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Analysis of means (ANOM): A generalized approach using R

Philip Pallmann and Ludwig A. Hothorn

Abstract

Papers on the analysis of means (ANOM) have been circulating in the quality control literature for
decades, routinely describing it as a statistical stand-alone concept. Therefore we clarify that ANOM should
rather be regarded as a special case of a much more universal approach known as multiple contrast tests
(MCTs). Perceiving ANOM as a grand-mean-type MCT paves the way for implementing it in the open-
source software R. We give a brief tutorial on how to exploit R’s versatility and introduce R package ANOM for
drawing the familiar decision charts. Beyond that, we illustrate two practical aspects of data analysis with
ANOM: firstly, we compare merits and drawbacks of ANOM-type MCTs and ANOVA F -test and assess their
respective statistical powers, and secondly, we show that the benefit of using critical values from multivariate
t-distributions for ANOM instead of simple Bonferroni quantiles is oftentimes negligible.

ANOVA F -test, multiple contrast test, multivariate t-distribution, control chart, industrial quality assess-
ment

1 Introduction

The analysis of means (ANOM) is a common statistical procedure in quality assurance for comparing several
treatment means against an overall mean (grand mean) in a variety of experimental design and observational
study situations. It is basically a graphical method, yielding control charts that allow to draw conclusions
and interpret results easily with respect to both statistical and practical significance.

ANOM has been in use for more than 40 years now. Resting upon basic ideas outlined by Halperin and
colleagues Halperin et al. (1955), Ott published his pioneering ANOM paper (Ott, 1967, reprinted in Ott
(1983)) in which he coined the phrase ‘analysis of means’. Various extensions have been proposed since then,
and ANOM has been adopted to match with a variety of experimental designs, randomization structures, and
data types (e.g., Schilling, 1973a,b; Enrick, 1976; Subramani, 1992). Well-written and concise overviews of
ANOM methodology are available e.g., Ramig’s synopsis of applications Ramig (1983), Rao’s review article
Rao (2005), and the textbook by Nelson Nelson et al. (2005). Applications of ANOM in health care Homa
(2007) and medicine Mohammed and Holder (2012) were describe recently.

Researchers and users in quality control often treat ANOM as if it were a stand-alone method. In fact,
ANOM can be considered as a special case of a much broader statistical concept known as multiple con-
trasts tests (MCTs) Mukerjee et al. (1987); Bretz et al. (2001). The family of MCTs unifies a number of
well-established multiple comparison procedures such as Tukey’s all-pairwise comparisons Tukey (1994), Dun-
nett’s comparison of several means against a control Dunnett (1955), and Williams’ test on trend Williams
(1971, 1972); Bretz (2006), among others. In a similar fashion, we propose a generalized approach for ANOM
using the concept of MCTs, specifically comparisons to the grand mean. MCTs usually involve few groups
with relatively large sample sizes whereas in ANOM it is not unusual to compare a relatively large number
of groups each of which has only small sample size, but these are just marginal differences. In principle,
ANOM and grand-mean-type MCTs are equivalent (except that MCT results are usually not presented as
control charts).

Commercial software for ANOM has been available for quite some time e.g., the homonymous SAS
procedure SAS Institute Inc. (2012). Perceiving ANOM as grand-mean-type MCT enables us to carry out
data analyses using the freely available software R R Core Team (2013), which offers a flexible framework
that can handle most diverse data scenarios.

This article pursues two basic goals: first, we present a practitioner-friendly comprehensive treatment of
ANOM in the context of MCTs, and second, we explain how to do ANOM in R, using thoroughly worked
examples of real-world datasets.

Beyond that, we explore two more aspects of practical relevance: we assess the de facto benefit of com-
plex methods for calculating critical values compared to a simple Bonferroni correction, and we investigate
applicability and statistical power of ANOM-type MCTs and ANOVA F -test. Many practitioners habitually
perform their statistical analysis with ANOVA, even in situations when this is suboptimal. The one-way
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ANOVA gives a global answer to the question whether any of the group means is different from any other
group mean. However, in most applications, the statement that ‘at least one of the group means is different
from at least any other group mean’ is of little practical relevance. People rather want to know which groups
differ e.g., which of the group means are significantly higher or lower than the grand mean. ANOM provides
this kind of information on local hypotheses and additionally a global test decision together with a control
chart.

The remainder of this article is structured as follows. In Section 2 we reformulate ANOM as a multiple
contrast test and summarize several extensions. Section 3 compares performance and power of ANOM and
ANOVA for situations where both methods might be adequate. The benefit of computing quantiles from
multivariate t-distributions over a Bonferroni adjustment is quantified in Section 4. Section 5 is dedicated
to an illustration of R’s vast functionality for ANOM with a strong focus on worked examples. A brief
conclusion is given in Section 6.

