
Analysis of Maize (Zea mays L.) Seedling Roots with the
High-Throughput Image Analysis Tool ARIA (Automatic
Root Image Analysis)

Jordon Pace1*, Nigel Lee2, Hsiang Sing Naik2, Baskar Ganapathysubramanian2, Thomas Lübberstedt1
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Abstract

The maize root system is crucial for plant establishment as well as water and nutrient uptake. There is substantial genetic
and phenotypic variation for root architecture, which gives opportunity for selection. Root traits, however, have not been
used as selection criterion mainly due to the difficulty in measuring them, as well as their quantitative mode of inheritance.
Seedling root traits offer an opportunity to study multiple individuals and to enable repeated measurements per year as
compared to adult root phenotyping. We developed a new software framework to capture various traits from a single
image of seedling roots. This framework is based on the mathematical notion of converting images of roots into an
equivalent graph. This allows automated querying of multiple traits simply as graph operations. This framework is
furthermore extendable to 3D tomography image data. In order to evaluate this tool, a subset of the 384 inbred lines from
the Ames panel, for which extensive genotype by sequencing data are available, was investigated. A genome wide
association study was applied to this panel for two traits, Total Root Length and Total Surface Area, captured from seedling
root images from WinRhizo Pro 9.0 and the current framework (called ARIA) for comparison using 135,311 single nucleotide
polymorphism markers. The trait Total Root Length was found to have significant SNPs in similar regions of the genome
when analyzed by both programs. This high-throughput trait capture software system allows for large phenotyping
experiments and can help to establish relationships between developmental stages between seedling and adult traits in the
future.
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Introduction

The maize (Zea mays L.) root is designed to provide anchorage

as well as to secure uptake of water and nutrients, including

nitrogen (N), in an efficient manner [1,2]. Maize roots are formed

partly during embryonic and partly during post-embryonic

development [3]. There are five main types of roots in maize:

crown, seminal, primary, lateral, and brace roots [4]. The major

portion of root biomass of mature plants is derived from

postembryonic, shoot-borne roots. These postembryonic roots

include crown roots, formed below soil surface, and brace roots,

formed above soil surface [5]. Their function is important to plant

performance as they are responsible for the majority of water and

nutrient uptake in maize [5].

Two to three week old seedling root systems are made up of

primary roots, lateral roots, seminal roots, and root hairs [4,6].

Lateral roots branch outward from the primary root. These root

types are called the axial roots and determine root architecture.

Lateral roots increase the surface area of the root system and all

root types contribute to water and nutrient uptake [2,7,8].

Moreover, lateral roots contain root initiation points, leading to

secondary, tertiary, and higher order root structures, with major

influence on the overall root architecture of the root stock [2].

There is extensive genetic variation in root architecture.

However, root traits have not been considered by plant breeders

to select for improved nutrient uptake efficiency or yield

improvement due to the difficulty in measuring root traits and

their quantitative mode of inheritance [9]. Studying adult roots

using maize ‘‘shovelomics’’, a high-throughput phenotyping

technique that measures adult root traits, is time consuming and

laborious. This method of phenotyping is also destructive because

roots are dug out of the ground. This limits the number of

experiments that can be completed in a season [10]. Changes in

maize root architecture may strongly affect yield [11]. Seminal

roots play a key role in the acquisition of immobile and mobile

nutrients such as phosphorus and nitrogen respectively and can

determine spatial and temporal domains of its environment and

inter-root competition [6]. The relationship between seminal root

biomass in hydroponics and root lodging in a field study focusing

on root strength and pulling resistance has been explored.

Respective correlations were low, but statistically significant.
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Correlations found in hydroponic seedling root traits compared to

adult field traits were r = 0.44* for shoot weight and adult plant

height, and r = 0.22* for lateral root length with brace root

development [12,13].

Seedling phenotyping takes less time, is less laborious, and can

be repeated many times during the year allowing for quicker

turnover of results. Positive but low correlations were found

between maize seedling and adult root traits, such as number of

seminal roots and weight of seminal roots to root pulling resistance

(r = 0.07 and r = 0.36*, respectively) [14]. Expanding the number

of seedling root traits and improving respective phenotyping

procedures, may increase the chance of capturing strong

relationships between different growth stages in maize.

