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Abstract: Mechanical vibration or rotation of a target or structures on the target may induce
additional frequency modulations on the returned radar signal which generate sidebands about the
target’s Doppler frequency, called the micro-Doppler effect. Micro-Doppler signatures enable some
properties of the target to be determined. In the paper, the micro-Doppler effect in radar is
introduced and the mathematics of micro-Doppler signatures is developed. Computer simulations
are conducted and micro-Doppler features in the joint time–frequency domain are exploited.

1 Introduction

Radar transmits a signal to a target, interacts with the target,
and returns back to the radar. The change in the properties of
the returned signal contains characteristics of interest of the
target. When the transmitted signal of a coherent radar
system hits moving targets, the carrier frequency of the
signal will be shifted, known as the Doppler effect. The
Doppler frequency shift reflects the velocity of the moving
target. Mechanical vibration or rotation of a target, or
structures on the target, may induce additional frequency
modulations on the returned radar signal, which generate
sidebands about the target’s Doppler frequency, called the
micro-Doppler effect [1, 2]. Micro-Doppler signatures
enable us to determine some properties of the target.

The micro-Doppler effect was originally introduced in
coherent laser radar systems. In a coherent system, the phase
of a signal returned from a target is sensitive to the variation
in range. In many cases, a target or structures on the target
may have vibrations or rotations in addition to target
translation, such as a rotor on a helicopter or a rotating radar
antenna on a ship. Motion dynamics of the rotating rotor or
antenna will produce frequency modulation on the back-
scattered signals and induce additional Doppler variations to
the translation Doppler shift. From the electromagnetic
point of view, when a target has vibration, rotation or other
nonuniform motions, the radar backscattering is subject to
modulations that constitute features in the signature [3, 4].
Micro-Doppler can be regarded as a unique signature of the
target and provides additional information that is com-
plementary to existing methods.

To exploit these unique micro-Doppler features, tra-
ditional analysis, such as the Fourier transform, or the
sliding window or short time Fourier transform, may
not possess the necessary resolution for extracting

these features. Therefore, high-resolution time–frequency
analysis is necessary for extracting the time-varying
Doppler signature [2].

2 Mathematics of micro-Doppler effect

Mathematics of the micro-Doppler effect can be derived by
introducing vibration or rotation to conventional Doppler
analysis. A target can be represented as a set of point
scatterers. The point scattering model may simplify the
analysis while preserving the micro-Doppler effect.

As shown in Fig. 1, the radar is stationary and located at
the origin Q of the radar co-ordinate system (U, V, W). The
target is described in the attached local co-ordinate system
(x, y, z) and has translation and rotation with respect to the
radar co-ordinates. For the purpose of mathematical
analysis, a reference co-ordinate system (X, Y, Z) is
introduced, which has the same translation as the target
local co-ordinates (x, y, z) but has no rotation with respect to
the radar co-ordinates (U, V, W). Thus, the reference
co-ordinate system shares the same origin O with the target
local co-ordinates and is assumed to be at a distance R0 from
the radar.

Assume that the azimuth and elevation angle of the target
in the radar co-ordinates (U, V, W) are a and b, respectively,
and the unit vector of the radar line of sight (LOS) direction
is defined by

n ¼ R0=kR0k ¼ ðcos� cos �; sin� cos �; sin �ÞT ð1Þ
where k�k represents the Euclidean norm.

Suppose the target has a translation velocity v with
respect to the radar and an angular rotation velocity v;
which can be represented in the reference co-ordinate
system as v ¼ ðoX ;oY ;oZÞT : Thus, a point scatterer P,
which is located at r0 ¼ ðX0; Y0; Z0ÞT ; at time t ¼ 0 will
move to P0 at time t. The movement can be considered as,
first, a translation from P to P00 with velocity v; or OO0 ¼ vt;
and then, a rotation from P00 to P0 with an angular velocity
v: The rotation from P00 to P0 can be described by a rotation
matrix Rot(†) [5, 6]. At time t, the location of P0 can be
calculated as

r ¼ O0P0 ¼ RotðtÞO0P00 ¼ RotðtÞ�r0 ð2Þ
and the range vector from the radar to the scatterer at P0

becomes
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QP 0 ¼ QO þ OO0 þ O0P0 ¼ R0 þ vt þ r

