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Advances in metagenomics enable high resolution description of complex bacterial

communities in their natural environments. Consequently, conceptual approaches for

community level functional analysis are in high need. Here, we introduce a framework

for a metagenomics-based analysis of community functions. Environment-specific

gene catalogs, derived from metagenomes, are processed into metabolic-network

representation. By applying established ecological conventions, network-edges

(metabolic functions) are assigned with taxonomic annotations according to the

dominance level of specific groups. Once a function-taxonomy link is established,

prediction of the impact of dominant taxa on the overall community performances is

assessed by simulating removal or addition of edges (taxa associated functions). This

approach is demonstrated on metagenomic data describing the microbial communities

from the root environment of two crop plants – wheat and cucumber. Predictions

for environment-dependent effects revealed differences between treatments (root

vs. soil), corresponding to documented observations. Metabolism of specific plant

exudates (e.g., organic acids, flavonoids) was linked with distinct taxonomic groups in

simulated root, but not soil, environments. These dependencies point to the impact

of these metabolite families as determinants of community structure. Simulations of

the activity of pairwise combinations of taxonomic groups (order level) predicted the

possible production of complementary metabolites. Complementation profiles allow

formulating a possible metabolic role for observed co-occurrence patterns. For example,

production of tryptophan-associated metabolites through complementary interactions is

unique to the tryptophan-deficient cucumber root environment. Our approach enables

formulation of testable predictions for species contribution to community activity

and exploration of the functional outcome of structural shifts in complex bacterial

communities. Understanding community-level metabolism is an essential step toward

the manipulation and optimization of microbial function. Here, we introduce an analysis
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framework addressing three key challenges of such data: producing quantified links

between taxonomy and function; contextualizing discrete functions into communal

networks; and simulating environmental impact on community performances. New

technologies will soon provide a high-coverage description of biotic and a-biotic

aspects of complex microbial communities such as these found in gut and soil. This

framework was designed to allow the integration of high-throughput metabolomic

and metagenomic data toward tackling the intricate associations between community

structure, community function, and metabolic inputs.

Keywords: metabolic networks, microbial community, rhizosphere, microbial ecology, computational analysis

INTRODUCTION

The biology of individual organisms is linked to their community
and ecosystems viametabolic activity. Organisms take up energy
and resources from the environment, convert them into other
forms, and excrete altered forms back into the environment
(Brown et al., 2004; Perez-Garcia et al., 2016; Zomorrodi
and Segre, 2016). Metabolic activity is a key determinant of
interaction patterns between micro-organisms (Klitgord and
Segre, 2011; Widder et al., 2016). Microbial species not only
compete for the available resources, but in many cases work
together toward the degradation of complex polymers into
simpler compounds (Schink, 2002; Fuhrman, 2009; Marx, 2009;
Koropatkin et al., 2012; Grosskopf and Soyer, 2014). Degradation
chains shape the structure of the community as a primary
degrader mediates the accessibility of energy sources to other
members of the community. Secondary degraders rely on the
presence of the primary mediators, and the final excretion
products are determined according to the identity of the
downstream chain members. The perception of ecosystems
as a trinity of environment (specific resources) – community
(possible conversion repertoire) – and function (excretion of
altered forms), provides a conceptual framework for the study
of microbial activity in ecological habitats. Shifts in community
structure are hence assumed to reflect changes in either one
or both adjacent edges in the community-environment-function
trinity.

High-resolution mapping of shifts in bacterial community
structure has become widely accessible with the development
of massive, low-cost, sequencing techniques. Together with
biodiversity detection in environmental samples, metagenomics
projects allow the construction of community-level gene catalogs
(Zengler and Palsson, 2012; Franzosa et al., 2015; Guo et al.,
2015; Widder et al., 2016). A considerable effort has been
invested in the development of computational approaches for a
functional-oriented interpretation of such data and specifically
in deciphering the variations in metabolic activity between
treatments (Stolyar et al., 2007; Freilich et al., 2011; O’Dwyer
et al., 2012; Segata et al., 2013; Roling and van Bodegom,
2014; Zomorrodi et al., 2014; Bowman and Ducklow, 2015;
Guo et al., 2015; Hanemaaijer et al., 2015; Roume et al., 2015;
Zelezniak et al., 2015; Granger et al., 2016). Metagenomics driven
gene catalogs are typically two dimensional, i.e., genes can be
classified according to both functional annotation and taxonomic

