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Abstract—Performance of future wireless communication sys-
tems being interference limited, researchers are focusing on
interference alignment, interference mitigation and interference
suppression to diminish, manage or exploit these interferers.
In this paper, we carry out the performance analysis of the
recently proposed low complexity max log MAP detector and
linear MMSE detector for interference suppression under the
realistic conditions of correlated fading in cellular environment.
We assume only receive correlation as base stations (BSs) due to
their extended separation are likely to be uncorrelated. However
the intricacy of realizing requisite antenna spacing in the mobile
station (MS) combined with the lack of scattering would instigate
the individual antennas at MS to be correlated. Employing
moment generating function (MGF)-based approach, we derive
upper bounds of coded pairwise error probability (PEP) and
study the degrading effect of correlation on both the detectors.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication ar-
chitecture because of its inherent potential to exploit the
third (spatial) dimension in addition to time and frequency
dimensions has recently emerged as a new paradigm for
wireless communications in rich multipath environment [1].
Employing multi-element antenna arrays (MEA) at the mobile
station (MS) in addition to existing multi antenna base stations
(BS) is being advocated in upcoming wireless standards as
3GPP LTE [2]. Frequency reuse factor of one in future mobile
systems [2] to achieve high spectral efficiency is leading to an
interference limited system. In such a scenario, the optimal use
of receive diversity at the MS to either achieve multiplexing
gain or to cope with the interference is still an open question.
For the latter case, researchers are focusing on interference
alignment, interference mitigation and interference suppres-
sion to diminish, manage or exploit these interferers. In this
paper we carry out the performance analysis of the recently
proposed low complexity max log MAP detector [3] and
linear MMSE detector for interference suppression in the bit
interleaved coded modulation (BICM) MIMO OFDM based
cellular system.
For the performance analysis, naive assumption of inde-

pendent and identically distributed (i.i.d.) fading channel may
not be true in most of the real world scenarios [4]. Some
impairments of the radio propagation channel may lead to a
substantial degradation in the performance. The limitations on

the performance are primarily imposed by the limited number
of multipath components or scatterers and antenna spacing. In
a typical cellular scenario, the inadequate antenna separation
mainly affects the MS as the components of antenna array may
be separated by a distance less than half of the communication
wavelength due to their size limitations. On the other hand,
extended separation between BSs render them uncorrelated.
In this paper, we study the effects of correlation between

the antennas of the MS combined with the strength and the
rate of interference on coded pairwise error probability (PEP)
of the low complexity max log MAP detector and linear
MMSE detector. We consider the practical scenario of receive
correlation at the MS with no transmit correlation at the
BSs. Using the moment generating function (MGF) approach
associated with the quadratic form of a complex Gaussian
random variable, we derive analytical expressions for upper
bounds on coded PEP of the low complexity max log MAP
detector and linear MMSE detector operating over a spatially
correlated fading channel in the presence of interference. We
demonstrate the strength of our new analytical PEP upper
bounds by simulating the performance of a MS in the presence
of receive correlation and one interferer of varying alphabet
size using the low complexity max log MAP detector and
linear MMSE detector.
Regarding notations, we will use lowercase or uppercase

letters for scalars, lowercase boldface letters for vectors and
uppercase boldface letters for matrices. (.)T , (.)∗ and (.)†

indicate transpose, conjugate and conjugate transpose oper-
ations respectively. |.| and k.k indicate norm of scalar and
vector while abs (.) denotes absolute value. The notation
E (.) denotes the mathematical expectation while Q (y) =
1√
2π

R∞
y

e−x
2/2dx denotes the Gaussian Q-function. AM×N

indicates a matrix A with M rows and N columns whereas
vec (A) denotes the vectorization operator which stacks the
columns of A. The matrix In is the n×n identity matrix and
the element at the i-th row and j-th column of matrix H is
denoted as H (i, j). A ∼ B indicates that A and B are similar
matrices.
The paper is divided into six sections. In section II we define

the system model while section III discusses the PEP analysis
of low complexity max log MAP detector. Section IV contains
the PEP analysis of MMSE detector which is followed by



simulation results and conclusions.