¼ R0 þ vt þ RotðtÞ�r0 ð3Þ

Thus, the scalar range is

Rt ¼ RðtÞ ¼ kR0 þ vt þ RotðtÞ�r0k ð4Þ

If the radar transmits a sinusoidal waveform with a carrier
frequency f, then the baseband of the returned signal from
the point scatterer is a function of Rt

sðtÞ¼�ðx;y;zÞexp
n

j2�f
2Rt

c

o
¼�ðx;y;zÞexpfjFðRtÞg ð5Þ

where �ðx;y;zÞ is the reflectivity function of the point
scatterer P described in the target local co-ordinates (x, y, z),
c is the propagation speed of the electromagnetic wave and
the phase of the baseband signal is

FðRtÞ¼2�f
2Rt

c
ð6Þ

By taking the time derivative of the phase, the Doppler
frequency shift induced by the target’s motion can be
obtained

fD ¼ 1

2�

dFðRtÞ
dt

¼2f

c

d

dt
Rt

¼2f

c

1

2Rt

d

dt
½ðR0þvtþRotðtÞ�r0ÞT

�ðR0þvtþRotðtÞ�r0Þ�

¼2f

c
vþ d

dt
ðRotðtÞ�r0Þ

� �T

nP ð7Þ

where

nP ¼
R0þvtþRotðtÞ�r0

kR0þvtþRotðtÞ�r0k

is the direction unit vector from the radar to the point
scatterer at P0.

The angular rotation velocity vector v ¼ ðoX ;oY ;oZÞT

defined in the reference co-ordinate system rotates along the
unit rotation vector v0 ¼ v=kvk with a scalar angular
velocity O ¼ kvk: Assuming the rotational motion at each
time interval can be considered to be infinitesimal, the
rotation matrix can be written in terms of the matrix v̂v as

RotðtÞ ¼ expfv̂v tg ð8Þ
where

v̂v ¼
0 oZ oY

oZ 0 oX

oY oX 0

2
4

3
5

ð9Þ
is called the skew symmetric matrix associated with v ¼
ðoX;oY ;oZÞT ; which is the linear transformation that
computes the cross product of the vector v with any other
vector, as described in the Appendix.

Thus, the Doppler frequency shift in (7) becomes

fD ¼ 2f

c
v þ d

dt
ðev̂v tr0Þ

� �T

nP ¼ 2f

c
ðv þ v̂vev̂v tr0ÞT nP

¼ 2f

c
ðv þ v̂vrÞT nP � 2f

c
ðv þ v̂v � rÞT n ð10Þ

where, because kR0k � kvt þ RotðtÞ rk; the direction unit
vector nP can be approximated by n ¼ R0=kR0k � nP

Therefore, the Doppler frequency shift is approximately

fD ¼ 2f

c
½v þv� r�radial ð11Þ

where the first term is the Doppler shift due to the translation
and the second term is the mathematical expression of the
micro-Doppler

fmicroDoppler ¼
2f

c
½v� r�radial ð12Þ

3 Time–frequency analysis of micro-Doppler
signatures

A common method to analyse a time domain signal is
transforming it from the time domain to the frequency
domain by using the Fourier transform. The frequency
domain shows the magnitude of different frequencies
contained in the signal over the overall time period the
signal is analysed. When the radar returned signal from a
vibrating or rotating target is viewed in the frequency
domain, its micro-Doppler shifts can be seen by their
deviation from the centre frequency of the radar returns.
Frequency-domain signatures provide information about
frequency modulations generated by the vibration or
rotation. Although the frequency spectrum may indicate

Fig. 1 Geometry of a radar and a target with translation and rotations
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the presence of micro-Doppler shifts and possibly the
relative amount of displacement toward each side, because
of the lack of time information, it is not easy to tell the
vibration or rotation rate from the frequency spectrum
alone. Therefore, the time–frequency analysis that provides
time-dependent frequency information is more useful and is
complementary to the existing time-domain or frequency-
domain methods.

