. Generation of Efficient Interprocedural Analyzers

with PAG. In Alan Mycroft, editor, SAS'95, Static Analysis Symposium, volume

983 of Lecture Notes in Computer Science, pages 33-50. Springer, September 1995.

3. Martin Alt and Florian Martin. Practical comparision of call string and functional

approach in data flow analysis. In Herbert Kuchen, editor, Arbeitstagung Pro-

grammierspraehen, volume 58 of Arbeitsberichte des Institutes fiir Wirtschaftsin-

formatik. Westf'~lische Wilhelms-Universit~t Miinster, July 1997.

4. Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying Compiler

Techniques to Cache Behavior Prediction. In Workshop on Languages, Compilers

and Tools for Real-Time Systems, pages 37-46, June 1997.

5. Williams Ludwell Harrison III. Personal communication on Abstract Interpreta-

tion, Dagstuhl Seminar, 1995.

6. J.L Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kanfmann, 1996.

7. B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM

Computing Surveys, 18(3):277-315, September 1986.

8. Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural Data Flow

Analysis. In Steven S. Muchnick and Neil D. Jones, editors, Program Flow Anal-

ysis: Theory and Applications, chapter 7, pages 189-233. Prentice-Hall, 1981.

9. Bernhard Steffen. Property-oriented expansion. In Radhia Cousot and David A.

Schmidt, editors, SAS'96, Static Analysis Symposium, volume 1145 of Lecture

Notes in Computer Science, pages 22-41. Springer, 1996.

10. Stephan Thesing, Florian Martin, and Martin Alt. PAG User's Manual, 1997.

11. Reinhard Wilhelm and Dieter Maurer. Compiler Design. International Computer

Science Series. Addison-Wesley, 1995.