2 ANOM as a multiple contrast test

2.1 General methodology

Assume a normally distributed random variable Yij = µi + ǫij in a randomized one-way layout where µi is
the mean of the ith group, i = 1, . . . , k, containing individuals j = 1, . . . , ni, and ǫij ∼ N (0, σ2). The column
vector of group means is µ = (µ1, . . . , µk)

′, the grand mean of all groups is denoted by µ̄, and θ = µ/σ is
the vector of scaled expectations. The null hypothesis of all group means being equal to the grand mean is
to be tested against the alternative that at least one group mean differs from the grand mean:

H0 : µi = µ̄ ∀ i ∈ {1, . . . , k}

HA : ∃ i : µi 6= µ̄, i ∈ {1, . . . , k}

The goal is to control the familywise error rate (FWER) i.e., the probability of one or more false-positive
findings among all k hypotheses, at a pre-defined level α, traditionally 5%.

The hypotheses of interest can be formulated using contrasts. A contrast is a linear combination of group
means with coefficients c = (c1, . . . , ck), and we can write it up as

c1µ1 + · · ·+ ckµk = cµ

with
∑k

i=1 ci = 0. Several contrast vectors cl = (cl1, . . . , clk), l = 1, . . . , q can be combined in a q × k
contrast matrix C = (c′1, . . . , c

′
q)

′ that defines the entity of comparisons in an MCT procedure. Rewriting
ANOM as an MCT requires a grand mean contrast matrix CGM of dimension q × k:
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where N =
∑k

i=1 ni is the total sample size. In fact, the dimension of CGM is k × k because the number of
contrasts, q, equals the number of groups, k; this is not the case for MCTs in general.

A contrast test statistic is a standardized contrast:

Tl =

∑k

i=1 cliµi

s
√

∑k

i=1 c
2
li/ni

with s the square root of the common variance estimate. Tl follows a central t-distribution with ν = ni − 1
degrees of freedom. Correspondingly, the vector of all q test statistics T = (T1, . . . , Tq) is jointly q-variate
t-distributed Bretz et al. (2001) with ν = N − k degrees of freedom and a common correlation matrix R

whose elements under H0 are

ρll′ = Corr(Tl, Tl′) =

∑k

i=1 clicl′i/ni
√

(
∑k

i=1 c
2
li/ni)(

∑k

i=1 c
2
l′i
/ni)

where 1 ≤ l 6= l′ ≤ k.
In the case of two-sided hypotheses, the ith local null hypothesis H

(i)
0 : µi = µ̄ is rejected in favor of

H
(i)
A : µi 6= µ̄ if

|Tl| ≥ ttwo,q,1−α,ν,R
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where ttwo,q,1−α,ν,R is the two-sided 1 − α equicoordinate quantile from the central q-variate t-distribution
with ν degrees of freedom and correlation matrix R. Similarly, the global null hypothesis is rejected if

max{|T1|, . . . , |Tq|} ≥ ttwo,q,1−α,ν,R.

In opposition to the the ANOVA F -test, MCTs (and thus ANOM) are not confined to two-sided inference.
If a practical question suggests one-sided hypotheses, we may easily assess them using ANOM. We reject
H

(i)
0 : µi ≤ µ̄ in favor of H

(i)
A : µi > µ̄ if Tl > tone,q,1−α,ν,R. Correspondingly, we reject H

(i)
0 : µi ≥ µ̄ and

accept H
(i)
A : µi < µ̄ if Tl < tone,q,α,ν,R.

Computation of adjusted p-values and simultaneous confidence intervals (SCIs) is detailed e.g., in Bretz
et al. (2001) and Hothorn et al. (2008). In the context of ANOM, we are particularly interested in decision
limits DLi which represent the minimum significant effect. For two-sided alternative hypotheses in a one-way
layout, we obtain

DLi = ȳ ± s ttwo,q,1−α,ν,R

√

N − ni

Nni

as upper and lower boundary, respectively, where ȳ = 1
N

∑k

i=1

∑ni

j=1 yij . In the case of one-sided alternative
hypotheses, we use

UDLi = ȳ + s tone,q,1−α,ν,R

√

N − ni

Nni

as an upper limit or

LDLi = ȳ − s tone,q,1−α,ν,R

√

N − ni

Nni

= ȳ + s tone,q,α,ν,R

√

N − ni

Nni

as a lower limit. If the one-way design is balanced, the term
√

N−ni

Nni
simplifies to

√

k−1
N

. Extensions for

proportions and rates (using a normal approximation), two-way and higher-order layouts, will be the topic
of the next section.

