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Analysis of Low Complexity Adaptive Step-size
Orthogonal Gradient-based FEQ for OFDM

Systems

Suchada Sitjongsataporn1 , Non-member

ABSTRACT

We propose two low complexity adaptive step-size
mechanisms based on the normalised orthogonal gra-
dient algorithm for frequency-domain equalisation in
orthogonal frequency division multiplexing (OFDM)
systems. These algorithms are derived from employ-
ing a mixed-subcarrier exponentially weighted least
squares criterion. Two low complexity adaptive step-
size approaches are investigated by exploiting an esti-
mate of autocorrelation between previous and present
weight-estimated mixed-subcarrier errors. We com-
pare our approaches with a previously fixed step-
size normalised orthogonal gradient adaptive algo-
rithm and other existing algorithm for implementa-
tion. Simulation results demonstrate that the pro-
posed algorithms can achieve good performance for
involving an OFDM receiver.

Keywords: Frequency-domain equalisation (FEQ),
mixed-subcarrier criterion, adaptive algorithm, OFDM
systems

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM)
is an efficient multicarrier modulation to fight against
delay spread or frequency-selective fading of wire-
less and wireline channels. This approach has been
adopted in standards for several high-speed wire-
less and wireline data applications, including digi-
tal audio and video broadcasting and local area net-
works [1], [2] . For broadband channels, the con-
ventional time-domain equalisation is impractical, ac-
cording to long channel impulse response in time do-
main. The approach for frequency domain equalisa-
tion (FEQ) is based on the discrete Fourier trans-
form (DFT) and its inverse (IDFT) between the time
and frequency domains. In order to avoid inter-
symbol interference (ISI) and intercarrier interference
(ICI), the cyclic prefix (CP) is added between OFDM-
symbols in the transmitter. An OFDM receiver trans-
forms the received signal to frequency domain by ap-
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plying a DFT. It performs a separate FEQ for each
subcarrier.

In OFDM theory, there is no overlapping between
subcarriers (or tone) due to orthogonality. In prac-
tice, the orthogonal structure is generally destroyed
by frequency-selective fading channel, leading to in-
formation interfering from adjacent subcarriers as in-
tercarrier interference (ICI). In case, information of
a particular subcarrier usually smear into the adja-
cent subcarriers and leave some residual energy in
them. This leads to the idea of a mixed-subcarrier
(or mixed-tone) cost function as presented in [3]. The
solution of a mixed-tone multitap frequency-domain
equalisation, called per-tone equalisation, design cri-
terion for discrete multitone (DMT) system has been
proposed. The mixed-tone exponentially weighted
least squares criterion can be shown to offer an im-
proved signal to noise ratio (SNR) of the tone of inter-
est by recovering adaptively the knowledge of residual
interfering signal energy from adjacent tones as intro-
duced in [3] .

In order to improve the convergence properties,
the orthogonal gradient adaptive (OGA) algorithm
has been presented by using the orthogonal projec-
tion in conjunction with the filtered gradient adap-
tive (FGA) algorithm in [4]. When the forgetting-
factor is optimised sample by sample whereas a fixed
forgetting-factor is used for FGA algorithm. A nor-
malised version of the OGA (NOGA) algorithm that
is introduced with the mixed-tone cost function and
fixed step-size presented in [5] . With the purpose
of the good tracking behaviour and recovering to a
steady-state, it is necessary to let the step-size auto-
matically track the change of system. A low complex-
ity variable step-size mechanism has been presented
from the idea of time averaging adaptive step-size cri-
terion for adaptive beamforming in [6], [7] and for
wireless systems in [8]. Consequently, the concept
of low complexity adaptive step-size approach based
on the FGA algorithm is introduced for the per-tone
equalisation in DMT-based systems in [9].

In this paper, we propose two low complexity
orthogonal gradient-based algorithms for FEQ in
OFDM system based on the adaptive step-size (AS)
algorithms related to the mixed-subcarrier criterion.
Both low complexity modified adaptive step-size
(MAS) and adaptive averaging step-size (AAS) algo-
rithms have been developed for the FGA-based FEQ.
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The proposed algorithms can perform the tracking
and convergence speed as compared with the fixed
step-size algorithm.

The rest of the paper is structured as follows. We
describe concisely the OFDM system model and no-
tation in Section 2. The mixed-subcarrier criterion
is presented in Section 3. With this criterion, the
low complexity MAS and AAS mechanisms based on
the NOGA-based algorithm are derived for updat-
ing the complex-valued FEQ framework in Section 4.
Complexity and performance analysis of proposed al-
gorithms are introduced in Section 5.and Section 6.
Simulation results are shown in Section 7. Finally,

Section 8. concludes the paper.

2. SYSTEM MODEL AND NOTATION

In this section, we explain briefly the baseband
OFDM system model. At the transmitter, the in-
put binary bit stream is fed into a serial-to-parallel
converter. Then, each data stream modulates the
corresponding subcarrier by quadrature phase shift
keying (QPSK) or quadrature amplitude modulation
(QAM). The modulated data symbols are then trans-
formed by the inverse fast Fourier transform (IFFT).

The output symbols x(k) are given by

x(k)=
1√
M

M−1∑
m=0

X(m)ej2π(km/M), 0 ≤ k ≤ M−1. (1)

where M denotes as the number of subcarriers in
the OFDM system. The cyclic prefix (CP) symbols
are added in front of each frame of the IFFT output
symbols in order to avoid ISI. After that, the parallel
data are converted back to a serial data stream and
transmitted over the frequency-selective channel with
additive white Gaussian noise (AWGN).

