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Abstract

The function of the majority of genes in the mouse and human genomes remains unknown. The 

mouse ES cell knockout resource provides a basis for characterisation of relationships between 

gene and phenotype. The EUMODIC consortium developed and validated robust methodologies 

for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated 

platforms. We developed novel statistical methods for pipeline design and data analysis aimed at 

detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant 

alleles, representing 320 unique genes, of which half had no prior functional annotation. We 

captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 

65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype 

annotation according to zygosity. Novel phenotypes were uncovered for many genes with 

unknown function providing a powerful basis for hypothesis generation and further investigation 

in diverse systems.

Introduction

Phenotypic annotations of knockout mutants have been generated for about a third of the 

genes in the mouse genome1. However, the screening for phenotype is often dependent upon 

the expertise and interests of the investigator and in only a few cases has a broad-based 

assessment of phenotype been undertaken that encompasses developmental, biochemical, 

physiological, and organ systems2-4. Assessing and cataloguing pleiotropy5 will be critical if 

we are to begin to understand the contribution of each gene to metabolic pathways, 

physiological and organ systems and disease states, and interpret those contributions to 

health and disease. Importantly, our understanding of the role of loci identified in human 

genetics studies will be underpinned by phenotypic analyses in the mouse, which will 

inform further studies of genetic and physiological systems in humans. Thus, systematic 

efforts to undertake broad-based phenotyping of mouse mutants and inbred strains6,7 will be 

of great value to understand the genetic basis for phenotype and disease states.
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It is recognized that any large-scale analysis of mammalian gene function by phenotyping of 

mouse mutants will require a number of important advances in phenotyping approaches, the 

scientific infrastructure to deliver large-scale robust datasets, and the development of data 

acquisition, analysis, and display tools2,3,8. The delivery of a comprehensive functional 

annotation of mouse genes is beyond the infrastructure and capacity of a single centre, and a 

multi-centric approach will be required. It is therefore vital to develop a phenotyping 

pipeline that has been validated across multiple-centres and is robust to changes in time and 

place. The EUMORPHIA programme reported the development of a set of robust 

phenotyping tests9 that was validated across our consortium and has subsequently been used 

in a variety of phenotyping projects. The EMPReSS database10 catalogues the standard 

operating procedures (SOPs) that were developed, including operational details and the 

parameters measured. More recently, a significant single centre effort to analyse several 

hundred knockout lines through a phenotyping pipeline has illuminated the pleiotropy that 

can be revealed and the opportunities to uncover novel gene function7.

The EMPReSS SOPs are the foundation for future large-scale phenotyping efforts, and the 

EUMODIC consortium have used a subset of these procedures to undertake a multi-centre, 

broad-based phenotyping effort to characterize the phenotypes of 449 mouse mutant alleles. 

We report the application of statistical approaches to the development of experimental 

design that maximizes the power to detect abnormal phenotypes. We apply novel Bayesian 

statistical methodologies for the analysis of the phenotype data acquired, with the aim of 

controlling the false discovery rate (FDR) and providing robust abnormal phenotype data at 

high confidence. In summary, we have developed both experimental and statistical 

approaches for high-throughput, broad-based phenotyping and report here our first multi-

centre effort to catalogue and analyse phenotypes for 320 mouse genes. These approaches 

reveal extensive pleiotropy, along with a high discovery rate of abnormal phenotypes for 

genes with no prior annotation. Moreover, for a number of lines we were able to compare 

phenotype annotations for homozygotes and heterozygotes, revealing significant differences 

in phenotype annotation according to zygosity.

Results

The phenotyping pipeline

We have employed the EMPReSSslim pipeline for high-throughput phenotyping analysis, 

which was developed under the EUMORPHIA programme9 and incorporates a standardised 

and validated set of tests underpinned by SOPs10. EMPReSSslim (Supplementary Figure 1) 

comprises two pipelines each incorporating different tests with a separate cohort of mice 

analysed in each pipeline. EMPReSSslim encompasses 20 phenotyping tests, capturing 413 

parameters. The phenotyping tests chosen cover a variety of disease and biological systems 

including metabolic, cardiovascular, bone, neurological, behavioural, sensory, 

haematological and clinical chemistry.

A statistical power analysis was performed to quantify the mutant-genotype standardized 

effect size, d, that would be detectable under a variety of experimental workflows and 

analysis methods, where  is the absolute difference between 
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mutant and baseline means scaled in units of the phenotypic standard deviation; calculations 

were based on attaining 80% power under a frequentist linear model with correlated 

observations (resulting from day and litter effects) at a significance level of 10−7 estimated 

to control the FDR at 5% (Figure 1a, Supplementary Figure 2, Supplementary Figure 3 and 

Supplementary Note). This analysis demonstrated that considerable power is to be gained, 

first by including, as was the practice in EUMODIC, the entire set of baseline data (control 

C57BL/6N wild type animals) in the analysis, and second by phenotyping baseline animals 

on the same days as mutants, which was achieved for approximately 71% of the data. Given 

these two conditions are met, there is little difference in detectable effect size between 

phenotyping mutants on a single day (the case for 32% of lines) or across multiple days 

(68%).