Notice that, as long as they refer to comparisons with the grand mean, SCIs can be converted into ANOM
decision limit via

LDLi = µ̄− |µi − µ̄− upri|

UDLi = µ̄+ |µi − µ̄− lwri|

where lwri and upri denote lower and upper SCI bounds whose computation is explained in Hothorn et al.
(2008). This notion eludicates that ANOM decision limits are basically SCIs shifted by the group effects
(i.e., the differences between group means and the grand mean).

2.2 Extensions

R’s basic ANOM functionality is illustrated with a data example of water filters in Section 5.1. Beyond
that, ANOM can be extended to a multitude of specialized applications and non-trivial data scenarios. We
discuss a number of common challenges in the following.

2.2.1 ANOM under variance heterogeneity

When variances cannot be assumed equal across groups, a heteroscedastic version of ANOM is expedient.
The so-called HANOM was introduced in the past decade Nelson and Dudewicz (2002); Dudewicz and Nelson
(2003). In the context of MCTs, two distinct approaches dealing with heterogeneous variances are available.

One approximate solution is the heteroscedastic generalization of MCTs described in Hasler and Hothorn
(2008); it involves computation of group-specific variance estimates s2i which are plugged into the correlation
matrix. In conjunction with contrast-specific Satterthwaite approximations to the degrees of freedom νi,
we end up with separate critical values (i.e., quantiles from a multivariate t-distribution) for each group
comparison to the grand mean.

A different approach was proposed by Herberich et al. (2010); it is based on so-called sandwich variance
estimators Huber (1967), primarily the heteroscedasticity-consistent HC3 estimator

s̃2i =
ni

ni − 1
s2i
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that was developed in MacKinnon and White (1985) and recommended by Long and Ervin (2000). The
estimates s̃2i are plugged into the correlation matrix but ‘naive’ degrees of freedom ν = N − k are used so
that each test statistic is compared to the same critical value.

Simulations have shown that the former approach is more robust in the presence of small sample sizes
Hasler (2014). How to implement ANOM with heteroscedastic data in R is illustrated in Section 5.2.

2.2.2 ANOM for the ratio to the grand mean

Instead of assessing each group’s difference to the grand mean, one can also make inference for relative
changes. This leads to convenient interpretations in terms of percentages, which may be more appropriate
in some applications. For multiple endpoints to be monitored simultaneously (e.g., the single strand break
factor and weight of a textile fiber in the bivariate quality control problem of Yeh et al. (2004)), ratios to
the grand mean are more intuitive than differences, especially when the endpoints are measured on different
scales.

ANOM for ratios of parameters was described by Djira and Hothorn (2009) already. A heteroscedastic
version of this method based on the approach of Hasler and Hothorn (2008) can be found straightforwardly
and is exemplified in Section 5.3.

2.2.3 ANOM for counts and proportions

A common way of analyzing count data is by fitting a Poisson generalized linear model (GLM) involving a
logarithmic link function. Subsequent multiple comparisons with the grand mean apply to the parameters
estimated in the model.

For binomial data (proportions), we draw a distinction regarding the structure of data:

i) If only one proportion πi =
xi

ni
of events xi (successes) over samples ni (trials) is available for each of

the k groups, the data are usually summarized in a 2× k table. Simultaneous inference for differences
of binomial proportions was discussed in Schaarschmidt et al. (2008). We show a practical example in
Section 5.5.

ii) If proportions are available for several independent units per group, then the variance of proportions
observed in the same group i can be estimated, and hence we can fit a binomial GLM involving a logit
link, followed by comparisons of model parameter estimates to their grand mean Hothorn et al. (2008).

2.2.4 Nonparametric ANOM

ANOM-type data analysis may also be carried out nonparametrically e.g., with ranks as inputs (ANOMR)
Bakir (1989, 1994) or as a randomization test based on permutations (PANOM). Nonparametric MCTs are
discussed by Konietschke et al. (2012); they express the hypotheses in terms of relative effects, which in turn
are estimated based on global rankings. The estimators are unweighted, meaning they are independent of
the groups’ sample sizes (‘pseudo-ranks’).

The relative effect of two independent random variables X1 and X2 following some distributions F1 and
F2 is generically defined as

p = P (X1 < X2) +
1

2
P (X1 = X2).

Therefore p is the probability that X1 takes smaller values than X2 (plus half the probability of taking equal
values). Hence when p < 1

2
, X1 is stochastically more likely to take larger values than X2, and vice versa

for p > 1
2
.