affiliation (Greenblum et al., 2012). Functional annotations
allow the construction of community level metabolic networks,
similarly to the construction of species-specific networks, based
on the content of enzyme coding genes in their respective
genomes (Abubucker et al., 2012; Levy and Borenstein, 2013;
Roume et al., 2015; Tobalina et al., 2015). Subsequently,
predictions for network-specific sets of source-metabolites
can be inferred through computational approaches, providing
an approximation of the relevant metabolic content of an
environment (Borenstein et al., 2008; Handorf et al., 2008).
Computational simulations can then address the influence
of environmental inputs (nutritional resources) on network
dynamics. At the species (genome) level, metabolic-activity
simulation allows predicting the effects of environmental
and genetic perturbations through iterative modifications of
the available metabolic inputs and/or network structure,
respectively (Freilich et al., 2009, 2010). At the community
level, a similar approach can be applied for delineating
functional division between community members. By overlaying
the taxonomic dimension over network edges (functional
annotation), metabolic capacities contributed exclusively by
specific taxa can be grouped. The communal network functional
performances can then be tested by simulating the iterative
removal or addition of corresponding network edges specifically
associated with key taxonomic groups. Such iterations can,
first, describe the metabolic hierarchy where different taxonomic
groups are expected to vary in their contribution for converting
complex nutrients into widely accessible ones; second, reveal
variations between treatments in network performances.

The main goal of this study is to use metabolic-network
approach to explore the environment-function-structure
associations in the complex microbial communities of the
rhizosphere microbiome (rhizobiome). The rhizosphere is the
soil known as the area that is directly under the influence of
living roots. The rhizobiome is known to be strongly influenced
by plant roots activity. These act as selective nutritional sources
for phytochemicals that stimulate and support enrichment of
specific groups of soil microorganisms (Larkin et al., 1993;
Smith et al., 1997, 1999; Berg et al., 2002; Mazzola, 2004;
Cook, 2006; Ikeda et al., 2006; Micallef et al., 2009; Ofek-Lalzar
et al., 2014; Ofek et al., 2014; Haldar and Sengupta, 2015).
Advances in sequencing technologies promoted the extensive
characterization of community structures in rhizosphere
compared with the more distant soil, not under the direct effect
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of the root (Mirete and González-Pastor, 2010; Turner et al.,
2013; Bouffaud et al., 2014; Lakshmanan et al., 2014; Ofek
et al., 2014; Roume et al., 2015). A published gene catalog,
constructed from genomic DNA that was extracted from the
root and respective soil samples of cucumber and wheat, was
used for characterizing a core set of functional genes associated
with root colonization (Ofek-Lalzar et al., 2014). Here, we
hypothesized that analyzing this gene catalog using a metabolic
network based framework will further allow associating specific
functions with taxonomic groups and external metabolic signals
(such as those induced by root plants). Starting from this gene
catalog, we constructed four environment-specific metabolic
networks (cucumber root and soil; wheat root and soil) and
predicted specific externally consumed metabolites associated
with each environment, as well as network functions dominated
by specific taxonomic groups (order level). The impact of
each taxonomic group was assessed through the dynamic
removal of the enzymatic functions of specific groups, one
by one and all at once. Similarly, complementation potential
of bacterial combinations – that is, the ability of taxonomic
groups to co-produce metabolites that are not synthesized by
any of the individual entities, was explored in the four different
niches.

MATERIALS AND METHODS

Metagenomic Data, Samples,
Sequencing, and Annotations
The metagenomics-derived gene catalogs used for the current
analysis was previously reported in Ofek-Lalzar et al. (2014)
and is publically available (BioProject accession number
PRJNA208116). In brief, the DNA data were extracted from
two agricultural crops: wheat and cucumber. For each crop
plant, samples were taken from rhizosphere – the area under
the direct influence of the root, and the more distant soil
not under direct effect, termed here root and soil samples,
respectively. The replicated experiment included 10 samples
in total: root samples were in triplicates (a total of six root
samples) and soil samples in duplicates (a total of four samples).
Reproducibility between replicas was tested and reported,
clearly demonstrating higher variance between root and soil
treatments. The data were sequenced, annotated and mapped
to taxonomic bins and KEGG ortholog groups. Taxonomic
assignments were done using the lowest common ancestor
algorithm, MEGAN (version 4.0) (Huson et al., 2007). The gene
catalog represents approximately 71% of cucumber root reads,
50% of wheat root reads and 34% of soil reads. DNA reads
were mapped to different taxonomic ranks. Approximately 72,
63, and 47% of the reads in soil cucumber and wheat samples
were mapped to bacteria, while 22, 16, and 24% were ‘not
assigned,’ respectively. Generally, out of the total number of
reads mapped to bacteria, over 97% of the reads mapped to the
bacterial level were assigned to order level. Overall, this gene
catalog provides a description of genes detected in each of the
four treatments (cucumber root and soil; wheat root and soil),
their relative abundance, functional annotation (e.g., KEGG

assignment), and taxonomic origin. This gene catalog was used
as a starting point for network construction and subsequent
analyses.

