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ABSTRACT

This paper develops an equivalent linear model for piezomagnetoelastic energy harvesters under broadband
random ambient excitations. Piezomagnetoelastic harvesters are used for powering low power electronic sensor
systems. Nonlinear behaviour arising due to the vibration in a magnetic field makes piezomagnetoelastic energy
harvesters different from the more classical piezoelastic energy harvesters. First numerical simulation of the
nonlinear model is presented and then an equivalent linearization based analytical approach is developed for the
analysis of harvested power. A cosed-form approximate expression for the ensemble average of the harvested
power is derived. The equivalent model is seen to capture the details of the nonlinear model and also provides
more details to the behaviour of the harvester to random excitation. Our results show that it is possible to
optimally design the system such that the mean harvested power is maximized for a given strength of the input
broadband random ambient excitation.
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1. INTRODUCTION

The evolution of electronic devices since the beginning of micro and nano-electronics has brought about an
exponential growth in computational power in ever shrinking systems and the associated increase in functionality
brings a new revolution in systems targeting wearable healthcare, lifestyle and industrial monitoring applications.

As systems continue to shrink, less energy is required onboard. This allowed another energy paradigm of
energy harvesting (also referred to as energy scavenging) from the environment. A decade of research in the
field of energy harvesting has led to the efficient capturing of small amounts of energy from the environment and
transforming them into electrical energy. Energy autonomous systems using energy harvesting are particularly
attractive when long term remote deployment is needed or wherever a natural long term energy source is available
(such as for example temperature or vibrations) for continuous replenishing of the energy consumed by the system.
Such inexhaustible energy supply is a significant advantage over battery supply or mains power. Extended lifetime
and autonomy are particularly advantageous in systems with limited accessibility, such as medical implants and
infrastructure integrated micro-sensors, wireless sensor nodes used for structural health monitoring, embedded
and implanted sensor nodes for medical applications, recharging the batteries of large systems, monitoring tire
pressure in automobiles, powering unmanned vehicles, and running security systems in household conditions.

As described by Williams and Yates,1 the three basic vibration-to-electric energy conversion mechanisms are
electromagnetic,1–4 electrostatic,5, 6 and piezoelectric7–10 transductions. In the last decade, these transduction
mechanisms have been investigated by numerous researchers for vibration-based energy harvesting and extensive
discussions can be found in the existing review articles.5, 9, 11, 12

Energy harvesting of ambient vibration is important for remote devices, for example in structural health
monitoring.5, 9, 11–13 Completely wireless sensor systems are desirable and this can only be accomplished by using
batteries and/or harvested energy. Harvesting is attractive because the energy generated can be used directly
or used to recharge batteries or other storage devices, which enhances battery life. Most of the results using the
piezoelectric effect as the transduction method have used cantilever beams and single frequency excitation, i.e.,
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resonance based energy harvesting. The design of an energy harvesting device must be tailored to the ambient
energy available. For single frequency ambient excitation the resonant harvesting device is optimum, provided it
is tuned to the excitation frequency. Several authors8, 14–16 have proposed methods to optimize the parameters
of the system to maximize the harvested energy. Shu et al.17–19 conducted detailed analysis of the power output
for piezoelectric energy harvesting systems.

Regardless of the transduction mechanism, a primary issue in vibration-based energy harvesting is that the
best performance of a generator is usually limited to excitation at its fundamental resonance frequency. If the
applied ambient vibration deviates slightly from the resonance condition then the power output is drastically
reduced. Hence a major issue in energy harvesting is to enable broadband energy harvesters.20, 21 Thus re-
searchers have recently focused on the concept of broadband energy harvesting to solve this issue with different
approaches.

The most recent addition to broadband energy harvesters is piezomagnetoelastic systems.21 This magnetoe-
lastic structure (described in the following section) was first investigated by Moon and Holmes22 as a mechanical
structure that exhibits strange attractor motions. Erturk et al.21 investigated the potential of this device for
energy harvesting when the excitation is harmonic and demonstrated an order of magnitude larger power output
over the linear system (without magnets) for non-resonant excitation. Litak et al.23 considered the performance
of the nonlinear piezomagnetoelastic system to random excitations using numerical methods.

