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Abstract: The mechanics of masonry structures have been underdeveloped for a long time in comparison with other fields

of knowledge. Presently, nonlinear analysis is a popular field in masonry research and homogenization techniques play a

major role despite the mathematical and conceptual difficulties inherent to this approach. This paper addresses different

homogenization techniques available in published literature, aiming at defining a first catalogue and at discussing the ad-

vantages and disadvantages of the different approaches. Finally, special attention is given to a micromechanical based

model and a model based on a polynomial expansion of the microstress field. These seem promising and accurate strat-

egies for advanced structural analysis.
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Résumé : L’aspect mécanique des structures en maçonnerie s’est peu développé par rapport à d’autres domaines techni-

ques. L’analyse non linéaire est présentement un domaine populaire de la recherche en maçonnerie et les techniques d’ho-

mogénéisation y jouent un rôle important, malgré les difficultés mathématiques et conceptuelles associées à cette

approche. Le présent article traite des différentes techniques d’homogénéisation disponibles dans la littérature, vise à défi-

nir un premier catalogue et discute des avantages et des inconvénients des différentes approches. Finalement, une attention

particulière est accordée à un modèle micromécanique et à un modèle basé sur une extension d’un polynôme du domaine

des microcontraintes. Ce sont des stratégies qui semblent prometteuses et précises pour des analyses structurales poussées.

Mots-clés : maçonnerie, homogénéisation, analyse à la limite, éléments finis, charge dans le plan, charge hors plan.

[Traduit par la Rédaction]

1. Introduction

Masonry is a heterogeneous material that consists of units
and joints. Units can be bricks, blocks, ashlars, adobes,
irregular stones, and others. Mortar can be clay, bitumen,
chalk, lime- or cement-based, glue, or others. The huge
number of possible combinations generated by the geometry,
nature, and arrangement of units as well as the character-
istics of mortars raises doubts about the accuracy of the
term ‘‘masonry.’’ Still, much information can be gained
from the study of regular masonry structures, in which a
periodic repetition of the microstructure occurs due to a con-
stant arrangement of the units (or constant bond).

The difficulties in performing advanced testing of these
types of structures are quite large due to the numerous var-

iations of masonry, the large scatter of in situ material prop-
erties, and the impossibility of reproducing it all in a
specimen. Therefore, most of the advanced experimental re-
search carried out in the last few decades concentrated in
brick–block masonry and its relevance for design. Accurate
modelling requires a comprehensive experimental descrip-
tion of the material, which seems mostly available at the
present state of knowledge (CUR 1997; Lourenço 1998).

The global field of structural analysis of masonry struc-
tures encompasses several different approaches and a com-
prehensive review is given in Lourenço (2002). The present
paper focuses exclusively on the analysis of unreinforced
masonry structures making use of homogenization tech-
niques, which has been receiving a growing interest from
the scientific community.

A comprehensive review of the current state of the art,
aiming at a classification of approaches, and a discussion
on advantages and disadvantages of the different techniques
is included. To overcome approximations and limitations
identified, two powerful approaches are addressed in detail:
(i) a micromechanical homogenization approach that consid-
ers additional internal deformation mechanisms and (ii) a
polynomial expansion of the microstress field inside an ele-
mentary masonry cell.

2. Homogenization theory: basic assumptions

This section briefly recalls the basis of the theory of
homogenization applied to masonry structures, with particu-
lar emphasis on running bond texture. Consider a masonry
wall � consisting of the periodic arrangements of masonry
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units and mortar joints as shown in Fig.1. The periodicity
allows one to regard � as the repetition of a representative
element of volume (REV or elementary cell) Y.

Let x ¼ ½x1; x2� be a frame of reference for the global des-
cription of � (macroscopic scale) and y ¼ ½y1; y2; y3� be a
frame of reference for Y. The Y module is defined as

Y ¼ ! � � � t=2; t=2½, where Y 2 <3 is the elementary cell

and ! 2 <2 represents the middle plane of the plate (Caill-
erie 1984). The @Y boundary surface of the elementary cell
(see Fig. 1) is defined as @Y ¼ @Yl [ @Yþ

3 [ @Y�
3 , where

@Y�
3 ¼ ! � ½�t=2�.
The basic idea of homogenization consists in introducing

averaged quantities representing the macroscopic stress and
strain tensors (denoted here, respectively, as E and S), as
follows:

½1� E ¼< """"" >¼ 1

V

Z

Y

"""""ðuÞ dY ����� ¼< ����� >¼ 1

V

Z

Y

� dY

where V stands for the volume of the elementary cell, e and
� stand for the local quantities (stresses and strains, respec-
tively), and <*> is the average operator.

According to Anthoine (1995) and Cecchi et al. (2005),
the homogenization problem in the linear elastic range in
the presence of coupled membranal and flexural loads,
under the assumption of the Kirchhoff-Love plate theory,
can be written as follows:

½2a� div����� ¼ 0

½2b� ����� ¼ að yÞ"

½2c� """"" ¼ E þ y3����� þ symðgrad uperÞ

½2d� ����� e3 ¼ 0 on @Yþ
3 and @Y�

3

½2e� ����� n antiperiodic on @Yl

½2f � u
per periodic on @Yl

where ����� is the microscopic stress tensor (microstress), a(y)
represents a !-periodic linear elastic constitutive law for
the components (masonry units and mortar), E is the macro-
scopic in-plane strain tensor, ����� is the out-of-plane strain
tensor (curvature tensor), uper is a o-periodic displacement
field, e3 is the unit vector normal to the masonry middle
plane, and n is the unit vector normal to the internal cell
boundary. Equation [2a] represents the microequilibrium
for the elementary cell with zero body forces, usually
neglected in the framework of homogenization.

