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Abstract 
 Recent metagenomics studies have begun to sample the genomic diversity among 
disparate habitats and relate this variation to features of the environment. Membrane 
proteins are an intuitive, but thus far overlooked, choice in this type of analysis as they 
directly interact with the environment, receiving signals from the outside and transporting 
nutrients. Using Global Ocean Sampling data, we found nearly ~900K membrane 
proteins in large scale metagenomic sequencing, approximately a fifth of which are 
completely novel, suggesting a large space of hitherto unexplored protein diversity. 
Using GPS coordinates for the GOS sites, we extracted additional environmental features 
via interpolation from the World Ocean Database, the National Center for Ecological 
Analysis and Synthesis, and empirical models of dust occurrence. This allowed us to 
study membrane protein variation in terms of natural features, such as phosphate and 
nitrate concentrations, and also in terms of human impacts, such as pollution and climate 
change. We show that there is widespread variation in membrane protein content across 
marine sites, which is correlated with changes in both oceanographic variables and 
human factors. Further, using these data, we developed an approach, Protein Families 
and Environment Features Network (PEN), to quantify and visualize the correlations. 
PEN identifies small groups of co-varying environmental features and membrane protein 
families, which we call “bimodules”. Using this approach, we find that the affinity of 
phosphate transporters is related to the concentration of phosphate and that the 
occurrence of iron transporters is connected to the amount of shipping, pollution, and 
iron-containing dust.  
 
Introduction  
 Integral membrane proteins play a fundamental role in sensing and interacting 
with the environment, allowing the influx and efflux of ions and molecules and relaying 
information about environmental conditions to the cell. Thus, the abundance and types of 
membrane protein families in a microbial community may give information about 
functional capabilities and nutritional requirements. In marine microorganisms, especially 
those inhabiting the oligotrophic (nutrient-poor) surface waters of the oceans, membrane 
protein content might provide insight into types of nutrients and conditions in the waters 
in which the organisms were isolated. For example, the recent discovery of spectral 
tuning of the light-driven proton pump proteorhodopsin reveals a relationship between a 
single amino acid mutation and dominant light wavelengths in the microbes surroundings 
(Rusch et al. 2007). 
 A number of recent studies have begun to relate functional attributes of microbial 
communities, such as central metabolism or broad functional classes (e.g. protein 
synthesis), to specific habitats (Dinsdale et al. 2008; Tringe et al. 2005) or environmental 
features (DeLong et al. 2006; Gianoulis et al. 2009; Kunin et al. 2008).  In addition, new 
methods are allowing the integration of quantitative features of the environment 
alongside microbial function (DeLong et al. 2006; Gianoulis et al. 2009). 

Given their important role in environmental sensing and transport, membrane 
proteins may serve as an even more sensitive barometer of environmental conditions than 
broad functional classes or central metabolism. In addition, integration of many different 
environmental conditions is needed to develop a comprehensive understanding of the 
complex interplay between environmental conditions and microbial communities. In 
particular, new techniques are needed to investigate the relationship between natural 
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processes such as nutrient fluxes and the impact of humans on the environment 
(anthropogenic effects), such as pollution. Given the nutrient fluctuations and 
anthropogenic effects observed in the world’s oceans, understanding the relationship 
between such factors and microbial adaptations is particularly timely. Indeed, Halpern et. 
al. (Halpern et al. 2008) estimated that 40% of the world's oceans are substantially 
affected by human activity by computing indices for pollution, shipping, ultraviolet 
radiation, and climate change, among others. 

To gain a better understanding of the relationship between environmental 
conditions and membrane protein content and abundance, we used 29 samples of the 
Global Ocean Sampling (GOS) Expedition (Rusch et al. 2007). This survey provided 
metagenomic sequence and environmental data (chlorophyll, water depth, sample depth, 
salinity, temperature), as well as GPS coordinates of the sampled sites. We used the GPS 
coordinates to extract additional environmental features from several disparate sources, 
providing both natural features, such as nutrient concentrations, and anthropogenic 
features, such as pollution. Integration of these quantitative measurements allowed us to 
investigate the relationship between microbial communities, nutrient dynamics, and 
anthropogenic effects, and in particular the relative importance of the various classes of 
membrane proteins in microbial adaptations.  

 
Results 
 
Integration of Environmental Features  

The GPS coordinates provided for the sampled sites were essential to cross 
reference different sources of information, mainly provided as annotated maps of the 
ocean. We integrated this data by interpolation of the map projections onto the GOS 
geographic coordinates (latitude and longitude information). To select the sites for further 
analysis, we used Google Earth to compare locations of GOS sites to locations of 
available data (some maps were sparse). We were able to extract an additional 11 
environmental features for 29 sites: phosphate, nitrate, silicate, dissolved oxygen, and 
apparent oxygen utilization information from the World Ocean Database (Antonov et al. 
2006; Garcia et al. 2006; Locarnini et al. 2006), pollution, shipping routes, ultraviolet 
radiation, ocean acidification, and climate change information from National Center for 
Ecological Analysis and Synthesis (NCEAS) (Halpern et al. 2008), and dust levels, which 
serve as a proxy for oceanic iron concentrations from Jickells et. al.(Jickells et al. 2005) 
(see supplement for additional information on environmental features). We have placed 
the features data for each of the sites on an interactive GoogleEarth map: 
http://metagenomics.gersteinlab.org/membrane/. 
 