The channel model can be described by

y(k) =
L−1∑
l=0

hlx(k − l) + η(k) , 0 ≤ k ≤ M− 1 . (2)

where hl denotes as the channel impulse re-
sponse (CIR), which represents a frequency-selective
Rayleigh fading channel. The parameter L is the
length of the CIR, where 0 ≤ l ≤ L − 1. The i.i.d.
complex-valued Gaussian random variables η(k) is in-
cluded with zero mean and variance σ2 for both real
and imaginary components, where 0 ≤ k ≤ M− 1.

The received data after removing the CP symbols
are converted by applying FFT at the receiver. In
the frequency domain, the received data are obtained
by

Y(m)=
1√
M

M−1∑
k=0

y(k)ej2π(km/M), 0 ≤ m ≤ M−1.

(3)

where M is the number of subcarriers in the OFDM
system.

Some notation will be used throughout this pa-
per as follows: the operator (·)H and (·)∗ denote
as the Hermitian and complex conjugate operators,
respectively. A tilde over the variable indicates the
frequency-domain. The vectors are in bold lowercase
and matrices are in bold uppercase.

3. A MIXED-SUBCARRIER COST FUNC-
TION

In this section, we describe shortly how to define a
mixed-subcarrier cost function by means of the or-
thogonal projection matrix. We refer the readers
to [3] for more details.

The idea of using orthogonal projection of adja-
cent equalisers to include the information of interfer-
ing subcarriers has been presented in [3]. A mixed-
subcarrier cost function derived as the sum of weight-
estimated errors is optimised in order to achieve the
solutions for frequency-domain equalisation (FEQ). It
is designed to work in conjunction with the complex-
valued FEQ structure.

A mixed-subcarrier exponentially weighted least
squares cost function to be minimised is defined as

J(k) =
1

2

M∑
m=1

k∑
i=1

λk−i
m {ξm(i)} 2, (4)

and

ξm(i)= x̃m(i)−p̂H
m(k)ỹm(i)−

L∑
l=1

(
Π⊥

l (k)p̂l(k)
)H ỹl(i),

for m ̸= l , L ≤ M − 1 (5)

where λm is the forgetting-factor and ξm(k) is the
mixed-subcarrier weight-estimated error at subcarrier
m for m ∈ M . The number of the adjacent subcar-
riers M is of subcarrier of interest. The parameter
x̃m(k) is the kth transmitted OFDM-symbol on sub-
carrier m. The vector p̂m(k) is of complex-valued T-
tap FEQ for subcarrier m. The vector ỹm(k) is the
DFT output for subcarrier m at symbol k. The or-
thogonal projection matrix Π⊥

l (k) of the tap-weight
estimated vector p̂l(k) can be derived as [10]

Π⊥
l (k) = Ĩ − p̂l(k) [p̂

H
l (k) p̂l(k)]

−1 p̂H
l (k) , (6)

where Ĩ denotes as an identity matrix. We note that
the orthogonal projection matrix Π⊥

l (k) is mentioned
by the vector p̂l(k) for l ̸= m.

With the definition for this cost function, the mth-
term on the right hand side of (5) represents as the
estimated mixed-subcarrier error of the symbol k due
to the mth-subcarrier of equaliser p̂m(k) for m ∈ M .
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4. LOW COMPLEXITY ADAPTIVE STEP-
SIZE NORMALISED ORTHOGONAL
GRADIENT ADAPTIVE ALGORITHMS

Based on filtered gradient adaptive algorithm,
adaptive algorithms employing orthogonal gradient
filtering can provide with the development of sim-
ple and robust filter across a wide range of in-
put environments. This section is therefore con-
cerned with the development of simple and robust
adaptive frequency-domain equalisation by defining
normalised orthogonal gradient adaptive algorithm.

In this section, we describe a class of the filtered
gradient adaptive (FGA) algorithm in Section 4.1us-
ing an orthogonal constraint called the orthogonal
gradient adaptive (OGA) algorithm. This employs
the mixed-subcarrier criterion described above in Sec-
tion 3.in order to improve the convergence speed pre-
sented in Section 4.2, respectively.

The idea for low complexity adaptive step-size al-
gorithms with the mixed-subcarrier cost function is
described in Section 4.3. For a large prediction error,
the algorithm will increase the step-size to track the
change of system whereas a small error will result in
the decreased step-size [6].

4.1 A Filtered Gradient Adaptive (FGA) al-
gorithm

This section reviews the derivation of the filtered
gradient adaptive (FGA) algorithm by following [4].
The objective function is to obtain a recursive form
as

J̆(k) = λm(k) J̆(k − 1) +
1

2

M∑
m=1

{em(k)} 2 , (7)

em(k) = x̃m(k)− p̃H
m(k)ỹm(k) , (8)

where λm(k) is the forgetting-factor and em(k) is the
weight-estimated error at symbol k for m ∈ M .

The updating equation of the tap-weight estimated
vector p̃m(k) for each subcarrier m at symbol k can
be expressed as

p̃m(k) = p̃m(k − 1) + µ d̆m(k) , (9)

where the updating process is performed along the
direction vector d̆m(k) regulated by step-size µ.