The theoretical analysis of piezomagnetoelastic systems is absent in the literature. The exact analysis of
nonlinear piezomagnetoelastic energy harvesting system under random excitation requires the solution of the
multidimensional Fokker-Planck equation to obtain the governing the probability density function of the har-
vested power. This paper considers a different approach and stochastically linearizes the system and develops
an equivalent model of the overall system. The linear model is then analyzed to determine probability density
functions of the system response and the power scavenged by the system. The paper is organized as follows: The
next section describes the piezomagnetoelastic harvester. Details of the stochastic linearization technique and
the three nonlinear equations that are required to be solved to obtain the equivalent linear system are reported
in Section 3. The equivalent linear system under zero mean white noise excitation is analyzed in Section 4.
Numerical results are reported in Section 5.

2. MAGNETOPIEZOELASTIC ENERGY HARVESTERS

Magnetopeizoelastic energy harvesters are the recent addition to energy harvesting devices. The device consists
of a ferromagnetic cantilever beam that is excited at the support (see Figure 1). Two permanent magnets are
located symmetrically on the base near the free end. The distance between the beam and the magnets determine
the stable equilibrium points. In this article we considered interested in the case when the system has three
equilibrium positions, two of which are stable, and the mechanical system is characterized by the classical double
well potential. The nondimensional equations of motion for this system are

ẍ+ 2ζẋ−
1

2
x(1− x2)− χv = f(t), (1)

v̇ + λv + κẋ = 0, (2)

where x is the dimensionless transverse displacement of the beam tip, v is the dimensionless voltage across the
load resistor, χ is the dimensionless piezoelectric coupling term in the mechanical equation, κ is the dimensionless
piezoelectric coupling term in the electrical equation, λ ∝ 1/RlCp is the reciprocal of the dimensionless time
constant of the electrical circuit, Rl is the load resistance, and Cp is the capacitance of the piezoelectric material.
The force f(t) is proportional to the base acceleration on the device. A simulation of the nonlinear system for
random base excitation is shown in Figure 2. Gaussian white noise excitation, with zero mean and specified
variance, was assumed for the simulations. Different values of the standard deviation of the excitation are
considered.

Figure 2(a) shows the phase portrait for the excitation standard deviation σf = 0.03. The system remains
oscillating in one of its stable equilibrium point x = ±1 and never jumps to the other equilibrium point. This
means that the excitation is too weak to provide sufficient energy to the system to overcome the potential barrier
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Figure 1. Schematic diagram of Magnetopiezoelastic device21

and jump to the other equilibrium point. When the standard deviation of the excitation is increases to σf = 0.07
(i.e., Figure 2(b)) the system is seen to overcome this potential barrier and can jump to the other equilibrium
point providing sufficient energy for scavenging. Next is when the standard deviation of excitation is increased
to σf = 0.10 the system seems to jump frequently between its equilibrium point providing more energy for
scavenging.

Figure 2 demonstrates that the dynamics of the system is a double well potential and the greatest energy
generation occurs when the system moves between the potential wells. To better understand this fact and get
insight to the associated phenomenon this papers develops a equivalent linear system of the nonlinear system.

3. STOCHASTIC EQUIVALENT LINEARIZATION

Equation (1) is a nonlinear equation with nonlinearity in the stiffness term, whereas Equation (2) is a linear
equation. To facilitate the linearization process, Equation (1) can be rewritten as

ẍ+ 2ζẋ+ g(x)− χv = f(t) (3)

The nonlinear stiffness is represented as g(x) = − 1
2
(x− x3). Here we develop a linearized model for the Duffing

equation (Equation (3)) based on the stochastic linearization approach.24 Assuming a non-zero mean random
excitation (i.e., f(t) = f0(t) +mf) and a non-zero mean system response (i.e., x(t) = x0(t) +mx), the following
equivalent linear system is considered,