In EUMODIC we utilized a cohort sample size of 14, consisting of 7 males and 7 females. 

Under the most powerful design-analysis combination in Figure 1a, increasing the sample 

size from 14 to 20 animals would decrease detectable d from 1.64 to 1.39 (a 15% 

improvement), whilst decreasing the sample size from 14 to 8 would increase d from 1.64 to 

2.14 (a 31% increase) illustrating that only a relatively small decrease in detectable effect 

size would be attained by increasing the sample size above 14. In establishing a minimum 

target number of baseline animals, we propose at least 50 days with animals from two or 

more litters represented on each day since this provided relatively precise estimation of 

variance components in the multilevel model (Supplementary Figure 3). In power 

calculations, a reduction in the number of baseline days from 100 to 50 only increased the 

estimated detectable d from 1.64 to 1.68 (a 3% increase).

Generation of mouse mutants and assessment of viability and fertility

Embryonic stem (ES) cell lines from the EUCOMM resource were injected to generate 

chimaeras11, and following the recovery of germ-line transmitting progeny, for the majority 

of lines heterozygotes were intercrossed to produce homozygous mutants. Of the lines 

analysed (303), 187 heterozygotes were intercrossed and homozygous viability assessed. 

Where we failed to recover homozygotes from heterozygote intercrosses in sufficient 

numbers we classified the mutation as either embryonic lethal (no homozygotes recovered 

from 28 progeny) or subviable (≤13% of 28 progeny). We found that in total 65 lines 

(34.8%) of homozygous mutants were embryonic lethal, while 22 lines were subviable 

(11.8%). Four lines (2.1%) showed a reduced lifespan (defined as death after weaning and 

before normal lifespan). Where homozygotes were embryonic lethal or subviable we 

analysed heterozygotes through EMPReSSslim. For many of the viable homozygote lines 

we also assessed fertility. Of the 153 lines investigated we found that 2.6% (4/153) showed 

reduced fertility, 1 of which was in both males and females and 1 in females and 2 in males. 

To test the applicability of new methods we also analysed a number of additional mutant 

lines, including N-ethyl-N-nitrosourea (ENU) mutations and other targeted mutations and 

gene traps. In many cases these were analysed as heterozygotes and the appropriate 

background strain was utilised as a wild-type control (see Methods).
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Phenotype data acquisition and analysis

Data from mutants and controls analysed through EMPReSSslim were captured in the 

EuroPhenome database12. In addition, the data has been incorporated into the IMPC 

(International Mouse Phenotyping Consortium) portal13. We have developed and 

implemented statistical models incorporating a broad-range of characteristics common to 

high-throughput mouse phenotyping data, such as non-Gaussian response distributions, 

complex correlation structure, confounding variables, systematic drift in measurements over 

time, outliers and other data anomalies (see Methods and Supplementary Note).

Phenotyping variance

The potential for differences in phenotyping variance across centres on C57BL/6N control 

animals was explored by estimating variance components underlying each transformed 

quantitative parameter (Supplementary Figure 1). The total phenotyping variance varied 

considerably across centres at some parameters, but this variation can only be viewed as a 

potential indication of more or less precise experimental measurement, because of 

differences in equipment, and hence in measurement scale, across centres. In order to 

examine scale-free measures of variation, we estimated the proportion of phenotyping 

variance attributable to day, litter, and residual effects, which had averages across all 

parameters of 18%, 12%, and 69% respectively. Of the three variance proportions, litter and 

residual are substantially comprised of biological variation between litters or between 

animals. In contrast the day variance proportion is mainly driven by unmodelled 

experimental variation, and can therefore indicate where experimental procedures could 

potentially be improved. The day variance proportion was on occasion systematically higher 

in a particular centre, e.g. some calorimetry parameters at ICS, some open-field parameters 

at Harwell, and some acoustic-startle parameters at HMGU, with these typically reflecting a 

day’s worth of outlying baseline data. For some procedures the day variance proportion was 

generally smaller at some centres compared to others, potentially reflecting more consistent 

experimental protocol at those centres. Reflecting the inter-centre differences in variance 

observed, data analyses to identify statistically significant phenotypes were restricted to 

within-centre comparisons between controls and mutants.