The relative effect of the ith group (in a one-way layout) is estimated as

p̂i =
1

N
(R̄i −

1

2
)

where R̄i is the mean of ranks belonging to group i. Besides the multivariate t-approximation to the
distribution of test statistics, a range-preserving Fisher transform may be employed to ensure the decision
limits lie within [−1, 1]. The nonparametric MCT-based ANOM procedure does not act on the assumption of
homogeneous variances; hence no separate extension to heteroscedastic cases is required. Since no continuous
probability distribution is assumed whatsoever, tied values or ordered categorical scores can be analyzed
appropriately.
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2.2.5 ANOM with replicated designs using linear mixed-effects models

There are various types of trials involving repeated measurements; two designs widespread in quality control
are simple technical replicates (e.g., triplicates) and block designs. Replicates occur when each test object
is measured a number of times in order to account for measurement error. Measurements obtained from the
same object are usually correlated. An example of a block design is when there are several test persons (the
‘blocks’), and each person assesses each test object once. This is a strategy to remedy subjectivity when
quality is judged by means of individual ratings. Measurements by the same person are correlated, as are
measurements on the same object. ANOM-type data analysis using a mixed-effects model in R is illustrated
by a dataset of ergonomic stools in Section 5.4.

2.2.6 ANOM for variances

Suggestions for comparing variances with ANOM-like procedures have been made in abundance Wludyka and
Nelson (1997a,b); Rao and Krishna (1997); Kumar and Rao (1998); Wludyka and Nelson (1999); Bernard
and Wludyka (2001); Wludyka and Sa (2004). ANOM for variances can also be conducted within an
MCT framework by employing robust Levene residuals i.e., absolute deviations from the median Brown and
Forsythe (1974)

zij = |yij − ỹi|

where ỹi denotes the ith group median Pallmann et al. (2014). We evaluate quality control data of springs
using ANOM for variances in Section 5.6.

2.2.7 Further generalizations

MCTs in general parametric models were treated in Hothorn et al. (2008), extending the accessibility of mul-
tiple comparison procedures to a wide range of (semi-)parametric models such as regression and AN(C)OVA
models, GLMs, mixed-effects models, and censored event-time models (e.g., the Cox proportional hazard
model for survival times). This framework also covers models with covariates as well as two-way and higher-
order layouts. There are only two basic requirements for MCTs to be feasible: the parameter estimates of
interest must be (at least asymptotically) multivariate normal, and the corresponding covariance estimates
must be consistent. That being given, we can easily compute ANOM decision limits for a variety of continu-
ous or discrete endpoints, single- or multi-factor designs, balanced or unbalanced datasets, equal or unequal
variances, differences or ratios of parameters, and variances.

3 ANOM vs. ANOVA F -test

3.1 General characteristics

Practitioners sometimes use ANOM and one-way ANOVA as if they were exchangeable. In fact, both of them
can be applied to similar testing problems, and therefore we may consider them as competitors, which makes
it reasonable to compare e.g., their power behavior under certain configurations. However, it is important
to notice that ANOM and ANOVA provide substantially different information:

1. Although the null hypothesis
H0 : µ1 = µ2 = · · · = µk

is the same for both procedures, their alternatives differ:

HANOM
A : ∃ i : µi 6= µ̄, 1 ≤ i ≤ k

HANOV A
A : ∃ (i, i′) : µi 6= µi′ , 1 ≤ i 6= i′ ≤ k

Or, in words: HANOM
A states that at least one group mean differs from the grand mean whereas

HANOV A
A implies that there is at least one pair of groups whose means differ.

2. The ANOVA F -test is a purely global test (stating whether any two group means differ) whereas
ANOM provides global information and additionally allows for local inference (itemizing which specific
group means differ from the grand mean).

3. The F -test has a quadratic test statistic with numerator
∑

(yi − ȳ)2 whereas ANOM has a linear test
statistic with numerator max(yi − ȳ).

4. The F -test is restricted to differences whereas ANOM can be defined either for differences or ratios to
the grand mean.
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5. ANOVA provides neither SCIs nor decision limits for quality control charts whereas ANOM yields
adjusted p-values, SCIs, and decision limits.

6. Only two-sided alternatives can be formulated for the F -test whereas ANOM is suited for two- as well
as directional one-sided alternatives.

7. The power is different for the same patterns of group means µi, group sample sizes ni, and numbers of
groups k, as will be explored in the following.

Simultaneous inference for all possible contrasts (i.e., the ANOVA set of hypotheses) is feasible by the method
of Scheffé Scheffé (1959); however, this leads to extremely conservative decisions and is unrewarding for our
problem.

3.2 Power

The power of ANOM has been studied Nelson (1985); Wludyka et al. (2001) and compared to the power
of the ANOVA F -test Nelson (1983b); He et al. (2001); Chang et al. (2010); Mendeş and Yiğit (2013). It
must be clearly emphasized, however, that the latter is a comparison of apples and oranges; the crucial
point here is indeed their difference in alternative hypotheses. ANOVA is known to be the uniformly most
powerful unbiased invariant test for the problem treated here, meaning that it has maximum power among
all unbiased and invariant tests for the entity of possible alternatives. However, if the set of alternatives
is narrowed down (e.g., by defining grand-mean contrasts), an MCT-type procedure like ANOM is more
powerful than ANOVA for some configurations of the alternative (precisely those suiting the alternative
space defined by the contrasts) but less powerful for all other configurations.