ẍ0 + 2ζẋ0 + a0x0 + b0 − χv = f0(t) +mf (4)

where f0(t) and x0(t) are zero mean random processes. mf and mx are the mean of the original processes f(t)
and x(t) respectively. a0 and b0 are the constants to be determined with b0 = mf and a0 represents the square
of the natural frequency of the linearized system ω2

eq. The idea is to substitute the nonlinear part, g(x) with a
linear stiffness parameter, (ω2

eqx0) in presence of random excitation f0(t).

Least squares optimization is used to minimize the expectation of the error norm i.e., (E
[

ǫ2
]

,with ǫ =
g(x) − a0x0 − b0). The constants a0 and b0 are obtained in terms of the statistics of the response x. We take
partial derivatives of the error norm w.r.t. a0 and b0 and equate them to zero individually. Finally we get,

a0 =
E [g(x)x0]

E [x2
0]

=
E [g(x)x0]

σ2
x

(5)

b0 = E [g(x)] = mf (6)
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(a) Phase plane for σf = 0.03
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(b) Phase plane for σf = 0.07
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(c) Phase plane for σf = 0.10

Figure 2. Phase plane diagram of the magnetopiezoelastic harvester for for λ = 0.01 and for different standard deviation
of the excitation a) σf = 0.03 , b) σf = 0.07 and c) σf = 0.10.

As a special case if we assume that x(t) is a Gaussian random process, the expressions in Equations (5) and (6)
can be further simplified24, 25 as, (for details refer Ali et al.26)

a0 = −
1

2

{

1− 3σ2
x − 3m2

x

}

(7)

which gives

3m2
x + 3σ2

x − 2a0 − 1 = 0. (8)

and

mf = −
1

2

(

E [x]− E
[

x3
])

. (9)

which gives

mx

(

m2
x + 3σ2

x − 1
)

− 2mf = 0 (10)

where mx and σx are the mean and standard deviation of the system response x.

The process of statistical linearization reduces to finding three unknowns a0, mx and σx with only two
equations (Equations (8) and (10)). Another expression for σx can be obtained from the linearized system
equations.
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Equation (4) along with Equation (2) can be rewritten as,

ẍ0 + 2ζẋ0 + a0x0 − χv = f0(t) (11)

v̇ + λv + κẋ = 0 (12)

Taking the Fourier transform of Equations (11) and (12), we get,
[(

a0 − Ω2
)

+ 2iΩζ −χ
iΩκ (iΩ + λ)

]{

X(Ω)
V (Ω)

}

=

{

F0(Ω)
0

}

(13)

Inverting the coefficient matrix, the displacement and voltage in the frequency domain can be obtained as
{

X
V

}

=
1

∆

[

(iΩ + λ) χ
−iΩκ

(

a0 − Ω2
)

+ 2iΩζ

]{

F0

0

}

(14)

= H(Ω)

{

F0

0

}

(15)

where H(Ω) is the 2× 2 matrix of frequency response functions and the determinant of the coefficient matrix is

∆(iΩ) = (iΩ)3 + (2ζ + λ) (iΩ)2 + (2ζλ+ κχ+ a0) (iΩ) + λa0 (16)

Since f0(t) is a weakly stationary, Gaussian, broadband random process, its autocorrelation function depends
only on the difference in the time instants, and thus

E [f0(τ1)f0(τ2)] = Rf0f0(τ1 − τ2). (17)

This autocorrelation function can be expressed as the inverse Fourier transform of the spectral density
Φf0f0(Ω) as

Rf0f0(τ1 − τ2) =

∫

∞

−∞

Φf0f0(Ω) exp[iΩ(τ1 − τ2)]dΩ. (18)

For a damped linear system of the form shown in Equation (15), it can be shown that24, 27 the spectral density
of X(Ω) is related to the spectral density of the excitation F0 by

Φx0x0
(Ω) = |H11(Ω)|

2
Φf0f0(Ω). (19)

where H11(Ω) is the element in the first row and column of the matrix H(Ω). In this paper we are interested in
the standard deviation of response, σx, given as

σ2
x = σ2

x0 =

∫

∞

−∞

|H11(Ω)|
2Φf0f0dΩ (20)

where Φf0f0 is a constant for weakly stationary, white noise process.