To analyse the time-varying frequency characteristics
of the micro-Doppler, the radar returned signal should be
analysed in the joint time–frequency domain by applying
high-resolution time–frequency transforms. From the
joint time–frequency domain signature, the frequency and
the period of vibration or rotation can be found [2, 7].
The direction of movement of the target at a specific
time may also be found by examining the time data and the
sign of the micro-Doppler shift caused by the movement of
the target.

Time–frequency transforms include linear transforms,
such as the short-time Fourier transform (STFT) and
bilinear transforms, such as the Wigner–Ville distribution
(WVD). With a time-limited window function, the resol-
ution of the STFT is determined by the window size.
A larger window has higher frequency resolution but poor
time resolution. The bilinear WVD has better characteristics
of the time-varying spectrum than any linear transform.
However, it suffers the problem of cross-term interference,
i.e. the WVD of the sum of two signals is not the sum of
their WVDs [8]. To reduce the cross-term interference, the
kernel-filtered WVD can be used to preserve the useful
properties of the time–frequency transform with a slightly
reduced time–frequency resolution and a largely reduced
cross-term interference. The WVD with a linear
lowpass filter are characterised as the Cohen’s class. In
our micro-Doppler signature study, the smoothed pseudo
Wigner–Ville distribution is used to reduce the cross-term
interference and achieve higher resolution [9].

4 Simulation study of micro-Doppler signatures

In this Section, we present examples of vibrations and
rotations that can induce micro-Doppler effects. Based on
the mathematical analysis, we can calculate theoretical
results of micro-Doppler signatures. Simulation study is
used to verify the theoretical results.

In the simulation, the point scatterer model [10] is used
for modelling targets because it is simple compared to the
EM prediction code simulation and it is easy to observe the
effect of vibration or rotations and separately study
individual movements.

4.1 Micro-Doppler signature of a vibrating
point scatterer

The geometry of the radar and a vibrating point-scatterer is
illustrated in Fig. 2. The vibration centre O is stationary with
azimuth angle a and elevation angle b with respect to the
radar. The point-scatterer is vibrating at a vibration
frequency fv with maximum amplitude Dv: The azimuth
and elevation angle of the vibration direction described in
the reference co-ordinates (X, Y, Z) is �P and �P;
respectively.

Because of the vibration, the point-scatterer P, which is
initially at time t ¼ 0 located at ðX0; Y0; Z0ÞT in (X, Y, Z),
will at time t move to

X

Y

Z

2
64

3
75 ¼ rðtÞ nV þ

X0

Y0

Z0

2
64

3
75

ð13Þ

where nV ¼ ½cos�P cos �P; sin�P cos �P; sin �P�T is the unit
vector of the vibration direction.

Therefore, because of the vibration, the velocity of the
scatterer P becomes

Fig. 2 Geometry of radar and vibrating point scatterer; and time–frequency micro-Doppler signatures

a Geometry of a radar and a vibrating point scatterer
b Time–frequency micro-Doppler signature calculated by (15)
c Time–frequency micro-Doppler signature by simulation
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d

dt
rðtÞ ¼ d

dt
rðtÞ nV

¼ 2�Dv fv cosð2� fvtÞ

� ðcos�P cos �P; sin�P cos �P; sin�PÞT ð14Þ
From (7) and using RotðtÞ�r0 ¼ r and nP � n; the micro-
Doppler shift induced by the vibration is

fmicroDoppler ¼
2f

c

d

dt
rðtÞ

� �T

�n

¼ 4�f fvDv

c
cosð2� fvtÞnV �n ð15Þ

which is a sinusoidal function of time oscillating at the
vibration frequency.