Our interest lies in the question: what is the price to pay for the benefits gained by the ANOM (i.e.,
local test decisions, SCIs, decision limits) in comparison to the ANOVA F -test? We want to elucidate this
for some practically relevant cases involving small to moderate sample sizes. To this end we investigate
the respective statistical powers of ANOM and ANOVA for different configurations of the alternative. To
ensure a somewhat ‘fair’ comparison, we follow the approach of Hayter and Liu (1990) and Konietschke et al.
(2013), who identified the so-called least favorable configurations (LFCs).

Recall that θ = (µ1
σ
, . . . , µk

σ
) is the vector of scaled expectations and θ̄ = 1

k

∑k

i=1 θi the average of its
elements. To keep things simple here, we limit our considerations to balanced (n1 = · · · = nk = n) and
homoscedastic (σ1 = · · · = σk = σ) one-way layouts. Our goal is to find the configuration (or ‘shape’) of the
θi’s for which the power functions of ANOM and ANOVA are minimized. This is the definition of the LFC,
and we purpose to detect it separately for each of the two conditions

b1(θ) = max
1≤i≤k

|θi − θ̄| ≥ b

and
b2(θ) = max

1≤i,j≤k
|θi − θj | ≥ b.

Under the first condition, we have b1(θ
∗) = b ≥ 0, and the power function is minimized for

θ
∗ = (0, . . . , 0,

bk

k − 1
).

Similarly, under the second condition, we have b2(θ
∗) = b ≥ 0, and the power function is minimized for

θ
∗ = (−

b

2
, 0, . . . , 0,

b

2
),

adopting the notation of Konietschke et al. (2013). Happily, it turns out that these are the LFCs of both
ANOM and ANOVA Hayter and Liu (1990).

The power of the ANOM-type MCTs can be calculated using the R package MCPAN Schaarschmidt et al.
(2013). We are particularly interested in the any-pairs power i.e., the probability of rejecting at least one

elementary null hypothesis for which the corresponding comparison is a priori known to be under H
(i)
A . We

define the subset of (two-sided) grand mean comparisons which are truly under the alternative hypothesis

as S = {i : H(i)
A : µi 6= µ̄}. Then the any-pairs power is given by

P (∃ i : |Ti| ≥ tk,1−α,ν,R|H(i)
A ) = 1− P (−tk,1−α,ν,R < Ti < tk,1−α,ν,R, ∀ i ∈ S).

We assess the powers of ANOM and ANOVA under both LFCs for 0 ≤ b ≤ 3 and k = 10 groups with
sample sizes n = {3, 5, 10} per group. For convenience, we fix σ = 1 so that θ = µ. Besides the two
alternatives detected with minimum power, we include several other configurations of the alternative in our
power study. The resulting power curves are displayed in Figure 1.
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ANOM has higher power than ANOVA for the LFC under b1, and their powers are about identical for
the LFC under b2; this is in line with the findings of Konietschke et al. (2013). Beyond that, we want to get
a general idea of the behavior under non-LFC conditions. So if the θi’s are split ‘fifty-fifty’ (as in Figure 1,
alternatives 1 and 2), ANOM’s power is clearly inferior. On the contrary, ANOM outperforms the F -test
if one group is distinctly different from the remaining θi’s (see alternatives 3 and 4 in Figure 1), as ANOM
is particularly sensitive to this configuration of the alternative (by its very own definition). For various
other shapes of the θi’s, the power discrepancies between ANOM and ANOVA are often only marginal (e.g.,
alternatives 5 through 8 shown in Figure 1).

This illustrates the knottiness of the matter: the powers of ANOM and ANOVA are governed by a non-
trivial interplay of sample sizes ni and the configuration of the θi’s. Moreover, varying the number of groups
k and allowing for unbalanced designs would further increase complexity. And this is still not the full story.
Once again: any direct comparison of the respective powers of ANOM and ANOVA is per se intricate as
they test the same H0 against different alternative hypotheses. This being the case, we urge the reader to
interpret our results with caution.