Membrane Protein Prediction/Variation 
 Using PRODIV-TMHMM (Viklund and Elofsson 2004), we identified ~1.3 
million proteins of the 6 million proteins in the GOS protein dataset (Yooseph et al. 
2007) as having at least one membrane spanning region. We filtered this set to include 
only high confidence peptides (see supplement and  methods for more details on protein 
filtering) which resulted in 873,718 predicted membrane proteins. Due to the nature of 
the prediction, there is likely a bias against membrane proteins with a small number of 
transmembrane helices. Further, as our selection method is quite stringent, we are likely 
underestimating total membrane protein content, however, the relative proportions 
between the sites should remain consistent. Membrane protein content ranged from 
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12.2% (Gulf of Maine) to 15.0% (Off Key West, Fl and Roca Redonda) with an average 
of 14.2% (Supplementary Table 1). For comparison, in the known 
heterotrophic/photosynthetic microbial genomes, the predicted transmembrane helical 
protein content ranges from 21% (Acinetobacter baumannii) to 33% (Chloroflexus 
aurantiacus) with a median of 28%. 
 To examine functional differences across the sites, we homology mapped 237, 
870 of the predicted membrane proteins to known annotation using Clusters of 
Orthologous Groups (COG) (Tatusov et al. 2000). We filtered this set to the 151 
membrane families involved in transport processes (transporters, channels, permeases) as 
these families should be particularly sensitive to environmental perturbations and 
additionally, to strengthen the signal in our further analysis and prevent overfitting the 
data (Supplementary Table 4). 
 
Standard Methods 

For the 29 sites, we computed the fraction of peptides belonging to each of the 
151 families and created a Membrane Protein Families Matrix (the rows are the 29 sites, 
and the columns are the families) and similarly, an Environmental Features Matrix (rows 
are the 29 sites and the columns are the 15 environmental features) (Figure 1a). Using 
these matrices, there are numerous straightforward correlations we can perform to 
investigate the relationship between and within the features and families across the sites 
(Figure 1b). For example, one can compute the pair-wise correlation across sites between 
different families, environmental features, or even between families and environmental 
features. In addition, one can transpose the above, and correlate the sites on the basis of 
either environmental features or membrane protein families (resulting in a site-site 
correlation or similarity matrix, see Supplementary Figure 5). For simplicity, we refer to 
these site-site correlations (SS) as SS-Env or SS-Fam, for the environmental and 
membrane protein-based site-site correlations, respectively. 
 In particular, when calculating SS-Env we observed significant variation between 
the sites as shown in Figure 2a, where site pairs are color coded according to their 
similarity. Additionally, clustering the sites based on the similarity of the environmental 
features (see methods) revealed a distinct latitudinal influence in the data, separating the 
sites into three groups (Figure 2a-b): the North Atlantic, the Mid-Atlantic, and the 
Pacific. Such a finding is perhaps expected as the sites are not physically isolated from 
each other, and they were sampled from the North Atlantic through the Pacific over the 
course of 12 months. Thus, adjacent samples were likely subjected to similar seasonal 
(temporal) effects, such as phytoplankton blooms, nutrient-carrying currents, and 
temperature, and similar spatial effects, such as nutrient gradients. In addition, specific 
environmental features appeared to have distinct patterns among the clusters. For 
example, phosphate concentrations were generally lower in the mid-Atlantic than the 
other two regions while acidity was high, and pollution/shipping/climate change were all 
relatively low in the Pacific.  

The SS-Fam matrix also showed variation across the sites (Figure 3a, color bar 
reference Figure 2a). Thus, even across these qualitatively similar ocean habitats, we are 
able to see differences in the abundance and types of membrane protein families in the 
genomes present. Interestingly, upon visual comparison with the site-site correlations of 
the environmental features matrix we observe some concordance between regions of high 
and low correlations (comparison of Figure 2a and 3a, sites are ordered similarly). This 
suggests there is a relationship between sites such that sites with similar environmental 
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features have similar membrane protein content and vice versa. 
 