II. SYSTEM MODEL
We consider the downlink of a single frequency reuse

cellular system with nr antennas at the MS and 2 BSs
using antenna cycling for transmission with each stream being
transmitted by one antenna in any dimension. We assume that
two spatial streams arrive at the MS as x1 (desired stream)
and x2 (interference stream). x1 is the symbol of x1 over
a signal set χ1 and x2 is the symbol of x2 over signal set
χ2. During the transmission at BS-1, code sequence c1 is
interleaved by π1 and then is mapped onto the signal sequence
x1 ∈ χ1. Bit interleaver for the first stream can be modeled as
π1 : k

0 → (k, i) where k0 denotes the original ordering of the
coded bits ck0 of first stream, k denotes the time ordering of
the signal x1,k and i indicates the position of the bit ck0 in the
symbol x1,k. Assuming an ideal OFDM system, transmission
at the k-th frequency tone can be expressed as::-

yk = h1,kx1,k + h2,kx2,k + zk, k = 1, 2, · · · , T
= Hkxk + zk (1)

where Hk = [h1,kh2,k] i.e. the channel at the k-th frequency
tone and xk = [x1,k x2,k]T . Each subcarrier corresponds to a
symbol from a constellation map χ1 for first stream and χ2 for
second stream. yk, zk ∈ Cnr are the vectors of received sym-
bols and circularly symmetric complex white Gaussian noise
of double-sided power spectral density N0/2 at the nr receive
antennas. h1,k ∈ Cnr is the vector characterizing flat fading
channel response from first transmitting antenna to nr receive
antennas at k-th subcarrier. The complex symbols x1,k and
x2,k of the two streams are assumed to be independent with
variances σ21 and σ22 respectively. The channels at different
subcarriers are also assumed to be independent.
Correlation Structure. The entries of the channel matrix

are assumed to be complex, zero-mean, circularly symmet-
ric Gaussian random variables so their magnitudes exhibit
Rayleigh distribution. Hk (i, j) is the complex path gain be-
tween BS j and ith antenna of MS at k-th frequency tone and
has the following covariance structure:

E
£
Hk (p, j)Hk (q, l)

∗¤ =ΨΨΨR (p, q) δ (j − l) (2)

whereΨΨΨR is nr×nr receive correlation matrix (positive semi-
definite) and δ(t) = 1 for t = 0 and is zero otherwise. By
Cholesky factorization we get ΨΨΨR = ΨΨΨ

1
2

RΨΨΨ
†
2

R where ΨΨΨ
1
2

R is
lower triangular matrix with real entries on the main diagonal.
This fading model embodies following assumptions.
• There is no correlation between the fading from two BSs
to the same receive antenna i.e. 1

nr
E
h
H†kHk

i
= I2.

• The correlation between the fading from a BS to receive
antenna p and to receive antenna q is ΨΨΨR (p, q) and
does not depend on the base station. ΨΨΨR is equal to
the correlation of nr × 1 vector channel when excited
by any BS and is therefore the same for all BSs i.e.
ΨΨΨR =

1
nr
E
h
HkH†k

i

• The correlation is independent of the frequency tone.

These assumptions are usually quite accurate when antenna
elements are colocated in the same physical unit at the
receiver and the transmitters are far apart. Hk can therefore
be factorized in the form Hk = (ΨΨΨR)

1
2 Wk where the entries

of Wk are i.i.d complex circularly symmetric Gaussian with
mean 0 and variance 1. This channel matrix represents the
Kronecker correlation model [5] since the correlation of the
vectorized channel matrix can be written as the Kronecker
product i.e. cov (vec (Hk)) = IT2 ⊗ΨΨΨR.
Let us now focus on the structure of correlation matrix.

We consider single-parameter exponential correlation matrix
model. For this model, the components of ΨΨΨR are given by

ΨΨΨR (p, q) = rabs(q−p), p ≤ q

=
³
rabs(q−p)

´∗
, p > q

where r is the (complex) correlation coefficient of neighboring
receive branches with |r| ≤ 1. Obviously, this may not be an
accurate model for some real-world scenarios but it has been
shown that this model can approximate the correlation in a
uniform linear array under rich scattering conditions [6] with
correlation decreasing with increasing distance between the
antennas.
Detectors For low complexity max log MAP detection [3],

the bit metric for the first stream in its full form is given as:-

λi1 (yk, ck0)≈ min
x1∈χi1,c

k
0,x2∈χ2

1

N0
kyk−h1,kx1−h2,kx2k2

where χi1,c
k
0 denotes the subset of the signal set x1 ∈ χ1

whose labels have the value ck0 ∈ {0, 1} in the position i.
For linear MMSE detection, MMSE filter [4] for the detec-

tion of first stream is given as

hMMSE
1,k =

³
h†1,kR

−1
2,kh1,k + σ−21

´−1
h†1,kR

−1
2,k (3)

where R2,k = σ22h2,kh
†
2,k + N0I. The application of this

MMSE filter yields

yk = αkx1,k + βkx2,k + hMMSE
1,k zk (4)