Most importantly, EUMODIC analysed a large set of 22 common reference mutant lines 

across the multiple centres to examine the inter-centre reproducibility of phenotyping tests 

(Figure 3). For each line phenotyped at two or more centres, we compared estimates of the 

genotype effect across centres at each parameter both visually (Figure 3 and Supplementary 

Figure 4 and Supplementary Figure 5) and using meta-analytical measures of 

heterogeneity14. The lines were found to exhibit high levels of inter-centre phenotypic 

heterogeneity in approximately 9% of comparisons (using the threshold I2 > 0.75) and 

statistically significant heterogeneity in 7% of comparisons (Cochran’s Q test at FDR < 5%). 

There was estimated to be no heterogeneity in 62% of cases (I2 = 0), so, while there was 

considerable discordance in about 8% of comparisons, inter-centre consistency was 

observed in the majority of instances. As illustrated in Figure 3 and S4, relatively extreme 

phenotypic perturbations demonstrated by, for example, Mysm1 are reproducibly annotated 

across two or more centres, whereas a number of other genes’ effect sizes are weaker and 

less reproducibly detected across centres, consistent with there being reduced power to 
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detect smaller effects. Indeed, of 183 instances of a line being annotated in at least one of the 

(two or three) centres, 61 (33%) were annotated concordantly in more than one centre. 

However, when effect estimates were compared across pairs of centres for which a call was 

made in one centre but not the other, 158 out of 222 cases (71%; exact binomial one-tailed p 

= 1.2e-10) displayed genotype effect estimates in the same direction (Supplementary Figure 

5). Overall, the data from the reference lines highlight the concordance of the data between 

centres, while emphasising the possibility of false negative results.

Phenotype annotations from 449 mutant lines

To date, we have phenotyped 449 mouse mutant alleles and accumulated phenotype data on 

27,707 mice. In total, we generated 9,019,984 data points and ascribed 2,947 phenotype 

annotations to 320 genes. A global representation of the significant and non-significant 

phenotypes in Figure 4 enables us to visualise consistent trends in significant hits across 

centres. In addition, this global heatmap highlights a number of lines with multiple hits 

across tests (e.g. acoustic startle and open field) and within a single test (e.g. DEXA) as 

would be expected from a test measuring different aspects of the same phenotype. 

Moreover, it is apparent from the heatmaps that broad phenotypic effects are often, but not 

always, associated with a body-weight phenotype.

We identified 2,316 non-body-weight parameter annotations at an estimated annotation FDR 

of 2.2%. We found that 374 of the 449 mouse mutant alleles representing 320 genes (83%) 

showed at least one parameter annotation, at an estimated line FDR of 11%. Multiple testing 

across several hundred parameters within a line causes the line FDR (11%) to be greater 

than the annotation FDR (2.2%). 133 of 448 lines (30%) were found to have at least one 

body-weight parameter annotated, at an estimated line FDR of 5%. 65% of lines (290/449) 

had more than one phenotypic hit. Overall, pleiotropy is effectively revealed with the 

pipelines utilised.

We also analysed hit rates according to zygosity. The proportion of lines with at least one 

annotation was higher for homozygotes at 88% (219 out of 248 mutant lines tested) than for 

heterozygotes at 77% (151 of 197 tested), with this difference statistically significant (Chi-

square test p = 0.002) (Figure 1b). The mean number of annotations was 8.3 (SE = 0.8) for 

homozygotes, significantly higher than the 4.4 (SE = 0.5) for heterozygotes (negative-

binomial GLM, Wald test p = 6e-7). Nevertheless, the high hit rate for heterozygotes 

underscores the utility of phenotyping heterozygotes and adds to the catalogue of dosage-

sensitive genes.

Finally, we assessed the performance of each individual phenotyping test by computing the 

hit rate for each procedure (Supplementary Figure 6). First, as expected, the overall hit rates 

across tests showed considerable variation, ranging from clinical chemistry (33%) and body 

weight (29%) to hot plate (4%) and heart weight/tibia length (3%). The distribution of 

phenotype outputs is similarly reflected in the number of annotations per top level 

Mammalian Phenotype (MP) ontology term (Figure 1c). Second, there were significant 

differences in hit rates across centres at 13 of the 20 tests (Fisher’s exact test controlling 

