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Analysis of microbial compositions: a review of normalization

and differential abundance analysis
Huang Lin 1 and Shyamal Das Peddada 1,2✉

Increasingly, researchers are discovering associations between microbiome and a wide range of human diseases such as obesity,

inflammatory bowel diseases, HIV, and so on. The first step towards microbiome wide association studies is the characterization of

the composition of human microbiome under different conditions. Determination of differentially abundant microbes between two

or more environments, known as differential abundance (DA) analysis, is a challenging and an important problem that has received

considerable interest during the past decade. It is well documented in the literature that the observed microbiome data (OTU/SV

table) are relative abundances with an excess of zeros. Since relative abundances sum to a constant, these data are necessarily

compositional. In this article we review some recent methods for DA analysis and describe their strengths and weaknesses.
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INTRODUCTION

Human oral and gut microbiome are estimated to have 45.6
million genes, which is ~2000-fold more genes than human
genes1, therefore the microbiome is sometimes referred to as the
“second genome”, or another “organ” of human body2–4. Hence it
is not surprising that numerous diseases such as obesity5,
inflammatory bowel diseases6 and HIV7 are associated or even
caused by changes in the microbial ecosystem. For these reasons,
understanding changes in the composition of microbiome under
different conditions is important for studying human diseases.
For clarity, we begin by defining some important terms used in

this paper and in the literature. The phrase absolute abundance of
a taxon refers to the unobservable actual abundance of a taxon in
a unit volume of an ecosystem, such as the gut. Accordingly, one
could define absolute relative abundance of a taxon in a unit
volume of an ecosystem as the ratio of the absolute abundance of
the taxon to the total absolute abundance of all taxa in a unit
volume of an ecosystem.
In practice, however, neither absolute abundance nor absolute

relative abundance of a taxon in a unit volume of an ecosystem
can be easily determined8. Although these parameters are
typically not observable, the next-generation sequencing (NGS)
technologies such as the 16S rRNA gene sequencing yield useful
data for describing microbial compositions in an ecosystem.
Following initial quality assessment/control steps, such as primer
(s) removal, demultiplexing and quality filtering, the 16S amplicon
sequences are either clustered into Operational Taxonomic Units
(OTUs) representing the common working definition of bacterial
species9 by OTU picking algorithms (e.g. UPARSE10), or grouped
into Sequence Variants (SVs) using denoising algorithms (e.g.
DADA211 and Deblur12). After the construction of OTU or SV, these
observed counts are typically organized into a large matrix
referred to as the feature table. Some researchers or software
packages such as QIIME213 represent samples by columns and
features (OTUs or SVs) by rows, but this representation is not
universal. The observed counts of features (OTUs or SVs) represent
observed abundances of taxa in the sample. Since abundances in
a feature table represent only relative information regarding each

taxa8,14–18, these are compositional data and thus reside inside a
simplex19. Some researchers refer to these frequencies as relative
abundances of taxa in a sample. However, in our terminology,
relative abundance of a taxon in the sample is the fraction of the
taxon observed in the feature table relative to the sum of all
observed taxa corresponding to the sample in the feature table.
Thus, by our terminology, the relative abundances sum to 1. In a
recent paper by Lin and Peddada20, the authors refer to
abundance of taxa in a feature table as “observed absolute
abundance”, which is a confusing terminology and should be
avoided. Instead they should have referred to it as “observed
abundance”. Various terms used in this paper are summarized in
Table 1. The notations described in statistical methods are
summarized in Table 2.
We define a taxon to be differentially abundant between two

ecosystems if its mean absolute abundance is different between
two ecosystems. It is important to distinguish between absolute
and relative abundances of taxa in a unit volume of an ecosystem.
The choice of parameter for statistical analysis is important and
needs to be clearly stated. Often researchers are interested in
identifying taxa that are different in mean absolute abundance per
unit volume between two or more ecosystems8. The mean
absolute abundance may not be the only criterion of interest.
Researchers may consider other criteria such as differential
ranking8. Furthermore, there are instances such as niche
apportionment, where researchers are interested in identifying
taxa that are different in mean absolute relative abundance per
unit volume between two or more ecosystems. Thus, the choice of
statistical parameter depends upon the scientific question of
interest.
For each taxon i within sample j, the sampling fraction is the

ratio of the expected abundance of taxon i within the jth sample
to its absolute abundance in a unit volume of an ecosystem (e.g.
gut) where the sample was derived from. The sampling fraction is
assumed to be constant for all taxa within the jth sample. Thus the
sampling fraction for the jth sample is given by the following
expression involving the conditional expectation of the observed
abundance Oij given the unobservable absolute abundance Aij.
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Definition 0.1 (Sampling fraction).

cj ¼
EðOij jAij Þ

Aij

; (1)

where

(1) Oij is the observed abundance of ith taxon in jth sample,
(2) Aij is the unobserved absolute abundance of ith taxon in the

ecosystem of jth sample,
(3) cj is the sample-specific sampling fraction.

The problem underlying the differential abundance (DA)
analysis of microbiome data is that while Oij is known, cj is
unknown and can vary drastically from sample to sample.
Consequently, the observed abundances are not comparable
between samples. The goal of DA analysis described in this paper
is to identify taxa whose mean absolute abundances, per unit

volume, of an ecosystem are significantly different with changes in
the covariate of interest (e.g. study groups).
Similar to the toy example in ref. 20, Fig. 1 is a toy example

consisting of ecosystems of three subjects A, B, and C with each
having two taxa, the blue and red taxa varieties. A false negative

may occur when comparing the ecosystems of A and B. Clearly,
the true absolute abundance of each taxon is 50% more in subject
B’s ecosystem as compared to subject A’s. However, they each
have the same library size (4 each) in their respective samples (e.g.

stool samples). Without considering the differential sampling
fractions, one would falsely conclude that none of the taxa are
differentially abundant in the two ecosystems. This erroneous

conclusion would be avoided if one recognizes that we have a
larger sampling fraction in the sample obtained from A’s
ecosystem than from B’s (1

2
vs. 1

3
). Similarly, we get a false positive

result when comparing ecosystems of A and C. In their

Table 1. Definitions of key terminologies.

Term Definition

Microbiota Community of microscopic organisms.

Microbiome Genes associated with the microbiota.

Amplicon Product of PCR amplification.

High-throughput Sequencing DNA sequencing approach that produces large amounts of sequence data rapidly at low cost.

OTU Operational taxonomic unit: Group of DNA sequences with 97% similarity.

SV Sequence variant: Individual DNA sequences recovered from a high-throughput marker gene analysis following the
removal of spurious sequences generated during PCR amplification and sequencing.

Absolute abundance Unobservable actual abundance of a taxon in a unit volume of an ecosystem.

Observed abundance Observed counts of features (OTUs or SVs) in the feature table.