As a consequence, we will not give any universal—and probably misleading—recommendation on whether
to use ANOM or ANOVA. What we want to point out is that one should not obviate ANOM simply for
fear of losing power. Quite the contrary, one should not hesitate to use ANOM instead of ANOVA if the
former provides a more accurate, better interpretable answer to the question of subject-matter interest.
The decision whether to analyze one’s data with ANOM or ANOVA (or any other method) should always
be guided by practical considerations. If scientific interest is targeted on whether a factor influences the
outcome, the F -test is an apt choice. By contrast, if the matter is to unravel which specific levels of a factor
differ from the grand mean of all factor levels, ANOM is perfectly suitable, and there is no general need to
perform an ANOVA prior to ANOM. Last but not least, the unfavorable ‘fifty-fifty’ configurations of the
alternative are rather unlikely to occur in quality control; hence the use of ANOM can be supported also
from a power perspective.

4 Multivariate t vs. Bonferroni quantiles

There are various approaches for multiplicity adjustment with ANOM-type comparisons of group means
versus a grand mean. The simplest choice is a Bonferroni correction i.e., the confidence level α is divided
by the number of groups k. On the contrary, comparing test statistics to critical points from a multivariate
t-distribution is a rather sophisticated method. Great effort has been devoted to obtaining critical points
for ANOM (e.g., Nelson, 1982, 1983a, 1993; Guirguis and Tobias, 2004), and they are frequently preferred
to Bonferroni’s correction on the grounds that they account for the correlation among comparisons, which
makes the procedure less conservative.

This justification for applying involved methods, however, is often rather weak in practice. We present
power comparisons of ANOM for two-sided hypotheses using quantiles from a multivariate t-distribution
versus multiple comparisons to the grand mean with a Bonferroni adjustment in Figure 2. The profit of
incorporating the correlation among test statistics is sizeable only with very few groups (k < 5) and tiny
samples (e.g., ni = 3). With b = 2, ni ≥ 5 and/or k ≥ 5, the gain in power is at most 3–5%, irrespective of
the configuration of the θi’s. All power ratios approach unity with increasing b.

To understand why the impact of this rather complicated analysis is so small, it is helpful to have a look
at the correlation among comparisons, which is a function of the number of groups. The pairwise correlations
of contrasts are −ni

N
, so when there are 10 groups to be compared to their grand mean in a balanced setting,

the absolute value of the correlation among individual tests is no more than 1
k
= 0.1.

To summarize, the benefit compared to a simple Bonferroni adjustment is considerable only with very few
groups and very small samples but quickly vanishes as k and ni increase. On top of that, the computational
burden for obtaining quantiles from a multivariate t-distribution can be sizeable when the number of groups
is large. Thus, we must recognize that additional time and effort are inversely linked to the profit earned, so
we may feel free to apply Bonferroni in most practical scenarios without losing any notable amount of power.
This might be different in settings where the group means are correlated e.g., in the presence of blocks or
repeated measurements.

5 Using R for ANOM

The open-source software R is a popular and well-established tool in many areas of statistics and applied
sciences. In quality control, however, R has been neglected for some reason or other. This is quite contrary
to its vast amount of functions exceeding that in many commercial software products. The objective of this
section is to illustrate R’s versatility for ANOM-type data analysis by means of worked examples.
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The R package multcomp Hothorn et al. (2008) provides a universal implementation of MCTs which
are, as we have seen, just a generalization of ANOM. Several other packages contain functions for more
specialized applications. Computation of quantiles from multivariate t-distributions is generally based on
the Genz-Bretz algorithm Genz and Bretz (2009) and implemented in the package mvtnorm Genz et al.
(2013). An elaborate description of multiple comparisons using R is given in Bretz et al. (2010).

What has been missing in R so far is a function plotting ANOM results in a decision chart. We provide
such a function in our package ANOM Pallmann (2015), which is downloadable for free by executing this line
in R:

install.packages("ANOM")

In the following hands-on guide to the usage of the package ANOM we take the reader’s basic familiarity
with R for granted.

5.1 Standard ANOM

Hsu (1984) presents data from a comparison of seven brands of water filters. Water samples were run through
the filters and then they were incubated; the number of bacterial colonies growing on each filter was taken
as a measure of its efficiency (good filters are littered with many colonies). The dataset is unbalanced as
only two devices of brands 4 and 7 were tested but three of all other brands. The complete data is stored in
the R package ANOM; we can access it via:

library(ANOM)

waterfilter

Assuming a normal distribution and homogeneous variances across filter brands, we can apply a grand
mean MCT to assess whether any of the brands filter fewer bacteria than average at a multiple type I error
level of 5%. The workflow in R is straightforward: after loading the package multcomp, we fit a linear model
to the data and apply a generalized linear hypothesis test with grand mean contrasts:

library(multcomp)

wfmodel <- lm(colonies ~ brand, data=waterfilter)

wf <- glht(wfmodel, mcp(brand="GrandMean"), alternative="less")

We set the option alternative="less" because we only want to detect filter brands that are inferior to the
grand mean, and hence testing one-sided hypotheses is appropriate. Adjusted p-values and corresponding
SCIs are computed with the commands summary(wf) and confint(wf). A concise presentation of the results
is provided in a decision chart (Figure 3) obtained by

ANOM(wf)

We find that devices of brand 1 filter significantly fewer bacteria from water samples than average, which
is underpinned by the small adjusted p-value of 0.002. The ANOVA F -test yields even smaller a p-value of
0.0006 but does not disclose which of the brands are worse than average.