FDR ≤ 5%), with the tendency for hit rates to be relatively high at MRC-Harwell and WTSI, 

and lower at ICS (Supplementary Figure 6). Variation in hit rates across centres is 
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unsurprising given that a subset of mutant lines, mainly non-EUCOMM, was selected on the 

basis of pre-existing phenotypic information in some centres. Phenotypically selected lines 

are more likely to have broad-effect phenotypes, particularly when pleiotropy is taken into 

account. The gene-choice effect is illustrated in Figure 4, where a relatively small number of 

lines, preferentially non-EUCOMM (labelled in red), contribute strongly to the sets of 

annotations at MRC- Harwell and WTSI, and to a lesser extent at HMGU. At ICS, however, 

where non-EUCOMM lines were selected at random with respect to phenotype, there is a 

lower annotation rate (Figure 4 and Supplementary Table 1). While we attribute differences 

mainly to the gene-choice effect, we investigated the alternative explanation that differences 

in phenotyping across centres could lead to variation in power and thus hit rate (Figure 2 and 

Supplementary Data Set). Differences in sample size, unmodelled variation in baseline 

animals, and heterogeneity in phenotyping variance (particularly the day variance 

proportion) explained hit rate variation at a few particular parameters, but the extent of these 

effects was minor relative to the global impact of gene choice.

Homozygote and heterozygote comparisons

For 43 of the mutant genes, we analysed both homozygotes and heterozygotes to compare 

phenotype outputs according to zygosity. The heterozygotes accumulated 101 parameter 

annotations compared to 410 for homozygotes. We found 53 annotations held in common 

between heterozygotes and homozygotes, which were confined to 11 of the 43 lines. 

Interestingly, we found that effect sizes when identified in both homozygotes and 

heterozygotes tended to be stronger in homozygotes (Supplementary Figure 7).

Phenotype Similarity to published datasets

We assessed phenotype similarity between the EUMODIC dataset and phenotypes observed 

with genes in the MGI database. We investigated the ability to classify EUMODIC-MGI 

gene pairs into matched or unmatched on the basis of phenotype similarity (Figure 5), and 

found phenotypes observed in EUMODIC to be significantly more similar to the MGI 

literature-curated phenotypes of alleles of the same gene than they are to alleles of different 

genes (p = 0.00048; see Methods).

Novel gene function identified

Aside from genes with existing phenotype annotations, we analysed a large class of genes 

with no prior annotations (see Methods). Around half of the genes analysed (179) had no 

prior annotations in the MGI curated database. We found that for 87.9% (152/179) of the 

genes in this class we were able to find significant phenotypes. This discovery rate is similar 

to the overall discovery rate for all mutants in the EMPReSSslim pipeline, demonstrating 

that the pipeline is efficient at uncovering phenotypes in mutants with phenotype-poor 

annotations as well as phenotype-rich annotations.

For the class of genes with no-prior annotations, we have undertaken an analysis to identify 

if these novel mouse models can provide knowledge about the functional role of human 

GWAS-discovered loci, rare disease genes, and genes associated with human genetic 

disorders in OMIM15. Of the 152 genes with significant phenotypes identified by 

EUMODIC, 21 were orthologs for rare disease genes in Orphanet16, 20 for genetic disorders 
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in OMIM, and 36 associated with GWAS loci (see Methods). We investigated if the 

phenotype data from the mouse demonstrated concordance with the human disease data (see 

Methods). Of the 42 unique human disease genes, 14 showed a correlation with the mouse 

(Supplementary Table 2) demonstrating that these novel mouse models recapitulate 

phenotypes which correlate with the human disease and in a number of cases add functional 

data to known human diseases. In addition this demonstrates that these mouse models are a 

valuable resource for studying the function of novel genes.

To further investigate the role of these novel and uncharacterised genes in disease, we 

examined three disease areas: 1) metabolism including diabetes/obesity; 2) bone and 

skeleton; and 3) neurological and behavioural disorders to identify if the significant 

phenotype hits in mouse can either singly or in combination indicate a potential disease 

model. In each case, we identified combinations of tests, where a phenotype hit would be 

indicative of the relevant disease correlate. Subsequently, we analysed our set of genes with 

no prior annotations for phenotype hits in each test class and plotted each gene with one or 

more hits on a Venn diagram (see Figure 6). Our expectation is that genes with multiple hits 

represent interesting candidates for further exploration and validation. For each disease area, 

we have identified a large number of interesting candidate disease genes with a number that 

have impacts upon diverse disease areas.

69 genes displayed highly significant effects on metabolic parameters, identifying a number 

of novel metabolic loci. For example, Elmod1, a gene with no existing functional 

information showed reduced fasted blood glucose concentration and area under the glucose 

response curve, reduced concentrations of various blood lipids and reduced body weight.

Classification of genes according to bone and skeletal parameters revealed 39 genes, 

including the solute carrier Scl38a10 that has already been reported as an interesting 

candidate bone disease gene17. Our analysis of the EUMODIC dataset reveals Scl38a10 as a 

significant hit in the Neurological/Behavioural domain, providing a typical example of the 

pleiotropy that is observed by utilising the phenotyping pipeline. Of the 45 genes in the 

Neurological/Behavioural domain, we identified many candidate disease genes. 