Network Construction
KEGG ortholog groups associated with enzymatic functions
were detected across the four environments. Differential
abundance (root vs. soil) of enzyme-associated reads was
determined independently for wheat and cucumber using the
EdgeR R package (Robinson et al., 2010) under the set of
conditions previously described by Ofek-Lalzar et al. (2014).
Differential abundance between environments was considered
significant if the difference was greater than two fold and
the FDR-adjusted p-value was < 0.01, requiring consistency
between replicas. Overall, the differential abundance analysis
produced four sets of differentially abundant enzyme sets
describing: cucumber soil, cucumber root, wheat soil and
wheat root (Supplementary Tables S1, S2 and Figure S1).
In each environment, the set of differentially abundant
enzymes was used for construction of an environment-specific
network, following the procedure outlined in Kreimer et al.
(2012). Similarly, a meta-network was constructed, containing
all enzymatic functions annotated across the metagenomic
data.

Prediction of Environment-Specific
Metabolites (Source-Metabolites)
Using the NetSeed algorithm (Carr and Borenstein, 2012),
through its implantation in NetCmpt (Kreimer et al., 2012),
an approximation of the relevant metabolic environment was
retrieved for each of the five networks (meta-network and
four environment-specific networks). Based on network
topology, the algorithm provided a list of metabolites
that were predicted to be externally consumed from the
environment, termed here ‘source metabolites.’ Since the
four environment-specific networks were constructed from
differentially abundant enzymes only, they were highly
fragmented, leading to prediction of artificial source-metabolites
(Supplementary Figure S2). Source-metabolites, identified
for each environment specific network, were hence compared
to the source-metabolite set identified for the meta-network.
Only source-metabolites present in both sets were further
considered. Following this filtration, we complied four
environment-specific sets of source metabolites providing
an approximation of the metabolic content in the corresponding
environments (root and soil of wheat and cucumber, a total
of four environments, Supplementary Tables S3, S4 and
Figure S1).

Network Expansion Algorithm and Its
Application for Describing Environmental
Activity
To predict metabolic activities in each environment we made
use of the Expansion algorithm (Ebenhoh et al., 2004).
Briefly, the algorithm allows the predicting of an active
metabolic network (expanded) given a pre-defined set of
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substrates and reactions. The algorithm starts with a set of
source-metabolites acting as substrates; it scans the reaction
bank for feasible reactions for which all the possible substrates
exits; all feasible reactions are added to the network, their
products being the substrates for the next set of reactions.
The network stops expanding when no feasible reactions are
found. Thus, the full expansion of the network reflects both
the reaction repertoire and the primary set of compounds
(source-metabolites). Here, simulations of environmental activity
were carried by expanding the meta-network (the full set
of reaction detected across all samples) four times – each
time using the environmental specific source metabolite set.
We made use of the full set of reactions for all simulations,
since despite differences in abundance, almost all enzymes
were detected in all samples (Ofek-Lalzar et al., 2014).
The environment-specific expanded networks are provided at
Supplementary Table S5.

Taxonomic Mapping and Dominance
Establishment
All sequenced reads, collected in the metagenomic dataset,
were linked to taxonomic groups, in the order level, using
mapping from previous analysis (Ofek-Lalzar et al., 2014).
Each read was assigned a Gene Id which was used as key
parameter. Enzymes were then linked to the taxonomy mapping
through gene IDs. The Simpson index (Heip et al., 1998),
typically used to determine species dominance in ecological
surveys, was newly applied here to determine the dominance
of specific taxonomic groups in regards to a function. To
this end, instead of looking at the frequencies of species
in a sample (as in ecological surveys), for each enzyme
(equivalent to a sample), we looked at the distribution the
taxonomic affiliations of its associated reads. Accordingly –
a low score denoted a function carried by many taxonomic
groups; high score denoted a function carried out by single
or few groups. To this end, Simpson Indices were calculated
for each enzyme in the dataset for each of the original 10
samples (Supplementary Table S6). Replicates show similarity
in the dominance/diversity indices (Supplementary Figure S3).
Then, an environmental Simpson index value was determined for
each enzyme by calculating mean values across corresponding
samples. Finally, within each environment, we described a
function to be dominated by a taxonomic group if: (i) the
environmental Simpson index value was greater than 0.4 – mean
dominance value across all enzymes (Supplementary Table S6)
typically also associated with low diversity (Supplementary

Figure S3); (ii) the same taxonomic group is dominate in
all replicate samples. Hence, associations between taxonomy
are representative of a treatment (environment) and consistent
between replicas. Most (556) of the dominant enzymes were
associated with a single taxonomic group (that is, dominance
by a single taxonomic groups in different environments;
Supplementary Table S7). For each environment, we ranked
taxonomic groups according to the number of enzymes they
dominate. Top five groups were termed ’key’ taxonomic
groups.