Combining Equations (14), (15), (16) and (20), we get

σ2
x = Φf0f0

∫

∞

−∞

λ2 +Ω2

∆(Ω)∆∗(Ω)
dΩ (21)

Solving Equation (21) and then simplifying the resulting expression we obtain the final relation between a0
and σx (for details see Ali et al.26) and which is given as

a0σ
2
x

(

4λζ2 + 2ζκχ+ 2ζa0 + 2λ2ζ + λκχ
)

− πΦf0f0

(

a0 + 2λζ + λ2
)

= 0 (22)

Equation (22) along with Equations (8) and (10) provide three equations to solve for the unknown variables a0,
σx, and mx. Analytical solutions of Equations (8), (10) and (22) are not possible and one should make use of
numerical schemes. In the next section, solutions for zero mean white noise excitation is shown. To summarise,
one has to solve for mx, σx and a0 from the following three nonlinear coupled equations,

3m2
x + 3σ2

x − 2a0 − 1 = 0
mx

(

m2
x + 3σ2

x − 1
)

− 2mf = 0
a0σ

2
x

(

4λζ2 + 2ζκχ+ 2ζa0 + 2λ2ζ + λκχ
)

− πΦf0f0

(

a0 + 2λζ + λ2
)

= 0
(23)
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4. ZERO MEAN WHITE NOISE EXCITATION

4.1 Determination of σx, a0 and mx

Without loss of generality the external excitation can be assumed to be a zero mean white noise process, i.e.,
mf = 0. This largely simplifies our analysis and provides simple relation between the mean (mx) and the
standard deviation (σx) of the response. Putting mf = 0 in Equation (10) we get,

mx

(

m2
x + 3σ2

x − 1
)

= 0 (24)

which gives, either mx = 0 or mx =
√

1− 3σ2
x.

Substituting mx = 0 in Equation (8) we get,

3σ2
x = 1 + 2a0 (25)

Equation (25) shows that for mx = 0 and for any real a0 ≥ 0, we have σ2
x ≥ 1

3
.

Substituting mx =
√

1− 3σ2
x in Equation (8) we get,

3(1− 3σ2
x) + 3σ2

x − 2a0 − 1 = 0

1− 3σ2
x − a0 = 0 (26)

which gives

3σ2
x = 1− a0 (27)

Equation (27) shows that for m2
x = 1− 3σ2

x and real, positive a0, we have σ2
x ∈ [0, 1

3
].

This on the other hand bounds a0 ∈ [0, 1]. A further analysis will show that a0 = m2
x.

Substituting Equation (25) and Equation (27) separately in Equation (22) we obtain the following two cubic
polynomial equations respectively.

4ζa0
3 +

(

8λζ2 + 4λ2ζ + 4κχζ + 2ζ + 2λκχ
)

a0
2

+
(

4λζ2 + 2λ2ζ + 2κχζ + λκχ− 3Φf0f0π
)

a0 − 3Φf0f0πλ (λ+ 2ζ) = 0 (28)

2ζa0
3 +

(

4λζ2 + 2λ2ζ + 2κχζ − 2ζ + λκχ
)

a0
2

−
(

4λζ2 + 2λ2ζ + 2κχζ + λκχ− 3Φf0f0π
)

a0 + 3Φf0f0πλ (λ+ 2ζ) = 0 (29)

Numerical solutions show that Equation (28) has a single real positive root and Equation (29) has two real
positive roots for any given value of Φf0f0 .