Interestingly, Elmod1 showed increased activity (as measured in open field and SHIRPA), a 

lack of fluidity in gait, and increased frequency of trunk curling, reduced grip strength, 

reduced acoustic startle in one amplitude, and reduced pre-pulse inhibition across multiple 

amplitudes.

Discussion

We have demonstrated the feasibility of multi-centre, large-scale, broad-based phenotyping 

of mutant mouse lines for the generation of rich and novel phenotypic information. There 

were a number of novel experimental and statistical developments that were required in 

order to undertake a multi-centric approach to large-scale phenotyping of mouse mutants.

First, a multi-centre approach requires the use of robust, validated phenotyping tests and 

EUMODIC employed the EMPReSS procedures in a common phenotyping pipeline, 

EMPReSSslim. In using these procedures, we undertook a statistical power analysis of 

de Angelis et al. Page 7

Nat Genet. Author manuscript; available in PMC 2016 March 01.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



experimental design to determine the impact upon mutant-genotype effect size under a 

variety of experimental workflows and analysis methods. This underscored the utility of 

employing the entire control baseline set and the phenotyping of baseline animals on the 

same day as mutants. This analysis also indicated that reasonable power was provided by 

cohort sample sizes of 14, with only modest power enhancements if cohort size was 

increased. Nevertheless, increased power would potentially enhance inter-centre 

reproducibility (see below).

Second, we developed and implemented novel statistical models that addressed many of the 

features of large-scale, multivariate mouse phenotyping datasets, aiming to ensure the 

reproducibility of phenotype calls via a permutation-based control of the FDR. In carrying 

out this analysis, we examined the phenotyping variance attributable to day, litter, and 

residual effects. While litter and residual effects reflect the biological variation between 

litter and animals, the day variation reflects experimental variation and revealed higher or 

lower variance for some tests at some centres. These analyses allow us to consider unwanted 

variation underlying the reproducibility of phenotyping protocols and feed forward into test 

improvements in the future.

Third, we employed 22 reference lines to directly test inter-centre reproducibility. We found 

high levels of inter-centre phenotypic heterogeneity in only 9% of comparisons, whereas in 

contrast for 62% of parameters no heterogeneity was observed. This indicates the high level 

of concordance exhibited for phenotyping tests across centres.

The analysis of the EUMODIC dataset demonstrated a significant number of pleiotropic 

lines with 65% (290/449) having more than one phenotype hit. A large number of lines 

(30% at an FDR of 5%) had at least one body-weight parameter annotated, and it is 

noteworthy that there is strong association between non-body-weight annotations, and 

annotations to body-weight parameters (see Fig. 4). Thus body weight is a potential early 

marker for pleiotropic phenotypic effects.

Intriguingly, we found a high hit rate for heterozygotes (77%), though the hit rates for 

homozygotes were significantly higher than heterozygotes. Thus, analysis of heterozygotes 

further enriches the dataset, and provides information on dosage-sensitive loci and their 

phenotypic effects. In this regard, the comparisons of the 43 lines where both homozygotes 

and heterozygotes have been analysed revealed that, while a considerable number of 

annotations were shared, we unexpectedly found a number of annotations specific to 

heterozygotes. These data implies significant differences in pathway outcomes from the loss 

of a single versus two copies of each gene and these dosage-sensitive annotations will merit 

further investigation. Such studies will potentially have a bearing on our wider 

understanding of haploinsufficiency and its contribution to disease in the human 

population18.

The phenotype hit rates for genes without any prior annotation underline the value of the 

broad-based phenotyping and analysis methodologies that we developed. We extended the 

analysis of this class of genes, aiming to identify novel candidate disease genes. For three 

disease areas (metabolism; bone and skeleton; neurological and behaviour) we identified 
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parameter sets that would be indicative of the relevant disease correlate, and assigned genes 

with appropriate hits to different disease areas. We identified a large number of genes (94) 

with single or multiple hits across the parameter sets. Some genes were exclusive to an 

individual disease area, while others had hits in multiple disease areas reflecting the 

underlying pleiotropy that was revealed by the programme.

Importantly, we uncovered novel candidate disease genes that merited further investigation. 

One such gene, Elmod1, belongs to the large class of genes expressed in the brain for which 

there is little if any functional information (the so-called “ignorome” 19). Many of these 

genes are indistinguishable from well-studied genes in terms of network connectivity or 

other protein characteristics. Elmod1 has recently been shown to be involved in auditory 

function20, but no other functional attributes have been determined. However Elmod1 is 

associated with a strong cis-eQTL for brain expression, including regional brain expression. 