= αkx1,k + zk (5)

where αk = hMMSE
1,k h1,k and βk = hMMSE

1,k h2,k. Based on
the Gaussian assumption of post detection interference, the bit
metric for the ck0 bit on first stream is given as

λi1 (yk, ck0 ) ≈ min
x1∈χi1,c

k
0

∙
1

Nk
|yk − αkx1|2

¸
(6)

where Nk = hMMSE
1,k R2,khMMSE†

1,k .



III. PEP ANALYSIS - MAX LOG MAP DETECTOR

The conditional PEP i.e. P
³
c1 → ĉ1|H

´
= P ĉ1

c1|H
of low

complexity max log MAP detector [3] is given as:-

P ĉ1
c1|H

=P

⎛⎝X
k0

min
x1∈χi1,c

k
0,x2∈χ2

1

N0
kyk−h1,kx1−h2,kx2k2≥

X
k0

min
x1∈χi1,ĉ

k
0 ,x2∈χ2

1

N0
kyk−h1,kx1−h2,kx2k2

⎞⎠ (7)

where H = [H1 · · ·HN ] i.e. the complete channel for the
transmission of the codeword c1. For the worst case scenario
once d (c1−ĉ1)=dfree, the inequality on the right hand side of
(7) shares the same terms on all but dfree summation points
for which ĉk0 = c̄k0 where (̄.) denotes the binary complement.
Let

x̃1,k, x̃2,k=arg min
x1∈χi1,c

k
0 ,x2∈χ2

1

N0
kyk−h1,kx1−h2,kx2k2

x̂1,k, x̂2,k=arg min
x1∈χi1,c̄

k
0 ,x2∈χ2

1

N0
kyk−h1,kx1−h2,kx2k2 (8)

As x1,k and x2,k are the transmitted symbols so
kyk−h1,kx1,k−h2,kx2,kk2 ≥ kyk−h1,kx̃1,k−h2,kx̃2,kk2. The
conditional PEP is given as

P ĉ1c1|H ≤P
⎛⎝ X
k,dfree

1

N0
kyk−h1,kx1,k−h2,kx2,kk2 ≥

X
k,dfree

1

N0
kyk−h1,kx̂1,k−h2,kx̂2,kk2

⎞⎠
=P

⎛⎝ X
k,dfree

1

N0
2<
³
z†kHk (x̂k − xk)

´
≥

X
k,dfree

1

N0
kHkxk−Hkx̂kk2

⎞⎠
=Q

⎛⎜⎝vuut X
k,dfree

1

2N0
kHk (x̂k − xk)k2

⎞⎟⎠
=Q

Ãs
1

2N0
vec

³
H†
´†
∆∆∆vec

³
H†
´!

(9)

where ∆∆∆ = Inr ⊗ DD† while D2K×2K =
diag

©
x̂1 − x1, x̂2 − x2, · · · , x̂k,dfree − xk,dfree

ª
. Note

that H = [H1 · · ·HK ] where K = dfree. Using the Chernoff
bound Q (x) ≤ 1

2 exp
³
−x2
2

´
, the conditional PEP can be

written as:-

P ĉ1c1|H ≤
1

2
exp

µ
− 1

4N0
vec

³
H†
´†
∆∆∆vec

³
H†
´¶

(10)

Note that H = ΨΨΨ
1
2

R [W1 · · ·WK ] = ΨΨΨ
1
2

RWnr×2K .Using the
Kronecker product identity for the product of three matri-
ces vec (AXB) =