Assume the radar operates at f ¼ 10GHz and a point-
scatterer is vibrating about a centre point at (U0 ¼ 1000m;
V0 ¼ 5000m; W0 ¼ 5000m). Thus, the unit vector from the
radar to the vibration centre is

n ¼ ðU0;V0;W0ÞT=ðU2
0 þ V2

0 þ W2
0 Þ

1=2

If the amplitude and frequency of the vibration is
Dv ¼ 0:01m and fv ¼ 2Hz; and the azimuth and elevation
angle of the vibration direction are �P ¼ 208 and �P ¼ 108;
respectively, the theoretical result of the micro-Doppler
signature calculated from (15) is shown in Fig. 2b.

In our simulation study, the pulse radar with a pulse
repetition frequency (PRF) of 2000 is assumed and a total of
2048 pulses are used to generate the micro-Doppler
signature of the vibrating point-scatterer. The simulation
result is shown in Fig. 2c and is identical to the theoretical
analysis.

4.2 Micro-Doppler signature of a rotating
target

The geometry of the radar and a target having three-
dimensional rotations is depicted in Fig. 3. The radar
co-ordinate system is (U, V, W), the target local co-ordinate
system (x, y, z) and the reference co-ordinate system
(X, Y, Z) is parallel to the radar co-ordinates (U, V, W) and
located at the origin of the target local co-ordinates.

The azimuth and elevation angle of the target in the radar
co-ordinates (U, V, W) is a and b, respectively.

Because of the target’s rotation, any point on the target
described in the local co-ordinate system (x, y, z) will move
to a new position in the reference co-ordinate system
(X, Y, Z). The new position can be calculated from its initial
position vector multiplied by an initial rotation matrix
RotInit determined by Euler angles (f, u, c) [6].

In the target local co-ordinate system (x, y, z), when a
target rotates about its axes x, y and z with the angular
velocity v ¼ ðox;oy;ozÞT ; a point-scatterer P at r0 ¼
ðx0; y0; z0ÞT in the local co-ordinates will move to a new
location in the reference co-ordinates (X, Y, Z) described by
RotInit � r0: The unit vector of the rotation is defined by

v 0 ¼ ðo 0
x;o

0
y;o

0
zÞT ¼ RotInit �v

kvk ð16Þ

To compute the 3-D rotation matrix Rot(t) in (8), the
Rodrigues’ rotation formula [6]

RðtÞ ¼ expðv̂v tÞ ¼ I þ v̂v 0sinOt þ v̂v 02ð1  cosOtÞ ð17Þ

is an efficient method, where I is the identity matrix, the
scalar angular velocity O ¼ kvk and v̂v 0 is the skew
symmetric matrix associated with v0 ¼ ðo 0

x;o
0
y;o

0
zÞT

v̂v 0 ¼
0 o 0

z o 0
y

o 0
z 0 o 0

x

o 0
y o 0

x 0

2
4

3
5

ð18Þ

Therefore, in the reference co-ordinate system (X, Y, Z), at
time t the scatterer P will move from its initial location to a
new location r ¼ Rott �RotInit �r0: According to (12), the
micro-Doppler frequency shift induced by the rotation is
approximately

fmicroDoppler ¼
2f

c
½Ov0 � r�radial ¼

2f

c
Ov̂v 0 r
� �T �n

¼ 2f

c
Ov̂v 0 RottRotInit �r0

 �T �n

¼ 2f O
c

v̂v 0 2 sinOt  v̂v 0 3 cosOt
�

þv̂v 0ðI þ v̂v 0 2Þ
�
RotInit �r0

�T �n ð19Þ

Fig. 3 Geometry of a radar and a cubic target with eight scatterers
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Because the skew symmetric matrix v̂v 0 is defined by the
unit vector of the rotation v0; then v̂v 0 3 ¼ v̂v 0 and the
rotation-induced micro-Doppler frequency becomes

fmicroDoppler ¼
2f O

c
v̂v 0ðv̂v 0 sinOt þ I cosOtÞRotInit �r0

 �
radial

ð20Þ

Assume the radar carrier frequency and the initial location
of the target centre is the same as described in Section 4.1.
The target is assumed to be a cube that consists of eight
point-scatterers as illustrated in Fig. 3. The initial Euler
angles are (� ¼ 458; 	 ¼ 458;  ¼ 458). If the target rotates
along the x, y and z axes with an angular velocity
v ¼ ½�; �; ��T rad/s and initial positions of eight scatterers
in the target co-ordinate system are