Relative abundance The fraction of the taxon observed in the feature table relative to the sum of all taxa in the sample. It is between
0 and 1.

Feature Table A matrix summarizing observed microbial abundances in the sample. Usually, columns represent samples and rows
stand for OTUs or SVs.

Library Size The total number of observed abundances for all taxa in a sample.

Microbial Load The total number of (unobserved) absolute abundances for all taxa in a unit volume of an ecosystem.

Table 2. Summary of notations.

Notation Description

m Total number of taxa.

n Total number of samples.

p Total number of covariates.

i Taxon index, i= 1, 2, …, m.

j Sample index, j= 1, 2, …, n.

k Index of covariates, k= 1, 2, …, p.

xj Covariates of interest for the jth sample. xj ¼ ðx j1; ¼ ; xjpÞ
T
.

Aij
a Unobserved absolute abundance of ith taxon in a unit volume of ecosystem of jth sample.

A⋅j
a Microbial load in a unit volume of ecosystem of jth sample. A�j ¼

Pm
i¼1 Aij .

γij
a Unobserved absolute relative abundance of ith taxon in a unit volume of ecosystem of jth sample.

Oij
a Observed abundance of ith taxon in a random specimen taken from a unit volume of ecosystem of jth sample.

O⋅j
a Library size of a random specimen taken from a unit volume of ecosystem of jth sample. O�j ¼

Pm
i¼1 Oij .

rij
a Observed relative abundance of ith taxon in a random specimen taken from a unit volume of ecosystem of jth sample.

cj
b For the jth sample, cj represents the proportion of its ecosystem (unobserved absolute abundance) in a random specimen (observed

abundance), thus cj ¼
EðOij jAij Þ

Aij
. We shall refer to this constant as “sampling fraction”.

yij
a log ðOijÞ.

dj
b Represents the effect of the scaling parameter cj in log� scale

aRandom variable.
bParameter.
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ecosystems, blue is more abundant in C than in A (12 vs. 4), and
both have the same amounts of red taxa (4 vs. 4). However, given
that samples from A and C have same the library size, one may
mistakenly conclude that both blue (2 vs. 3) and red taxa (2 vs. 1)
are differentially abundant between A and C.
An important characteristic of a feature table is that it is typically

sparse, sometimes as many as ~90% are zero entries21, which
creates a challenge for analyzing rare taxa. A quick and simple
strategy to deal with excess zeros is to add a small positive
constant (e.g. 1) called pseudo-count14,22 to each cell of the
feature table. The addition of a pseudo-count becomes necessary
when using methods of analysis that require log transformation of
the observed counts. Even though adding a pseudo-count is
simple and widely used, the choice of the pseudo-count is ad hoc.
Studies have shown that differential abundance or clustering
results could be sensitive to the choice of pseudo count23,24.
Although different values of pseudo counts have been discussed
in the literature23–26, to the best of our knowledge, there is no
consensus on how to choose the optimal value. Other strategies
involve modeling zero counts by some probability models21,27.
However, these methods may not be valid if the underlying

assumptions do not hold. Instead of modeling zeros by parametric
distributions, ANCOM-II28 attempts to provide a general frame-
work to classify and identify zeros into three different types, which
includes outlier zeros caused by some extraneous reasons such as
the wrong data entry, structural zeros because of the nature of the
study groups, i.e. some bacteria are not expected to belong to
certain environments (e.g. a desert) but in others (e.g. a rain
forest), and sampling zeros owing to insufficient library size. In our
opinion, the zero counts problem is still an open problem and
requires further investigation.

NORMALIZATION METHODS

As we described intuitively in the introduction, an important obstacle
for performing DA analysis is the unknown sampling fraction
corresponding to each sample. It is critical to normalize the data to
eliminate any bias due to differences in the sampling fractions. Thus,
the primary objective of normalization is to transform the observed
data so that expected differences in the mean absolute abundances
between two ecosystems is not confounded by the differences in
the sampling fractions. Failure to normalize the data will result in a

Ecosystem

Sample

Frac�on = 

A

Ecosystem
Sample

Frac�on = 

A

Ecosystem
Sample

Frac�on = 

B

Ecosystem
Sample

Frac�on = 
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A B

Blue Red Blue Red

Ecosystem 4 4 6 6

Sample 2 2 2 2

A C

Blue Red Blue Red

Ecosystem 4 4 12 4

Sample 2 2 3 1
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Fig. 1 Microbiome data is represented by relative abundances, thus differential abundance analysis should account for the bias
introduced by across-sample variations in sampling fractions. Sampling fraction is defined as the ratio of expected abundance in a sample
to the corresponding absolute abundance in the ecosystem, which could be empirically estimated by the ratio of library size to the microbial
load. a Differences in sampling fractions introduce false negatives. In this toy example, the microbial load for subject A in a unit volume of the
ecosystem (e.g. a unit volume of gut) is 8 (4 blue+ 4 red), while for subject B it is 12 (6 blue+ 6 red). However, the samples taken from subject A
and B have the same library size 4 (2 blue+ 2 red), same observed abundance as well as the same relative abundance of blue and red taxa.
Thus, one may mistakenly conclude that the blue and red taxa are not differentially abundant between two ecosystems, which is not the case in
the two ecosystems. This false negative conclusion is caused by differences in the sampling fractions in the two samples. The sampling fraction
in sample A is 1/2 and for B it is 1/3. b Differences in sampling fractions introduces false positives. Consider another subject C, who has the
microbial load of 16 (12 blue+ 4 red) in a unit volume of ecosystem. Given the same library size in sample C (3 blue+ 1 red) as sample A, one
may mistakenly conclude that both blue and red are differentially abundant between ecosystems A and C, while in fact, only the blue taxon is
differentially abundant. Thus a normalization method must account for differences in sampling fractions to avoid such erroneous conclusions.
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systematic bias that increases the false discovery rate (FDR) and also
possible loss of power in some cases.

Rarefying

A traditional microbiome analysis workflow often involves
rarefying29–31, or subsampling to a given depth, a practice in the
field of ecology long before its use in microbiome surveys32.
Samples are rarefied to deal with differences in library sizes. Note
that the terms rarefying and rarefaction are used interchangeably
in microbiome literature33. Rarefying was first recommended for
microbiome data to deal with rare taxa34, which impact some
measures of alpha and beta diversities33. Generally, the rarefying
process includes the following steps:

(1) Determine the minimum library size (Omin). Samples with
library sizes smaller than Omin will be discarded,

(2) Subsample taxa without replacement so that all samples
have the same library size Omin.