Furthermore, in eq. [2c], the microstrain tensor """"" is ob-
tained as a linear combination among macroscopic E and �����
tensors and a periodic strain field. E and ����� tensors are re-
lated to the macroscopic displacement field components
U1ðx1; x2Þ, U2ðx1; x2Þ, and U3ðx1; x2Þ by means of the classic

relations E�� ¼ ðU�;� þ U�;�Þ=2, with Ei3 ¼ 0, and
������� ¼ �U3;�� with �i3 ¼ 0, �; � ¼ 1; 2, and i = 1,2,3.

Macroscopic homogenized membrane and bending con-
stants, M and N, respectively, can be obtained solving the
elastostatic problem [2a–f] and making use of the classic
relations:

½3� N ¼ h�����i� ¼ AE þ B�����

M ¼ hy3�����i� ¼ B
T
E þ D�����

where A, B, and D are the constitutive homogenized plate
tensors. Usually, the elementary cell has a central sym-
metry, hence B = 0. As a rule, a solution for the problem
given by eqs. [2a–f] can be obtained using standard finite
element (FE) packages, as suggested for the in-plane case
by Anthoine (1995). The governing equations in the non-
linear case are formally identical to eq. [3], provided that a
non linear stress–strain law for the constituent materials is
assumed.

2.1. Closed-form solutions in the linear elastic range

This section briefly recalls some of the most popular sim-
plified approaches that have appeared in the past in tech-
nical literature for obtaining homogenized elastic moduli for
masonry. As the elastostatic problem given in eq. [3] cannot
be solved in closed form for running bond masonry, several
simplifications were assumed to obtain ‘‘easily’’ homo-
genized elastic moduli.

2.1.1. Two-step approaches

One of the first ideas presented (Pande et al. (1989), Maier
et al. (1991)) was to substitute the complex geometry of the
basic cell with a simplified geometry, so that a closed-form
solution for the homogenization problem would be possible.

In particular, Pande et al. (1989) presented a model in
which a two-step stacked system with alternative isotropic
layers was considered (Fig. 2). In this way, a so-called
‘‘two-step homogenization’’ was obtained. In the first step,
a single row of masonry units and vertical mortar joints
were taken into consideration and homogenized as a layered
system. In the second step, the ‘‘intermediate’’ homogenized
material was further homogenized with horizontal joints to
obtain the final material. In this manner, a very simple
mechanical system constituted by elastic springs was ob-
tained and explicit formulas based on classical elasticity
concepts were presented.

Obviously, this simplification leads to the following:

. An underestimation of the horizontal stiffness of the
homogenized material, as no information on the texture
(running bond, stack bond, Flemish bond, etc.) is consid-
ered. Furthermore, the inability of the model to consider
the regular offset of vertical mortar joints belonging to
two consecutive layered unit courses results in significant
errors in the case of nonlinear analysis

. A homogenized material that is different if the steps of
homogenization are inverted (i.e., if bed joints and ma-
sonry units are homogenized in the first step).

Following the idea of a multi-step approach, many other
models involving different approximations and ingenious
assumptions have been sought, with an increasingly large
number of papers in recent years (Pietruszczak and Niu
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1992), where a two-stage homogenization procedure was
employed with the head joints considered as uniformly dis-
persed elastic inclusions and the bed joints were assumed to
represent a set of continuous weakness.

2.1.2. Reduction of joints to interfaces

A different approach, proposed by de Felice (1995) and
Cecchi and Sab (2002), is based on the reduction of joints
to interfaces. This idea arose from the observation that ma-
sonry units are generally much stiffer than mortar and

joints have a small thickness when compared with the size
of the masonry units.

These studies resulted in the definition of the homo-
genized masonry constitutive function by means of the intro-
duction of several parameters that measure smallness:

. e (scale parameter) ! 0, representing the ratio between
the size of the cell and the dimension of the overall panel.

. x, representing the ratio between the Young’s modulus of
the mortar, Em, and the Young’s modulus of the masonry
unit, Eb ð� ¼ Em=EbÞ.

. ’, representing the ratio between the thickness of the
joints, e, and the size of the characteristic module a

ð’ ¼ e=aÞ.
� and ’ are parameters that take into account the effects

of joint sizes and the ratio of deformability of mortar and
block. For fixed elastic tensors of both block and mortar and
for fixed geometric parameters a, b, t (defined in Fig. 1), the
so-called ‘‘asymptotic case’’ is obtained when � ! 0 and
’ ! 0. If ’ tends to zero, the joint becomes an interface;
whereas, if x tends to zero the mortar becomes infinitely de-
formable with respect to the unit. Therefore, the typology of
an asymptotic problem depends on how x and ’ tend to zero.

A first simplification usually introduced adopts x ¼ xð’Þ
and lim’!0 �ð’Þ’�1 ¼ � 6 ¼ 0. Such an asymptotic problem

shows cohesive zero thickness interfaces between the
masonry units with possible jump of the displacement field.
Hence, the field problem may be formulated with reference

only to the ab elastic tensor of the masonry unit with discon-
tinuity at the interfaces, where the constitutive function is a
linear relation between the stresses on the unit surfaces and
the jump of the displacement field. Both in de Felice (1995)
and Cecchi and Sab (2002), elastic springs with diagonal
constitutive tensor K for the joints are used, thus introducing
a simplification related to the fact that the Poisson effect of

Fig. 1. Elementary cell used in finite element modelling.

Fig. 2. Two-step homogenization proposed by Pande et al. (1989):

(a) horizontal homogenization first; (b) vertical homogenization

first.
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the joint is neglected. In particular K takes the following
explicit form:

½4� K ¼ 1

e
½�M

I þ ð�M þ �MÞðn�nÞ�

where I is the identity matrix, n is the normal to the inter-
face, and �M and �M are the Lamé constants of mortar.

de Felice (1995) also assumed rigid masonry units, to fur-
ther reduce the complexity of the problem. In this way (see
Fig. 3a), this author showed that the problem given by
eq. [2a-f] can be solved in closed form for running bond
masonry and permits analytical formulas for the homo-
genized elastic constants to be obtained, which depend only
on the geometry of the elementary cell and on the mechan-
ical properties of joints.