P1 ¼ ðx ¼ 0:5m; y ¼ 0:5m; z ¼ 0:5mÞ
P2 ¼ ðx ¼ 0:5m; y ¼ 0:5m; z ¼ 0:5mÞ
P3 ¼ ðx ¼ 0:5m; y ¼ 0:5m; z ¼ 0:5mÞ
P4 ¼ ðx ¼ 0:5m; y ¼ 0:5m; z ¼ 0:5mÞ
P5 ¼ ðx ¼ 0:5m; y ¼ 0:5m; z ¼ 0:5mÞ
P6 ¼ ðx ¼ 0:5m; y ¼ 0:5m; z ¼ 0:5mÞ
P7 ¼ ðx ¼ 0:5m; y ¼ 0:5m; z ¼ 0:5mÞ
P8 ¼ ðx ¼ 0:5m; y ¼ 0:5m; z ¼ 0:5mÞ

Then, the micro-Doppler frequency shift can be calculated
from (20) and is shown in Fig. 4a. With a PRF of 2000 and
2048 pulses transmitted within about 1.024 s. of dwell time,
the simulated result of the micro-Doppler induced by the

rotations is shown in Fig. 4b, which is identical to the
theoretical result.

From the micro-Doppler signature, the period of the
rotation period can be calculated as T ¼ 2�=kvk
¼ 1:1547 s. We can see that the micro-Doppler signature
in the time–frequency domain is a sinusoid with initial
phase and amplitude that depends on the initial positions of
the scatterer and the initial Euler angle (f, u, c).

5 Summary

We have shown that the mechanical vibrations or rotations
of a target, or structures on the target, can induce additional
frequency modulation on radar returned signals and
generate the micro-Doppler effect. We derived mathemat-
ical formulas for micro-Doppler, and also simulated micro-
Doppler signatures of targets undergoing vibrations or
rotations. The simulation results confirmed that the
mathematical analysis is valid.
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8 Appendix

The cross-product of a vector a ¼ ðax; ay; azÞ and a vector
b ¼ ðbx; by; bzÞ is

a � b ¼
aybz  azby

azbx  axbz

axby  aybx

2
4

3
5

¼
0 az ay

az 0 ax

ay ax 0

2
4

3
5 bx

by

bz

2
4

3
5 ¼ âa b

ð21Þ
where

âa ¼
0 az ay

az 0 ax

ay ax 0

2
4

3
5

ð22Þ
is called the skew symmetric matrix and

âa ¼ ðâaÞT ð23Þ

A rotation matrix that belongs to the special orthogonal 3-D

Fig. 4 Time–frequency micro-Doppler signatures

a Calculated from (8)
b By simulation
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rotation matrix group R3�3 is denoted by

fRot 2 R
3�3jRotT Rot ¼ I; detðRotÞ ¼ þ1g ð24Þ

By taking a derivative of the constraint RotðtÞRotTðtÞ ¼ I
with respect to time t, we have

_RRotðtÞRotTðtÞ ¼ ½ _RRotðtÞRotTðtÞ�T ð25Þ

This means that the matrix _RRotðtÞRotTðtÞ 2 R3�3 is a skew
symmetric matrix. Therefore, we can find a rotation vector
v ¼ ðoX;oY ;oZÞ such that the associated skew symmetric
matrix

v̂v ¼ _RRotðtÞRotTðtÞ ð26Þ
thus

_RRotðtÞ ¼ ôoRotðtÞ ð27Þ
By solving this linear ordinary differential equation (27), we
obtain

RotðtÞ ¼ expfv̂v tgRotð0Þ
Assuming Rotð0Þ ¼ I for the initial condition, we have

RotðtÞ ¼ expfv̂v tg ð28Þ
The matrix is a 3-D rotation matrix that rotates about the
axis v by kvkt rad.
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