Moreover, variation in locomotor activity is known to map in the region of the Elmod1 locus 

on chromosome 9. Using the EUMODIC pipeline we have been able to demonstrate the 

function of Elmod1 in several behavioural traits. Importantly, we have also shown that the 

Elmod1 mutant displays a number of metabolic traits, further elaborating the functional 

characterisation of this largely unexplored locus. This analysis underscores the diversity of 

hypotheses that might be generated from the development of a genome-wide dataset.

In summary, the work described here demonstrates the utility of scaling phenotyping efforts 

from hundreds to thousands of mouse mutants as the international mouse genetics 

community embarks upon the comprehensive annotation of all the protein-coding genes in 

the mouse genome8. Most importantly, it provides fundamental insights into the 

experimental design and statistical analyses that will underpin large multi-centre 

programmes to gather and analyse robust phenotype data. As such, the work reported here 

paves the way towards a reference resource with a well-defined series of mutant alleles and 

a broad-based phenotyping dataset accessible to the scientific community for further in-

depth characterization.

Methods

Mouse production

Targeted ES cell clones obtained from the EUCOMM cell repository (EuMMCR) were 

injected into BALB/cAnN or C57BL/6J blastocysts for chimaera generation. The resultant 

chimaeras were mated to C57BL/6NTac mice and the progeny screened to confirm germline 

transmission. As part of the original targeting strategy the ES cell clones were derived from 

one of four different C57BL/6N parental cell lines, namely JM8.F6, JM8.N4, JM8A3.N1, 

and JM8A1.N3. The JM8A3.N1 and JM8A1.N3 cell lines had been subjected to targeted 

repair in order to correct the non-agouti allele 1.

Mice carrying targeted mutations were bred to C57BL/6NTac mice prior to the intercrossing 

of heterozygote carriers. Cohorts of at least 7 homozygote mice of each sex per pipeline 

were generated by the most effective breeding scheme dependent on the mutant line and the 

mice available. If no homozygotes were obtained from 28 or more offspring from 

heterozygous intercrosses, the line was deemed nonviable. Similarly, if less than 13% of 
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intercross pups were homozygous, the line was judged as being subviable. In both 

circumstances heterozygote mice were committed to the phenotyping pipelines. The fertility 

of both sexes of each line was also assessed during cohort generation. Mutant lines failing to 

produce any live pups when at least four homozygotes of either sex were mated with a non-

homozygote animal were assessed as sub-fertile. Phenotype cohorts were obtained from sub-

fertile lines by breeding heterozygotes of the affected sex.

Since both wild-type and mutant cohorts are analysed through the phenotyping pipeline, the 

randomization of allocation of animals to experimental groups is not relevant. Although 

randomization is not employed there is no preferential selection of stock, either mutant or 

wild-type, for phenotyping. Reflecting the high-throughput nature of the phenotyping 

pipeline, blinding of mutant lines during phenotyping was not employed. However, the 

effect of operator bias was a quality control step that was performed during data analysis.

The targeted alleles were validated by conventional PCR for the presence of the 3’-loxP site 

and by non-radioactive Southern blot with neo or lacZ probes for accuracy of homologous 

recombination events. Whenever sequences permitted, 2 different enzymes were employed 

for each arm. A number of other existing mutant lines, including ENU mutations, other 

targeted alleles, and gene traps were bred and analysed through the EMPReSSslim pipeline. 

In total, mice were bred from 449 lines for phenotyping, of which 334 were EUCOMM 

lines. The total numbers generated and analysed at each centre were: HMGU, 101; MRC 

Harwell, 141; WTSI, 72; ICS, 136. In addition, 13 lines were analysed through 

EMPReSSslim at TCP.

EUMODIC institutes who collect phenotyping data are guided by their own ethical review 

panels, licenses, and accrediting bodies that reflect the national legislation to which they 

operate. The details of their ethical review bodies and licenses are detailed below. All efforts 

were made to minimize suffering by considerate housing and husbandry. All phenotyping 

procedures were examined for potential refinements that were disseminated throughout the 

consortium. Animal welfare was assessed routinely for all mice involved.