Dynamic Removal and Functional
Analysis
For each environment, network expansions were carried six times
using the corresponding set of source metabolites. In the first of
the six iterations, the reaction set included the full set of metabolic
functions (as described above). In each of the subsequent five
iterations – all edges (metabolic functions) specifically dominated
by one of the key taxonomic groups were removed from the
original enzyme set. The impact of the removal of each key
taxonomic group was estimated according to differences in the
metabolite content (metabolite number) between the network
expanded from the truncated enzyme set, and the original
meta-network (first iteration, expanded from the full enzymatic
set). The removed metabolite vectors, created for each iteration,
were mapped to KEGG pathways. A removal effect score was
calculated for each pathway as the fraction of metabolites left
after the removal out of the original number of metabolites
per pathway (counted in the first iteration, considering the
un-truncated network).

Synergistic Metabolic Complementation
In order to discover whether there is a synergistic metabolic
complementation between combinations of key taxonomic
groups, we applied a reverse approach to the removal procedure
described above. Starting from a core set of enzymes representing
common functions (i.e., functions that are not dominated by a
key taxonomic group) we added combinations of specific and
unique taxa-dominated enzyme sets. The possible combinations
are described in Supplementary Table S8. An enzyme set was
automatically created for each possible combination in each
environment, according to the Simpson dominance scores. Thus
leading to, for each combination tested, a number of enzyme
sets as the number of combination members in addition to the
enzyme set describing the amalgamate. Each enzyme set was used
to expand a network as previously described. Each combination-
type was tested in all four environments. All the networks
were scanned for complementary metabolites. To identify
complementarymetabolites, we compared themetabolite content
of multi-members networks to these of its corresponding
single-member networks. That is, for a combination of a pair
of taxonomic groups A and B, we expanded three networks per
environment, giving a total of three networks i.e., (1) a core
network + enzymes dominated by group A; (2) a core network
+ enzymes dominated by group B and (3) a core network
+ enzymes dominated by groups A and B (Supplementary

Figure S4). Metabolites that were produced in the joint network
(network 3), but not in the individual networks (networks
1 and 2), were termed complementary metabolites. For each
such combination, the process was carried in each of the
four environments. All complementary metabolites were than
mapped to KEGG pathways (Supplementary Table S9).

Pathway Mapping and Enrichment
Analysis
Enzymes and metabolites were cataloged and mapped to
pathways according to the KEGG database (Kanehisa
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et al., 2014). Testing for significantly enriched pathways
(metabolites/enzymes) was done using the results of the
hypergeometric enrichment test as in Yadav et al. (2016). In
addition, using the R chisq.test function (R version 3.2.2), the
X2 goodness of fit test was used to evaluate the compliance of
subsets with the relative distribution of samples. A pathway
was considered significantly enriched if it passed both the
hypergeometric distribution (p < 0.05) and the X2 goodness of
fit (p < 0.05) tests.

Visualizations
Venn diagrams were made using Venny (Oliveros, 2007)
then adapted using Microsoft VISIO 2013. PCA analysis was
performed using R prcomp function (R version 3.2.2). Heatmap
and PCA plots were made using the ggplot2 R package (version
1.0.1) (Ito and Murphy, 2013). Pathways were plotted into a
heatmap using the pheatmap R package (version 1.0.8) (Kolde,
2015). All network visualizations were made using Cytoscape
(version 3.3.0) (Shannon et al., 2003).

RESULTS

Here, we present a framework for the analysis of functionally and
taxonomically annotated metagenomic data. In brief, the main
steps of the framework are the following (1) the construction of
a general metagenomic network (termed meta-network), used as
reference network, and treatment specific networks; (2) in silico
predictions of source-metabolite sets to be used to describe
the metabolic content of the corresponding environments; (3)
establishing a link between functions, taxonomy groups and
DNA reads using an ecological element, the Simpson index, per
environment; (4) dynamic removal of sets of unique enzymes
specific to each key taxonomic groups; and (5) assessment of
taxonomic group complementation (or synergism).

Comparative Analyses of Environmental
Metabolic Functions
Gene catalogs used here were constructed based on published
DNA metagenomic data that were collected from four
environments – roots of wheat and cucumber and the
corresponding soils (Ofek-Lalzar et al., 2014). A total of
3436 KEGG orthologs, identified across all data, were mapped
to 1574 unique enzymes (denoted by a four digits EC numbers)
which represent the overall cross-environment compilation.
We first identified differentially abundant enzymes in soil vs.
root environments, considering each crop independently. Both
plant treatments showed an overall similarity in their root vs.
soil divergence pattern with most of the differentially abundant
enzymes shared by both crops (Figure 1A). The differentially
abundant enzyme sets were mapped to 100 KEGG pathways
(Supplementary Table S10), with only nine showing significant
enrichment in a specific environment (Figure 1B). Enrichment
pattern of functional categories corresponds with previous
reports: while some of the enriched root associated pathways
were found to be involved in lipopolysaccharide metabolism,
in agreement with Owen et al. (2007) and Ofek-Lalzar et al.