Following this idea, Cecchi and Sab (2002) proposed a
multiparameter homogenization study for the two-dimen-
sional and the three-dimensional (3-D) in-plane case, remov-
ing the hypothesis of rigid masonry units (Fig. 3b). The
finite thickness of the joints was considered in an approxi-
mated way only in the constitutive relation of the interfaces.
A symbolic FE procedure was adopted, in which the elemen-
tary cell was discretized by means of a coarse triangular
mesh. Here, the term symbolic is use to indicate that the
homogenization problem was handled in symbolic form us-
ing a mathematical software. In this way, these authors were
able to find ‘‘quasi-analytical’’ formulas.

The disadvantages of this approach are the following:

. The reduction of joints to interfaces, which may strongly
reduce the accuracy of the results in the presence of thick
mortar joints and � ratios tending to zero (Cecchi et al.
2005).

. The introduction of elastic masonry units leads to form-
ulas derived from symbolic FE procedures and does not
allow analytical solutions to the homogenization problem.

. A possible development of the method in the nonlinear
range can result in nonnegligible errors with respect to
FE approaches and experimental evidences, as the role
of joint thickness is lost in the simplifications assumed.

2.1.3. Finite element procedures

Anthoine (1995) was the first to suggest the use of stan-
dard FE codes for solving the homogenization problem,
given by eqs. [2a–f], in the case of both stacked and running
bond masonry. Anthoine (1995, 1997) and Lourenço (1997a)
also underlined that homogenized moduli depend on the
order of the steps and 3-D effects are always present.

Cecchi et al. (2005) applied FE procedures to out-of-plane
loaded and stressed masonry and concluded that:

. Flexural moduli may significantly differ from membrane
moduli, especially in the presence of weak mortar joints.
As a consequence, Kirchhoff-Love orthotropic homo-
genized coefficients cannot be obtained simply by inte-
gration of membrane moduli.

. Cohesive interface closed-form solutions give unreliable
results when the � ratio is small.

The classical assumptions adopted in the FE method ap-
plied to homogenization are: (i) perfect continuity between
units and mortar and (ii) the periodic displacement that has
to be imposed fulfils the constant and (or) linear assumption,

at the boundary of the cell of the macroscopic kinematic de-
scriptors E and �����. In this way, considering only a macro-
scopic strain tensor E acting, suitable boundary conditions
(Fig. 4) for uper periodic and �����n antiperiodic on @Yl (which
represents the boundary of the module orthogonal to the
middle plane) are imposed, meaning that the elastostatic
problem can be formulated only on Y. It is worth noting
that several engineering approaches recently presented in
the technical literature do not satisfy this hypothesis exactly
(Lopezç et al. 1999; Zucchini and Lourenço 2002). In this
case, the symmetry of the cell allows for simplification of
the numerical model and permits to discretize only 1/4 of
the elementary cell.

The advantages of the adoption of a FE technique include:

. The FE solution approximates the actual solution for a
suitable refined mesh.

. Mortar joints thickness is taken into account for the eva-
luation of the homogenized moduli, which leads to
numerically homogenized moduli estimates that can dif-
fer from interface moduli.

. The influence on the homogenized horizontal Young
modulus, due to staggering of the masonry units, is caught
by the model, especially in the presence of mortar joints
with poor mechanical properties or nonlinear behaviour.

On the other hand, the most severe limitation of this
approach is that the computational cost of an FE procedure
does not compete favourably with macroscopic approaches
when nonlinear problems are treated, as the homogenization
field problem has to be solved for each Gauss point of each
loading step. This leads to the continuous handling of a
‘‘two-size’’ FE problem (macroscopic and cell level), where
the averaged results obtained at a cell level are utilized at a
structural level (in the framework of a nonlinear numerical
procedure).

2.2. Homogenization in the inelastic range

This section briefly reviews the most disseminated non-
linear approaches based on homogenization presented in re-
cent technical literature. As a first attempt, the approaches
can be classified as: (i) engineered approaches based on con-
tinuum models for components or on mortar joint failure,
(ii) kinematic and static limit analysis approaches, and (iii)
FE nonlinear analyses.

2.2.1. Engineered approaches

The approaches based on a two-step homogenization pro-
cedure have also been expanded to the nonlinear field, inclu-
ding a cracking model (Lee et al. 1996), a damage model
(Maier et al. 1991), and a plasticity model (Lourenço 1996b).

To overcome the limitations of the two-step homo-
genization procedure, micromechanical homogenization
approaches that consider additional internal deformation
mechanisms have been derived, independently, by van
der Pluijm (1999), Lopez et al. (1999), and Zucchini
and Lourenço (2002).

Other approaches (Luciano and Sacco 1997; Gambarotta
and Lagomarsino 1997; Calderini and Lagomarsino 2006)
are based on the observation that, in general, masonry fail-
ure occurs with the damage of mortar joints, e.g., with crack-
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ing and shearing. In this way, masonry failure could occur
as a combination of bed and head joints failures (Fig. 5).

The engineered approach has the following advantages:
(i) its implementation in standard macroscopic FE nonlinear
codes is particularly simple and (ii) it can compete favour-
ably with macroscopic approaches (Lourenço et al. 1998;
Lourenço 2000).

On the other hand, some limitations are worth noting: (i)
each joint is assumed to be subjected to uniform stress and
strain states—more refined analyses, for instance, using
more elements along a joints length, could result in a diff-
erent behaviour of the elementary cell; (ii) there is a possi-
bility of unexpected behaviour for load paths and (or) failure
mechanisms not explicitly considered in the model.