Institute: GMC Helmholtz Zentrum München; Ethics committee: Regierung von 

Oberbayern; Approval Licence: 2532

Institute: MRC Harwell Ethics committee: Animal Welfare and Ethical review Board 

(AWERB); Approval Licence: PPL 30/2380, PPL 30/2890

Institute: WTSI Wellcome Trust Sanger Institute; Ethics committee: Animal Welfare and 

Ethical review Board (AWERB); Approval Licence: PPL 80/2076; PPL 80/2485

Institute: ICS Mouse Clinical Institute;Ethics Committee: Com’Eth. (CNREAn°17) for the 

Ministry of Research ; Approval licences: internal numbers 2012-009 & 2014-024

Data capture by EuroPhenome

The EMPReSS database 10 incorporates both SOPs, measured data parameters, and 

metadata from the EMPReSSlim pipelines. In addition, EMPReSS stores the mammalian 

phenotype ontology annotations for the majority of parameters i.e. the expected phenotype 
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that would be identified if the mutant is statistically different from the control. All of the 

data in EMPReSS has now been migrated to the newer international version of the database 

called IMPReSS, which holds all of the IMPC standardized phenotyping protocols. Further 

details on the implementation of the ARRIVE guidelines in EUMODIC and IMPC are 

described in Karp et.al.2. Data generated from EMPReSSlim by the four centres are stored in 

their local LIMS, backed by diverse database schemas running on different relational 

database management systems. The phenotyping data collected in each centre was guided by 

their own ethical review panels and licenses applicable to each countries regulation. The 

data is transferred to EuroPhenome in a common standardised format. To assist in data 

export and improve standardization and data consistency EuroPhenome provided a java 

library or data export. The informaticians at the centres use the library to represent the data 

to be exported as an object model. The library then performs the necessary validation against 

the European Mouse Phenotyping Resource for Standardized Screens (EMPReSS) database 

and the schema. If this is successful the data are output to XML, compressed and placed on a 

file transfer protocol (FTP) site.

Each centre’s FTP site is regularly checked by the EuroPhenome data capture system and 

any new files are uploaded. The data is again verified against the schema and EMPReSS, 

and further checked for consistency against existing data within EuroPhenome. The results 

of the upload and validation are provided to the sites in the form of XML log files and a web 

interface, the EuroPhenome Tracker. If validation is successful the data is loaded into the 

EuroPhenome database. Data can be removed from the database by placing the files in the 

delete directory of the FTP site. The same process is employed to capture and validate the 

data prior to removal. The informatics architecture that supported EUMODIC has now been 

enhanced to support the larger IMPC project.

Statistical Analysis

Bayesian linear and logistic multilevel regression models were applied to each transformed 

quantitative or dichotomized categorical phenotype at each centre, with all baseline data at a 

centre being included in the analysis. Sex, strain, litter, day, and other experimental 

metadata (such as the equipment used and certain details of the procedure, such as how 

blood samples were handled) were included as covariates, and a penalized spline was 

incorporated to account for systematic changes in the baseline mean over time. Day and 

litter effects were modelled hierarchically with variance components to allow for phenotypic 

correlation amongst groups of animals. The posterior evidence for a non-zero mutant 

genotype effect was summarised and used as a test statistic, and significance thresholds 

chosen via a permutation-based approach to control the false discovery rate at 5% for each 

test at each centre (see Supplementary Note). R code to generate the results is available on 

request.

Phenotype Similarity

We use the PhenomeNET3 system to compute the semantic similarity between phenotypes 

observed in EUMODIC, and phenotypes observed with alleles of the same genes in the MGI 

database. The data from the EUMODIC alleles was excluded from the MGI database for this 

analysis. To compare sets of phenotypes (either associated with a disease, or observed in a 

de Angelis et al. Page 11

Nat Genet. Author manuscript; available in PMC 2016 March 01.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



mouse model) in PhenomeNET, we use the set-based simGIC semantic similarity measure. 

simGIC is a Jaccard-index weighted with information content, and comparing sets closed 

against the super-class relation. To compute the phenotypic similarity between the 

phenotypes observed in EUMODIC and phenotypes observed with alleles of the same genes 

in the MGI database we search MGI for the same unique gene identifier as in the 

EUMODIC dataset excluding all data integrated into MGI from EUMODIC. We tested the 

null hypothesis that phenotypic similarity between EUMODIC and MGI lines was 

independent of whether the lines relate to the same or different genes. To do this, for each 

EUMODIC gene we ranked all MGI genes according to their phenotypic similarity to that 

gene, thereby yielding a rank (between 1 and 9821, i.e. the number of MGI genes) for each 

EUMODIC-MGI gene pair. We then performed a Wilcoxon rank-sum test comparing the 

distribution of ranks for matching EUMODIC-MGI gene pairs against the distribution for 

non-matching gene pairs.

Analysis of genes with no prior annotations

A subset of the genes with significant phenotype annotations were identified as having no 

prior annotation if they had no corresponding alleles in the MGI dataset with curated 

phenotype from the literature. While performing this analysis, the data from this project and 

the WTSI project have been incorporated into MGI, so these gene-allele combinations now 

show phenotypic annotations from these projects but remain without annotations from 

literature. Two methods were implemented to study this set of ‘novel’ genes.

The first analysis, identified orthologous human genes to the mouse genes in Ensembl v764. 