(2014), most of enriched soil associated pathways were mostly
of primary metabolism such as the TCA cycle and carbon
metabolism. Next step was going beyond the list of discrete
genes and integrating data into networks, according to stages
framework outlined above. The sets of environment specific
enzymes were used for the construction of four corresponding
environment-specific networks. Subsequently, computationally
based approximations of each metabolic environment were
calculated based on the network topology. Similarly to the
differentially abundant enzyme groups, most of the predicted
source-metabolites in the root and soil environments are shared
by both crops (Figure 1A). The source-metabolites were mapped
to 90 KEGG pathways (Supplementary Table S11). When
comparing the pathway distribution of source-metabolites
across the different environments, seven pathways showing
significant environment-specific associations were detected
(Figure 1B). Most of the significant pathways were identified
for the soil environments, with the exception of pathways
from the biosynthesis of secondary metabolites category, that
were significantly enriched in the cucumber root environment
(Figure 1B), possibly reflecting the effect of root exudates.

Comparative Analyses of
Environment-Specific Community
Metabolic-Networks
The description of the predicted source-metabolites, together
with the metabolic potential (the enzymes), allowed simulating
metabolic activity in each of the four environments. As can be
expected in natural robust systems (Freilich et al., 2010), the large
majority of basic metabolism was carried despite environmental
variations (Figure 1A bottom, and Supplementary Table S12).
To delineate environmental induced metabolic activity, network
metabolites were mapped to 122 KEGG pathways. Pathway
mapping of the expanded networks showed differences in a wide
range of secondary metabolism functions (Figure 1B). This stood
in contrast to enriched pathways found in the initial enzymes
and source-metabolites sets, where differences were foundmainly
in primary metabolic functions. Most of the divergent pathways
found for the environment-specific networks were associated
with root environments (Figure 1B). Some of these root-enriched
pathways, belong to secondary metabolism categories, including
metabolism of terpenoids, polyketides, and anthocyanins. These,
are common plant metabolites that are less likely to be abundant
with increasing distance from the root (Owen et al., 2007;
Megharaj et al., 2011; Jeon and Madsen, 2013; Jha et al., 2015).
These root unique network functions support the ecological
relevance of the expanded environment-specific networks and
their relevance for delineating robust versus unique metabolic
capacities.

Taxa-Dominated Functions and Their
Contribution to Communal
Performances
Considering the triangular relationship between an organism, a
function and an environment, we set out to project taxonomy
information over the environment-specific networks. In each
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FIGURE 1 | Distribution patterns of differentially abundant enzymes, source-metabolites and network metabolites from the four experimental environments. (A) Venn

diagrams of root versus soil entities. (B) Pathway significantly enriched with root versus soil entities. cr, cucumber root; cs, cucumber soil; wr, wheat root; ws, wheat

soil.

FIGURE 2 | Network representation and performances of enzymes dominated by key taxonomic groups. (A) Network representation of dominated versus

non-dominated enzymatic functions. Nodes in the network represent enzymes linked according to subsequent reactions. Core enzymes, that are, enzymes that are

not dominated by any taxonomic group and are common to multiple groups are marked in gray; dominated enzymes are colored. Examples for network areas of

specific pathways are circled in different colors. (B) Impact of the removal of key taxonomic groups, one by one and all at once on network metabolite content

(number). Colored values denote the percentage of missing metabolites in the network following removal out of the total number of metabolites in the reference

network without removal. The ’All’ row denotes the removal of all key groups across environments. No available data is denoted in empty white squares indicating

that the corresponding group was not one of the top key dominant groups in the corresponding sample.

environment, enzymes were scored according to the taxonomic
diversity of their associated reads. A total of 667 (out of 1574)
enzymes were paired with dominant taxa (order-level) in at
least a single environment. Most differences in the classification
profiles of these sets were associated with relative representation
in secondary metabolism categories (Supplementary Figure S5).
In each environment, the five taxonomic groups with the
highest number of dominated enzymes were defined as key
taxonomic groups (Supplementary Table S13 and Figure S6).
Overall, these key taxonomic groups were similar across
the four environments and included Actinomycetales (in
soil environments only), Burkholderiales, Pseudomonadales,