Using digital imaging software to automate phenotypic analysis

is an innovative and efficient way of accurately taking measure-

ments of plant physiological traits [15–19]. Roots have been

difficult to phenotype in a high throughput manner due to a lack

of simple access and their highly plastic nature. With the

development of custom root analysis systems, quantitative studies

of root systems are now possible [20,21]. There are several

software frameworks that extract root morphology traits in two-

dimensions in various hierarchies of automation. This ranges from

manual root labeling like DART (Le Bot and Serra, 2009), to

semi-automated software like WinRhizo (Pro, 2004), a commercial

root analysis tool, and EzRhizo [22], a freely available software, all

the way to full integrated imaging-analysis platforms like Smart-

Root [23] for small root systems and recent platforms, allowing for

automated measurements as well as invoking a ranking system for

root traits [17].

These software frameworks have substantially enhanced the

research community’s ability to efficiently analyze and accumulate

massive amounts of data. They also pioneered the utilization of

graphical user interface (GUI) that enables ease of use. However,

most of these software frameworks are either expensive, not

expandable to increased (or decreased) dimensions, or cannot be

fine-tuned to a specific setup. We developed an open-source,

modular, easy-to-use and efficient root system architecture

characterization software called ARIA (Automatic Root Image

Analysis). This is based on a mathematically rigorous approach of

converting root images into graphs. We show how extracting a

variety of traits becomes a simple process of utilizing various graph

algorithms. There are several major advantages to such a graph

based approach to extracting root system traits: (a) graph based

methods are well-studied and have very fast and efficient

algorithms (for example, used in Google, Facebook, most GPS

devices etc.) that enable fast, real time data analysis, (b) graph

based methods are easily scalable (having almost linear compu-

tational complexity) and, hence, can be easily extended to larger

problem sizes without compromising on time (with direct

implication to large 3D tomography datasets), and (c) a graph-

based approach is generic. That is, by making trivial modifications

to the definitions of parameters like edges, weights, and labels, a

huge variety of traits can be accessed. This makes a graph based

framework trivially extendable. Furthermore, graphs are dimen-

sion independent, and hence this framework is trivially extendable

to 3D root image analysis.

In this study, the utility of ARIA has been tested by phenotyping

384 maize inbred lines using scanned images of seedling roots.

These data were then applied to a genome wide association study

(GWAS) to detect marker-trait associations. Measurements of the

trait Total Root Length were analyzed for a comparative GWAS

study, as this is the only trait shared between the current platform

WinRhizo Pro 9.0 and ARIA. The objective of this study is to

show that our new and freely accessible root phenotyping software

ARIA is a fast and accurate platform for automated phenotyping,

with the potential of adding additional features when compared to

the established software WhinRizo Pro 9.0. For both programs,

significant marker trait associations were found using a general

linear model. Also, phenotypic measurements with both programs

were compared using a 74 maize inbred line panel [24] to further

validate utility of ARIA. The results of this study show that ARIA
is an accurate and dependable tool for completing large

phenotyping experiments, needed for many quantitative genetic

studies. Its flexibility makes ARIA a very useful tool to breeders

and biologists studying root architecture.

Figure 1. Image of a 14 day root.
doi:10.1371/journal.pone.0108255.g001
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Results

Root Traits Captured by ARIA
Using ARIA, 27 different root traits were extracted from each

scanned image of seedling roots (Table 1). Some traits are more

suitable for 3D root scan image analysis such as Depth, Width, and

the Width/Depth ratio. All simple statistics as well as heritability

estimates for all root traits are found in Table S2. This program is

free software and can be accessed using the following link: http://

www3.me.iastate.edu/bglab/pages/software.html ARIA captures

more traits than existing programs such as WinRhizo Pro 9.0,

which lists eight different traits that can be obtained from a single

root scanned image when buying a standard package. ARIA is

fully automated with the ability to capture up to three separate

seedling roots from a single image, and to conduct all analyses with

limited user interference. Each image was a high resolution scan

(around 440066200 pixels) of three seedling roots placed side-by-

side (Figure 1). Within each image the bounding boxes were

automatically identified for each root. Each of the three roots is

then individually analyzed and its 27 traits extracted. Data is then

exported into an Excel file. This process takes approximately 20

seconds on a standard desktop (2.8 GHz machine). We used a

total of 1059 images, each containing up to three roots per image.

ARIA ran autonomously and extracted traits within 12 hours,

allowing for fast turnaround of phenotypic data. Thus, trait

capture is very fast and efficient when analyzing multiple roots of

large experiments.