One way to select the minimum library size is to create
rarefaction curves35. Rarefaction curves represent diversity as a
function of library size (Fig. 2). If lines of the plot appear to “level
out” (i.e., approach a slope of zero) at certain library size along the
x-axis, it indicates the diversity of the samples has been fully
observed; otherwise, increasing the minimum library size would
result in additional features. Originally, rarefaction curves were
based on alpha diversities35,36. However, lately researchers have
considered beta diversities37,38 as well. Although rarefying is well
established and widely used in practice, in recent years there has
been some discussion on the effects of rarefying on statistical tests
for differential abundance analysis33,39,40. Some concerns dis-
cussed in the literature include:

(1) The omission of available valid data,
(2) The introduction of artificial uncertainty in the sub-

sampling step,
(3) The arbitrary selection of the minimum library size,
(4) Challenges in estimating over-dispersion parameter.

Scaling

Scaling is another popular method used for normalizing micro-
biome data. The basic idea is to divide the observed abundance in
the feature table by a “scaling factor” or “normalization factor” to
eliminate biases resulting from unequal sampling fractions. More
precisely, scaling is defined as follows.
Definition 0.2 (Scaling microbiome data).

~Oij ¼
Oij

sj
; (2)

where

(1) ~Oij is the normalized observed abundance for taxon i within
sample j,

(2) sj is the scaling/normalization factor for sample j.

Comparing with the definition of sampling fraction (Eq. (1)), it is
clear that an ideal scaling method should have scaling factor close
to the unknown sampling fraction cj, i.e. sj ≈ cj; or is approximately
proportional to cj, i.e. sj ≈ cj × c for all j, where c is a constant.
Some commonly used normalization methods include

Cumulative-Sum Scaling (CSS) implemented in metagenome-
Seq21, Median (MED) in DESeq241, Upper Quartile (UQ)42 and
Trimmed Mean of M-values (TMM)43 in edgeR44 and Wrench45,
and Total-Sum Scaling (TSS) which simply transforms the
abundance table (feature table) into relative abundance table,
i.e. scale by each sample’s library size. The authors of the user
manual of edgeR46 state that to deal with the “RNA composition”
effect, one should multiply the normalization factors with the
corresponding library size to account for “effective library size”.
Hence, Lin and Peddada20 also considered modified versions of
UQ and TMM, denoted by “ELib-UQ” (Effective library size using
UQ) and “ELib-TMM” (Effective library size using TMM) in their
simulation studies. Since the literature is often not explicit
regarding the mathematical formulas used by various methods,
we provide some useful formulas in Table 3.
TSS is known to have a bias in differential abundance

estimates33,39,42,47 since a few preferentially sampled
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Fig. 2 Rarefaction curves using the diet swap data68 at the genus level. The number of genera is 130, and the sample size is 222 (African
American= 123, Native African= 99). x axis denotes the library size, and y axis represents the corresponding alpha diversity. Data are
presented as mean values ± standard error (SE). It shows that regardless of the choice of diversity measures, as the increase of library size, the
rarefaction curve starts to “level out” suggesting that the diversity of the samples has been fully observed.
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measurements (e.g. taxa, genes) will have an undue influence on
the relative abundance data. Change in the abundance of a single
taxon can alter the relative abundances of all taxa. Generally, the
FDR generated from TSS-based analyses is unacceptably large. The
CSS21 in metagenomeSeq modifies TSS in a sample-specific
manner to reduce biases resulting from preferentially sampled
taxa. CSS assumes that observed abundances of samples should
be roughly independent and identically distributed up to a
specific quantile l. Thus, instead of normalizing each sample by its
library size (which is also known as total sum), CSS selects the
scaling factor to be the cumulative sum of observed abundances
for each sample up to the lth quantile. This quantile is determined
adaptively in a data-driven way, which relies on the change point
of the distribution of cumulative sum switching from stability to
instability. The Median normalization (MED) method used in
DESeq241 assumes that the taxon of median absolute abundance
is not differentially abundant. Although it may be a valid
assumption in gene expression studies where a large proportion
of genes are not differentially expressed, it may not be a valid
assumption in microbiome studies. Depending upon the applica-
tion, a very large proportion of taxa may be differentially
abundant between two or more study groups, especially when
the data are analyzed at higher taxonomic classification levels (e.g.
phylum, order, etc.). The Upper Quartile normalization (UQ) and
the TMM used in edgeR have similar issues as MED in DESeq2. UQ
assumes that the upper quartile of the observed abundances for
each library is able to capture the invariant segment of the count
distribution. However, choosing the most effective quantile is
nontrivial21,42,44,47–49. Similar to MED, TMM is based on the
hypothesis that most taxa are not differentially abundant. The
scaling factor is calculated using a weighted trimmed mean of log
abundance ratios by first trimming (by default) the taxa belong to
upper and lower 30% M values (taxon-wise log-fold-change) or 5%

A values (abundance level). Wrench45 assumes that the observed
abundances are from a hurdle Log-Gaussian distribution. A robust
location estimate of the Gaussian distribution leads to the desired
scaling factor for each sample. However, Wrench currently
implements strategies for categorical variable only, and the
estimated scaling factor is essentially the average of ratios of
relative abundances across taxa, which implicitly requires that a
large proportion of taxa do not change across study groups, or the
effect sizes of differentially abundant taxa are not too large.
One must exercise caution when using scaling methods. Most

importantly, a scaling method is likely to overestimate or
underestimate the fraction of zero counts depending on the
corresponding library size of each sample49,50. This problem
becomes more obvious for microbiome data since its feature table
is typically sparse.
Recently a new method called Analysis of Compositions of

Microbiome with Bias Correction (ANCOM-BC) was introduced by
Lin and Peddada20 to address the problem of unequal sampling
fractions. ANCOM-BC assumes that the observed abundance in a
feature table is, in expectation, proportional to the unobservable
absolute abundance of a taxon in a unit volume of the ecosystem.
This proportion is defined as the sampling fraction and is allowed
to vary from sample to sample. ANCOM-BC accounts for sampling
fraction by introducing a sample-specific offset term in a linear
regression model that is estimated from the observed abundance
data. The offset term serves as the bias correction. Statistical
properties of this approach have also been discussed in20.
Extensive simulation studies using Poisson-Gamma model as

well as some based on real data, were performed in20 to evaluate
the performance of various normalization methods. Results
reported in Fig. 3 of this article are similar to those provided
in20, but in the present simulation study we have three groups,
which are denoted by G1, G2, and G3 (see Supplementary
Information for simulation settings). We compared all normal-
ization methods using the centered residuals between true and
estimated sampling fractions in log scale.
Definition 0.3 (Centered Residual).

hj ¼ dj � tj �
1

n

X

n

j¼ 1

ðdj � tjÞ (3)

where

(1) dj (see Table 2)
(2) tj ¼ log sj .