Rhizobiales, Sphingomonadales, and Xanthomonadales.
Conserved vs. dominated functions in the communal metabolic
network of the cucumber root are illustrated in Figure 2A. To
directly explore the contribution of taxa-dominated functions
to community performances, we simulated network activity
while eliminating such enzymes, all at once and group by group
(Methods, Supplementary Table S14). This iterative removal-
expansion process directly explored the impact of the key
taxonomic groups on metabolic processes carried in their specific
environment. In general, the effect of function removal was found
to depend both on its hierarchical positioning in a pathway (for
example – an enzyme converting a source-metabolite into a
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compound accessible for multiple groups in the community will
have a high impact), and on the robustness of the pathway (the
prospects of finding alternative routes for the production of
the corresponding metabolites). The impact is only relevant to
network studies, representing a snapshot of community structure
at a given time point. Despite the robustness of the expanded
metabolic networks, the removal of all key taxonomic group
specific functions led to up to approximately 26% reduction in
network size (Methods, Figure 2B). The highest removal impact
was observed in the cucumber root environment. In general, the
Rhizobiales and the Actinomycetales groups have had the highest
removal impact in root and the soil environments, respectively
(Figure 2B). These taxonomic groups are generally known to be
abundant and highly dominant in soil and root environments
(Mendes et al., 2013; Tian and Gao, 2014).

Delineation of
Environment-Taxa-Function
Associations
Themetabolic processes affected by the removal of key taxonomic
group (order level) were delineated by mapping the omitted
metabolites into KEGG pathways (Methods, Supplementary

Tables S15–S18). As expected in ecological systems, the removal
effect was observed to be both group specific, environment
dependent and differed between root and soil (Figure 3A).
Pathway mapping has shown that the large majority of pathways
affected were belongs to secondary-metabolism categories
(Figure 3B). In the soil, the removal of the order Actinomycetales
invoked the highest predicted impact. One example for an
affected function is streptomycin biosynthesis (Figure 3B), an
antibiotic produced by bacteria from the order Actinomycetales
(Nett et al., 2009; Zhou et al., 2012; Mitter et al., 2013;
Panov et al., 2013). Actinomycetales’ significant impact was
also simulated in various pathways associated with degradation
of fluorobenzoate and compounds from the polychlorinated
biphenyls (PCBs) pollutant family. This may stem from one
of Actinomycetales high dominance enzyme, benzoate 1,2-
dioxygenase (EC 1.14.12.10), which catalyzes a variety of ’first-
step’ reactions toward the degradation of an array of benzoate
analogs (Solyanikova et al., 2015). In the root environment,
pathways that were affected by the removal included lipids,
terepnoids, and plant induced secondary metabolites categories
(Figure 3B). The taxonomic group with the highest impact in
the root, in accordance with its key role in the rhizosphere
(Berg and Smalla, 2009), was the Rhizobiales (Figure 3B). Out
of 14 reactions involved in arachidonic acid metabolism, only
a single reaction (aryl-4-monooxygenase) was simulated to be
highly dominant byRhizobiales sequences. However, its upstream
location in the pathway suggests that Rhizobiales may be crucial
for its metabolism in the surveyed environment. In addition,
the simulated removal of Rhizobiales in the root (but not in
the soil) affected the metabolism of linoleic acid and geraniol
associated pathways. Both compounds are plant exudates that
are used as carbon sources in the rhizosphere (Folman et al.,
2001; Owen et al., 2007). Similarly, the simulated removal of
Sphingomonadales in the root (but not in soil) affected mostly

phenylpropanoid and flavonoid-related pathways (Figure 3B).
These root-specific effects correspond with the role of plant
exudates such as flavonoids, organic acids, and carbohydrates as
determinants of the microorganism community structure in the
rhizosphere (Narasimhan et al., 2003; Schulz andDickschat, 2007;
Ofek-Lalzar et al., 2014). Bisphenol degradation in the root, was
affected by the removal ofActinomycetales, Pseudomonadales and
Burkholderiale, but not by Rhizobiales, in correspondence with
recent reports (Matsumura et al., 2015). Other pathway categories
uniquely affected included these involved in the metabolism of
potential regulators of plant–microbe interactions. For example,
vitamin B6 was uniquely affected by the removal of the
Pseudomonadales taxonomic group (Figure 3B), in accordance
with their role in the production of B- group vitamins in the
rhizosphere (Marek-Kozaczuk and Skorupska, 2001).

Relating Co-occurrence Patterns to
Metabolic Exchange Interactions
Bacterial communities, or combinations of taxonomic groups,
are suggested to perform tasks that no species could perform
on their individually (Freilich et al., 2011; Zomorrodi and
Segre, 2016). Here, a simulative system was applied for
surveying such potential synergistic interactions between
the key taxonomic groups. A synergistic interaction was
estimated according to complementary metabolites, defined
as metabolites that are produced only in the presence of a
combination of species, and not by individual members of the
combination. These, environment-specific, combination-
specific complementary metabolites were mapped to
pathways (Figure 4, methods). Many of these predicted
processes aligned well with ecological theories, hence
providing a functional rational to observed co-occurrence
patterns.