Seedling Trait Correlations
Pearson correlations were calculated using SAS 9.3 for all 27

seedling root traits compared to one another. Correlations

between traits (Table S1) ranged from very close (r = 0.998)

between traits such as secondary root length and PRL to no

significant correlations (r =20.061) for TRL and BSH. BSH did

not correlate closely with other root traits with the highest r2 value

of 0.166. Similarly, SRL did not show close correlations with other

seedling root traits, with its closest correlation of 0.5 with TSA.

Conversely, it was found that seedling root trait DEP had close

correlations with various other root traits, especially with PRL

(r = 0.95). A principle component analysis (PCA) was conducted to

visualize trait relationships. The first two components explain

45.9% of the variation (with PCA 1 explaining 35.5%). Based on

the first two principle components (Figure 2), there are four trait

clusters. These clusters are comprised of (1) CMT, WDR, CPT, (2)

MNR, and MED, (3) SEL, TRL, NWA, and (4) SCS, WID, PER,

CVA, and TSA. All of these traits had close correlations within

clusters while traits outside of clusters were not closely correlated

(Table S1).

Table 1. Traits captured by ARIA.

Trait Name Symbol Trait Description

Total Root Length TRL Cumulative length of all the roots in centimeters

Primary Root Length PRL Length of the Primary root in centimeters

Secondary Root Length SEL Cumulative length of all secondary roots in centimeters

Center of Mass COM Center of gravity of the root.

Center of Point COP Absolute center of the root regardless of root length.

Center of Mass (Top) CMT Center of gravity of the top 1/3 of the root (Top).

Center of Mass (Mid) CMM Center of gravity of the middle 1/3 root (Middle).

Center of Mass (Bottom) CMB Center of gravity of the bottom 1/3 root (Bottom).

Center of Point (Top) CPT Absolute center of the root regardless of root length (Top).

Center of Point (Mid) CPM Absolute center of the root regardless of root length (Middle).

Center of Point (Bottom) CPB Absolute center of the root regardless of root length (Bottom).

Maximum Number of Roots MNR The 84th percentile value of the sum of every row.

Perimeter PER Total number of network pixels connected to a background pixel.

Depth DEP The maximum vertical distance reached by the root system.

Width WID The maximum horizontal width of the whole RSA.

Width/Depth ratio WDR The ratio of the maximum width to depth.

Median MED The median number of roots at all Y-location.

Total Number of Roots TNR Total number of roots.

Convex Area CVA The area of the convex hull that encloses the entire root image

Network Area NWA The number of pixels that are connected in the skeletonized image

Solidity SOL The fraction equal to the network area divided by the convex area

Bushiness BSH The ratio of the maximum to the median number of roots.

Length Distribution LED The ratio of TRL in the upper one-third of the root to the TRL.

Diameter DIA Diameter of the primary root.

Volume VOL Volume of the primary root

Surface Area SUA Surface area of the primary root.

SRL SRL Total root length divided by root system volume

doi:10.1371/journal.pone.0108255.t001
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Validation of Measurements
In order to validate measurements made by ARIA with those

obtained by WinRhizo Pro 9.0 (Regent Instruments, Quebec,

Canada), the same images of hydroponically grown maize seedling

roots were analyzed by both programs and data compared. Total
Root Length was found to be closely correlated with r = 0.97

(P = 0.0001) when analyzing data within the Ames Panel. For the

ASI panel, total root length was correlated between the two

programs at r = 0.92 (P= 0.0001), and root surface area was

closely correlated at r = 0.90 (P= 0.0001). Broad sense heritabil-

ities (H2) were calculated for both association mapping populations

(Table 2). Heritability estimates were generally higher for mea-

surements extracted using ARIA at H2=0.42 compared to

H2=0.41 for total root length measured in the Ames Panel, as

well as root surface area in the ASI panel with H2=0.54 using

ARIA compared to H2=0.50 using Whin Rhizo Pro 9.0.

Genome Wide Association Study Using ARIA vs WinRhizo
A GWAS experiment was conducted in order to show the utility

of this new program and its ability to analyze many root images in

a high-throughput manner compared to WinRhizo, the current

platform used. Further GWAS analyses will be documented in a

future publication. TRL was extracted from a single scan of three

roots from each inbred line. This process was repeated three times,

once for each replication. Analysis of TRL measured with both

ARIA and WinRhizo combined with genotypic information on

135,311 single nucleotide polymorphism markers across the entire

genome identified significant associations at p,5.361027. Mark-

ers found to be significant were located on chromosomes 1, 2, and

4 for ARIA (Figure 3) while WinRhizo analysis resulted in

additional SNPs on chromosomes 3, 5, 6, and 8 (Figure 4). Both

programs identified significant markers in similar regions of the

genome specifically on chromosome 2 and chromosome 4.