As noted at the beginning of this subsection, for each sample j,
a reasonable scaling method should estimate scaling factors close
to the true sampling fractions with possibly a constant shift across
all samples. Not all scaling methods are expected to achieve this
goal since many normalization methods were proposed solely to
address the differences in library sizes (e.g. TSS). Failure to correct
for differences in sampling fractions would lead to undesirable
systematic bias in the test statistic, which can be identified by
fitting a simple linear regression between centered residual hj and
the covariate of interest, such as xjk (e.g. study groups):

hj ¼ α0 þ α1xjk þ ej : (4)

The existence of systematic bias due to differences in sampling
fractions may be determined by testing the null hypothesis H0: α1
= 0 against the alternative H1: α1 ≠ 0 or simply by drawing box
plots of the centered residuals, as commonly done in linear
regression diagnostics (Fig. 3). For an ideal normalization method,
the box plot should display no pattern with respect to the
covariate of interest, and the centered residuals should be
randomly distributed around 0. As can be seen in the box plots
provided in Fig. 3, except for ANCOM-BC, UQ, and TMM methods,
for all other methods the groups G1, G2, and G3 cluster separately,
indicating that in the estimation of sampling fractions, scaling

Table 3. Summary of different normalization methods.

Method Sampling fraction estimate

ANCOM-BC log ð̂cANCOM�BC
j Þ ¼ 1

m

Pm
i¼1ðyij � xTj β̂iÞ

CSS ĉCSSj ¼
sl̂
j
þ1

N

MED ĉ
MED
j ¼ mediani:OR

i ≠0
Oij

OR
i

UQ ĉUQj ¼ UQi:Oij > 0
Oij

O�j

� �

TMM log 2ðĉ
TMM
j Þ ¼

P

i2G�
wijMij

P

i2G�
wij

Elib-UQ ĉ
Elib�UQ
j ¼ O�j ĉ

UQ
j

Elib-TMM ĉ
Elib�TMM
j ¼ O�j ĉ

TMM
j

Wrench ĉ
Wrench
j ¼ 1

m

Pm
i¼1 bij

rij
ri�

TSS ĉTSSj ¼ O�j

β̂i is obtained from ANCOM-BC algorithm.

N= an approximately chosen normalization constant.

sl̂j ¼
P

i:Oij � ql̂
j

Oij .

ql̂j ¼ l̂
th

quantile of sample j.

OR
i ¼

Qn
j¼1 Oij

� �1
n

.

UQ(X) denotes the upper quartile of X.

Mij ¼ log 2
Oij

O�j

� �

� log 2

Oij0

O�j0

� �

, where j0 is the reference sample.

wij ¼
O�j�Oij

O�jOij
þ

O�j0�Oij0

O�j0Oij0
, where j0 is the reference sample.

G* represents a set of taxa that were not considered as extreme data for

fold-change (M values) and average intensity (A values). Refer to Robinson

and Oshlack43 for details.

bij represents the taxon-specific weight. Refer to Kumar et al.45 for details.
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factors estimated by these methods (with the exception of
ANCOM-BC, UQ, and TMM) systematically differ by group labels.
Furthermore, the box plot of ANCOM-BC had the shortest width,
suggesting that it not only successfully estimates the true
sampling fractions and eliminates bias due to its variability, but
it also has the smallest variance which is not the case with other
methods. This has a direct effect on the type I error and FDR as
seen later in this paper and demonstrated in20.

Log-ratio based methods

As an alternative to the above class of methods, several methods
have been proposed in the literature that are inspired by
Aitchison’s methodology for compositional data. These methods
do not explicitly perform normalization such as the ones
described above, since they convert the observed abundances
to log-ratios within each sample. Thus, within each sample, by
taking log-ratios of all taxa with respect to some common
reference taxon or some suitable function of all taxa, these
methods are intrinsically eliminating the effect of the sampling
fraction. This class of methods include DR8, ANCOM14, and
ALDEx251. ALDEx2 uses a pre-specified taxon as a reference taxon
and transforms the observed abundances to log ratios of the
observed abundance each taxon relative to the reference taxon.
Such a log-transformation of observed abundance data is called
the additive log transformation (alr). Mathematically, it is defined
as follows:

Definition 0.4 (additive log-ratio transformation (alr)19,
S
m ! R

m�1).

alrðOjÞ ¼ log
O1j

Oi0 j

� �

; ¼ ; log
Omj

Oi0 j

� �� �

: (5)

Thus, the alr transformation converts observed m dimensional
observed abundance vector, representing the m taxa, that are in a
simplex (i.e. sum to a constant), to a m− 1 dimensional data in the
Euclidean space. A challenge with alr, and hence ALDEx2, is that
the user needs to pre-specify the reference taxon. While this might
be easy to do in some applications, it is generally a challenge
when the number of taxa m is large such as when we are
interested in performing DA analysis at the genus level. Although
ANCOM is also based on alr transformation, it overcomes the
above deficiency because it repeatedly applies the alr transforma-
tion by taking each of the m taxa to be a reference taxon one at a
time. Thus, for each taxon, it performs m− 1 regressions. Hence, it
overall fits m(m− 1) regression models.
To avoid the above challenges due to alr transformation, rather

than using a pre-specified taxon as the reference taxon, one may
consider the center of mass of all taxa as the reference. Thus,
within each sample, for each taxon, the log-ratios are computed
relative to the geometric mean of all taxa. This transformation is
called the clr transformation. More precisely, it is defined as
follows:

ANCOM−BC
(0.00029)

CSS
(0.013)

ELib−TMM
(0.00044)

ELib−UQ
(0.041)
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Fig. 3 Box plot of residuals between true sampling fraction and its estimate for each sample. In the box plot, the lower and upper hinges
correspond to the first and third quartiles (the 25th and 75th percentiles). The median is represented by a solid line within the box. The upper
whisker extends from the hinge to the largest value (maxima) no further than 1.5 times Interquartile Range (IQR, distance between the first
and third quartiles) from the hinge, the lower whisker extends from the hinge to the smallest value (minima) at most 1.5 times IQR of the
hinge. Data beyond the end of the whiskers are called “outlying” points. N = 90 samples examined over three study groups (denoted by circle,
cross, and triangle, with 30 samples per group) and the data points are overlaid in each box. Each facet title indicates the normalization
method and its variance is provided within parenthesis. The microbial absolute abundances in the ecosystem are generated from the log-
normal distribution. By comparing residuals across different groups, an ideal box-plot should display a narrow height (i.e. smaller variability)
and samples from different groups should be inter-mixed and not display any systematic separation. We note that all existing methods have
larger variances compared to ANCOM-BC, and TSS has the largest variance. Except ANCOM-BC, UQ, and TMM, we see from the plot that
circles, cross, and triangles are systematically separated, which indicates that ELib-UQ, ELib-TMM, CSS, MED, and TSS do not account for
systematic bias due to differences in sampling fractions across groups.
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Definition 0.5 (centered log-ratio transformation (clr)19,
S
m ! U

m).

clrðOjÞ ¼ log
O1j

gðOjÞ

� �

; ¼ ; log
Omj

gðOjÞ

�� �

; (6)

where

(1) g(x) is the geometric mean of x,
(2) Um

= {(u1, …, um) ϵ R
m: u1+ … + um= 0} is a hyperplane in

R
m.