Three datasets (GWAS-central5, Orphanet, and OMIM) were then mined to search for 

human diseases associated to these genes6. All diseases with associations to these genes 

were extracted from Orphanet and OMIM. In order to limit our focus to robust statistical 

associations in GWAS-central, we extracted data on associations with p-values <10−5. In 

order to find phenotype correlations between our novel mouse phenotypes and human 

disease we adopted a phenotype-centric approach. For all the retrieved human datasets we 

mapped the phenotypic term to MESH terms using the NIH MeSH Browser7. In order to 

find equivalent mouse phenotypes we manually mapped the higher level MeSH term to the 

corresponding higher-level Mammalian Phenotype Ontology (MPO) term. Previous work 

has created hierarchical systems to integrate phenotype ontologies across species, but with 

this dataset we found this automated approach problematic to adopt a manual process.

Secondly, in collaboration with experts in the domain and literature, three groups of 

phenotypic annotations were selected as representative of the three disease areas. The novel 

genes were placed on the appropriate sections of the Venn diagram depending on the results 

of the annotation pipeline with respect to these parameters. In total 94 genes were included 

in the Venn diagrams.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

Steve Brown and colleagues report an analysis of 20 phenotyping tests, including 413 

data parameters, across 449 mutant mouse alleles. They identify widespread pleiotropy 

and assign putative functions to genes that lacked prior phenotypic annotation.
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Figure 1a. Effect size versus sample size
Detectable standardized effect size, d, as a function of sample size, under a variety of 

experimental workflows and analysis approaches (identified in legend). The two qualitative 

design choices under consideration were: whether mutant animals were phenotyped across 

multiple days with four animals per day, or all on a single day; and whether baseline animals 

were phenotyped on the same day(s) as mutants (i.e. whether the mutants were 

accompanied). Two analytical approaches were compared: analysis of all baseline data (all 

data); versus analysis restricted to baseline data from animals phenotyped on the same 
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day(s) as mutants (accompanying data only). Calculations were based on attaining 80% 

power while controlling the FDR at 5%. The variance components used in the power 

calculations were taken as the average estimates across all parameters and procedures: the 

variance proportion for day effect was 0.18, for the litter effect 0.12 and for the residual 

effect 0.69 (Supplementary Figure 2 shows similar plots for procedure-specific variance 

components).
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Figure 1b. Histogram of number of annotations per line
Histogram of number of annotations per line, with each bar split by colour into counts 

arising from homozygous and heterozygous lines.
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Figure 1c. Histogram of number of annotation in each top level MP term
Histogram of number of annotations within each top-level MP ontology term, with each bar 

split by colour into numbers arising from mutant lines with or without annotations in MGI.
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Figure 2. Phenotyping variance
Comparison of estimated variance components across centres. Posterior median (with error 

bars indicating 95% credible intervals) of total phenotypic SD (top panel), and proportions 

of variance (bottom three panels), are shown for each quantitative parameter, labelled top, 

within each test, labelled bottom. For visual comparison the total phenotypic SDs at each 

test were scaled multiplicatively to a mean of 1.
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Figure 3. Heatmap of annotations of reference lines
Reference line comparison of annotations across centres. Colours represent scaled genotype 

effect (posterior median / SD), with blue/red indicating a decreased/increased mutant 

phenotype relative to baseline animals. Significant annotations (FDR < 5%) are indicated by 

a black outline around the corresponding rectangle.
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Figure 4. Heatmap of annotations of complete dataset
Heatmap of annotations. Colours represent scaled genotype effect (posterior median / SD), 

with blue/red indicating a decreased/increased mutant phenotype relative to baseline 

animals. Significant annotations (FDR < 5%) are indicated by a black outline around the 

corresponding rectangle. Labels for non-EUCOMM lines are in red. For legibility, the 

heatmap only displays a subset of parameters for those lines with at least three annotations.
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Figure 5. Phenotyping similarity
Classification of EUMODIC-MGI gene pairs into matched or unmatched on the basis of 

phenotype similarity. The Receiver Operating Characteristic (ROC) curve plots the 

proportion of (EUMODIC-MGI) matched gene pairs correctly classified as matched against 

the proportion of unmatched gene pairs incorrectly classified as matched, as the phenotype-

similarity threshold is varied (ROC area under curve 0.674).
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Figure 6. Analysis of genes with no prior annotations
The Venn diagrams illustrate the distribution of genes with relevant phenotype hits in three 

disease areas – (a) bone and skeleton; (b) metabolism; (c) neurological and behaviour. For 

each area, we identified combinations of tests, where a phenotype hit would be indicative of 

the relevant disease correlate and assigned genes accordingly. A total of 94 genes were 

identified across the three disease areas.
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