Environmental versus Phylogenetic Variation 
 A factor that could explain the observed variation across the sites is differences in 
species composition. The environmental differences would affect the types of species 
preferentially inhabiting these sites, and in turn this could explain the observed genomic 
variation. Thus, for comparison, we calculated the GOS SS-16S (20% 16S divergence 
groups) (Biers et al. 2009) to determine phylogenetic similarity of the sites (Figure 3b). 
However, we were unable to find a significant relationship between the phylogenetic-
based and environmental-based site-site similarity (for methods see Supplementary 
Figure 6). The average correlation between SS-16S and SS-Env was 0.2 (Figure 3d); 
whereas, the average correlation between SS-Env and  SS-Fam was 0.5 (Figure 3d). This 
suggests that the observed membrane protein variation is more a function of the measured 
environmental features, than phylogenetic diversity. It is important to note, however, we 
only had enough statistical power to look at the 20% divergence level of the 16S profiles 
and we cannot rule out the possibility that a lower divergence level could result in a 
greater concordance between environmental site similarity and 16S profile similarity. 
 

Variation in Membrane Protein Families corresponds to environmentally distinct 
regions 
 Above, we show that the variation in membrane proteins is reflected in the 
variation in the environmental features; however which families and features are 
contributing to the association remains unanswered. There are a host of multivariate 
statistical techniques for understanding these types of complex (many-to-many) 
relationships between datasets. Thus, we began our analysis by employing a variety of 
standard and published techniques: 1) Principal component analysis (PCA) 2) 
Discriminative Partition Matching (DPM) (Gianoulis et al. 2009) and 3) regularized 
Canonical Correlation Analysis (CCA)(Gonzalez et al. 2008) . Further, we developed a 
technique which we call Protein Families and Environmental Features Network (PEN) to 
address limitations in the quantification of associations and visualization of the results of 
CCA.  
 
Principal Components Analysis and Discriminative Partition Matching 

As demonstrated above, hierarchical clustering of the sites based on their 
environmental features revealed three distinct geographical regions (Figure 2a-b). A 
similar pattern emerged after using a data reduction technique, principal component 
analysis, of the sites and the proportion of membrane proteins at each site.  In brief, each 
principal component is a weighted linear combination of features. These weights or 
scores can be used as new axis allowing the projection of the sites into a new lower 
dimensional space.  We observed that sites deemed more similar in the environmental 
clustering; also had a greater tendency to be closer together based on their membrane 
proteins.  For example, in Figure 4a, the first component scores show that the occurrence 
of membrane proteins in the North Atlantic environmental cluster can be distinguished 
from the Mid-Atlantic and Pacific environmental cluster. As the clustering of the 
environmental features is done separately from finding variation in the membrane protein 
families, we independently show that the grouping of the sites based on environmental 
features is partially reflected in the membrane protein content.  

As the PCA showed the Mid-Atlantic and Pacific to be similar, we grouped these 
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sites into ‘Mid-Atlantic/Pacific’ cluster and used DPM to determine which specific 
families were discriminating between them and the North-Atlantic cluster. Briefly, DPM 
assesses whether the distribution of a specific protein family is significantly different 
“discriminates” between the two partitions. Thirty families showed significant 
discrimination (q-value<0.05) between the two site sets, and interestingly most were 
enriched in the North Atlantic (28/30) (Figure 4b and 4c) (Supplementary Table 5). 
 In the North Atlantic environmental cluster, there is enrichment in several 
proteins involved in inorganic ion transport. One such protein is a magnesium transporter,  
which is likely related to the higher chlorophyll content (p-value <0.01) and thus bacterial 
abundance (Bird and Kalff 1984) in these regions. The North Atlantic sites also have 
higher pollution rates (p-value <0.01) and possible nutrient availability due to coastal 
proximity; such features are also indicative of regions with increased cell growth and 
proliferation (Kirchman 2008). Magnesium is not only contained in the center of the 
chlorin ring, it is a central player in the stabilization of DNA and RNA, thus one can 
presume in dividing cells larger quantities of the ion would be required. Most 
interestingly, however, there is an increase in many families involved in 
efflux/secretion/antimicrobial processes. The enrichment in these proteins may reflect the 
microbes’ need to expel antimicrobials, by-products of metabolism, or environmental 
toxins (Neyfakh 1997). In addition, there are a set of proteins related to protection from 
osmotic shock (glycine/betaine, K+, mechanosensitive channel), which may be acting to 
buffer against shifts in ocean solute concentrations (Poolman et al. 2002), again alluding 
to the increased pollutants, and possibly nutrient fluxes from land and rivers.  
 One interesting protein observed to increase in the North Atlantic is the ATP/ADP 
translocase. This protein is found in mitochondria, as well as obligate intracellular 
parasites of Chlamydiae and Rickettsiae where they function to exchange host ATP for 
ADP, thereby sequestering host nutrients (Winkler and Neuhaus 1999). It is uncertain in 
what capacity they function.  One intriguing possibility is that they originate from marine 
parasites. Although a recent survey showed that a number of putative ATP/ADP 
translocases should have been annotated as a more general nucleotide/H+ transporters 
(Tjaden et al. 1999), thus simple misannotation of the class cannot be ruled out. 
 