¡
BT ⊗A¢ vec (X), it can be shown that

vec (AM×NXN×L) =
¡
XT ⊗ IM

¢
vec (A). So vec

³
H†
´
=

vec
µ
W†
ΨΨΨ

†
2

R

¶
=
³
ΨΨΨ
∗
2

R ⊗ I2K
´
vec

³
W†´. Developing (10)

further on the lines of [7]:-

P ĉ1
c1|H

≤1
2
exp

µ
− 1

4N0
vec

³
H†
´†

∆∆∆vec
³
H†
´¶

=
1

2
exp

µ
− 1

4N0
vec

³
W†´† µ

ΨΨΨ
T
2
R ⊗ I2K

¶ ³
Inr ⊗ DD†

´
×
µ
ΨΨΨ
∗
2
R ⊗ I2K

¶
vec

³
W†´¶

=
1

2
exp

µ −1
4N0

vec
³
W†´†µ

ΨΨΨ
T
2
R ⊗ I2K

¶µ
ΨΨΨ
∗
2
R ⊗ DD†

¶
vec

³
W†́

¶
=
1

2
exp

Ã
−1
4N0

vec
³
W†´†Ãµ

ΨΨΨ
†
2
RΨΨΨ

1
2
R

¶T
⊗ DD†

!
vec

³
W†´!

=
1

2
exp

µ
− 1

4N0
vec

³
W†´† ³

Ψ̃ΨΨR ⊗ DD†
´
vec

³
W†´¶ (11)

where we have used the identities (A⊗B)† =
¡
A† ⊗B†¢

and (A⊗C) (B ⊗D) = AB ⊗ CD. Note that Ψ̃ΨΨR ∼ ΨΨΨR
and vec

³
W†´† ³

Ψ̃ΨΨR ⊗DD†
´
vec

³
W†´ is a quadratic form

of a Gaussian random variable since vec
³
W†´ is a random

Gaussian vector and
³
Ψ̃ΨΨR ⊗DD†

´
is a Hermitian fixed matrix.

For a Hermitian quadratic form in complex Gaussian random
variable q=m†Am where A is a Hermitian matrix and column
vector m is a circularly symmetric complex Gaussian vector
i.e. m ∼ NC (μμμ,PPP) with μμμ = E [m] and

PPP
= E

£
mm†

¤ −
μμμμμμ†, the MGF is

E
£
exp

¡−tm†Am¢¤ = exp
h
−tμμμ†A (I+ t

PPP
A)−1μμμ

i
det (I+ t

PPP
A)

(12)

Using the MGF, PEP is upper bounded as

P ĉ1c1 ≤
1

2det
³
I+ 1

4N0

³
Ψ̃ΨΨR ⊗DD†

´´
=

1

2
Q2dfree

k=1

Qnr
l=1

³
1 + 1

4N0
λlμk

´ (13)

where λl are the eigenvalues of ΨΨΨR (as ΨΨΨR ∼ Ψ̃ΨΨR ) and μk
are the eigenvalues of DD†. Here we have used the identity
that for square matrices A ans B of size n and q respectively
with the eigenvalues λ1, · · · , λn and μ1, · · · , μq of A and B
respectively then the eigenvalues of A⊗ B are

λiμj i = 1, · · · , n, j = 1, · · · , q. (14)

(DD†)2K×2K is a square block diagonal matrix and its eigen-
values are

μk
¡
DD†

¢
=

½ kx̂k − xkk2 for k = 1, · · · , dfree
0 for k = dfree + 1, · · · , 2dfree



So the PEP is upperbounded as

P ĉ1c1 ≤
1

2
Qdfree

k=1

Qnr
l=1

³
1 + 1

4N0
λl kx̂k − xkk2́

≤ 1
2

dfreeY
k=1

κY
l=1

4N0

λl kx̂k − xkk2
(15)

where κ = rank (ΨΨΨR). kx̂k − xkk2 ≥ d21,min+d
2
2,min if x̂2,k 6=

x2,k and kx̂k − xkk2 ≥ d21,min if x̂2,k = x2,k. So PEP is
upperbounded as

P ĉ1c1 ≤
1

2

dfreeY
k=1

κY
l=1

×
⎡⎣ 4N0

λl

n³
d21,min+d

2
2,miń P

¡̂
x2,k 6=x2,k

¢
+d21,min

¡
1−P ¡̂x2,k 6=x2,k

¢¢o
⎤⎦

(16)

where P (x̂2,k 6= x2,k) is the uncoded probability that the
output of max log MAP detector x̂2,k is not equal to the actual
transmitted symbol x2,k and has been derived in the Appendix.
PEP can be rewritten as