4.2 Determination of E
[

v2
]

The spectral density of the voltage generated across the harvester can be related to the excitation as

Φvv(Ω) = |H21(Ω)|
2
Φf0f0(Ω). (30)

where H21(Ω) is the element in the second row and first column of the matrix H(Ω) (see Equation (14)).

E
[

v2
]

=

∫

∞

−∞

|H21(Ω)|
2
Φf0f0dΩ (31)

where Φf0f0 is a constant for weakly stationary, white noise process.

Combining Equations (14), (15), (16) and (31), we get

E
[

v2
]

= Φf0f0

∫

∞

−∞

κ2Ω2

∆(Ω)∆∗(Ω)
dΩ (32)

Proceeding as shown in Ali et al.,26 we find an expression for E
[

v2
]

as

E
[

v2
]

=
κ2λa0

a0 (4λζ2 + 2ζκχ+ 2ζa0 + 2λ2ζ + λκχ)
πΦf0f0 (33)
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5. NUMERICAL ANALYSIS

As discussed in Section 4.1, the analytical solution of Equations (28) and (29) is not feasible. Numerical methods
are used to solve for different values of σx, a0 and mx. The solutions of Equations (28) and (29) for various
values of standard deviation of the excitation are reported.

The system parameters have been taken as follows:21 ζ = 0.01, χ = 0.05, and κ = 0.5, while λ was varied
between 0.01 and 0.05. The excitation f(t) is considered stationary Gaussian white noise with standard deviation
σf ranging from 1% to 11%. Higher values of standard deviation are not considered as statistical linearization
would fail to represent the system for higher standard deviations.

The nonlinear piezomagnetoelastic system represents a Duffing type equation of motion. The nonlinear
system has three equilibrium points, two stable equilibrium points at x = ±1 and one unstable equilibrium
point at the origin (x = 0). Numerical simulations show that Equation (28) has a single real positive solution
for a0, whereas Equation (29) has two real positive solutions. The solutions for different standard deviations of
excitation are shown in Figure 3. ‘Solution-1 ’ and ‘Solution-2 ’ are the solutions for Equation (29) i.e., where
mx =

√

1− 3σ2
x, and ‘Solution-3 ’ is obtained solving Equation (28) i.e., solution representing zero mean response.

This representation of the solutions is true for all figures reported in this article.
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(a) a0 for λ = 0.01
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(b) a0 for λ = 0.05

Figure 3. Square of the natural frequency of the equivalent linear system for different standard deviations of the excitation
(σf ) for a) λ = 0.01 and b) λ = 0.05.

Figures 3(a) and 3(b) are for λ = 0.01 and λ = 0.05 respectively. Note that a0 is the square of the natural
frequency of the equivalent linear system (see Equation (4)) and therefore can not be negative. The blue curve
(with square marker) represents both the x = ±1 stable equilibrium points. The black dasched line represents
the solution a0 = 0 up to σf = 0.04 and σf = 0.05 for λ = 0.01 and λ = 0.05 respectively. This solution is the
unstable equilibrium point of the system. Therefore the only practical solution for the system below σf = 0.04
for electrical constant λ = 0.01 and below σf = 0.05 for λ = 0.05 is given by the blue curve with square marker.
At this stage the system remains in one of the potential wells represented by x = ±1.

When the excitation standard deviation reaches the ‘cut-off’ (σf = 0.04 for λ = 0.01 and σf = 0.05 for
λ = 0.05) the system has enough energy to cross the potential barrier and could jump to the other potential
well. This jump from one potential well to another generates more energy as will be shown later. These ‘cut-off’
standard deviations of the excitation are explained as ‘the stochastic resonance phenomenon’ in Litak et al.23

Figure 4 shows the square of the standard deviation of the response shown against the standard deviation
of the excitation. It can be observed (and as described in the Section 4.1) that two real positive solutions of σ2

x

exists for mx �= 0 which have values less than 1
3
. Another real positive solution is obtained solving Equation (28)

which results into σx ≥ 1
3
.
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(a) Statistical response for λ = 0.01
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(b) Statistical response for λ = 0.05

Figure 4. Square of standard deviation of the response under different standard deviations of the excitation for a) λ = 0.01
and b) λ = 0.05. The black dotted line represents unstable solution at a0 = 0.