Canonical Correlation Analysis 
 Although the previous analysis is useful in finding discriminating families 
between environmentally distinct groups, it does not capitalize on the natural gradients in 
the environmental features we were able to extract. Consequently, we performed 
regularized CCA, which maximizes the correlation between linear combinations of the 
two sets of variables, to reveal a finer grained picture of the relationship between 
environmental features and membrane protein families(Wichern and Johnson 2003). As 
our analysis of site-site correlations revealed concordance of the environmental features 
and membrane protein families in assessing the similarity of the sites, this analysis is 
justified and may be able to reveal more specific correlated features. 
 Similar to PCA, CCA gives us a number of principal directions that describe the 
greatest degree of co-variation between features (Borga et al. 1992). Interpretation of 
CCA is commonly performed by plotting plot the first two of these structural correlates, 
schematized in Figure 1c (left) (Gonzalez et al. 2008). Those families and environmental 
features that are close in this structural correlation space are referred to as co-varying.   

From the structural correlation plot (Figure 5a), we observed all 15 environmental 
features and 107 out of 151 membrane protein families varying across the 29 sites. These 
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points are outside the 0.3 circle and can thus be considered varying with respect to the 
other set of features (Borga et al. 1992; Guo et al. 2006; Wichern and Johnson 2003) 
(44/151 families were invariant, points inside 0.3 circle) (Supplementary Tables 6-7). No 
single COG functional category was over-represented in either the variant or invariant set 
(P-value >0.05). However, notably, 34 out of the 41 ABC transporters in the dataset were 
shown to co-vary with the environmental features.  

Between the environmental features, we observe many intuitive relationships. As 
an example, ocean-based pollution and shipping lanes are highly correlated as expected 
due to the overlap in measurement (same direction on plot)(Halpern et al. 2008). In 
addition, shipping itself is a contributor to ocean pollution given emissions from fuel 
burning and ballast water (which can bring invasive species)(Satir 2008). Predictably, 
dissolved oxygen shows a negative relationship with water temperature (as oxygen more 
readily dissolves in colder waters, opposite direction on plot) and also, as it is a by-
product of primary production, a positive relationship with chlorophyll. In addition, the 
positive relationship between nitrate, phosphate, and silicate reflect similarities in the 
gradients of nutrients across the sites. 
 
PEN 

Solely using the structural correlations plot to analyze the results is problematic 
for several reasons.  First, it is difficult to draw conclusions on the strength and 
directionality of a relationship between variables, especially negative relationships as 
they are not close in space, although such relationships can be identified by looking at the 
tabular form of the data. Second, the relative weight of the features’ relationships can be 
difficult to visualize and compare. Third, there is no real means of quantifying co-
variation between specific sets of features, nor do standard visualization methods allow 
for comparisons in more than three dimensions.  To better quantify and visualize the 
results of CCA, we developed a new approach we call Protein Families and 
Environmental Features Network (PEN).  

In brief, PEN creates a network from the CCA results, where each environmental 
feature and membrane protein is a node and the edges are weighted by taking the dot 
product between the structural correlations in the first and second dimensions (the 
procedure easily generalizes for the case of more than 2 dimensions).  

We then use a simplified version of connected components analysis and prune all 
the edges with absolute value weights below 0.5 (see methods). This simple metric 
provides an intuitive means of visualizing environmental/membrane protein clusters as it 
gives greater weight to features closer to the correlation circle (outer circle in Figure 1c), 
as well as to features that have a small angle between them relative to the x-axis. Such 
features represent strongly co-varying pairs or sets of features. We can use the topology 
of the network to identify these sets of tightly (negatively, red edges and positively, green 
edges) correlated environmental features and membrane proteins families which we term 
bimodules. (Figure1c).   
 In the pruned network derived from the structural correlates, we observe two 
distinct bimodules (Figure 5b), comprising families and environmental features that have 
both negative and positive relationships (see Supplementary Table 9 for edge weights) . 
The first bimodule contains temperature, salinity and chlorophyll with many shared 
connections between membrane families, and the second contains phosphate, nitrate, and 
silicate (which are themselves inversely related to acidity, shipping and pollution). UV, 
dissolved oxygen, apparent oxygen utilization, sample depth, and water depth, although 
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showing variation across the sites (outside 0.3 circle in Figure 5a), are not related to any 
specific membrane protein family and are thus not included in the graph. It is unlikely 
that these features are not affecting microbial diversity; it maybe the case that limiting 
our genomic data to membrane proteins is not allowing us to highlight these influences. 
 From the network, we see both intuitive and non-intuitive relationships between 
the features and membrane protein families. For example, chlorophyll concentration and 
a magnesium ABC transporter (COG0598) are positively related likely due to the 
relationship between chlorophyll and bacterial abundance (and thus proliferation)(Bird 
and Kalff 1984) and to the fact that chlorophyll molecules contain a magnesium ion at the 
center of the ring structure. This was inferred from the DPM analysis as these 
transporters were enriched in the North Atlantic (area of high chlorophyll), but here we 
are able to explicitly see the relationship between the two variables. 