This transformation to a real space again makes the imple-
mentation of unconstrained statistical methods possible. clr
transformation is an isometry, but sum of the transformed values
equals to 0, leading to a degenerate distribution.
The alr transformation is not isometric and clr is not an

isomorphism. The isometric log-ratio transformation (ilr)25 (also
known as balance) is both an isomorphism and an isometry, and
consequently orthonormal coordinates can be defined using this
transformation.
Definition 0.6 (isometric log-ratio transformation (ilr),

S
m ! R

m�1).

ilrðOjÞ ¼ clrðOjÞΨ
T
; (7)

where Ψ is a (m− 1, m) orthonormal basis.
There are multiple ways to construct orthonormal bases.

Typically, if a bifurcating tree is given then we can construct a
basis from the internal nodes in the tree. Each element in the ilr
transformed data is of the following form:

bl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jlLjjlRj

jlLj þ jlRj

s

log
gðlLÞ

gðlRÞ

� �

;
(8)

where

(1) bl is the balance at internal node l,
(2) lL is the set of relative abundances contained in the left

subtree at internal node l,
(3) lR is the set of relative abundances contained in the right

subtree at internal node l,
(4) ∣lL∣ is the number of taxa contained in lL,
(5) ∣lR∣ is the the number of taxa contained in lR,
(6) g(x) is the geometric mean of x.

METHODS OF DIFFERENTIAL ABUNDANCE ANALYSIS

A number of procedures have been introduced and used in the
literature for identifying differentially abundant taxa. One
common approach is to apply a nonparametric test (e.g. the
Mann–Whitney/Wilcoxon rank-sum test for two sample classes;
the Kruskal–Wallis test for multiple sample classes) after normal-
izing the feature table. Unfortunately, these standard nonpara-
metric tests do not take into account the compositional structure
of microbiome data.

RNA-seq based methods: edgeR and DESeq2

As alternatives to standard nonparametric tests, many parametric
models have been proposed in the literature based on
transcriptomics data, such as the RNA-Seq data, for testing
differences across study groups. Among them, DESeq241 and
edgeR44 are two popular methods. These methods model the
observed abundances using negative binomial (NB) distribution
after normalizing data with corresponding scaling methods to
account for differences in sampling fractions. Thus Oij are modeled
using the a negative binomial distribution as follows:

Oij � NBðsjμi;ϕiÞ; (9)

where

(1) sj is the scaling factor for sample j,
(2) μi is the mean absolute abundance (in ecosystem) for taxon

i,
(3) ϕi is the dispersion parameter for taxon i.

Introduction of the dispersion parameter ϕi is inspired by mean-
variance dependence in count data (e.g. RNA-Seq, microbiome
data), and recognizing that the variance is typically larger than
mean especially when the mean value is large. Thus, the variance
of the observed abundance is modeled as follows:

VarðOij Þ ¼ sjμi þ ϕis
2
j μ

2
i : (10)

The NB distribution is more appropriate for modeling these
types of count data than the Poisson distribution because it
provides greater flexibility in modeling the variance. We remind
the readers that by conditioning independent Poisson random
variables on the total count results in multinomial distribution52,53.
The estimation of the dispersion parameter is critical for both

edgeR as well as DESeq2. Based on the assumption that taxa with
similar observed abundances also share similar variances, edgeR
estimates the taxon-wise dispersion by conditional maximum
likelihood54, and then shrinks the dispersion estimate for each
taxon towards a common estimate of taxa with similar observed
abundances using an empirical Bayes procedure55. Similarly,
DESeq2 first estimates the taxon-wise dispersion by maximum
likelihood estimation, and then fits the dispersion trend combin-
ing all individual estimates, and finally shrinks the taxon-wise
dispersion estimates towards the values predicted by the trend
curve using an empirical Bayes approach.
While both methods are generally very reasonable and

appropriate for gene expression data, they seem to perform
poorly for microbiome data. This is largely because, as stated
earlier, the normalization methods used by these two methods
intrinsically assume that a very small fraction of taxa are
differentially abundant. This assumption is not necessarily valid
for microbiome data. As a consequence, the test statistics used by
these methods are intrinsically biased under the null hypothesis.
As demonstrated analytically as well as empirically in Lin and
Peddada20, and reproduced here empirically using similar log-
normal distribution based simulation settings (Fig. 4, see
Supplementary Information for simulation settings), the bias in
the test statistic results in inflated FDRs for these methods. What is
worse, because of the bias, as the sample size increases, the FDR
increases for these methods20. Similar phenomena were reported
by Weiss et al.39. When dealing with population studies, it is
important to recognize that there is variability within subject and
there is variability between subjects in the population. In simple
terms, observed abundance of a taxon from a subject may vary
from stool sample to stool sample obtained from the same
subject. This is within subject variation. Hence when calculating
variability in measurements of random subject, one needs to take
into account variation within as well as between subjects. This
results in over-dispersion33. While it is important to account for
this over-dispersion, it does not correct the intrinsic bias due to
differential sampling fractions noted above. RNA-seq inspired
methods do not perform well for microbiome data even after
correcting for the over-dispersion parameter.

MetagenomeSeq

Instead of using a negative binomial model, an alternative mixture
model based on zero-inflated Gaussian (ZIG) is implemented in
metagenomeSeq21, where excess zeros due to both sampling
zeros and structural zeros are accounted by a probability mass,
and the Gaussian distribution modeling the non-zero observed
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abundances. The framework can be summarized as follows:

yij ¼ log 2ðOij þ 1Þ;

f zig ðyij ;O�j; μi; σ
2
i Þ ¼ πjðO�jÞIf0gðyij Þ þ ½1� πjðO�jÞ�ϕðyij ; μi; σ

2
i Þ;

μi ¼ ηi log 2ð
sl̂
j
þ1

N
Þ þ βi

Txj;

(11)

where

(1) N is a normalization constant,
(2) l̂ is determined by CSS normalization,

(3) ql̂j is the l̂
th

quantile of observed abundances for sample j,

(4) sl̂j ¼
P

i:Oij
� ql̂j

l̂
Oij.