Moreover, significant SNPs on Chromosome 4 were identical for

both programs.

Discussion

Quality of ARIA Trait Estimates, Limitations and Prospects
ARIA is a reliable program that results in accurate measure-

ments comparable to established programs such as WinRhizo Pro

9.0. The close correlation and higher heritability estimates of TRL

and TSA are encouraging for using ARIA to obtain accurate

measurements in future quantitative studies. A limitation for using

ARIA in the current study was that only three roots were analyzed

at a time. ARIA can be extended to allow a larger number of roots

to be analyzed within a single image, depending on the scanning

or image capture device. Since ARIA can automatically crop

pictures for the user, keeping roots separate is important for

accurate measurements, as crossed over roots could cause uneven

cropping or erroneous paths. When comparing the amount of time

needed to extract root measurements with ARIA and extracting

measurements with WinRhizo, ARIA simplifies the process and

cuts the time taken measurements to less than half the amount of

time needed for WhinRhizo. This is in part due to the automatic

cropping system as well as exporting measurement values into an

Excel spreadsheet all at once within 20 seconds per seedling root.

In WhinRhizo, each root has to be cropped manually; data are

extracted into a.txt file, which needs to be edited for data analysis.

Exporting data directly into a user friendly format ARIA by-passes

all of these intermediate steps. The current version of ARIA is

automated for roots exhibiting a distinguishable primary root.

However, ARIA should work equally well with multiple equal

order roots with minor changes due to the graph based

formulation: ARIA finds all lengths of roots as distances from

kernel to root tips and subsequently picks the single longest root

(this can be modified to account for multiple equal order roots, for

example in rice). A potential limitation is when a secondary root

curl ends exactly at the primary root. This creates circular loops in

the graph that impair further analysis. However, none of the 3000

images analyzed exhibited this issue. A way to resolve this minor

issue is to consider a quasi-temporal approach to ‘growing’ the

Figure 2. PCA plot of all ARIA trait Pearson correlations,
clusters of traits have been marked showing which traits are
closest related.
doi:10.1371/journal.pone.0108255.g002

Table 2. Comparison of repeatability estimates for both WhinRhizo Pro 9.0 and ARIA.

Analyzing tool Trait Heritability (H2)

WinRhizo Pro 2009 Total Root Length (Ames Panel) .41

ARIA Total Root Length (Ames Panel) .42

WinRhizo Pro 2009 Total Root Length (ASI Panel) .42

ARIA Total Root Length (ASI Panel) .42

WinRhizo Pro 2009 Root Surface area (ASI Panel) .50

ARIA Root Surface area (ASI Panel) .54

doi:10.1371/journal.pone.0108255.t002
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graph vertex-by-vertex that will distinguish these overlaps (work in

progress).

The graph based formulation makes this framework easily

extendable to multiple purposes [25,26]. This same framework of

trait extraction has been applied in other disciplines including

chemistry [25] and materials science [26]. Examples of extensions

include 3D phenotyping where magnetic resonance imaging

(MRI), X-ray or optical tomography data can be curated and

traits extracted. Furthermore, ARIA can work with a variety of

data formats including photographs, scanned images, microscopy

images as well as X-ray based reconstructions.

Significance of ARIA
While current root analysis programs are available to make

measurements of root traits, none currently offers the flexibility

and functionality as ARIA. When comparing WinRhizo 9.0 to

ARIA, the larger numbers of traits that can be captured, ability to

capture 3D image measurements, and shorter time spent to extract

trait measurements from images, are key advantages of. ARIA,

automatically crops root images, after a mouse click defines the

starting point for measurements. Furthermore, ARIA has the

ability to mark a batch of images enabling batch analysis. In

ARIA, measurements are exported into an Excel spreadsheet,

while WinRhizo gives a text file that must be converted. ARIA’s
ability to do this automatically makes this program high-

throughput and decreases chances of human error. Another key

advantage to this program is the fact that measurement

capabilities can easily be added, as additional key architectural

attributes of roots are determined.