A less intuitive relationship, but nonetheless interesting, is a negative relationship 
between an ABC transporter involved in polyamine (putrescine/spermidine) transport 
(COG1176) and ocean-based pollution/shipping (Figure 5d). Polyamines are nitrogen 
rich compounds found in all living matter and they play an important role in the 
stabilization of DNA structure (Flink and Pettijohn 1975). Although their exact role is 
unknown, during cell growth in response to proliferative stimuli, both their uptake and 
biosynthesis is increased (Igarashi and Kashiwagi 2000). Possible sources of polyamines 
in ocean water are from the degradation of organic matter, amino acids and proteins, 
where they are quickly taken up by bacteria (Lee and Jorgensen 1995). The negative 
relationship we observe might reflect the increased amount of polyamines in the 
environment in polluted, nutrient rich waters, where fewer transporters would be needed 
for uptake. In these nutrient rich areas, cell growth and death rates may be higher, leading 
to increased concentrations of polyamines.  
 
Phosphate 

The most pronounced negative relationship observed is that of phosphate 
concentrations and ABC-type phosphate transporters (COG0573 and COG0581) and 
phosphonate transporters (COG3639). These ABC transporters comprise pstA, pstC, and 
phnE of the phosphate (pho) regulon in E. coli that have previously been shown to be 
involved in the active uptake of phosphate from the environment during phosphate 
limitation (Karp et al. 2002). Interestingly, we also observed the converse with the 
phosphate/sulfate permease PitB in E. coli (COG0306; Figure 5c).  The relationship 
between PstA/C and phosphate starvation conditions has been well-characterized(Martiny 
et al. 2006; Martiny et al. 2009); however, the positive relationship between the lower 
affinity PitB and phosphate concentration suggests a more subtle influence of 
environmental parameters on modulating membrane content. That is, when phosphate 
concentration in the environment is low, more genes are present encoding high affinity 
phosphate transporters (pstA/pstC/phnE) are present, and when phosphate concentration 
is high, more genes encoding a low-affinity transporter (PitB) are present. 
 Further, we observe a positive relationship between an ABC transporter predicted 
to be involved in Lipophospholipase L1 biosynthesis (COG3127) and phosphate levels, 
suggesting increased cellular activities related to phospholipids with increased phosphate 
concentrations. Phosphate concentrations have been shown to modulate lipid content in 
marine bacteria, where in organisms in low phosphate regions replace phospholipids with 
non-phosphorous containing lipids(Van Mooy et al. 2009).  
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Iron 
We observe a striking network of relationships between protein families involved 

in the active uptake of iron (COG0609: ABC Fe3+ siderophore transporter, COG1178: 
ABC Fe3+ transporter and COG4558: ABC Hemin transporter) and areas of high ocean-
based pollution and shipping (Figure 5d). Iron is a critical resource essential to 
microorganisms for a diverse array of enzymatic reactions and cellular processes such as 
respiration, photosynthesis, and nitrogen fixation. As such, its depletion has been shown 
to limit microbial growth even in the presence of other essential nutrients, such as 
phosphates and nitrates. Regions with such a limitation have been termed High 
Nitrate/Low Chlorophyll (N/C) regions, an example of which is the Equatorial Pacific 
(Pacific)(Kirchman 2008).We hypothesize that the increase in gene content related to iron 
acquisition observed in low pollution/shipping areas may reflect a greater difficulty in 
attaining this nutrient. Indeed, siderophores in particular are known to be produced by 
bacteria under iron limited conditions to actively sequester iron from the environment 
(Guan et al. 2001).  

The main sources of iron in the ocean are aeolian dust from land (Figure 6a), as 
well as terrestrial input near coastal regions, fluvial input, and upwelling from the ocean 
floor, all of which are lacking in these low shipping/pollution sites. Interestingly, we 
observed that the areas of high ocean-based pollution/shipping (North Atlantic and Mid-
Atlantic) parallel areas that may have higher iron concentration. Presently, there are no 
means to directly measure iron concentrations; however, oceanographers haves shown 
that models of iron-containing dust (Jickells et al. 2005) (Figure 6b) can approximate iron 
concentrations. We found that iron values approximated from these dust models show 
significant negative correlation between COG4558 (p-value < 0.01), COG0609 (p-value 
< 0. 01), as well as the N/C ratio across the sites (Figure 6d). Such a trend is similar to 
our observation using shipping and pollution. In addition, searching the BRENDA 
database (Schomburg et al. 2002) for enzymes using iron as a cofactor revealed that an 
increase in these two families is negatively correlated to the amount of enzymes present 
that required iron. Thus, similar to phosphate, it may be that in these low 
pollution/shipping areas (open ocean, low aeolian dust input) microorganisms increase 
the production of siderophore and iron transporters to enable survival in a low iron 
environment. 
  