2.2.2. Limit analysis approaches

Limit analysis approaches (de Buhan and de Felice 1997;
Milani et al. 2006a, 2006c) are based on the assumption of a
perfectly plastic behaviour with an associated flow rule for
the constituent materials. In this framework, Suquet (1983)
proved that both static and kinematic approaches can be
used to obtain an upper- or lower-bound estimation of the
homogenized failure surface of a periodic arrangement of
rigid plastic materials.

de Buhan and de Felice (1997) were the first to apply the

kinematic theorem of limit analysis in the framework of
masonry homogenization, assuming joints are reduced to
interfaces with a classic Mohr-Coulomb failure criterion
and masonry units are infinitely resistant.

Milani et al. (2006a, 2006c) adopted a static approach, in
which polynomial equilibrated and admissible stress fields
were a-priori assumed in a finite number of subdomains. In
this way, both compressive failure and actual thickness of
the joints, as well as unit crushing, were considered.

These approaches have the following advantages:

. Masonry homogenized failure surfaces can be recovered
by making use of well-known linear programming rou-
tines that require a very limited computational effort.

. The homogenized failure surfaces so obtained can be
implemented in FE limit analysis codes for collapse
analysis without limitations and are not required to solve
a cell problem in each Gauss point at a structural level.

. They can compete favourably with macroscopic app-
roaches and give relevant information at failure.

Some of the limitations of these approaches are worth noting:

. Limit analysis is incapable of giving information on dis-
placements at collapse.

. As experimental evidences show, frictional behaviour is
typically nonassociated and, at present, mathematical theo-

Fig. 3. Elementary cell used in the interface models: (a) zero thickness of mortar joints; (b) finite thickness of mortar joints.

Fig. 4. Applied displacement boundary conditions on the elementary cell.
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rems concerning nonassociated limit analysis applied to
homogenization are not available.

. Masonry behaviour can be quasi-brittle. As a conse-
quence, the assumption of infinite ductility for the consti-
tuent materials can be inadequate and can preclude the
models to be predictive.

2.2.3. Finite element nonlinear approaches

Today, the increased capabilities of personal computers
allow for analyses to be performed in the inelastic range by
means of refined discretizations of the elementary cell, using
a so-called ‘‘multi-level’’ approach.

The basic idea of a multilevel approach is to solve a non-
linear FE problem at a cell level and to use the microscopic
information so obtained at a structural level. In general, an
explicit macroscopic constitutive relation for masonry is not
obtainable using homogenization, thus implicit approaches
have been recently proposed by Pegon and Anthoine (1997)
and Massart et al. (2004). In both cases, a nonlinear damage
model for the constituent materials has been adopted. In the
microscopic step, the Gauss points stress–strain relation is
obtained by solving the homogenization problem at a cell
level, whereas in the macroscopic step, the structural nonlin-
ear problem is tackled using the Gauss points information
collected in the microscopic phase.

In general, these approaches have the following advan-
tages:

. Inelastic masonry behaviour under complex load combi-
nations can be easily followed and is well reproduced,
even in the post-peak range.

. The computational cost at a cell level is relatively low
and experimental bi-axial failure tests can be fitted with
sufficient accuracy, as shown by Massart (2003).

. Real-scale panels of relatively small dimensions can be
numerically tested and accurate information at failure is
given.

On the other hand, some limitations are worth noting:

. The double computational effort due to the existence of a
micro and macroscale mesh does not allow for study of
real complex structures and (or) entire 3-D buildings.

. A comparison between computational cost of homogeni-
zation with respect to a macroscopic approach shows that
the latter is, at present, preferable for the nonlinear ana-
lysis of moderately complex structures.

2.3. Application to design practice

Nonlinear analysis represents the most sophisticated tool
for structural analysis, capable of predicting the full re-
sponse from early linear elastic behaviour, through cracking
and crushing with associated stress redistributions, followed
by ultimate load and definition of a collapse mechanism, up
to post-peak behaviour and associated robustness.

The techniques addressed here focus mostly on unrein-
forced masonry, which still represents a considerable chal-
lenge for design, in the case of new structures in moderate
seismicity regions, and for assessment, in the case of exist-
ing buildings. In these cases, it is widely recognized (Lour-
enço 2002; Magenes 2006) that linear elastic analysis can
hardly be used. Nonlinear analysis, either with rigid block
analysis or simplified pushover techniques, now seems to be
the appropriate framework for the design of new structures
and strengthening measures. In these cases, homogenization
techniques represent a significant contribution for modern
practice, allowing for the validation and proposition of sim-
ple nonlinear nonlin design techniques and solutions for
engineering applications. Obviously, the mathematical com-
plexity of the formulations and the required knowledge of
masonry mechanics indicate that the techniques addressed
will be used by a reduced number of qualified experts.

Finally, it is noted that, from the viewpoint of FE analy-
sis, the possible consideration of reinforced masonry is
straightforward, as the mesh reinforcement contribution is
simply added to the unreinforced masonry contribution.
Nevertheless, it is believed that the practical application of
sophisticated nonlinear techniques for reinforced masonry
structures is of less relevance.

3. Homogenization theory: basic assumptions

For the purpose of understanding the internal deforma-
tional behaviour of masonry components (units and mortar)
when average deformations occur on the boundaries of the
basic cell, detailed FE calculations can be carried out. For a
clear discussion of the internal distribution of stresses, a
right-oriented x-y-z coordinate system is defined, where the
x-axis is parallel to the bed joints, the y-axis is parallel to the
head joints, and the z-axis is normal to the masonry plane.

Figure 6 illustrates the deformation corresponding to the
analysis of the basic cell under compression along the x-
axis, and under shear in the planes xy, xz, and yz. Loading
is applied with adequate tying of the nodes in the boun-
daries, making use of the symmetry and antisymmetry
conditions appropriate to each load case. Therefore, the
resulting loading might not be associated with uniform stress
conditions or uniform strain conditions. Linear elastic
behaviour is assumed in all cases.