The direction vector d̆m(k) is chosen to be the neg-
ative gradient of the objective function in (7) as

d̆m(k) = −∇p̂m(k)J̆(k) . (10)

Therefore, the update of direction vector d̆m(k)
can be obtained in the recursion form as

d̆m(k) = λm(k) d̆m(k − 1) + ğm(k) , (11)

where ğm(k) is the updated gradient vector which
corresponds to filtering the instantaneous gradient as

ğm(k) = ỹm(k) e∗m(k) , (12)

and e∗m(k) is the complex conjugate of the estimated
error as given in (8).

4.2 A Mixed-Subcarrier Normalised Orthog-
onal Gradient Adaptive (MS-NOGA) al-
gorithm

The orthogonal gradient adaptive (OGA) algo-
rithm is formulated from the FGA algorithm by intro-
ducing an orthogonal constraint between the present
and previous direction vectors [11]. This OGA algo-
rithm employs the optimised forgetting-factor on a
sample-by-sample basis, so that the direction vector
is orthogonal to the previous direction vector.

We then demonstrate the derivation of the mixed-
subcarrier normalised orthogonal gradient adaptive
(MS-NOGA) algorithm for FEQ in OFDM-based sys-
tems. With this mixed-subcarrier criterion in Sec-
tion 3., the tap-weight estimate vector p̂m(k) at sym-
bol k for m ∈ M can be obtained adaptively as

p̂m(k) = p̂m(k − 1) + µm(k) dm(k) , (13)

where µm(k) is the step-size parameter and dm(k) is
the T× 1 direction vector.

The direction vector dm(k) is given recursively as

dm(k) = λm(k) dm(k − 1) + gm(k) , (14)

where gm(k) is the negative gradient of cost function
J(k) in (4) and λm(k) is the forgetting-factor at sym-
bol k.

By differentiating J(k) in (4) with respect to
p̂m(k), we then get the gradient vector gm(k) as

gm(k) = −∇p̂m(k)J(k)

= −ξm(k)
∂ξm(k)

∂p̂m(k)
= ỹm(k) ξ∗m(k).(15)

where ξm(k) is the mixed-subcarrier weight-estimated
error at symbol k for m ∈ M as

ξm(k) = x̃m(k)−p̂H
m(k)ỹm(k)−

L∑
l=1

(
Π⊥

l (k)p̂l(k)
)H ỹl(k).

for m ̸= l , L≤M−1 (16)

We introduce the updating gradient vector gm(k)
by

gm(k) = λm(k)gm(k − 1) + ỹm(k)ξ∗m(k) , (17)

where ξ∗m(k) is the complex conjugate of the mixed-
subcarrier estimated error at symbol k for m ∈ M as
given in (16).

A procedure of an orthogonal gradient adaptive
(OGA) algorithm to determine λm(k) has been de-
scribed in [11] by projecting the gradient vector
gm(k) onto the previous direction vector dm(k − 1).
This leads us to obtain the direction vector dm(k).
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By determining the direction vector dm(k)
through an orthogonal projection of the gradient vec-
tor gm(k) onto the previous direction vector dm(k −
1), we arrive

dm(k) = gm(k)−
dm(k − 1) dH

m(k − 1)

dH
m(k − 1) dm(k − 1)

gm(k) . (18)

Thus, dm(k) is orthogonal to the previous direc-
tion vector dm(k − 1) weighted by the forgetting-
factor λm(k). We can easily optimise a value of λm(k)
based on a sample-by-sample basis by taking the pre-
vious direction vector dm(k − 1) in (14) and setting
to zero as

dH
m(k)dm(k − 1) = λm(k)dH

m(k − 1)dm(k − 1)

+ gH
m(k)dm(k − 1) = 0 . (19)

Meanwhile, the gradient vector gm(k) becomes
the direction vector dm(k) when the gradient vec-
tor gm(k) is orthogonal to previous direction vector
dm(k − 1) by

gH
m(k)dm(k − 1) = 0 . (20)

The forgetting-factor parameter λm(k) can be cal-
culated for each subcarrier m at symbol k as

λm(k) =
gH
m(k) dm(k − 1)

dH
m(k − 1) dm(k − 1)

. (21)

According to the results in [4], it is noticed that
the results of FGA and OGA algorithms are simi-
lar to those obtained by the normalised version of
OGA (NOGA) algorithm. The convergence rate of
the NOGA algorithm is shown that it is better than
that of both FGA and OGA.

Therefore, we introduce the mixed-subcarrier nor-
malised orthogonal gradient adaptive (MS-NOGA)
algorithm which can be applied recursively as

g̃m(k) = λm(k)g̃m(k − 1) +
ỹm(k)ξ∗m(k)

∥ỹm(k)∥2
, (22)

where g̃m(k) is obtained instead of the gradient vec-
tor gm(k) in (17) and (21) for this normalised version.

In the state-space notation, the tap-weight es-
timated FEQ vector p̂m(k) for m ∈ M can be
performed using the proposed mixed-subcarrier nor-
malised orthogonal gradient adaptive (MSNOGA) al-
gorithm in (23)-(25), where µm(k) will be shown in
Section 4.3 based on the proposed low complexity
adaptive step-size algorithms.

4.3 Proposed Adaptive Step-size algorithms

This section describes the proposed low complexity
adaptive step-size algorithms with the method of the
mixed-subcarrier criterion as described in Section 3.
as follows.