This simple analysis is based on the doubtful assumption of equal group variances. Especially brands
4, 6 and 7 have distinctly smaller variances than the other groups, suggesting a modified ANOM procedure
that can cope with heteroscedasticity. If fact, heterogeneous variances are rather the rule with real-world
data than the exception.

5.2 ANOM with heterogeneous variances

One approach to take unequal variances into account is to replace the covariance matrix from the linear
model with a heteroscedasticity-consistent (HC) sandwich estimate as proposed in Herberich et al. (2010).
We redo our analysis with the help of the sandwich package Zeileis (2004) and get a decision chart with
altered decision limits:

library(sandwich)

wf1 <- glht(wfmodel, mcp(brand="GrandMean"), alternative="less",

vcov=vcovHC)

ANOM(wf1)

The modified covariance matrix changes the results: now we find that both filter brands 1 and 4 host
significantly fewer bacteria than the grand mean of all filters (Figure 4). Brand 4 filters have ‘gained’
significance at the multiple 5% level because their mean is estimated with very small error.

A different way of acknowledging heteroscedasticity is to compute separate degrees of freedom and critical
values for each of the contrasts Hasler and Hothorn (2008). This is implemented in the R package SimComp

Hasler (2012); setting the option covar.equal=F invokes the desired heteroscedasticity adjustment:

8



library(SimComp)

wf2 <- SimCiDiff(data=waterfilter, grp="brand", resp="colonies",

type="GrandMean", alternative="less", covar.equal=F)

wf2p <- SimTestDiff(data=waterfilter, grp="brand", resp="colonies",

type="GrandMean", alternative="less", covar.equal=F)

ANOM(wf2, stdep=waterfilter$colonies, stind=waterfilter$brand, pst=wf2p)

The decision chart of the water filter data using this method (Figure 5) looks somewhat different from
Figure 4, and the difference of filter brand 1 to the grand mean is no longer significant due to the large
variance in this sample. Note that estimating group-specific variances may be problematic with sample sizes
as small as in our example.

5.3 ANOM for ratios to the grand mean

Yet another option when analyzing the water filter data is to assess ratios to the grand mean instead of
differences. This has the advantage that the effects can be nicely interpreted as the group means’ percent
deviations from the grand mean. The ratio functions from SimComp will compute SCIs and p-values, and
again we use the heteroscedastic versions:

wfr <- SimCiRat(data=waterfilter, grp="brand", resp="colonies",

type="GrandMean", alternative="less", covar.equal=F)

wfrp <- SimTestRat(data=waterfilter, grp="brand", resp="colonies",

type="GrandMean", alternative="less", covar.equal=F)

ANOM(wfr, stdep=waterfilter$colonies, stind=waterfilter$brand, pst=wfrp)

We get Figure 6, which looks identical to Figure 5 except the scale of the y-axis has been changed to
percentages.

5.4 ANOM for clustered data

Four ergonomically designed stools were tested by nine different people who rated the effort to raise from
these stools on the so-called Borg scale (it measures perceived exertion on a scale of 6–20) Wretenberg et al.
(1993). This is a ‘block’ design with nine clusters of observations (the raters), and the experimental structure
should be correctly reflected in the statistical analysis. Hence the method of choice is a linear mixed-effects
model that can be fitted in R using the package nlme Pinheiro et al. (2013), which also contains the dataset.
The stool types are modeled as fixed effects and the test persons are considered random:

library(nlme)

esmodel <- lme(effort ~ Type, random=~1|Subject, data=ergoStool)

Now we can use our mixed-effects model fit to perform MCTs with a grand mean contrast matrix and build
the ANOM decision chart. The arguments xlabel and ylabel help us modify the axis labels to our taste:

es <- glht(esmodel, mcp(Type="GrandMean"), alternative="two.sided")

ANOM(es, xlabel="Stool Type", ylabel="Exertion (Borg Scale)")

We see that the effort to raise from stools of types 1 and 4 is significantly lower than average whereas stool
type 2 causes exertion above the grand mean (Figure 7).

5.5 ANOM with a binomial endpoint

Nelson et al. (2005) present binomial data from a comparison of math achievements among ten elementary
schools in a U.S. district: six conventional neighborhood schools (N1 through N6) and four alternative schools
(A1 through A4). The performances of 563 fifth graders were assessed using a standardized test score, and
the outcome was defined as the proportion of children scoring proficient. This dataset is stored as object
math in the ANOM package.