P ĉ1c1 ≤
1

2

Ã
4N0

d21,min

!κ×dfree dfreeY
k=1

κY
l=1

×

⎡⎢⎢⎣ 1

λl

½µ
1+

d22,min
d2
1,min

¶
P
¡̂
x2,k 6=x2,k

¢
+
¡
1−P ¡̂x2,k 6=x2,k

¢¢¾
⎤⎥⎥⎦

=
1

2

Ã
4N0

σ21 d̆
2
1,min

!κ×dfree κY
l=1

1

λ
dfree
l

dfreeY
k=1

×

⎡⎢⎢⎣ 1½µ
1+

σ22 d̆
2
2,min

σ21 d̆
2
1,min

¶
P
¡̂
x2,k 6=x2,k

¢
+
¡
1−P ¡̂x2,k 6=x2,k

¢¢¾
⎤⎥⎥⎦
(17)

where d2j,min = σ2j d̆
2
j,min with d̆2j,min being the normalized

minimum distance of the constellation χj for j = {1, 2}. (17)
shows full diversity (nr × dfree) of max log MAP detector
in the case of correlation matrix being full rank. The coding
gain increases as the interference gets stronger relative to
the desired stream i.e. σ22 > σ21 or the rate of interference
decreases relative to the desired stream i.e. d̆22,min > d̆21,min. It
has been shown in the Appendix that P (x̂2,k 6= x2,k) depends
on the eigenvalues of correlation matrix in addition to its
dependence on the strength of desired signal and interference.
Analyzing (17) combined with (27) gives more insights into
the dependence of the performance of max log MAP detector
on the strength and rate of interference relative to the desired
stream and the eigenvalues of the correlation matrix. It shows
that the degrading effect of correlation on the performance
of max log MAP detector reduces as the rate of interference
decreases or its strength increases relative to the desired
stream.

IV. PEP ANALYSIS - MMSE DETECTOR

Conditional PEP for MMSE basing on Gaussian assumption
of post detection interference is given as

P ĉ1c1|H=P
⎛⎝X
k0

min
x1∈χi1,c

k
0

|yk−αkx1|2
Nk

≥
X
k0

min
x1∈χi1,ĉ

k
0

|yk−αkx1|2
Nk

⎞⎠
(18)

Let

x̃1,k=arg min
x1∈χi1,c

k
0

|yk−αkx1|2
Nk

, x̂1,k=arg min
x1∈χi1,c̄

k
0

|yk−αkx1|2
Nk

Considering the worst case scenario d (c1−ĉ1) = dfree and
using the fact that 1

Nk
|yk−αkx1,k|2 ≥ 1

Nk
|yk−αkx̃1,k|2, the

conditional PEP is upper bounded as

P ĉ1c1|H ≤ Q

⎛⎝vuut X
k,dfree

α2k
2Nk

|x̂1,k − x1,k|2
⎞⎠ (19)

Bounding |x̂1,k − x1,k|2 ≥ d21,min and using the Chernoff
bound, we get

P ĉ1c1|H ≤
1

2
exp

⎛⎝−d21,min
4

X
k,dfree

h†1,kR
−1
2,kh1,k

⎞⎠ (20)

where the summation in (20) can be written as

=
h
h†1,1, · · · ,h†1,dfree

i
diag

h
R−12,1, · · · ,R−12,dfree

ih
hT1,1, · · · ,hT1,dfree

iT
=
h
w†1,1, · · · ,w†1,dfree

iµ
Idfree ⊗ΨΨΨ

†
2

R

¶
diag

h
R−12,1, · · · ,R−12,dfree

i
×
³
Idfree ⊗ΨΨΨ

1
2

R

´ h
wT1,1, · · · ,wT1,dfree

iT
(21)