1)Modified Adaptive Step-size algorithm (MAS):
Following [12] and [13], the step-size parameter is con-
trolled by squared prediction mixed-subcarrier error.
If a large error will be the cause of increased step-
size for fast tracking, while a small error will result in
a decreased step-size to yield smaller misadjustment.
This algorithm can be expressed as

µm(k + 1) = γ µm(k) + β|ξm(k)|2 , (26)

where 0 < γ < 1, β > 0 and ξm(k) is the mixed-
subcarrier estimated error at symbol k for m ∈ M as
given in (16).

We note that the step-size µm(k) is controlled
by the instantaneous mixed-subcarrier cost function.
The idea is that a large prediction errror causes the
step-size to increase and provides faster tracking,
while a small prediction error will result in a decrease
in the step-size to yield smaller misadjustment.

The step-size parameter µm(k) at symbol k for
m ∈ M is always positive and is controlled by the
size of the prediction error and parameters α and β.

2)Adaptive Averaging Step-size algorithm (AAS):
The objective is to ensure large step-size µm(k) when
the algorithm is far from an optimum point with
µm(k) decreasing as we approach the optimum [6].

This algorithm achieves the objective using an
estimate of the autocorrelation between ξm(k) and
ξm(k − 1) to control step-size update. The estimate
of an averaging of ξm(k) · ξm(k − 1) is introduced as

µm(k + 1) = γ µm(k) + β |ζ̂m(k)|2 , (27)

ζ̂m(k) = α ζ̂m(k − 1) + (1− α)ξ∗m(k) · ξm(k − 1) ,
(28)

where 0 < γ < 1 and β is an independent variable
for scaling the prediction error. The exponentially
weighting parameter α should be close to 1. The pa-
rameter ξ∗m(k) is the complex conjugate of the mixed-
subcarrier estimated error at symbol k for m ∈ M as
shown in (24).

The use of ζ̂(k) responds to two objectives [6].
First, the error autocorrelation is generally a good
measure for the optimum. Second, it rejects the ef-
fect of the uncorrelated noise sequence on the update
step-size.

5. COMPUTATIONAL COMPLEXITY

In this section, we investigate the additional com-
putational complexity of the proposed low complexity
MAS and AAS algorithms. We consider that a multi-
plication of two complex numbers is counted as 4-real
multiplications and 2-real additions. A multiplication
of a real number with a complex number is computed
by 2-real multiplications.

The proposed AAS mechanism involves two addi-
tional updates (27) and (28) as while the proposed



138 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.5, NO.2 NOVEMBER 2011

 p̂m(k)
dm(k)
g̃m(k)

 =

 I µm(k) λm(k)I µm(k) λm(k) I
0 λm(k) I λm(k) I
0 0 λm(k) I

 ·

 p̂m(k − 1)
dm(k − 1)
g̃m(k − 1)

+


µm(k) ỹm(k)ξ∗m(k)

∥ỹm(k)∥2

ỹm(k)ξ∗m(k)
∥ỹm(k)∥2

ỹm(k)ξ∗m(k)
∥ỹm(k)∥2

 , (23)

where ξm(k) = x̃m(k)− p̂H
m(k − 1)ỹm(k)−

L∑
l=1

(
Π⊥

l (k) p̂l(k)
)H ỹl(k) , for m ̸= l , L ≤ M − 1 (24)

λm(k) =
g̃H
m(k) dm(k − 1)

∥dm(k − 1)∥2
. (25)

MAS approach employs only one update (26) com-
pared with the fixed step-size (FS) MS-NOGA algo-
rithm in [5].

Therefore, the computational complexity of the
proposed MAS-MSNOGA, AAS-MSNOGA and FS-
MSNOGA algorithms are listed in Table 1, where T is
the number of taps of FEQ. It is shown that the pro-
posed algorithms require a few fixed additional num-
ber of operations.

Table 1: The computational complexity per symbol.
Algorithm Number of operations per symbol

Multiplications Additions Divisions

MAS-MSNOGA 8T + 5 8T + 5 1

AAS-MSNOGA 8T + 8 8T + 6 1

FS-MSNOGA [5] 8T + 2 8T + 4 1

6. PERFORMANCE ANALYSIS

The convergence behaviour and stability analy-
sis of the proposed MAS and AAS mechanisms are
investigated based on the mixed-subcarrier weight-
estimated error. The convergence analysis of both
MAS and AAS mechanisms are carried out the
steady-state and mean-square expressions of the step-
size parameter relating the mean convergence factor.

In the following analysis, we study the steady-state
performance of the proposed MAS and AAS algo-
rithms. We assume that these algortihms have con-
verged.

6.1 Convergence analysis of the proposed
MAS mechanism

Taking expectations on both sides of (26), the
steady-state step-size arrives at

E{µm(k + 1)} = γ E{µm(k)}+ β E{|ξm(k)|2} .
(29)

To facilitate the analysis, the proposed MAS mech-
anism is under a few assumptions.

Assumption(i): We consider the steady-state

value of E{µm(k + 1)} by

lim
k→∞

E{µm(k + 1)} = lim
k→∞

E{µm(k)} = E{µm(∞)} ,

lim
k→∞

E{|ξm(k)|2} = ξmin
m + ξex

m (∞) ,

where ξmin
m is the minimum mean square error

(MMSE) and ξex
m (∞) is the excess of mean square

error (EMSE) related with the optimisation criterion
in the steady-state condition.

Applying assumption (i) to (29), we obtain

E{µm(∞)} = γ E{µm(∞)}+ β (ξmin
m + ξex

m (∞))

E{µm(∞)} =
β (ξmin

m + ξex
m (∞))

(1− γ)
. (30)

To simplify these expressions, let us consider an-
other assumption.