Unknown Fraction 
 Intriguingly, of the 1.2 million unique proteins with at least one predicted 
membrane spanning region, 15% had no homology to any protein currently in Genbank 
(e-value >1e-10) suggesting a large and hitherto unexplored space of membrane protein 
diversity. To further characterize this unknown fraction, we searched for known binding 
motifs by running each predicted membrane protein against PROSITE (Hulo et al. 2008). 
Resulting in the functional characterization of 29,384 (15%) of this unknown fraction 
including previously unannotated ABC transporters, beta lactamases, G protein receptors, 
and lipocalins among others (data not shown).   
 
Discussion 
 We presented the Protein Families and Environmental Features Network (PEN) as 
a means of describing, quantifying, and exploring the relationships between and among 
sets of environmental features and occurrence of membrane protein families. Such graph 
theoretical approaches have been shown to be useful in the study of biological systems 
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for understanding the complexity and global topology of relationships mediating protein 
and many other types of interactions(Barabasi and Oltvai 2004). PEN provides a simple 
flexible framework for exploring these complex relationships in the context of 
metagenomics datasets. Although complete characterization of an environment as 
complex and dynamic as the ocean is highly unlikely, through careful examination of the 
resulting bimodules we demonstrate the usefulness of such studies even within these 
limitations. We are able to identify pertinent conditions affecting protein diversity and 
recapitulate potential explanations for the observed variation, illustrating the robustness 
of this type of analysis.  

To date, most metagenomics studies integrating environment features have 
focused on the comparison of metabolic pathways or phylogenetic content among 
disparate habitats (DeLong et al. 2006; Dinsdale et al. 2008; Gianoulis et al. 2009; Tringe 
et al. 2005). Here, we focus on a specific set of membrane proteins sampled from sites 
with a high degree of environmental similarity (by removing outlying samples from the 
GOS dataset, such as estuaries and lakes), and use quantitative environmental features to 
differentiate factors that are affecting the genomic content. By selecting only membrane 
proteins, we are able to see relationships between a microorganism’s (or in this case, 
superorganism’s) external barrier, mediating the transport of molecules in and out of the 
cell, and features of its environment. We show that indeed there is widespread variation 
in most membrane protein families and these can be explicitly correlated to both nutrient 
availability and anthropogenic influences.  In fact, the median structural correlation 
coefficient for the membrane proteins is 0.3 whereas for metabolic pathways it is 0.17 
(Gianoulis et al. 2009) suggesting  that membrane protein covariation is stronger with this 
set of environmental features (see Supplement). 
 Our results comparing membrane protein content to environmental features and 
species diversity add to the growing body of evidence suggesting that genome plasticity 
may be largely driven by environmental factors and less a result of species specificity. 
Given the large amount of horizontal gene transfer, observed intraribotype diversity, and 
the growing appreciation of the impact and prevalence of ocean viruses in surface waters 
(Williamson et al. 2008) (Sharon et al. 2009), it might be expected that phylogenetic 
composition could play less of a role in determining membrane protein functions present 
in a organism. There are a number of instances in the literature suggesting genome 
content differences even within species (‘ecotypes’), reflect the environment conditions 
in which they were extracted (Thompson et al. 2005; Martiny et al. 2006; Van Mooy et 
al. 2009). As an example, two ecotypes of the ocean dominating Prochlorococcus, high-
light (HL) and low-light (LL), are adapted to inhabit different levels of the water column, 
reflecting genomic adaptation to environmental characteristics (West and Scanlan 1999). 
In addition, in the GOS analysis of whole genomic content (Rusch et al. 2007), it was 
observed that there was a clear distinction between sites, and this was still evident upon 
limiting to or removing reads from dominant species, suggesting more global niche 
differences.  
 An advantage to our analysis is that it reveals not only the environmentally-
influenced fraction of the membrane proteins but also provides a window into those 
membrane proteins that appear insensitive to this set of environmental features, 
suggesting an importance to their function. For example, in our CCA analysis, we find 44 
out of the151 families to be invariant across the sites, including the ubiquitous chloride 
channel and type III secretion proteins involved in virulence, as noted previously to be 
abundant in marine bacteria (Persson et al. 2009). Within these invariant proteins there is 
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a suggestion of functional importance, whether for essential cellular processes or 
processes intrinsic to their ocean habitats. 