Figure 6a demonstrates that, for compression along the x-
axis, the unit and the bed joint are mostly subjected to nor-
mal stresses, the bed joint is strongly distorted in shear, and
the cross joint is subjected to a mixed shear–normal stress
action. Figure 6b demonstrates that, for xy shear, the unit
and the head joint are mostly subjected to shear stresses,
the bed joint is strongly distorted in the normal direction
(tension), and the cross joint is subjected to a mixed shear–
normal stress. Due to antisymmetric conditions, the neigh-

Fig. 5. Simplified nonlinear approach with joints failure only, da-

maged state of joints near collapse.
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bouring basic cells will feature normal compression in the
bed joint.

The deformation of the basic cell under xz shear is shown
in Fig. 6c. The cell components are mostly subjected to
shear stresses, with unit and head joint deformed in the hori-
zontal plane, whereas the bed joint is also distorted in the
vertical plane. Therefore, the shear stress cannot be neglec-
ted in a micromechanical model. Finally, the deformation of
the basic cell under yz shear is shown in Fig. 6d. All cell
components are mainly distorted by shear in the vertical
plane, whereas minor local stress components do not pro-
duce significant overall effects.

3.1. Formulation of the model

Zucchini and Lourenço (2002) have shown that the elastic

mechanical properties of an orthotropic material equivalent
to a basic masonry cell can be derived from a suitable
micromechanical model with appropriate deformation mech-
anisms that take into account the staggered alignment of the
units in a masonry wall. The unknown internal stresses and
strains can be found from equilibrium equations at the inter-
faces between the basic cell components, from a few ingen-
uous assumptions on the kinematics of the basic cell
deformation, and by forcing the macrodeformations of the
model and of the homogeneous material to contain the
same strain energy. This homogenization model has already
been extended with good results to nonlinear problems in
the case of a masonry cell failure under tensile loading par-
allel to the bed joint and under compressive loading by Zuc-
chini and Lourenço (2004, 2007).

Fig. 6. Deformed configuration resulting from the finite element analysis on the basic cell: (a) compression x, (b) shear xy, (c) shear xz, and

(d) shear yz (parts b–d from Zucchini and Lourenço 2002).

Fig. 7. Adopted geometry symbols (adapted from Zucchini and Lourenço 2002).
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The simulation has been accomplished by coupling the
elastic micromechanical model with a damage model for
joints and units by means of an iterative solution procedure
to calculate the damage coefficients. A simple isotropic
damage model with only one single parameter has been
used because the discrete internal structure of the cell, and
implicitly its global anisotropic behaviour, is taken into acc-
ount by the 3-D micromechanical model. The geometry for
the basic masonry cell and its components is shown in
Fig. 7, where it can be seen that the complex geometry is
replaced by four components, namely unit, bed joint, head
joint, and cross joint.

When the basic cell is loaded only with normal stresses,
the micromechanical model of Zucchini and Lourenço
(2002) assumes that all shear stresses and strains inside the
basic cell can be neglected, except the in-plane shear stress
and strain (sxy and exy) in the bed joint and in the unit. The
nonzero stresses and strains in the bed joint, head joint, and
unit are assumed to be constant, with the exception of the
normal stress sxx in the unit, which is a linear function of x

Fig. 8. Elastic results for the micromechanical model: (a) compari-

son of Young’s moduli with finite element analysis (FEA) results

for different stiffness ratios; (b) comparison with experimental re-

sults of Page (1981, 1983) (from Zucchini and Lourenço 2002).

Fig. 9. Inelastic response of the model in tension: (a) infinitely long

masonry wall under tensile loading parallel to the bed joints; (b)

stress–crack opening diagram and comparison with finite element

model (FEM) results of Lourenço et al. (1999) (from Zucchini and

Lourenço 2004). All dimensions in millimetres.

Fig. 10. Axial stress versus axial strain for stronger mortar (prism

MU3) (from Zucchini and Lourenço 2007). Comparison between

finite element simulation (Lourenço and Pina-Henriques 2006) and

nonlinear homogenization model. FEM, finite element model;

Hom., homogenization.
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and accounts for the effect of the shear sxy in the bed joint,
and with the exception of the shear stress sxy in the unit,
which is linear in y. The coupling of this model with non-
linear constitutive models leads to an iterative algorithm in
which, at each cycle, a system of equilibrium equations is
solved to obtain the unknown effective stresses and strains.

The governing linear system of 20 equilibrium equations
in the unknown internal stresses and strains of the masonry
cell, to be solved at each iteration, can be rewritten for a
strain-driven compression in y, as:

½5� r2�2xx ¼ rb �� b
xx �

l � t

2h
r1�1xy

Interface unit � head joint

½6� rb�byy ¼ r1�1yy Interface unit � bed joint

½7� hr2�2
xx þ 2tr1�1xx þ hrb �� b

xx þ ðl � tÞr1�1xy ¼ 0

Right boundary

½8� h þ 4t
r2

r1 þ r2

� �
"2yy þ h"byy ¼ 2ðh þ tÞ"0yy

Upper boundary

½9� thr2�2zz þ l � t þ t
r1 þ r2

r1

� �
tr1�1zz þ lhrb�bzz ¼ 0

Front boundary

½10� 2t"1yy þ h"byy ¼ 4t
r2

r1 þ r2
þ h

� �
"2yy

Upper boundary

Fig. 11. Periodic structure (X1 – X2 macroscopic frame of reference) and REV (y1 – y2 – y3 local frame of reference).

Fig. 12. Stress field polynomial expansion approach. Adopted division in sub-domains: (a) subdivision and geometrical characteristics of

one-fourth of the elementary cell; (b) subdivision into 36 sub-domains for the entire cell.