Assumption(ii): Let us consider that for (30),
where

ξmin
m + ξex

m (∞) ≈ ξmin
m ,

and (
ξmin
m + ξex

m (∞)
)2 ≈

(
ξmin
m

)2
.

We then assume that ξex
m (∞) ≪ ξmin

m , when the algo-
rithm is close to optimum.

Employing assumption (ii) to (30), the steady-
state step-size for the proposed MAS algorithm be-
comes

E{µm(∞)} ≈
β (ξmin

m )

(1− γ)
. (31)

It is noted that the steady-state performance of
proposed MAS mechanism has derived in (31) for pre-
dicting in the steady-state condition.

6.2 Convergence analysis of the proposed
AAS mechanism

Following [13] and [14], the average estimate ζ̂m(k)
in (28) can be rewritten as

ζ̂m(k) = (1− α)

k−1∑
i=0

αiξ∗m(k − i)ξm(k − i− 1) .

(32)
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and

|ζ̂m(k)|2=(1−α)2
k−1∑
i=0

k−1∑
j=0

αiαjξ∗m(k−i)ξm(k−i−1)·

ξ∗m(k − j)ξm(k − j − 1) .
(33)

We assume that the proposed algorithm has con-
verged in the steady-state condition. Also, the expec-
tation of (33) can be expressed as

E{|ζ̂m(k)|2} = (1− α)2
k−1∑
i=0

α2i E{|ξm(k − i)|2}·

E{|ξm(k − i− 1)|2} ,
(34)

where α is an exponential weighting parameter.

Using assumption (ii) into (34), we have

E{|ζ̂m(k)|2} = (1− α)2 A , (35)

where

A = (1 + α2 + · · ·+ α2k)(ξmin
m + ξex

m (∞))2 . (36)

By multiplying α2 on both sides of A in (36), if
k → ∞ and 0 < α < 1, we get

α2 A = α2 · (1 + α2 + . . .+ α2(k−1) + α2k)·
(ξmin

m + ξex
m (∞))2

= A− (ξmin
m + ξex

m (∞))2 . (37)

Rearranging (37) to get A, we arrive at

(1− α2) · A = (ξmin
m + ξex

m (∞))2

A =
(ξmin

m + ξex
m (∞))2

(1− α2)
. (38)

Substituting (38) into (35), we get

E{|ζ̂m(k)|2} =
(1− α)2 · (ξmin

m + ξex
m (∞))2

(1− α2)

=
(1− α) · (ξmin

m + ξex
m (∞))2

(1 + α)
. (39)

Taking the expectation on both sides of (27), the
mean behaviour of step-size µm(k) is given as

E{µm(k + 1)} = γE{µm(k)}+ βE{|ζ̂m(k)|2} .
(40)

Using assumption (i) and (39) into (40), we get

E{µm(∞)}= γE{µm(∞)+
β(1− α)(ξmin

m +ξex
m (∞))2

(1+α)

E{µm(∞)}= β(1− α)(ξmin
m + ξex

m (∞))2

(1− γ)(1 + α)
. (41)

where ξmin
m is the steady-state minimum value and

ξex
m (∞) is the steady-state excess error of mixed-

subcarrier cost function.

By using assumption (ii), the steady-state value
of E{µm(∞)} in (41) is approximately as

E{µm(∞)} ≈
β(1− α)

(
ξmin
m

)2
(1− γ)(1 + α)

. (42)

We note that (42) has proven for predicting the
steady-state performance of proposed AAS algo-
rithm.

6.3 Stability and performance analysis

We introduce the stability and performance anal-
ysis of proposed algorithm that is based on the
mean-squared value of the mixed-subcarrier esti-
mated ξm(k).

Let us denote the weight-error vector εm(k) at
symbol k for each subcarrier m by [15] and [16]

εm(k) = popt,m − p̂m(k) , (43)

where popt,m denotes as the optimum Wiener solution
for the tap-weight vector.

The estimate tap-weight FEQ vector p̂m(k) can be
introduced as

p̂m(k)=p̂m(k − 1)+µm(k)
k∑

i=1

λk−i ỹm(i) ξ∗m(i)

∥ỹH
m(i) ỹm(i)∥

,

(44)

where ξm(k) is the a priori mixed-subcarrier esti-
mated error at symbol k for subcarrier m as

ξm(k)= x̃m(k)−p̂H
m(k−1)ỹm(k)−

L∑
l=1

(Π⊥
l (k)p̂l(k))

H ỹl(k) .

for m ̸= l , L≤M−1 (45)

Subtracting popt,m from both sides of (44) and us-
ing (45) to eliminate p̂m(k), we may rewrite as shown
in (46).