Across the variant set, we observed a significant proportion of ABC-type 
transporters (34/41) co-varying with the environment, illustrating a possible case of 
streamlining for optimization and energy conservation. Responsible for the high affinity 
transport of a wide array of substrates, and in some cases having broad specificity, these 
proteins provide an efficient means of transport in oligotrophic surface waters. As noted, 
these proteins had a strong tendency to be inversely correlated with the prevalence of 
their substrate, as in the case of phosphate, showing possible adaptation to phosphate 
rich/poor conditions. Recently, Martiny et al.(Martiny et al. 2009), showed that the 
proteins surrounding the PhoB gene (the phosphate response regulator) in 
Prochlorococcus are enriched in GOS samples found in waters with low phosphate 
content. They limited sites selection to those sites with a high Prochlorococcus hit counts 
(2.5 hits per 1000 bp), thus focusing on nutrient adaptation in this species (only 11 sites 
overlapped between studies). We observed the same trend in our results, however we did 
not address any particular species, instead treating the environmental sites as a 
‘superorganism’. 
 Through the GPS coordinates provided by the GOS project, we were able to tap 
into a wealth of available geospatial data from those measuring natural fluxes to those 
assessing human impact. It is important to note that due to the nature of collection only 5 
out of the 15 environmental features used in this study were collected at the same time as 
the metagenomics sampling was performed. The remainder of the environmental features 
were derived from historical information resulting in sometimes large differences in time 
and space resolution between the environmental feature data and the metagenomics 
survey (Supplementary Figure 1). However, the characteristics of microbial communities 
are affected not just by the features at the time of sample collection but the history and 
flux of the features. We have only begun to skim the surface of the question of how much 
environmental history these communities carry, how much of a microbial footprint the 
environment reflects, and how much of our own footprint is reflected in both of them. 
The true test of these questions can only come through detailed examination of both 
microbial and environmental dynamics.  

In addition, the analysis presented here is of the linear interactions between the 
environment and membrane proteins. Capturing the nonlinear interactions will require 
some modifications to existing techniques (e.g. kernel CCA) making it a particularly 
promising avenue for future research. We chose to first explore the linear interactions for 
the ease of their interpretability. We hope this work serves as a motivation for collecting 
additional oceanographic and metagenomics datasets and exploring higher order 
relationships.   

We have used metagenomic data to quantitatively investigate the relationship 
between gene content and abundance in differing habitats. The questions we have 
addressed here are certainly not new, however, metagenomics studies are beginning to 
reveal these relationships on much larger scales. Thus, the strength of metagenomics 
studies is not only in their ability to study uncultivable organisms, but also in their ability 
to integrate layers of data in the study of whole community dynamics, and to untangle the 
intricate web of dependencies within habitats.  
 
Methods 
Preprocessing GOS data 
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Sequences and Metadata (salinity, chlorophyll, sample depth, water depth, 
temperature) from the GOS Expedition (Rusch et al. 2007) were downloaded from 
CAMERA (Seshadri et al. 2007). Sites were initially selected as in (Gianoulis et al. 
2009). All sites used a filter size of 0.1-0.8 µm. Peptides were mapped to sites as 
in(Gianoulis et al. 2009). Briefly, each peptide was mapped to its open reading frame 
(ORF) and back to its read (which mapped to a site) through the scaffolds. If a peptide 
originated from two reads from different sites combined in a scaffold, they were placed in 
both sites. Cluster annotation in CAMERA was used to remove clusters of peptides that 
were labeled as spurious and that contained fewer than four sequences. 
 
Environmental Data Integration 
  UV, shipping, pollution, climate change, and ocean acidification impact values 
for each of the sites were extracted using ArcGIS from maps from the National Center for 
Ecological Analysis and Synthesis (NCEAS)(Halpern et al. 2008). Each value represents 
the impact of the particular factor at the site based on the type of ecosystems present. The 
resolution of the data is 1 km square, and thus the value for the km square in which the 
site was contained was used. The other factors analyzed were not used due to the sparsity 
of the data at the GOS sites.  

Phosphate, silicate, nitrate, dissolved oxygen, and apparent oxygen utilization 
annual values of the objectively analyzed mean for each site at surface levels were 
extracted from maps provided by the World Ocean Atlas 2005(Antonov et al. 2006; 
Garcia et al. 2006; Locarnini et al. 2006). These environmental features are based on 
historical data regardless of year of observation, from various sources, with a resolution 
of 1 degree latitude/longitude.  
 
Site Selection 
 Sites were filtered for three main reasons: insufficient sample coverage, missing 
or nonrepresentative metadata, and metagenome composition outliers (see Supplementary 
Table 3 for a site-by-site breakdown; Supplementary Figures 2-4). We selected the 29 
sites based on availability of the environmental data as well as to measure subtle 
differences in genomic content across habitats. For example, Lake Gatan, a freshwater 
lake, and Punta Cormorant, a hypersaline lagoon, were removed as they were extreme 
environmental outliers with very different membrane protein (Supplementary Figure 2) 
and genomic content (Rusch et al. 2007) with no representative metadata. While these 
features of the outlier sites in themselves are interesting, we wanted continuous 
differences in terms of environmental data and sequence data for further analysis.  
 