Let R−12 = diag
h
R−12,1, · · · ,R−12,dfree

i
Using the MGF (12), PEP

conditioned on h2 =
£
h2,1, · · · ,h2,dfree

¤
is upper bounded as

P ĉ1c1|h2≤
1

2 det

µ
Inrdfree+

d21,min
4

µ
Idfree⊗ΨΨΨ

†
2
R

¶
R−12

µ
Idfree⊗ΨΨΨ

1
2
R

¶¶
=

1

2det

µ
Inrdfree+

d21,min
4

µ
Idfree⊗ΨΨΨ

1
2
R

¶µ
Idfree⊗ΨΨΨ

†
2
R

¶
R−12

¶
=

1

2det

µ
Inrdfree+

d2
1,min

4

³
Idfree⊗ΨΨΨR

´
diag

h
R−12,1, · · · ,R−12,dfree

i¶
=

1

2
Qnrdfree
i=1

µ
1 +

d2
1,min

4
Υi

¶
≤ 1

2
Qnrdfree
i=1

µ
d2
1,min

4
Υi

¶
where we have used the identity det (Im +AB) =

det (In + BA). Note that Υis are the eigenvalues of the
matrix

¡
Idfree⊗ΨΨΨR

¢
diag

h
R−12,1, · · · ,R−12,dfree

i
. Here we assume

that the correlation matrix ΨΨΨR has full rank. Using the
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Fig. 1. Desired stream x1 is QAM16 while interference stream x2 is
QPSK and QAM16. Continuous lines indicate low complexity max log MAP
detection while dashed lines indicate linear MMSE detection. LTE turbo code
is used with maximum of 5 decoding iterations using max log MAP decoder.

identities that det(AB) = detAdetB and rank(AB) ≤
min(rank(A), rank(B)), we can decompose

nrdfreeY
i=1

1

Υi
= N

dfree(nr−1)
0

nrY
l=1

1

λ
dfree
l

dfreeY
k=1

³
σ22kh2,kk2+N0́

(22)

where λl are the eigenvalues of ΨΨΨR while the eigenvalues of
R−12,k are

ηj =

( ³
σ22 kh2,kk2 +N0

´−1
, j = 1

N−10 , j = 2, · · · , nr
(23)

So the PEP is upper bounded as

P ĉ1c1|h2≤
1

2

Ã
4N0

d21,min

!dfree(nr−1)Ã
4

d21,min

!dfreenrY
l=1

1

λ
dfree
l

dfreeY
k=1

³
σ22
°°h2,k°°2+N0́

Channel independence at each subcarrier yields

P ĉ1c1≤
1

2

Ã
4N0

d21,min

!dfree(nr−1)Ã
4

d21,min

!dfree¡
nrσ

2
2 +N0

¢dfree nrY
l=1

1

λ
dfree
l

=
1

2

Ã
4N0

σ21 d̆
2
1,min

!dfree(nr−1)Ã
4

σ21 d̆
2
1,min

!dfree¡
nrσ

2
2 +N0

¢dfree nrY
l=1

1

λ
dfree
l

(24)

which not only demonstrates the well known result of the
loss of one diversity order in MMSE detection in the presence
of an interferer (x2) [8] but also exhibits a coding loss as
interference gets stronger. However the performance of MMSE
is independent of the rate of interference (constellation size).
It also shows the dependence of MMSE performance on the
eigenvalues of correlation matrix.
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Fig. 2. Desired stream x1 is QAM64 while interference stream x2 is QPSK,
QAM16 and QAM64. Continuous lines indicate low complexity max log MAP
detection while dashed lines indicate linear MMSE detection. LTE turbo code
is used with maximum of 5 decoding iterations using max log MAP decoder.

V. SIMULATION RESULTS

We consider 2 BSs each using BICM OFDM system for
downlink transmission using the punctured rate 1/2 turbo
code1 of 3GPP LTE [2]. We consider an ideal OFDM based
system (no ISI) and analyze the system in frequency domain.
We assume antenna cycling at the BS and receive diversity
at the MS with two antennas. The resulting SIMO channel at
each sub carrier from BS to MS has correlated Gaussian matrix
entries while we assume independence between different sub-
carriers. For the structure of correlation matrix, we consider
exponential correlation matrix model. Perfect channel state
information (CSI) is assumed at the MS while BSs have no
CSI. Furthermore, all mappings of coded bits to QAM symbols
use Gray encoding. We consider linear MMSE detector and the
low complexity max log MAP detector. Figs. 1 and 2 show the
frame error rates (FERs) of desired stream for the frame size
of 1056 information bits. The effects of receive correlation and
the rate of interference stream have been isolated in these sim-
ulations. To achieve this, the strengths of desired stream and
interference stream are kept same (Cell Edge case) while FERs
of the two streams have been approximately equated once
there is no correlation. Then as the correlation gets stronger,
the degrading effect on the performance of both the detectors
in the presence of different interferences is compared. In
the case of equal rate streams i.e. desired and interference
streams belong to same constellation, the degrading effect of
correlation on both MMSE and low complexity max log MAP
detection is approximately same. However the degradation of
the performance of max log MAP detector with enhanced
correlation gets reduced as the rate of interference decreases
relative to the desired stream. The degradation of MMSE
performance with increase in correlation is independent of the