Substituting (43) in (46), we get

εm(k)= εm(k−1)−µm(k)

k∑
i=1

λk−i ỹm(i)ỹH
m(i)εm(k−1)

∥ỹH
m(i)ỹm(i)∥

+ µm(k)
k∑

i=1

λk−i ỹm(i)

∥ỹH
m(i)ỹm(i)∥

{
x̃m(i)−pH

opt,mỹm(i)

−
L∑

l=1

(Π⊥
l (i)p̂l(k))

H ỹl(i)

}∗

. (47)



140 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.5, NO.2 NOVEMBER 2011

(
popt,m − p̂m(k)

)
=

(
popt,m − p̂m(k − 1)

)
+ µm(k)

k∑
i=1

λk−i ỹm(i)

∥ỹH
m(i)ỹm(i)∥

{
x̃m(i)− p̂H

m(k − 1)ỹm(i)

−
L∑

l=1

(Π⊥
l (i)p̂l(k))

H ỹl(i)

}∗

+ µm(k)

k∑
i=1

λk−i ỹm(i)

∥ỹH
m(i)ỹm(i)∥

(
pH
opt,mỹm(i)

)∗
− µm(k)

k∑
i=1

λk−i ỹm(i)

∥ỹH
m(i)ỹm(i)∥

(
pH
opt,mỹm(i)

)∗
. (46)

Then, the weight-error vector εm(k) can be ex-
pressed as

εm(k) =

[
I−µm(k)

k∑
i=1

λk−i ỹm(i)ỹH
m(i)

∥ỹH
m(i)ỹm(i)∥

]
εm(k−1)

+ µm(k)
k∑

i=1

λk−i ỹm(i)

∥ỹH
m(i)ỹm(i)∥

ξ∗opt,m .

(48)

where ξ∗opt,m is the complex conjugate of estima-
tion mixed-subcarrier error produced in the optimum
Wiener solution as

ξopt,m= x̃m(i)−pH
opt,mỹm(i)−

L∑
l=1

(Π⊥
l (i)p̂l(k))

H ỹl(i).

for m ̸= l , L ≤ M − 1 (49)

Assumption(iii): We consider the condition nec-
essary for the convergence of mean, that is

E{ ∥εm(k)∥ } → 0 , as k → ∞

or equivalently,

E{ p̂m(k) } → popt,m , as k → ∞

where ∥εm(k)∥ is the Euclidean norm of the weight-
error vector εm(k).

We denote the mixed-subcarrier estimated error
for subcarrier m at symbol k as

ξm(k) = x̃m(k)−p̂H
m(k) ỹm(k)−

L∑
l=1

(Π⊥
l (k)p̂l(k))

H ỹl(k) .

for m ̸= l , L≤M−1 (50)

Using (43) into (50), the estimation mixed-
subcarrier error ξm(k) at symbol k for each subcarrier
m is given as in (51), where ξopt,m is the estimation
mixed-subcarrier error in the optimum Wiener solu-
tion shown in (49).

Let Jm(k) denotes as the expectation of mean

square error at subcarrier m for m ∈ M

Jm(k) = E{ |ξm(k)|2 }
= E{

(
ξopt,m+εHm(k)ỹm(k)

)∗(ξopt,m+εHm(k)ỹm(k)
)
}

= E{|ξopt,m|2}+E{εHm(k)εm(k)ỹH
m(k)ỹm(k)}

+ E{ỹH
m(k)εm(k)ξopt,m}

+ E{εHm(k)ỹm(k)ξ∗opt,m} .

(52)

By using assumption (iii), we assume that

Jm(k) = Jmin
m + Jex

m (k) , (53)

where Jmin
m is the minimum mean square error pro-

duced by the optimum Wiener filter for subcarrier m
as

Jmin
m (k) = E{|ξopt,m|2}+ E{εHm(k)ỹm(k)ξ∗opt,m}

+ E{ỹH
m(k)εm(k)ξopt,m} ,

(54)

and Jex
m (k) is called the excess mean square error

(EMSE) at symbol k for subcarrier m as

Jex
m (k) = E{ εHm(k)εm(k)ỹH

m(k)ỹm(k) } . (55)

Since Rỹỹ = E{ỹm(k) ỹH
m(k)} and by the orthog-

onality principle

E{ξopt,m ỹm(k)} ≈ 0 , (56)

the excess in mean square error is given by

Jex
m (k) = E{ εHm(k)Rỹỹ εm(k) } . (57)

where εm(k) denotes as the weight-error vector at
symbol k for each subcarrier m shown in (43).

7. SIMULATION RESULTS

In this section, we consider the performance of
the proposed MAS-MSNOGA and AAS-MSNOGA
algorithms compared with the fixed step-size ap-
proach introduced in [5] and the existing algorithm,
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ξm(k) = x̃m(k)− p̂H
m(k) ỹm(k)−

L∑
l=1

(Π⊥
l (k)p̂l(k))

H ỹl(k)

= x̃m(k)− (popt,m − εm(k))H ỹm(k)−
L∑

l=1

(Π⊥
l (k)p̂l(k))

H ỹl(k)

= x̃m(k)− pH
opt,m ỹm(k)−

L∑
l=1

(Π⊥
l (k)p̂l(k))

H ỹl(k) + εHm(k) ỹm(k) = ξopt,m + εHm(k) ỹm(k) . (51)

namely the low complexity adaptive step-size algo-
rithm presented in [7] in terms of bit error rate
performance. The fixed step-size mechanism using
the mixed-subcarrier criterion based on normalised
orthogonal gradient adaptive (FS-MSNOGA) algo-
rithm [5] is applied for frequency-domain equalisation
(FEQ). An adaptive step-size (AS) mechanism [7] has
been presented with the mean square error (MSE)
criterion. This leads to apply for frequency-domain
equalisation (FEQ) based on normalised orthogonal
gradient adaptive (AS-NOGA) algorithm in the ex-
periments.

In all simulations, firstly, the mean square er-
ror (MSE) performance is compared to evaluate
the mechanisms in additive white Gaussian noise
(AWGN) single-path channel. For the multipath
channel, we then estimate a corrupted channel follow-
ing the ITU-Pedestrian A [17] with AWGN. The bit
error rate (BER) performance is taken into account,
and at last we focus on the tracking and convergence
speed of proposed algorithms.