Using ARIA, mapping studies for root traits can be implement-

ed on a larger scale due to the reduced time needed for

phenotyping. This software system aids plant scientists by relieving

the phenotyping bottleneck for quantitative traits such as root

architectural traits by adding to existing technologies in phenomics

[27]. Not only is this program fast, its ability to analyze both 2D

and 3D images also offers a unique opportunity to look at the same

traits, with the same analysis program, but from two different

perspectives. Previous programs such as RootReader2D [28] and

Figure 3. Manhattan plot displaying all 10 maize chromosomes, showing SNP markers significantly associated with trait Total Root
Length measured with ARIA. Significant SNPs are located on chromosomes 1, 2, and 4.
doi:10.1371/journal.pone.0108255.g003

Figure 4. Manhattan plot displaying all 10 maize chromosomes, showing SNP markers significantly associated with trait Total Root
Length measured with WinRhizo, significant SNPs are consistent with ARIA, with additional SNPs on chromosomes 3, 5, 6, and 8.
doi:10.1371/journal.pone.0108255.g004
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RootReader3D [29] offer extensive trait collection, but are

hindered by the fact that each program is restricted to analyze

at either 2D or 3D. ARIA in comparison is able to not only

analyze 2D flat plane images such as those presented here, but also

3D images of roots. To show this feature, a simple 3D image of a

root was analyzed using ARIA (Figure 5). Here, we demonstrate

that skeletonization and outlining of the primary root can be

completed as in 2D. The actual measurements of select traits have

also been included in pixels (Figure 5). Based on multiple points of

view of the same root system, ARIA extracts 27 root traits in a

single root analysis. Figure 6 shows how the mathematical

foundation (graph based analysis) coupled with the open-source

framework can be trivially extended to other trait extraction.

A similar program described by Pascuzzi [17] was used to

analyze rice varieties within a gel medium. This program has the

ability to capture many of the same traits as ARIA. The major

advantage of ARIA is that it can directly analyze those same gel

medium images in both 2D and 3D formats. This adds to the

flexibility of this free access program. Existing phenotyping systems

can utilize this analysis tool without changing their growth

procedures, whereas the other program is not as dimensionally

flexible. No changes need to be made in the GUI or procedures to

analyze images. This allows for an expanded number of

environmental conditions, whether controlled by humans or

nature, in which root architecture could be studied and for

connections between how root develop in a hydroponic environ-

ment compared to soil or other growth medium.

Exploring Roots as a Model for Selection
Large scale mapping studies such as quantitative trait locus

(QTL) mapping and GWAS require large mapping populations

that must be phenotyped in an accurate manner. Genomic

selection (GS) [30] is a method in which a training population is

used to collect phenotype information and coupled with extensive

genetic information. Then, a model is developed to make

predictions for the performance of traits of interest, solely based

on genetic information. This requires massive amounts of

phenotypic information that are highly accurate, especially for

plastic traits such as root architecture [31]. Currently, root

architecture is not used for selection, because of the resources

needed for extensive phenotyping and the quantitative mode of

inheritance of root traits [9]. New phenotyping software such as

ARIA may facilitate to include root architecture in selection

schemes. Comparative GWAS for TRL obtained with both

Figure 5. Demonstration of a 3D image analysis. A) Skeletonization of a 3D root image using ARIA. B) After skeletonization process is complete,
the primary root is found and highlighted in black for accurate measurement of PRL measured at 1479 pixels, TRL measured at 582 pixels, and SEL
with a measurement of 897 pixels. Pixel count can be converted to standard measurement notation with the inclusion of a baseline ruler to count
pixels per cm or inch.
doi:10.1371/journal.pone.0108255.g005

Figure 6. Analysis of a diseased maple leaf, ARIA’s flexible mainframe will allow multiple uses of the program beyond root
phenotyping.
doi:10.1371/journal.pone.0108255.g006
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WinRhizo Pro 9.0 and ARIA identified similar or identical regions

of the genome associated with this trait. Associations found in only

one program may be due to low power of detecting a

polymorphism with small genetic effect.