We investigate the differences of the binomial proportions versus the grand mean using a so-called Add-2
adjustment i.e., two successes and two failures are added to each group Agresti and Caffo (2000). Corre-
sponding R functions can be found in the package MCPAN Schaarschmidt et al. (2013):

library(MCPAN)

add2 <- binomRDci(n=math$enrolled, x=math$proficient, names=math$school,

alternative="two.sided", method="ADD2", type="GrandMean")

add2p <- binomRDtest(n=math$enrolled, x=math$proficient, names=math$school,

alternative="two.sided", method="ADD2", type="GrandMean")

ANOM(add2, xlabel="School", ylabel="Proportion Proficient", pbin=add2p)
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We find that roughly 74 % of students overall scored proficient, but there are large discrepancies between
schools. Figure 8 reveals that neighborhood schools N1, N3, and N4 had significantly higher proportions
of successful students in comparison to the mean of all schools. On the other hand, neighborhood school
N2 and the alternative schools A3 and A4 performed exceptionally lousy (and significantly below the grand
mean).

5.6 ANOM for variances

Quality control inspectors examined the uniformity of springs of four brands; they collected six springs per
brand and determined the weight needed to stretch each spring by 0.1 inches Nelson et al. (2005). Their goal
was to track down brands whose stiffness is highly variable, which would probably make them unmarketable.

The dataset is called spring in the ANOM package, and we add two columns to it: each brand’s median
weight, and each spring’s absolute deviation from the corresponding brand median (robust Levene residuals):

spring$median <- tapply(spring$weight, spring$brand, median)[spring$brand]

spring$absdev <- with(spring, abs(weight - median))

Then we can construct the ANOM chart as usual:

spmodel <- lm(absdev ~ brand, spring)

sp <- glht(spmodel, mcp(brand="GrandMean"), alternative="greater")

ANOM(sp, xlabel="Brand", "Absolute Deviation from Median")

Figure 9 shows that the stiffnesses of brands 1 and 4 are more variable than average but still quite far
from being significant.

5.7 Further examples

A PDF guide with more worked examples, including ANOM for Poisson data, ANOM in a two-way layout,
nonparametric ANOM, and an in-depth elaboration on ANOM with mixed-effects models, is embedded in
the ANOM package and can be accessed through vignette("ANOM", package="ANOM").

6 Discussion

The analysis of means has been applied in quality control for several decades and with numerous extensions
e.g., for discrete endpoints, unbalanced data, heterogeneous variances, various experimental designs, and
more. Nonparametric approaches have been proposed as well as tests for comparing variances. Usually
ANOM has been treated as if it were a stand-alone method, but in truth it belongs to a much broader class
of multiple comparison procedures known as multiple contrast tests. One advantage of perceiving ANOM as
a grand mean-type MCT is that it makes ANOM available in the non-commercial software R that facilitates
computing multivariate t quantiles, which are the key to obtaining adjusted p-values, SCIs, and the popular
ANOM charts, which we implemented for the first time in R. Our package ANOM is open-source software and
can be downloaded for free.

In many cases, however, adjusting for multiplicity with critical values from a multivariate t-distribution
is over the top. The power gain compared to a simple Bonferroni correction is practically irrelevant. The
clear advantage of Bonferroni’s method is that it is blindingly easy to use and widely known among non-
statisticians. Especially when there are lots of group means to be compared to the grand mean, a simple
Bonferroni correction works fine, and the improvement of applying a more sophisticated method which
acknowledges the correlation in the multivariate t-distribution is negligible.

The decision whether to analyze data with ANOM or ANOVA should be based on subject-matter grounds
since both procedures provide distinctly different information. Whenever the question of interest is ‘Which
groups differ from the grand mean?’, a multiple comparison procedure like ANOM yields more meaningful
results than purely global inference using the F -test, and it can even be more powerful in finding differences.
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Figure 1: Power of ANOM and ANOVA for k = 10 groups, sample sizes ni = {3, 5, 10} per group
(balanced one-way design), and 0 ≤ b ≤ 3 under ten different configurations of the alternative, including
both LFCs (α = 0.05).
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Figure 3: ANOM decision chart for the water filter data (assuming homogeneous variances).
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Figure 4: ANOM decision chart for the water filter data (accounting for heterogeneous variances via
sandwich covariance estimation).
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Figure 5: ANOM decision chart for the water filter data (accounting for heterogeneous variances using
multiple degrees of freedom).
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Figure 6: ANOM decision chart for the water filter data (accounting for heterogeneous variances using
multiple degrees of freedom) in terms of percentages.
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