Note that the square of the standard deviation of the response σ2
x = 1

3
for ‘Solution-2 ’ and ‘Solution-3 ’ as

long as the standard deviation of excitation σf ≤ 0.04 and σf ≤ 0.05 for λ = 0.04 and λ = 0.05 respectively. At
the ‘cut-off’ standard deviation of excitation the standard deviation of response could jump from ‘Solution-1 ’
to ‘Solution-2 ’ or ‘Solution-3 ’ (depending on the initial condition of the system) generating more power. This
phenomenon is observed in the solution of the nonlinear system as shown in Litak et al.23 Another point to note
is that the σ2

x curves are similar for both λ = 0.04 and λ = 0.05, the only distinction being the ‘cut-off’ value
of σf . This shows that electrical constant (λ) plays little role in the response of the system and the mechanical
and electrical systems are only weakly coupled.
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(a) Ratio of response to excitation for λ = 0.01
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(b) Ratio of response to excitation for λ = 0.05

Figure 5. Ratio of standard deviation of displacement to standard deviation of the excitation under different standard
deviations of the excitation for a) λ = 0.01 and b) λ = 0.05. The black dotted line represents the unstable solution at
a0 = 0.

Figure 5 shows the ratio of standard deviations of the response and the excitation. An order increase in the
standard deviation of the response is seen near the ‘cut-off’ region. As described earlier the third solution is the
zero mean response. Interestingly the mean responses seem to be converging to a particular value with increase
in standard deviation of excitation. As the excitation noise is increased the oscillation of the magnetoelastic
rod crosses the potential barrier between individual equilibria and keeps oscillating. Therefore the equivalent
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linearization does not represent any equilibrium value at higher excitation deviations rather it shows a new point
over which the system keeps on oscillating.

The variance of the voltage which is a measure of the mean power harvested is shown in Figure 6 for λ = 0.01
and λ = 0.05. Figures 6(a) and 6(b) show that the voltage increases across the circuit near the ‘cut-off’ values of
the excitation standard deviation. Note that the power remains very low for noise intensities below the ‘cut-off’
value. The electrical constant λ significantly affects the voltage produced and hence the power generated. Note
that this increase in power above the ‘cut-off’ point’ is due to the changes in the electrical system, since the
mechanical responses shown in Figures 3 to 5 are almost identical. The practical implementation of a increase in
λ requires a reduction in either electrical resistance or capacitance. This matches the reality i.e, power increases
with a decrease in resistance across the circuit. These requirements should be included in trade-off studies
required for the design of a real system.
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(a) Variance of voltage for λ = 0.01
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(b) Variance of voltage for λ = 0.05

Figure 6. Variance of voltage against the excitation standard deviation a) λ = 0.01 and b) λ = 0.05.

6. CONCLUSION

Piezomagnetoelectric harvester are best suited for broadband energy harvesting. These devices are nonlinear
and their mechanical counterpart is represented by Duffing type oscillator. The device is nonlinear and can
have chaotic motion depending on the input excitation. The chaotic motion generates an order of magnitude
larger power output over the linear system (without magnets) for non-resonant excitation. This paper develops
an equivalent linear model of the nonlinear system. An analytical expression for the equivalent linear system
is given. It is observed that there exist a ‘cut-off’ standard deviation of the input excitation below which the
power scavenged by the device is very low. The power generated by the device increases rapidly as the standard
deviation of the input excitation is increased. This ‘cut-off’ standard deviation of the input excitation changes
with the electrical constant of the system. The lower the electrical constant (i.e., higher λ), the higher is the
‘cut-off’ standard deviation. The effect of the variation in the electrical constant on the mechanical response of
the system is seen to be relatively small. The power generating capacity of the system increases with increasing
λ. Thus decreasing the resistance or capacitance of the system will increase the harvested power.
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