The major goal was to develop an easy to use image software

analysis tool for measuring root traits from simple scans or

photographs. A free to use software platform with ability to

investigate both 2D and 3D root architectural characteristics for

plants has been developed to facilitate measuring multiple root

traits in a high-throughput, accurate manner. We compared this

new program to existing programs. ARIA showed close correla-

tions to traits measured with established software, supporting

accurate measurements. The 27 root traits measured give an

example for the utility of this program and offer an extensive

amount of traits to be studied for large scale phenotypic analysis of

roots or mapping studies looking at the genetic control of root

architecture. Future studies using this program include root

characterization for particular maize or other plant species of

interest as well as phenotyping for quantitative trait studies such as

GWAS, QTL mapping, and GS.

Materials and Methods

ARIA (Automatic Root Image Analysis)
ARIA is custom software written in the programming frame-

work, MATLAB (Natick, Massachusetts, United States). ARIA has

a user friendly GUI interface to enable easy and rapid data

extraction. The operational concept of the software is to convert

the root image (after standard image pre-processing) into a graph.

The software framework can read in most standard image formats.

Each image is loaded (Figure 1), and after a sequence of pre-

processing steps, converted into a graph. A graph is a mathemat-

ical construct consisting of a set of vertices that are connected by a

set of edges. This is done by labeling each pixel of the root image

into a vertex, and linking nearest neighbor pixels with edges. The

key steps of the software are:

a) Thresholding. The background is first identified (using

morphological operations in Matlab) and renormalized to black.

This effectively eliminates most of the background signal. Then

the image threshold is calculated using Otsu’s method. The grey

scale image is converted into a black and white image. This is done

by comparing the intensity of each pixel with a threshold value.

The pixel is marked as black (or white), if it’s grey scale value is

smaller (or larger) than the threshold (Figure 7).

b) Connected components. Since the root is one large

connected system, everything else that is not connected to the root

can be removed from the image. This idea is encoded in the graph

concept of connected components, which enumerates all the

distinct connected components in the image. The largest

connected component is the root, all the other connect compo-

nents are noise or other foreign artifacts. Note that if the image

resolves finer root hairs (which our imaging process does not do)

these will still be part of the largest connected component.

c) Skeletonization. A ‘wire-frame’ skeleton of the binary

image is constructed by thinning (or eroding). Skeletonization is a

fundamental tool with many applications in image processing and

visualization. Here, skeletonization is essential to identify and

distinguish between the primary and secondary roots (Figure 7).

d) Primary and secondary root identification. The

primary root is identified as the graph path that has the longest

path length (Figure 8). This is accomplished by Dijkstra’s

algorithm to estimate shortest paths between two points of the

graph [32]. Dijkstra’s algorithm is used to compute the shortest

paths from each free end of the root to every other free end. The

longest ‘‘shortest path’’ is identified as the primary root. Secondary

roots are identified easily by subtracting the primary root from the

original image and enumerating the remaining distinct connected

components.

e) Graph querying and post processing. The graph is

queried to construct several traits starting from simple traits like

total root length, to more complex measures like bushiness. All

data are exported into an Excel sheet for ease of analysis and use.

This will allow one to place a series of images for analysis at a time

and export it to Excel. The data are also displayed on the GUI. All

traits are analyzed automatically and can be viewed when clicking

display results (Figure 9).

Plant materials. The first association mapping population or

‘‘Ames panel’’ is comprised of 384 inbred lines obtained from the

USDA-ARS North Central Regional Plant Introduction Station

(NCRPIS) in Ames, Iowa. All lines used in this study are a subset

of a larger collection of lines called the Ames panel [33], consisting

of 2815 maize inbred lines conserved at USDA-ARS NCRPIS.

The 384 lines were selected based on maturity in view of future

Figure 7. Thresholding and skeletonization stages.
doi:10.1371/journal.pone.0108255.g007

Figure 8. Automated identification of primary and secondary
roots.
doi:10.1371/journal.pone.0108255.g008

Analysis of Maize Seedling Roots with Analysis Tool ARIA

PLOS ONE | www.plosone.org 7 September 2014 | Volume 9 | Issue 9 | e108255



field trials in central Iowa. The second panel of 74 maize inbred

lines called ‘‘ASI panel’’ includes ex-PVPs (Plant Variety

Protection) and Germplasm enhancement of Maize (GEM) inbred

lines [24].

Root Phenotyping
Cigar Roll Growth Conditions. A paper roll assay de-

scribed by [24] was used for germination and growth of maize

seedlings. Seedlings were grown in 2 L glass beakers filled with

1.4 L of sterilized water. Seedlings were placed in a growth

chamber for 14 days at 16/8 hrs light/darkness (25/22uC). Light

intensity was 200 mmol photons m22s21, and a relative humidity

maintained at 65%. Each paper roll with four seedlings was

considered as experimental unit. After 14 days seedlings were

removed from the growth chamber and phenotypic traits

measured. If not all traits were measured the same day, plants

were preserved in 30% ethanol to prevent aging of roots.