Prediction of Membrane Proteins/Mapping to COG 
 Each non-redundant sequence was run through PRODIV-TMHMM (Eddy 1998) 
to predict membrane spanning regions and subsequently mapped to a Clusters of 
Orthologous Group (COG) using blastp (e-value threshold 1e-10)(Altschul et al. 1990). 
Only for 0.2% of the sequences the top two COG hits were inconsistent, thus the top hit 
for each sequence was used. If greater than 80% of the sequences in a COG were 
annotated as a membrane protein by PRODIV-TMHMM, the COG was labeled as a 
membrane COG (high confidence membrane proteins). This threshold was chosen 
arbitrarily given the number of partial protein sequences on GOS and error rate of 
PRODOV-TMHMM, and upon manual inspection of the COG descriptions. Membrane 
proteins that were not transporters, permeases, and channels (for example, oxidative 
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phosphorylation proteins) were manually removed to focus on transport and efflux 
processes. In addition, COGs that mapped to less that 1% of all sequences in the resulting 
sequence dataset were removed during the further analysis (peptides mapping to viral 
sequences, 0.01% (Williamson et al. 2008) were included due to the insignificant number 
and prevalence of horizontal gene transfer). 

 
16S Gene Data 
 16S data was taken from (Biers et al. 2009) at the 20% divergence level. Each site 
had an 18 element vector of counts for each 'phylum' (as referred to in (Biers et al. 
2009)). 
  
Pair-wise Correlations/Clustering 

Matrices (rows are sites, columns are either percentage of membrane protein 
families, 16S diversity, or environmental features) were standardized prior to performing 
pair-wise correlations (Pearson) of the sites (rows) and hierarchical clustering. 
 
PEN  

The membrane protein families and environmental features network was 
constructed using the structural correlations from regularized CCA. The dot product of 
the structural correlations in the first and second dimension between and within the 
membrane protein families and environmental features were calculated. The distance (dot 
product) threshold was set to >|0.5| and between every satisfying pair (nodes) an edge 
was placed. 
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Figure 1 (a) Environmental and Membrane Family Matrix construction. (b) Types of 
correlations that can be performed: (1) between either environmental features (Env-Env) 
or membrane protein families (Fam-Fam), (2) between an environmental feature and a 
membrane protein family (Env-Fam), or (3) between two sites (Site-Site) defined either 
through their membrane protein families (SS-FAM) or their environmental features (SS-
Env; see figures 2 for larger resulting heatmap and labels). (c) Quantification of 
relationships between environmental features and membrane protein families by 
construction of Env-Fam network from structural correlation coefficient plot. 
 
Figure 2 (a) Clustering of site-site correlations where each site is defined by a vector of 
15 environmental features (Site-Site Env heatmap). (b) Sites color coded by 
environmental clustering, shows strong concordance with geographic location, North-
Atlantic (blue), Mid-Atlantic (red), Pacific (orange) 

 
Figure 3 Site-site correlations where each site is defined by (a) 151 membrane protein 
families (Site-Site-Fam, (SS-FAM)) and (b) 16S genes at the 20% divergence level (SS-
16S) (sites ordered as in Figure 2a).  For each row of SS-FAM, we sort the correlation 
coefficients and convert them to rank-order. We then repeat this procedure for SS-16S 
and SS-Env (Figure 2a).  We then compare the ranks of SS-FAM and SS-Env, as well as, 
SS-16S and SS-Env.  If the rank vectors are similar to one another, this implies that 
differences in one set of features are reflected in differences in a second set of features.  
For the FAM/Env, this is indeed the case; however, the low rank correlation between 
16S/Env implies that 16S is not reflective of changes in environment as seen by the 
boxplot in (d). 
  
Figure 4 (a) Boxplot of PCA first component scores on Membrane Protein Family matrix. 
Separating sites by environmental clusters from Figure 2a shows the North Atlantic 
scores are distinguishable from the Mid-Atlantic/Pacific. Discriminate Partition 
Matching. Membrane protein families enriched in the (b) North Atlantic and (c) Mid-
Atlantic/Pacific 
 
Figure 5 (a) Plot of first and second dimension of CCA with labeled environmental 
features (blue) and membrane protein families (gray). Within inner circle (0.3 
circumference) features are invariant across the sites. (b) PEN construction from CCA 
structural correlations in the first and second dimension using a distance cutoff > |0.05| 
between all nodes (environmental features and membrane protein families) Red edges 
represent negative associations and green edges represent positive associations (c) 
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Phosphate sub-network. (d) Iron/Polyamine sub-network  
 
Figure 6 (a) Image of dust storm off Sahara desert (NASA) (b) Model of dust 
concentrations (color-coded) across GOS sites, adapted from Jikells et. al.(Jickells et al. 
2005). (c) Pollution levels (* impact value, see Halpern et al., 2008), dust concentrations, 
% of ABC-type hemin transport system proteins (# of COG4558 proteins/# total proteins 
at site), and nitrate/chlorophyll ratio values across the 29 GOS sites. Black line shows 
separation of sites into two sets, one with high pollution and dust and low N/C and iron 
transporters and vice versa. 
 