We simulated an OFDM systems with the 16-QAM
modulation, which is similar to the 802.11a specifica-
tion in order to demonstrate the effectiveness of the
proposed MAS-MSNOGA and AAS-MSNOGA algo-
rithms based on the frequency-domain equalisation
(FEQ), including with two experiments as the AWGN
single-path channel and multipath corrupted AWGN
channel. The entire channel bandwidth is of 20MHz
and is divided into 64 subcarriers. The symbol du-
ration is chosen as 3.2 µs. The total OFDM frame
length is Ts = 100µs. The receiver processing consists
of minimum mean square error (MMSE) frequency-
domain equalisation, hard symbol decision and de-
coding. The fading gains are randomly generated by
complex Gaussian distributed random variables with
zero mean and unit variance.

The initial parameters of proposed MAS-MSNOGA,
AAS-MSNOGA and FS-MSNOGA [5] FEQs are as
follows: T = , p̂m(0) = dm(0) = g̃m(0) = [1 0 · · · 0]T ,
λm(0) = 0.975, Π⊥

m(k) = I, where I is an identity
matrix. The use of 3-combining of adjacent sub-
carriers (M = 3) is employed for the estimate tap-
weight FEQ vector p̂m(k) on subcarrier m. The
other parameters of both proposed MAS-MSNOGA

and AAS-MSNOGA algorithms have been optimised
with γ = 0.975, α = 0.97 and β = 1.95 × 10−3. The
optimised parameters are chosen based on simulation
results in order to achieve the good performance.

For the AS-NOGA [7] FEQs, the initial parameters
are set to the same values as those of the proposed
algorithms for FEQs except using the estimation er-
ror given in (8) for each subcarrier m separately due
to optimisation.

The first experiment investigated the performance
of proposed MAS-MSNOGA and AAS-MSNOGA al-
gorithms compared with the FS-MSNOGA [5] algo-
rithm and adaptive step-size (AS) mechanism [7] with
the mean square error criterion based on normalised
orthogonal gradient adaptive (AS-NOGA) algorithm
for AWGN channel. The subcarrirer m = 30 was a
representative of simulations.

Fig. 1 and Fig. 2 illustrate the trajectories of adap-
tive step-size parameters µm(k) on subcarrier m of
proposed MAS-MSNOGA and AAS-MSNOGA FEQs
at four different values of initial step-size settings
of µ(0) = 9.5 × 10−4, 9.5 × 10−3, 3.95 × 10−2 and
9.5 × 10−2, respectively. Both of them are shown
to converge to each equilibrium despite large varia-
tions in initial settings of step-size parameters with
the samples of subcarriers, when SNR is of 20 dB.

Fig. 3 depicts the MSE performance of proposed
MAS-MSNOGA and AAS-MSNOGA algorithms on
subcarrier m with using µ(0) = 9.5 × 10−4 com-
pared to the FS-MSNOGA [5] algorithm using the
fixed step-size parameter at µ = 1.595 × 10−4 and
AS-NOGA [7] algorithm using µ(0) = 9.5 × 10−4

for AWGN channel, where the signal to noise ratio
(SNR) is of 20dB as a representative and m = 30.
The proposed MAS-MSNOGA and AAS-MSNOGA
algorithms can converge rapidly to steady-state con-
dition with the low initial step-size parameter. It is
noted that the proposed algorithms can acheive the
same mean square error (MSE) performance as the
FS-MSNOGA [5] and AS-NOGA [7] algorithms.

Fig. 4 indicates the BER performance of pro-
posed MAS-MSNOGA and AAS-MSNOGA FEQs on
subcarrier m with using the same value of initial
step-size µ(0) = 9.5 × 10−4 as compared with the
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Fig.1: Trajectories of the adaptive step-size µm(k)
of proposed MAS-MSNOGA algorithm with the sam-
ples of AWGN channel of subcarrier at m = 30 as
a representativeusing different setting of µ(0), when
SNR = 20dB.
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Fig.2: Trajectories of the adaptive step-size µm(k)
of proposed AAS-MSNOGA algorithm with the sam-
ples of AWGN channel of subcarrier at m = 30 as
a representative using different setting of µ(0), when
SNR = 20dB.

method of minimum mean square error (MMSE), FS-
MSNOGA [5] FEQs using the fixed step-size µ =
1.595 × 10−4 and AS-NOGA [7] FEQs using µ(0) =
9.5×10−4 for AWGN channel, when SNR is of 20 dB
and m = 30. It is noted that the BER of proposed
MAS-MSNOGA and AAS-MSNOGA algorithms can
achieve performance the same as those of the FS-
MSNOGA [5] and AS-NOGA [7] algorithms. The
BER performance of all FEQs based on NOGA algo-
rithm can obtain the good performance close to the
MMSE FEQs, when Eb/N0 ≤ 15dB.

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

OFDM symbol (k)

M
S

E

 

 

AAS−MSNOGA; µ(0)=9.5 ×10−4

MAS−MSNOGA; µ(0)=9.5 ×10−4

FS−MSNOGA; µ(0)=1.595 ×10−4

AS−NOGA; µ(0)=9.5 × 10−4

Fig.3: Learning curves of mean square error (MSE)
of the proposed MAS and AAS mechanisms µm(k)
compared with FS mechanism of MS-NOGA [5] al-
gorithm and AS [7] mechanism of NOGA algorithm
with the samples of AWGN channel of subcarrier at
m = 30, when SNR=20dB.