The highest number of complementary metabolites
was simulated for a combination of Pseuodomonadales
and Sphingomonadales in the wheat root environment (20
metabolites, Supplementary Table S19). Bacteria from these two
taxonomic groups were demonstrated as having a co-dependent
distribution pattern across environments (Pascual-Garcia
et al., 2014). Most of the complementary metabolites predicted
for the Pseuodomonadales–Sphingomonadales combination
were mapped to the phenylpropanoid biosynthesis pathway
(Figure 4). This corresponds with the demonstrated
activity of Pseudomonadales in the rhizosphere that via
the phenylpropanoid pathway assist the plants’ response to
biotic stresses by contributing to a consortium that elicits
the accumulation of phenolic compounds (Jain et al., 2012;
Singh et al., 2013). Complementary metabolites predicted to be
produced by a Actinomycetales–Burkholderiales combination
included those in the pathway of inositol-phosphate metabolism
(Figure 4). This corresponds with the suggested role of
rhizobacteria in increasing phosphorus availability in the
rhizosphere, hence contributing to plant growth (Unno et al.,
2005; Singh and Satyanarayana, 2011; Wang et al., 2013).
Burkholderiales and Xanthomonadales showed a simulated
synergistic complementary effect related to tryptophan
metabolism in the cucumber root environment. Tryptophan,
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FIGURE 3 | The removal effect of enzymes dominated by key taxonomic groups on the metabolic potential of the community. (A) PCA analysis plot of the removal

effect of taxonomic groups in different environments on the overall metabolic capacity of the corresponding communities. Vector profiles describe the

absence/presence of metabolites in the absence/presence of the corresponding group. (B) Mapping of missing metabolites into specific pathways. Square color

strength (white to dark green) denotes the degree of contribution of the taxonomic group to the denoted function, i.e., the fraction of missing metabolites following

removal of the corresponding taxonomic groups out of all metabolites in the pathways without removal. White squares denote non-available data per function per

sample indicating that the corresponding group was not one of the top key dominant groups in the corresponding sample. Only pathways with an effect score

greater than 0.4 in at least a single experiment (removal iteration) are shown. The full removal description is available at Supplementary Tables S15–S18.

FIGURE 4 | Mapping of complementary metabolites into specific pathways. Complementary metabolites are these created in the network when adding enzymes

dominated by both members of a pairwise combinations to a core network of non-dominated enzymes and are not formed when only adding the enzymes

dominated by one of the pair members. Square strength color (white to dark green) denotes the number complementary metabolites per combination in a specific

environment. White squares denote non-available data per function per sample indicating that the corresponding group was not one of the top key dominant groups

in the corresponding sample.

secreted by the root, is converted by rhizobacteria to auxin, an
hormone promoting plant growth (Kamilova et al., 2006). In
the cucumber rhizosphere, amounts of secreted tryptophan
were reported to be low in comparison to other crops
(Kamilova et al., 2006). Hence, this cucumber-root specific
synergistic complementary predicted effect may indicate

a unique adaptation to a low tryptophan environment.
Finally, complementation between Actinomycetales and
Sphingomonadales was simulated in several pathways associated
with PCB degradation and especially in dioxin degradation.
As mentioned above, Actinomycetales dominate the ‘first step’
catalyzing enzyme. Bacteria from Sphingomonadales order
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dominate downstream enzymes. Thus the presence of both
taxonomic groups, in turn, may lead to the use of PCBs as a
carbon source.

DISCUSSION

“Omics” approaches are moving toward describing the full
picture of host–microbe interactions requiring integration and
systems-level modeling (Nayfach and Pollard, 2016). Here,
we suggest a framework for the functional interpretation of
metagenomic data providing predictions for the contribution of
key taxonomic groups to the overall community performances.
Identification of such group-specific functions is typically not
trivial and is hampered by the complex nature of microbial
communities. Our approach addresses three key challenges. First,
almost all functions are associated, to different degrees, with
multiple taxonomic groups. Hence, the definition of unique vs.
core enzymes requires quantitative estimates for the phylogenetic
representation of reads assigned. This need for a measure of the
degree of taxonomic dominance over function can be viewed
as an extension of the long-discussed concept of taxonomic
dominance over ecological environments. The Simpson index is
the conventional measure used by ecologists to describe species
dominance in a habitat (Heip et al., 1998; Zhang et al., 2014).
The innovative application of this well-established index in the
current study produced quantified links between functions and
taxonomic groups, tackling an unsolved challenge in functional
analysis. Once such link is established, a second challenge is
predicting the impact of taxa-dominated functions on overall
community performance. It is well-established that environments
populated by highly complex bacterial communities show
high functional robustness (Monard et al., 2011; Stenuit and
Agathos, 2015; Bordron et al., 2016). The contextualizing of
discrete enzymes into functional networks, as done here, allows
directly assessing robust functions vs. these relying on specific
groups/group combinations. Third, taxonomic structure and
functional variations are often induced by environmental inputs.
Our framework allows an approximation of environmental
effect through simulating activity in different natural-like
environments.