Image Acquisition. Seedling roots were imaged using a high

resolution scanner. Three separate seedling roots were imaged at a

time using an EPSON Expression 10000 XL scanner system

(Copyright � 2000–2014 Epson America, Inc).

Phenotype Data Analysis
Experimental Design. Ames panel lines were grown in three

experiments starting June 12, 2012, July 3, 2012, and October 5,

2012. Each experiment was grown in the same growth chamber

and at the same growing conditions, as described above. Lines

were grown in a completely randomized design (CRD) and trait

data were collected per experimental unit: three seedlings out of

four within each seed roll were sampled, to eliminate possible

outliers within lines, and means taken. The ASI panel of 74 maize

inbred lines were grown under the same conditions and replicated

twice under one experiment. Analysis of variance of root traits was

performed, the additive model for analysis of variance was:

yij~mzRizGjzEij

where yij represents the observation from the ijth experimental

unit, m is the overall mean, Ri is the ith experiment and Gj is the jth
genotype. The interaction between the fixed effects Gj and the

random effect experiment is confounded with the error Eij. The

statistics software package SAS 9.3 (Copyright � 2014 SAS

Institute Inc.) was used to obtain ANOVA tables, expected mean

squares, and least square means for association analyses. Function

PROC GLM was implemented and type 3 sums of squares were

used to account for missing data. Genotypic (sg
2), and phenotypic

(sp
2) variances as well as broad sense heritability (H2) were all

calculated on an entry mean basis. Heritability on an experimental

unit basis was calculated as follows:

Figure 9. Screen capture of the ARIA framework. The picture on the right is the root image. The plot on the top left is automated identification
of primary and secondary roots. The graph on the bottom left represents detailed analysis of root architecture, specifically a histogram of secondary
roots across each 10% of the primary root.
doi:10.1371/journal.pone.0108255.g009
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Function PROC GLM was implemented. Pearson correlations

were calculated using the SAS function CORR to determine the

relationships between seedling traits.

Marker Data
Genotyping-by-sequencing (GBS) [34] was used to genotype the

association mapping population with 681,257 single nucleotide

polymorphism (SNP) markers across the maize genome. Imputa-

tion as described by [33] was employed. In an effort to reduce the

number of non-informative markers, all monomorphic SNP

markers and those with more than 20% missing data were

omitted. SNP markers with a minor allele frequency less than 5%

were removed, leaving 135,311 SNP markers spread across all 10

chromosomes of the maize genome to calculate population

structure, kinship, and to perform GWAS.

Association Analyses
Population structure was estimated from a reduced number of

unimputed SNPs (1,665 SNP markers) using program Structure

2.3.4 [35]. Parameter settings for estimating membership of

coefficients of coancestry for lines are a burn-in length of 50,000

with 50,000 iterations for each cluster (K) from 1–15, with each K

being run five times. We applied an admixture model with

independent allele frequencies. To pick the most probable K

value, we used an ad hoc (DK) statistic based on the ordering rate

of change of P(X|K) [36]. Software program TASSEL 4.0 [37]

was used to calculate LD as well as Loiselle kinship coefficients

between lines based on 135,311 SNP markers. Population

structure (Q matrix) was used in association analyses to decrease

the amount of type 1 errors [38]. TASSEL 4.0 was used to

conduct genome wide association analyses (GWAS) using a

General Linear Model (GLM) and population structure as a fixed

factor with model y =Xb+U, where y are the values measured, X

is the marker value, b is a matrix of parameters to be estimated,

and U uses the Q values as fixed factors. To account for multiple

testing during GWAS, statistical package simpleM was imple-

mented in R 3.0 [39]. Based on a a level of P= 0.05, the multiple

testing threshold level was set to 5.3610–7 with the equation a/n,

where n equals the effective number of independent tests. Only the

Ames panel was analyzed, as genomic marker data were not

available for the ASI panel.

Supporting Information

Table S1 Trait correlations between all 28 traits extracted using

ARIA. Non-significant correlations denoted with ‘*’.

(DOCX)

Table S2 Simple statistics for all traits collected by ARIA.
(DOCX)
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