Lourenço et al. 1451

# 2007 NRC Canada



½11� t"2xx þ l�" b
xx ¼ l � t þ 4t

r1

r1 þ r2

� �
"1xx

Right boundary

½12� "bzz ¼ "1zz Front boundary

½13� "bzz ¼ "2zz Front boundary

½14�

"kxx ¼
1

Ek
½�kxx � 	kð�kyy þ �k

zzÞ�

"kyy ¼
1

Ek
½�kyy � 	kð�kxx þ �k

zzÞ�

"kzz ¼
1

Ek
½�kzz � 	kð�kxx þ �k

yyÞ�

k ¼ b; 1; 2

½15� "1xy ¼
"2xx � �" b

xx

4
� l � t

8hEb
þ h

6tGb

� �
r1

rb
�1xy

½16� �1
xy ¼ 2G1"1xy

where, as shown in Fig. 7, l is half of the unit length, h is
half of the unit height, and t is half of the bed joint width.
Here also, r ¼ 1 � d, where d is the scalar damage coeffi-
cient, ranging from 0 to 1 and representing a measure of
the material damage. E is Young’s modulus, G is the shear
modulus, 	 is the Poisson coefficient, eij is the strain com-
ponent, and sij is the stress component. Unit, bed joint, and
head joint variables are indicated, respectively, by the super-
scripts b, 1, and 2, according to Fig. 7. ��b

xx and �"bxx are the
mean value of the (nonconstant) normal stress �xx and of the
(nonconstant) normal strain "xx in the unit, respectively. "0yy
is the uniform normal (macro) strain, perpendicular to the
bed joint, on the faces of the homogenized basic cell. The
damaged stresses �����d and undamaged (or effective) stresses
����� are correlated by the relation:

½17� �����d ¼ ð1 � dÞD""""" ¼ ð1 � dÞ�����
where D is the stiffness matrix.

The adopted damage model in tension, Zucchini and
Lourenço (2004), is a simple scalar isotropic model with a
Rankine type damage surface:

½18� �p ¼ �t
�t � �p � 1

where �p is the maximum effective principal stress and �t is
the tensile strength of the given cell component. In the unit,
where the normal stress �bxx varies linearly in the x direction,
the damage is controlled by the maximum principal stress in
the entire unit and not by the maximum principal stress ob-
tained with the average value ��b

xx.

The damage can only increase monotonically with the
evolution law:

½19� d ¼ 1 � �t

�p
eAð1��p=�tÞ

The parameter A is related to the mode I fracture energy

(GI) and strength (�t) of the material by

½20� At ¼
GIE

l�2t
� 1

2

� ��1

where l is the characteristic internal length of fracture,
usually adopted to obtain mesh independent results, which

Fig. 13. Experimental and numerical results from a masonry shear

wall: (a) principal stress distribution at collapse from the lower

bound analysis; (b) velocities at collapse from the upper bound

analysis; (c) comparison between experimental load–displacement

diagram and the homogenized limit analysis (lower bound and

upper bound approaches).
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is assumed here to be the material dimension in the direc-
tion of the load.

The adopted model in compression, Zucchini and Lour-
enço (2007), is a Drucker–Prager model according to the
classical formulation:

½21� 3k1�m þ �� � k2 ¼ 0

where

½22�

�m ¼ �ii

3
¼ �p

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�0
ij�

0
ij

s
¼ qffiffiffi

3
p

½23�
k1 ¼ 2 sin 
fffiffiffi

3
p

ð3 � sin 
fÞ

k2 ¼ 6 cos 
fffiffiffi
3

p
ð3 � sin 
fÞ

c

�ii is the ii stress tensor component, �0
ij is the ij component

of the deviatoric stress tensor, 
f is the friction angle, and c

is the cohesion. The friction angle was assumed independent
from the plastic deformation, while a bi-parabolic law in the
strain hardening equivalent plastic strain "p;eq is adopted for
the material yield stress. The curve �cð"p;eq Þ is completely
defined by the material strength �c0 (the peak stress), the
peak equivalent plastic strain "0, and the post-peak specific
fracture energy gc:

½24�

�c ¼ �c0

3
�2

"2p;eq

"20
þ 4

"p;eq

"0
þ 1

0
@

1
A 0 � "p;eq � "0

�c ¼ �c0 1 � 2�c0

3gc
ð"p;eq � "0Þ

2
4

3
5
28

<
:

9
=
; "0 � "p;eq

3.2. Elastic results

The model described was applied to a real masonry basic
cell (bricks dimensions of 210 mm � 100 mm � 52 mm and
mortar joints thickness of 10 mm) and compared with the
results of an accurate finite element analysis (FEA). The
same elastic properties have been adopted for the bed joint,
head joint, and cross joint (E1 = E2 = E3 = Em, 	1 = 	2 =
	m). Different stiffness ratios between mortar and unit are
considered, assuming Eb = 20 GPa, 	b = 0.15 and 	m = 0.15
as fixed values. The adopted range of Eb=Em is very large
(up to 1000), if only linear elastic behaviour of mortar is
considered. However, those high values are indeed encoun-
tered if inelastic behaviour is included. In such case, Eb and
Em should be understood as linearized tangent Young’s
moduli, representing a measure of the degradation of the
(tangent and (or) secant) stiffness matrices used in the
numerical procedures adopted to solve the nonlinear prob-
lem. Note that the ratio Eb=Em tends to infinity when soft-
ening of the mortar is complete and only the unit remains
structurally active.

The elastic properties of the homogenized material,
calculated by means of the proposed micromechanical
model, are compared in Fig. 8a with the values ob-
tained by FEA. The agreement is very good in the en-
tire range 1 � Eb=Em � 1000, with a maximum error £

6%.

A comparison between the results obtained with the mi-
cromechanical model and the experimental results of Page
(1981, 1983) are given in Fig. 8b. Very good agreement is
found in the shape of the yield surface, indicating that the
proposed model can be used as a possible macromodel to
represent the composite failure of masonry.