However, as shown in our benchmark simulations (Fig. 4) as well
as in other previously published simulation studies14,33,39,
although metagenomeSeq has marginally higher powers than
most of the other DA methods, it is subject to unreasonably high
FDRs even though the observed abundances are normalized by
their built-in scaling method (CSS). Furthermore, the problem of
FDR inflation gets worse when sample size or the effect size (i.e. fold
change of mean absolute abundances) increases20,39. It is also worth
pointing out that metagenomeSeq was the only method, among all
parametric models, that increases FDR when applied to rarefied
data33,39. This is likely due to its zero-inflated model which requires
the input of precise library sizes to capture the zero proportions.
Note that the authors of metagenomeSeq modified their

procedure and recommended replacing zero-inflated Gaussian

(ZIG) mixture model by zero-inflated Log-Gaussian (ZILG) mixture
model for DA analysis. Although switching to zero-inflated Log-
Gaussian distribution improves the FDR control, the procedure
becomes extremely conservative, with FDR close to zero and a
substantial loss of power in our simulations (Fig. 4) and in ref. 20.

ALDEx2

It is based on the original version of ANOVA-Like Differential
Expression (ALDEx) analysis56. It was proposed as a compositional
data analysis tool that is applicable to three different types of data:
RNA-Seq, ChIP-Seq, and 16S rRNA gene sequencing51. By
acknowledging these high-throughput sequencing data are
fundamentally compositional, the methodology of ALDEx2 can
be summarized as follows:

(1) The observed abundances are converted to relative
abundances by Monte Carlo (MC) sampling from the
Dirichlet distribution with the addition of a uniform prior.
The MC sampling is repeated for K times (K = 128 times by
default), thus essentially, for each taxon i in sample j, the
observed abundance Oij is represented by a vector of MC

samples of relative abundances ðr
ð1Þ
ij ; ¼ ; r

ðKÞ
ij Þ

T
,

(2) Within each sample j and each MC Dirichlet realization k,

k = 1, …, K, the relative abundance vector ðr
ðkÞ
1j ; ¼ ; r

ðkÞ
mj Þ

T
is

clr transformed,
(3) Significance test (Welch’s t-test or Wilcoxon test) is

performed on each taxon in the vector of clr transformed
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edgeR (ELib−TMM) ZILG (CSS) ZIG (CSS) Wilcoxon (None) Wilcoxon (TSS)

Fig. 4 False Discovery Rate (FDR) and power comparisons using synthetic data. The FDR and power of various differential abundance (DA)
analyses (two-sided) are shown in a, b, respectively. The number of taxa is set to be 200, and the sample size equals to 60, with 30 samples per
group. The microbial absolute abundances in the ecosystem are generated from the log-normal distribution. The y-axis denotes patterns of
proportion of differential abundant taxa, ranging from 0.05 to 0.25. The solid vertical line is the 5% nominal level of FDR, and the dashed
vertical line denotes 5% nominal level plus one standard error (SE). Legend on the bottom indicates the color for each method and the
normalization method is provided within parenthesis. By default, ANCOM-BC implements Holm-Bonferroni70 method and other DA methods
implement BH procedure57 to adjust for multiple comparisons. By detecting differentially abundant taxa between two groups, results show
that only ANCOM and ANCOM-BC control the FDR under the nominal level (5%) while maintaining power comparable to other methods.
Gaussian model version of metagenomeSeq has highly inflated FDR, while the log Gaussian version has substantial loss of power, sometimes
well below 5%.
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values. Since there are a total of K MC Dirichlet samples,
each taxon will result in K p-values.

(4) Each resulting p-value is corrected using the B–H57

procedure, and the expected adjusted p-value for each
taxon is reported by taking the empirical mean of K adjusted
p-values.

The ALDEx2 was designed to identify differential abundances of
features (genes, taxa, or genomic segments), relative to the
geometric mean abundance, between two or more groups. As
reported in the simulation study described in this paper (Fig. 4)
ALDEx2 not only generally exceeds the nominal level of FDR (5%),
but also has substantially smaller power as compared to competing
DA methods. Similar results were also reported in Morton et al.8.

ANCOM

Analysis of composition of microbiomes (ANCOM)14 is an alr based
methodology, which accounts for the compositional structure of
microbiome data. Given a total of m taxa, ANCOM relies on two
assumptions as follows.
Assumption 0.1: The mean log absolute abundance (in the

ecosystem) of 2 taxa are not different.
Assumption 0.2: The mean log absolute abundance (in the

ecosystem) of all m taxa do not differ by the same amount
between two study groups. For example, suppose the absolute
abundance of m taxa for a subject in group 1 (C-section born
babies) are A1, A2, …, Am and suppose the absolute abundance of
taxa for a subject in group 2 (vaginally born babies) are B1, B2, …,
Bm. Then Bi ≠ CAi, for all i= 1, 2, …, m. Thus, not all taxa are
changing by the same constant C.
Note that the first assumption made by ANCOM is substantially

weaker than the assumptions made by DESeq2 and edgeR, which
require very “few” taxa to be differentially abundant.
Under the above assumptions, together with the fact that

ANCOM performs all possible DA analyses by successively using
each taxon as a reference taxon, the authors proved that one can
test the null hypothesis regarding mean log absolute abundance
in a unit volume of an ecosystem using relative abundances.
For the ith taxon and jth sample, ANCOM uses standard ANOVA

model formulation:

log
r
ðgÞ
ij

r
ðgÞ

i0 j

¼ αii0 þ β
ðgÞ

ii0
þ
X

k

xjk βii0k þ ϵ
ðgÞ

ii0 j
; (12)

where

(1) i0 is the reference taxon, i0 ≠ i ¼ 1; 2; ¼ ;m,
(2) g= 1, 2, …, G is the number of study groups.

By virtue of Assumption 0.1 and Assumption 0.2, to test whether
a taxon i is differentially abundant according to a factor of interest
with G levels, it is equivalent to test:

H0ðii0Þ : β
ð1Þ
ii0 ¼ ¼ ¼ β

ðGÞ
ii0 ¼ 0;

H1ðii0Þ : Notall β
ðgÞ
ii0 equalsto 0;

for every i ≠ i0.
P-values from

mðm�1Þ
2

distinct null hypotheses H0ðii0Þ , i ≠ i0 are
adjusted using a multiple testing correction procedure such as the
Benjamini-Hochberg (BH) procedure57 or Bonferroni correc-
tion58,59. For each taxon, the number of rejections, denoted by
Wi, is counted, and ANCOM makes use of the empirical
distribution of {W1, W2, …, Wm} to determine the cut-off value of
significant taxon. The rule of thumb is, when the value of Wi is
large, then it is more likely that taxon i is differentially abundant.
The authors recommend using 70th percentile of the W
distribution as the empirical cut-off value. However, the ANCOM
outputs results from different cutoffs such as the 60th to 90th
percentile and lets the user select the threshold of their interest.

As shown in the simulation studies (Fig. 4) as well as in14,20,
using the 70th percentile of W distribution as the cut-off, ANCOM
successfully controls the FDR under the nominal level (5%) while
maintaining adequate power. However, ANCOM can be compu-
tationally intensive since for each taxon, it performs alr
transformation using all remaining taxa. The computation time
scales up quadratically with the number of taxa. Additionally, the
statistical decision made by ANCOM depends on the quantile of
its test statistic W, rather than p-values, which some researchers
find it difficult to interpret.