0 2 4 6 8 10 12 14 16 18 20

10
−3

10
−2

10
−1

Eb/No (dB)

B
E

R

 

 

MMSE

AAS−MSNOGA; µ(0)=9.5×10−4

MAS−MSNOGA; µ(0)=9.5×10−4

FS−MSNOGA; µ=1.595×10−4

AS−NOGA; µ(0)=9.5×10−4

Fig.4: Bit error rate (BER) performance of OFDM-
based systems with different types of proposed MAS-
MSNOGA and AAS-MSNOGA FEQs in comparison
with MMSE, FS-MSNOGA [5] and AS-NOGA [7]
FEQs for AWGN channel.

The second experiment considered the perfor-
mance of proposed MAS-MSNOGA and AAS-
MSNOGA algorithms in comparison with the FS-
MSNOGA [5] and AS-NOGA [7] algorithms in mul-
tipath channel [17] corrupted with AWGN, when
m = 30 as a representative of simulations.

In Fig. 5 and Fig. 6, their results illustrate the
adaptive step-size parameters µm(k) on subcarrier
m of proposed MAS-MSNOGA and AAS-MSNOGA
FEQs at the same different values of initial step-size
parameters as µ(0) = 9.5 × 10−4, 9.5 × 10−3, 3.95 ×
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Fig.5: Trajectories of the adaptive step-size µm(k)
of proposed MAS-MSNOGA algorithm with the sam-
ples of multipath channel of subcarrier at m = 30 as
a representative using different setting of µ(0), when
SNR = 20dB.
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Fig.6: Trajectories of the adaptive step-size µm(k)
of proposed AAS-MSNOGA algorithm with the sam-
ples of multipath channel of subcarrier at m = 30 as
a representative using different setting of µ(0), when
SNR = 20dB.

10−2 and 9.5 × 10−2, where SNR is of 20dB and
m = 30. They are shown clearly to converge to each
equilibrium despite large variations in initial setting
of step-size parameters with the corrupted AWGN
and multipath channel in the OFDM-based system.

Fig. 7 shows the MSE performance of proposed
MAS-MSNOGA and AAS-MSNOGA algorithms on
subcarrier m with the same value of initial step-
size µ(0) = 9.5 × 10−3 as compared to the FS-
MSNOGA [5] algorithm using the fixed step-size pa-
rameter at µ = 1.95 × 10−3 and AS-NOGA [7] al-
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Fig.7: Learning curves of mean square error (MSE)
of the proposed MAS and AAS mechanisms µm(k)
compared with FS mechanism of MS-NOGA [5] al-
gorithm and AS [7] mechanism of NOGA algorithm
with the samples of multipath channel of subcarrier at
m = 30, when SNR=20dB.
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Fig.8: Bit error rate (BER) performance of OFDM-
based systems with different types of proposed MAS-
MSNOGA and AAS-MSNOGA FEQs in comparison
with MMSE, FS-MSNOGA [5] and AS-NOGA [7]
FEQs for multipath channel.

gorithm using µ(0) = 1.95 × 10−3, where SNR is of
20dB and m = 30. In this condition, the conver-
gence of proposed AAS-MSNOGA algorithm outper-
forms the convergence of proposed MAS-MSNOGA,
FS-MSNOGA [5] and AS-NOGA [7] algorithms in the
multipath system with the same range of initial step-
size parameters for AWGN single-path channel.

Fig. 8 indicates the BER performance of proposed
MAS-MSNOGA and AAS-MSNOGA FEQs using the
same value of initial step-size µ(0) = 9.5 × 10−4 in
comparison with the MMSE FEQs, FS-MSNOGA [5]
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FEQs with the fixed step-size µ = 1.95 × 10−4 and
AS-NOGA [7] FEQs using µ(0) = 1.95×10−3 for the
multipath channel [17] corrupted with AWGN, when
SNR is of 20 dB and m = 30. It is seen that the good
performance can obtain with the proposed MAS-
MSNOGA followed by the proposed AAS-MSNOGA,
AS-NOGA [7] and FS-MSNOGA [5] algorithms, re-
spectively. Both of BER performance of proposed
MAS-MSNOGA and AAS-MSNOGA algorithms are
still able to enhance performance close to the MMSE
FEQs, when Eb/N0 ≤ 10dB for the multipath chan-
nel and corrupted with AWGN in the OFDM-based
systems.

8. CONCLUSION

In this paper, we have proposed adaptive step-size
mechanisms for frequency-domain equalisers (FEQs)
based on the normalised orthogonal gradient-based
algorithms in OFDM-based systems. We have de-
scribed how to investigate the proposed MASS-
MSNOGA and AAS-MSNOGA FEQs based on a so-
lution of the mixed-subcarrier (MS) cost function.
Two of low complexity adaptive step-size algorithms
have been developed and analysed for the normalised
version of orthogonal gradient adaptive algorithm
based on this mixed-subcarrier criterion.

The performance of convergence and stability anal-
ysis have been investigated in terms of the excess
mean square error. Both of the trajectories of adap-
tive step-size of proposed MAS-MSNOGA and AAS-
MSNOGA algorithms are also shown to converge to
each equilibrium despite 100-fold initial variations in
both single-path and multipath channels. The MSE
performance of proposed algorithms are shown to
converge rapidly to steady-state condition. Our re-
sults indicate that the BER performance is accept-
able in comparison with the fixed step-size algorithm
and the several existing algorithms.
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