3.3. Nonlinear results

The eqs. [5]–[24] algorithm was implemented in a numer-
ical program for the simulation of a masonry cell under nor-
mal stresses. To check its performance, the algorithm has
been tested in the fracture problem of an infinitely long
wall under tensile loading parallel to the bed joint (Fig. 9a),
which has been analysed by Lourenço et al. (1999) with a
sophisticated FE interface model based on multisurface plas-
ticity. This model consists of two half units in the vertical
direction and two and a half units in the horizontal direction.
In the middle of the specimen a potential crack–slip line
through head and bed joints is included. The unit dimen-
sions are 900 mm � 600 mm � 100 mm.

The results of the proposed coupled damage–homogeniza-
tion model are shown in Fig. 9b, where they are compared
with the FEA of Lourenço et al. (1999) for the case with
zero dilatancy angle. The damage model reproduces with
good agreement the FEA of the cell degradation and the
two peaks of the failure load. The head joint is the first to
fail in tension and the bed joint takes its place in the load
carrying mechanism of the cell. The load is transferred
through bed joint shear from one unit to the other, with the
cell showing regained elastic behaviour for increasing loads
until final failure of the bed joint in shear. The residual load
carrying capacity is zero because there is no vertical com-
pression and, therefore, no friction effect.

The homogenization model was also tested in the simula-
tion up to failure of a basic masonry cell under axial com-
pressive loading perpendicular to the bed joint. For this
problem, numerical results are available from the accurate
FE calculations of Lourenço and Pina-Henriques (2006) for
the case of a masonry cell with solid soft-mud bricks of
dimensions 250 mm � 120 mm � 55 mm and mortar joint
thickness of 10 mm. These FEAs have been carried out
with very detailed meshes either in plane stress, plane strain,
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or enhanced plane strain with constant but nonzero normal
strains in the out-of-plane direction, the latter being consid-
ered the closest possible plane representation of the 3-D
behaviour. The nonlinear behaviour of the cell components
has been simulated by means of Drucker–Prager plasticity
in compression and Rankine model or cracking in tension.
Two different types of mortar were taken into consideration,
namely weak and strong mortars.

The axial stress versus axial strain curves for one of the
analyses (stronger mortar prism) is shown in Fig. 10. The
curves obtained with the homogenization model almost co-
incide with the corresponding FE results in enhanced plane
strain, with marginal computational effort and no conver-
gence difficulties. For weak mortars, the plastic flow of the
mortar joints starts very early in the loading path, whereas
the brick nonlinear behaviour begins a little later. The brick
is in a tensioncompression–tension state, while the mortar is
in a tri-axial compression state for the lateral containment
effect of the stiffer brick. The head joint suffers some neg-
ligible damage in tension just before the complete failure of
the brick in tension, which leads to the catastrophic failure
of the entire cell. For strong mortars, the plastic flow starts
earlier in the brick than in the bed joint, due to the higher
strength of the mortar. The inversion of the elastic mis-

match between mortar and brick in this case (the mortar is
much stiffer than the brick) yields a tension–tension–com-
pression state of the bed joint. A substantial (57%) isotropic
damage in tension is reached in the bed joint, but the fail-
ure of the masonry cell is again driven by the crushing of
the brick. The damage of the mortar in the bed is due to
the high tension in the x and z direction.

4. A stress field expansion approach

Figure 11 presents a masonry wall O constituted by a
periodic arrangement of masonry units and mortar disposed
in running bond texture, together with a rectangular periodic
REV. As shown in a classical paper by Suquet (1983),
homogenization techniques combined with limit analysis
can be applied for an estimation of the homogenized strength

domain Shom of masonry.

In this framework, masonry units and mortar are assumed
to be rigid, perfectly plastic materials with associated flow
rule. As the lower bound theorem of limit analysis states

and under the hypotheses of homogenization, Shom can be
derived by means of the following (nonlinear) optimization
problem:

½25� Shom ¼
X

j

����� ¼< ����� >¼ 1

A

Z

Y

����� dY condition a

div����� ¼ 0 condition b

½½�������nint ¼ 0 condition c

�����n antiperiodic on @Y condition d

�����ðyÞ 2 Sm 8y 2 Ym ; �����ðyÞ 2 Sb 8y 2 Yb condition e

8
>>>>>>><
>>>>>>>:

9
>>>>>>>=
>>>>>>>;

8
>>>>>>><
>>>>>>>:

Here, ½½������� is the jump of microstresses across any
discontinuity surface of normal nint and superscripts m and
b represent mortar and brick, respectively. In eq. [25], con-
ditions a and d are derived from periodicity, condition b im-
poses the microequilibrium, and condition e represents the
yield criteria for the components (units and mortar). The
averaged quantity representing the macroscopic stress ten-
sors S is given by:

½26� ����� ¼< ����� >¼ 1

A

Z

Y

����� dY

where A represents the area of the elementary cell, ����� repre-
sents the local stress quantity, and <*> is the averaging op-
erator.

The proposed solution approach involves a simple and nu-
merically suitable approach for solving the optimization
problem. As shown in Fig. 12a, 1/4 of the REV is subdi-
vided into nine geometric elementary entities (subdomains),
so that all the cell is subdivided into 36 subdomains, as
shown in Fig. 12b. The subdivision adopted is the coarser
one (for 1/4 of the cell) that can be obtained using rectangu-
lar geometries for every subdomain. The macroscopic be-
haviour of masonry strongly depends on the mechanical and
geometric characteristics both of units and vertical and hori-
zontal joints. For this reason, the subdivision adopted also
seems to be particularly attractive, giving the possibility to

separately characterize every component inside the elemen-
tary cell. For each subdomain, polynomial distributions of
degree m are a priori assumed for the stress components.
Since stresses are polynomial expressions, the generic ijth
component can be written as follows:

½27� �ðkÞ
ij ¼ Xð yÞST

ij y 2 Yk

where

XðyÞ ¼ ½ 1 y1 y2 y21 y1y2 y22 : : : �

Sij ¼ ½ Sð1Þij Sð2Þij Sð3Þij Sð4Þij Sð5Þij Sð6Þij : : : �

Sij is a vector of length eN defined as

eN ¼ m2

2
þ 3m

2
þ 1 ¼ ðm þ 1Þðm þ 2Þ

2

and represents the unknown stress parameters, and Yk repre-
sents the kth subdomain.