DR

Differential Ranking (DR)8 exploits the fact that the ranks of
relative differentials (i.e. log ratio between absolute relative
abundances) are identical to the ranks of absolute differentials
(i.e. log ratio between absolute abundances). They estimate
relative differentials using a linear regression where relative
abundances are alr transformed. The regression coefficients
corresponding to different taxa are ranked in order to determine
the most important to the least important taxa.
The DR model can be summarized as follows:

βik � Nð0; μβÞ;

rj ¼ alr�1ðβTi xjÞ;

Aj � MultinomialðrjÞ;

(13)

where

(1) xj is the vector of covariates of interest (e.g. study groups)
for the jth sample,

(2) rj is the vector of observed relative abundances for the jth
sample,

(3) Aj is the vector of absolute abundances in the ecosystem for
the jth sample.

The model parameters are estimated using a maximum a
posteriori priori (MAP) estimation by stochastic gradient descent.
To understand the implementation of the DR procedure,

consider a simple example where the true absolute relative
abundance is known. Suppose there are only two samples
belonging to two groups (e.g. control vs treatment) and the
unobserved absolute abundance is linearly related with the group
effect in log scale, i.e.:

log Aij ¼ αi0 þ αi1I ðj 2 group 1Þ: (14)

Suppose sample j1 is in group 1 and sample j2 is in group 2, then
from (Eq. 14) we have

log Aij1 � log Aij2 ¼ αi1: (15)

Denoting the true absolute relative abundances by γij and γi0 j
one can write down the DR model (Eq. 13) as:

log
γij

γi0 j
¼ log

Aij

Ai0 j

¼ βi0 þ βi1: (16)

where i0 is the reference taxon. Thus,

log
γij1
γi0 j1

� log
γij2
γi0 j2

¼ log
Aij1
Ai0 j1

� log
Aij2
Ai0 j2

¼ log Aij1 � logAij2 � ðlog Ai0 j1
� log Ai0 j2

Þ

¼ βi1:

(17)

Comparing (Eq. 15) with (Eq. 17), it is clear that although βi1 ≠
αi1, due to the bias term log Ai0 j1

� log Ai0 j2
. However, since the bias

term is constant for taxon i, the rank of βi1 is same as the rank of
αi1.
Thus, unlike typical DA methods in which the estimated

coefficient reflects the change in absolute abundances, the
interpretation of DR results requires care because it is based on
the ranks. Due to the presence of the microbial load bias
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(log Ai0 j1
� log Ai0 j2

in the above example), a positive valued
coefficient from DR model does not necessarily mean that the
absolute abundance has increased. Similarly, a zero valued
coefficient does not imply the absolute abundance of the
corresponding taxon has not changed. Nevertheless, based on
the ranks of coefficients, one can focus on taxa with high or low
ranks since they are the ones that are potentially increasing or
decreasing the most in absolute abundances relative to other taxa.
Note that since different reference taxon in the alr transforma-

tion of DR model will lead to the same result regarding the ranks,
DR is robust to the choice of reference taxon.

ANCOM-BC

Analysis of compositions of microbiomes with bias correction
(ANCOM-BC)20 models the observed abundances using an offset-
based log-linear model.

yij ¼ dj þ βi
Txj þ ϵij ; (18)

where

(1) yij ¼ logOij is the log observed abundance,

(2) dj (see Table 2)

In this set-up, the zero counts are handled using the methodology
described in Kaul et al.28. This formulation explicitly tests the
hypothesis regarding differential absolute abundance of indivi-
dual taxon while estimating sample-specific sampling fractions
and correcting the bias appropriately. As demonstrated in our
simulation studies, ANCOM-BC not only controls the FDR very well,
but also competes very well with other methods in terms of power
(Fig. 4). Furthermore, unlike any of the existing methods, ANCOM-
BC provides valid confidence intervals for differential abundance
of individual taxa between two study groups and also provides a
valid p-value20. Since it has a linear regression framework, it allows
for repeated measurement designs as well as covariate adjust-
ments. ANCOM-BC can also be extended to describe patterns of
differential abundance in multiple study groups such as time
course or dose-response studies20.
As a benchmark analysis, we also compared significant genera

identified by ANCOM-BC, ANCOM, and DR using the global gut
microbiota data60. This data set consists of 11,905 OTUs obtained
from fecal samples of subjects in the USA (n= 317), Malawi (n=
114), and Venezuela (n= 99). We first subdivided the data into

two age strata “≤2 years” and “>2 years”. This stratification was
performed because it is expected that microbial composition of
infants changes when they switch over from breast milk (or
formula milk) to solid food7. The sample sizes in the two age
categories (≤2 years, >2 years) for Malawi (MA), USA (US) and
Venezuela (VEN) are (47, 36), (50, 260), and (27, 70), respectively.
Note that samples with missing values of age were discarded in
the downstream analysis. Without a hard threshold available for
DR, as suggested in the original paper8, we investigated the
highest/lowest ranks of genera by selecting the top 25 and
bottom 25 genera in terms of rank order of regression parameter
estimates. As seen in Fig. 5, the three methods generally have a
large number of overlapping genera, with ANCOM-BC and
ANCOM having more taxa in common that are differentially
abundant. While implementing ANCOM, we used the 70th
percentile of the distribution of W as the cut-off. Note that the
DR method was applied with all hyper-parameters of the
multinomial model set to their default values in the algorithm
which can be further tuned.

Balance-based methods

A variety of methods have been proposed in the literature that are
based on balances described earlier in this paper. Some examples
include gneiss18, phylofactorization61,62, PhILR63, and selbal64.
Although the balance-based methods were not explicitly designed
for performing formal statistical DA analyses for individual taxon,
they are often used for that purpose.
To overcome the challenges posed by the compositional

structure of 16S rRNA data for identifying individual differentially
abundant taxa, gneiss18 was developed to identify taxa distribu-
tion across different covariates with the help of balances. The
balances (Eq. (8))65,66 are useful to infer meaningful properties of
sub-communities. Gneiss aims to associate the effect of parameter
of interest to the matrix of balances:
Definition 0.7 (gneiss model).