1The LTE turbo decoder design was performed using the coded modulation
library www.iterativesolutions.com



rate of interference which is in line with PEP analysis. The
SNR gap between the max log MAP detection and MMSE
detection for the same FER (at zero correlation) widens as
rate of interference stream decreases relative to the desired
stream. This can be attributed to the ability of max log MAP
detector to partially decode interference once the lower rate or
the higher strength of interference permits its partial decoding
[4]. This partial decoding capability of max log MAP detector
reduces with increased correlation especially once interference
has comparable rate relative to the desired stream. MMSE
does not benefit from exploiting interference as it is based
on the attenuation of interference strength and the subsequent
assumption of Gaussianity for its behavior.

VI. CONCLUSIONS

We have focused in this paper on the effects of receive
correlation, interference strength and interference rate on the
performance of low complexity max log MAP detector and
linear MMSE detector. The degrading effect of correlation
is less for max log MAP detector as compared to MMSE
detector especially in the cases when interference because of
its relative rate or strength allows its partial decoding. However
interestingly, the degrading effect of correlation gets more
pronounced in max log MAP detector as the rate of interfering
stream increases or its strength decreases. On the other hand,
degradation of MMSE performance with enhanced correlation
is independent of the rate and the strength of interference.
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APPENDIX
P(x̂2,k 6= x2,k)(x̂2,k 6= x2,k)(x̂2,k 6= x2,k)

Considering the definition of x̂2,k in (8), it can be expanded
as:-

x̂2,k=arg min
x1∈χi1,̄c

k
0 ,x2∈χ2

∙
1

N0

n°°h1,k ¡x1,k−x1¢+zk°°2+°°h2,k ¡x2,k−x2¢°°2+
2< ¡h1,k ¡x1,k−x1¢+zk¢† h2,k ¡x2,k−x2¢oi

The last two terms will be zero if x̂2,k = x2,k. Conditioning it
on x1, the probability P (̂x2,k 6=x2,k|h1,k,h2,k, x1)=P x̂2

x2|Hk,x1
is given as:-

=P
³
−2<

³
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´
≥kh2,kX2,kk2|Hk, x1,ḱ
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2N0

+

r
2
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⎞⎠⎞⎠
where Xj,k denotes (xj,k − xj). Using the relation Q (a+b)≤
Q (amin−|bmax|) and <

³
a†b̂́ ≤kak where b̂ is the unit vector

we get

P x̂2
x2|Hk ≤

1

2
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Ã
−kh2,kk

2 d22,min
4N0

− kh1,kk
2 d21,max
N0

+
kh2,kk kh1,kkd2,mind1,max

N0

¶
(25)

Considering the norms of h1,k and h2,k we make two non-
overlapping regions as (kh2,kk≥kh1,kk) and (kh2,kk<kh1,kk)
with the corresponding probabilities as P<

h1 and P>
h1 . Note

that in the first region kh2,kkkh1,kk≤kh2,kk2 while for second
region kh2,kkkh1,kk<kh1,kk2. So
Px̂2
x2|Hk ≤
1

2

"
exp

Ã
− °°h2,k°°2 d22,min − 4d2,mind1,max

4N0

!
exp

Ã
−
°°h1,k°°2 d21,max

N0

!
P<h1

+exp

Ã
−
°°h2,k°°2 d22,min

4N0

!
exp

Ã
−°°h1,k°°2 d21,max − d2,mind1,max

N0

!
P>h1

#
(26)

We upperbound both the probabilities i.e. P<
h1 and P>

h1 by
1. Taking expectation over h2,k conditioned on h1,k and then
subsequently taking expectation over h1,k yields:-

Px̂2x2 ≤
1
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where we have used the MGF of (12) while writing
khj,kk2 = h†j,kInrhj,k where hj,k ∼ CN (0,ΨΨΨR). This
expression shows the dependence of P (x̂2,k 6= x2,k) on the
interference strength, SNR and the correlation.
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