Cubic interpolation is recommended as an adequate de-
gree for polynomial interpolation of the stress field. Details
on equilibrium. antiperiodicity conditions, and validation of
the approach are shown in Milani et al. (2006a, 2006b).
Extension of the formulation to out-of-plane behaviour is
given in Milani et al. (2006c). Here, only validation of the
models with structural elements tests is provided.
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4.1. Numerical results (in-plane)

The homogenized failure surface obtained with the above
approach has been coupled with FE limit analysis. Both
upper and lower bound approaches have been developed,
with the aim to provide a complete set of numerical data
for the design and (or) the structural assessment of complex
structures. The FE lower bound analysis is based on the
equilibrated triangular element by Sloan (1988), whereas
the upper bound is based on a modified version of the tri-
angular element with discontinuities of the velocity field in
the interfaces by Sloan and Kleeman (1995). The modifi-
cation takes into account the actual shape of the yield sur-
face for the homogenized material in the interfaces.

Here, the clay masonry shear walls tested by Ganz and
Thürlimann (1984) at the Swiss Federal Institute of Tech-
nology, ETH Zurich and analysed in Lourenço (1996a) is
reported. Both for mortar joints and units, a Mohr–Coulomb
failure criterion in plane stress is adopted. Experimental evi-
dences show a very ductile response, thus justifying the use
of limit analysis for predicting the collapse load, with tensile
and shear failure along diagonal stepped cracks.

In Figs. 13a and 13b, the principal stress distribution at
collapse from the lower bound analysis and the velocities at
collapse from the upper bound analysis are reported. Finally,
in Fig. 13c, a comparison between the numerical failure
loads are provided, respectively, by the lower and upper
bound approaches and the experimental load–displacement
diagram is reported. Collapse loads P(–) = 210 kN and
P(+) = 245 kN are numerically found using a model with
288 triangular elements, whereas the experimental failure
shear load is approximately P = 250 kN.

4.2. Numerical results (out-of-plane)

Milani et al. (2006c) further extended and validated the
formulation for out-of-plane loading. For this purpose, the
elementary cell is subdivided along the thickness in several
layers. For each layer, fully equilibrated stress fields are ass-
umed, adopting polynomial expressions for the stress tensor
components in a finite number of subdomains, imposing the
continuity of the stress vector on the interfaces and defining
antiperiodicity conditions on the boundary surface. The out-

of-plane failure surfaces of masonry obtained are imple-
mented in FE limit analysis codes (both upper and lower
bound) for structural analyses at collapse of entire panels.

The proposed homogenized model is also employed to re-
produce experimental data for entire out-of-plane loaded
masonry panels. As the current model assumes fully plastic
behaviour, simple equilibrium equations (Lourenço 2000)
indicate that the experimental values of flexural tensile
strength must be divided by three. The panels analyzed here

Fig. 14. Stress field polynomial expansion approach (out-of-plane model). Comparison between numerical results obtained with the present

model, numerical results by Lourenço (1997b), and experimental data by Chong et al. (1994). Data refer to the University of Plymouth

experimental tests (Chong et al. 1994).

Fig. 15. Typical numerical results (Panel SB02) obtained by means

of the stress field polynomial expansion approach (out-of-plane

model). (a) lower bound results (principal moments at collapse); (b)

upper bound results (deformed mesh at collapse).
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consist of solid clay brick masonry. The tests were carried
out by Chong et al. (1994) and are denoted by SB in Figs.
14 and 15. Four different configurations were tested, built
in stretcher bond between two stiff abutments with the verti-
cal edges simply supported (allowance for in-plane displace-
ments was provided) and the top edge free. A completely
restrained support was provided at the base because of prac-
tical difficulties in providing a simple support. The panels
were loaded by air bags until failure with increasing out-of-
plane uniform pressure p. The reader is referred to Milani et
al. (2006c) for a detailed description of panel dimensions,
load applications, and results.

Figure 14 shows typical comparisons between experi-
mental pressure–displacement curves by Chong et al.
(1994), numerical pressure–displacement curves obtained
by means of an orthotropic elasto–plastic macromodel
(Lourenço 1997b), and the new results with the proposed
formulation. In addition, Fig. 15 shows typical results of
the numerical analysis in terms of principal moment distri-
bution and mechanisms at failure. The agreement with
experimental results is worth noting in all cases analysed.

5. Conclusions

Homogenization techniques represent a popular and active
field in masonry research. Several approaches have been re-
cently introduced by different authors and a first attempt to
catalogue them and to discuss pros and cons are carried out
in this paper. Even if it impossible to predict the future of
masonry research, this paper addresses, in detail, two differ-
ent approaches considered particularly relevant. The first
approach is based on micromechanical deformation mech-
anisms coupled with standard FE analysis. The second app-
roach is based on a polynomial expansion of the stress field
coupled with limit FE analysis. It is noted that both app-
roaches include a subdivision of the elementary cell into a
high number of different subdomains. In fact, very simpli-
fied division of the elementary cell, such as layered app-
roaches, seems inadequate for the nonlinear range.

Homogenized techniques-based structural analysis is
probably at a stage when it can start to compete with other
structural analysis tools. In the case of FE limit analysis, it
seems that failure mechanisms and collapse loads are similar
to those obtained by means of more complex approaches
based on nonlinear incremental and iterative FE analyses.
Such results are obtained at a very small fraction of the ef-
fort when compared with the nonlinear simulations.
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