bjl ¼ βTl xj; (19)

where

(1) bjl represents the balance for sample j at node l,
(2) βl ¼ ðβl1; ¼ ; βlp Þ

T
represents a vector of coefficients,

(3) xj ¼ ðxj1; ¼ ; xjp Þ
T
represents the measures for covariates.
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Fig. 5 Venn diagrams representing consistency of differentially abundant genera identified by ANCOM-BC, ANCOM, and DR. The global
gut microbiota data60 is used to make the Venn diagram. The dataset contains 673 genera, with subjects from Malawi (MA, n1= 114), USA (US,
n2= 317), and Venezuela (VEN, n3= 99). We compare the absolute abundance of different genera for (1) Subjects who are less than or equal to
2 years old with sample size (MA:US:VEN)= (47:50:27) and (2) Subjects who are greater than 2 years old with sample size (MA:US:VEN)=
(36:260:70). ANCOM-BC and ANCOM generally have large overlap of significant genera.
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Gneiss methodology is very flexible and can be broadly used for
determining niches of microbes in various sub-communities. Thus,
it is a very useful method for discovering niche differentiation in
microbes.
Similar to gneiss, phylofactorization61,62 is not designed for the

DA analysis as defined in this paper, but it focuses on the
comparison between clades with a clear phylogenetic interpreta-
tion. It is based on a greedy algorithm which sequentially selects
edges, instead of nodes or splits in a phylogeny, whose ilr basis
element maximizes a pre-specified objective function (e.g. the
percentage of variation explained). Therefore, besides comparing
sister clades, phylofactorization compares the relative abundances
between all other clades.
We illustrate gneiss using the global gut data60 discussed earlier

in this paper using Malawi (MA, n1= 114) and the USA (US, n2=
317) data. Gneiss identified different trends among various
balances (Fig. 6). For example, balance y0 is detected to increase
in US as compared to MA for subjects who are ≤2 years old; It is in
a reverse direction for subjects who are >2 years old. One caveat
to keep in mind is that the components of balances are not
necessarily the same across different data sets. The first balance y0
for the younger generation (age ≤ 2 years old) consists of 642 taxa
in the numerator (the left subtree) and 31 taxa in the denominator
(the right subtree); On the other hand, y0 for the older group (age
>2 years old) has 655 taxa in the numerator and 18 taxa in the
denominator. It is important to note gneiss is not designed to infer
changes in abundance for each individual taxon, however, it can
answer questions such as whether the absolute abundances of
taxa in the numerator of y0 on average have increased or
decreased as compared to those in the denominator.

LEfSe

Linear Discriminant Analysis Effect Size (LEfSe)67 is specifically
designed for group comparisons of microbiome data with a

particular focus on detecting change in relative abundance
between two or more groups of samples with biological
consistency. Important statistical and computational steps imple-
mented in LEfSe are as follows:

1. For each taxon, test whether its observed abundances in
different groups are differentially distributed using
Kruskal–Wallis test.

2. (Optional, only if subgroups are defined) Discard taxa which
are not statistically significant in step 1 (e.g. p-value > 0.05).
The pairwise Wilcoxon test is then applied to retain taxa. A
taxon is not retained for further consideration if it is not
significant in every pairwise comparison (e.g. p-value > 0.05
for at least one pairwise comparison) or if the signs of test
statistics are not equal among all comparisons.

3. After feature selection, a Linear Discriminant Analysis (LDA)
model is built with the group label as the dependent
variable and observed abundance of taxa selected in above
step, subgroup label, and demographic features as inde-
pendent variables. This model is used to calculate the effect
size for each taxon. This effect size serves as the average of
each taxon’s variability and discriminatory power.

4. Finally, the LDA score for each taxon is obtained by
computing the logarithm (base 10) of the effect size after
being scaled in the [1, 106] interval. The rank for each taxon
is assigned based on the corresponding LDA score and
further feature selection could be achieved by setting a
threshold (e.g. 2.0) for LDA scores.

By its construction, LEfSe method is more a discriminant analysis
method rather than a DA method. Unlike the DA analysis methods
discussed earlier in this paper, LEfSe is more focused on investigating
the relationship among microbial profiles and an outcome or

phenotype (Step 3). More precisely, LEfSe tries to quantify the
magnitude of the effect size of such associations between microbial
profiles (e.g. a set of taxa) and the outcome of interest.
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Fig. 6 Waterfall plot visualizing coefficient (US: MA) for top 20 balances identified by gneiss using the global gut microbiota data60. We
subset the dataset to subjects whose nationality is Malawi (MA) and USA (US), with sample size (MA:US)= (47:50) for the group of age ≤2 years
old, and (MA:US)= (36:260) for the group of age >2 years old. The columns of the plot represent coefficients, and the rows of the plot
represent balances. BH procedure57 was applied to correct for multiple comparisons, and coefficients with FDR corrected p-values < 0.05 are
discarded.
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DISCUSSION

Microbiome studies are becoming very popular in biomedical
sciences. As new scientific questions emerge, so do new statistical
and computational methods of analysis. This is a very rapidly
growing area of research with new statistical methods being
developed on a regular basis. Hence an up-to-date comprehensive
review of the statistical methods in the field is a challenging
problem. This is particularly true with methods for DA analysis. A
number of methods exist in the literature and each method has its
own strengths and weaknesses. One of the challenges in
evaluating the performance of various methods is that not all
methods are designed to test statistical hypotheses regarding the
same parameter. Some methods are designed for testing
hypotheses regarding the relative abundance, while others are
designed for testing hypothesis regarding absolute abundance. If
a simulation study is designed for testing hypothesis regarding
absolute abundance then methods for relative abundance
parameter may show an inflated FDR and vise versa. A related
problem is that often researchers use the terms “relative
abundance” and “absolute abundance in a unit volume”
interchangeably. This makes the simulation studies difficult to
interpret. Therefore journals and researchers should make the
terminology precise. In this paper, simulation studies were set-up
to compare FDR and power of various methods when testing
hypotheses regarding absolute abundance of taxa in a unit
volume of a tissue.
We performed simulation studies using the log-normal dis-

tribution for modeling abundances. Consistent with the findings
of20, ANCOM and ANCOM-BC control the FDR at the desired
nominal level for most configurations while competing well with
all procedures in terms of the overall power. The only situations
where ANCOM as well as ANCOM-BC fail to control FDR is when
the sample sizes are very small, such as <1020. All other methods
considered in this paper tend to inflate FDR for all sample sizes
and their FDR gets worse with the sample size increases20. This is
because, under the null hypothesis, each of these methods is
biased away from zero. This bias increases with sample size. Hence
the FDR increases with sample size.
While ANCOM and ANCOM-BC have very similar operating

characteristics in terms of FDR and power, ANCOM-BC is
computationally simpler and faster to implement because unlike
ANCOM it requires only m linear regression fits rather than
m ´ ðm� 1Þ

2
models fits needed by ANCOM. Secondly, unlike ANCOM,

ANCOM-BC provides individual p-values and confidence intervals
of pairwise difference in mean abundance for each taxon. Among
the methods available today, ANCOM-BC is the only procedure
that provides valid p-values and confidence intervals. Further-
more, since ANCOM-BC is based on a regression model frame-
work, it can easily be extended to repeated measures/longitudinal
data covariate adjustments.
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