Here, we demonstrate the application of the framework for
the analysis of a metagenomics derived gene catalog from the
complex microbial communities of plant roots (Ofek-Lalzar
et al., 2014). The rhizobiome is a central determinant of crop
health and yield, hence understanding how to manipulate
rhziobiome communities toward desired function is a major
agricultural concern (Mazzola and Freilich, 2017). Rhizobiome
communities are strongly influenced by root activity where
plant secretion is a key determinant of their structure (De-la-
Pena and Loyola-Vargas, 2014; Jha et al., 2015). Our framework
was applied for tackling the intricate associations between
community structure, community function, and metabolic
inputs in this important ecosystem. The metabolic context
created by these associations extends previous findings of
functional capabilities in root systems and allows testing
the significance of individual taxonomic groups within their

community. We simulated environment specific communal
performances, associated functions with specific taxonomic
groups, and identified potential co-exchange patterns leading to
the production of complementary metabolites. The simulations
and the resulting predictions are environment-specific, based
on computational approximation of the key available nutrients
in different treatments. The simulated observations are in
accordance with common ecological and network concepts.
First, the communal networks are highly robust where the large
majority of basic metabolism functions are conserved between
environment and do not rely on specific groups. Yet, despite
this inherent robustness, the analysis succeeded in pointing at
several taxonomic-associated functions. Many of these functions
are unique to the root-like environment (vs. soil) and are
in agreement with reported observations. Examples for such
predictions made include utilization of plant exudates as linoleic-
acid, flavonoids, and geraniol by Rhizobiales, Sphingomonadales,
and Burkholderiales. Finally, the predictions for the profiles of
complementary metabolites, formed between specific taxonomic
combinations in specific environments, may suggest a possible
functional significance for observed co-occurrence patterns.
For example, Burkholderiales and Xanthomonadales activity can
possibly compensate for the low levels of tryptophan secreted in
by the cucumber’s root.

Overall, the presented approach was successful in predicting
root-specific effects that link the utilization of specific
environmental nutrients (here, plant exudates) with specific
taxonomic groups, pointing at the impact of each such
compound as a determinant of the microbial community
structure. Caveats of the current analysis, reflecting both data-
driven and conceptual limitations should be acknowledged. Most
notably, data-driven limitations include the partial coverage of
metagenomic sequence data. The dataset used here, as in most
data collected from complex environments (such as the root
and soil), does not provide a full coverage description of the
corresponding communities. Future projects are expected to
provide a rapidly increasing coverage; such coverage will allow
the detection of the less abundant functions and assembly guided
taxonomic classification of sequence reads. In parallel to the
advent of sequencing technologies, metabolomics technologies
are now rapidly emerging (El Amrani et al., 2015; Daliri et al.,
2017; Parmar et al., 2017). Though in the current analysis
environmental approximations are based on computational
predictions, we expect that in the very near future a growing
number of ecosystems will be subject to an extensive profiling
by metabolomics technologies. The framework was designed to
allow the future integration of such data in concert with ultra-
high coverage metagenomic sequencing. Finally, the inclusion
of transcriptomic data, produced together with metabolomics
and higher coverage metagenomic information will allow a more
comprehensive and more accurate description of community
function. Information on transcriptomics/metabolomics paves
the way for quantitative predictions of metabolic fluxes (Heinken
and Thiele, 2015; Sajitz-Hermstein et al., 2016; Valgepea et al.,
2017). To date, quantitative modeling using for example,
Constraint-Based Modeling is typically applicable to relatively
simplistic communities and consortia (Ye et al., 2014; Koch
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et al., 2016; Budinich et al., 2017). Recent works attempt to apply
quantitative models toward the study of complex microbial
communities (Bauer et al., 2017; Magnusdottir et al., 2017).
The partiality of data (metagenomics, metatranscriptomics, and
metabolomics) from highly diverse ecosystems, together with
the computational complexity associated with community-level
genome scale metabolic modeling and biases stemming from
automated and semi-automated model curation approaches
makes topological-based qualitative approaches, as applied here,
a powerful and relatively straightforward framework for the
analysis of genome-wide ‘omics’ data (Heinken and Thiele, 2015;
Taxis et al., 2015; Charitou et al., 2016). Furthermore, it has been
suggested that ecological dynamics, as predicted by network
topology based frameworks, are of great impact on the metabolic
capacity of complex bacterial communities and provide insights
on the drivers of species-metabolite dynamics (Noecker et al.,
2016). Though predictions derived from the framework might
include biases introduced due to the limitations of the current
data, many of our simulated observations correspond with the
documented role of bacterial groups, supporting the biological
relevance of the analyses. Such predictions should be treated as
educated ‘leads’ that are useful for the formulation of testable
hypotheses. Predictions from the framework used here allow
researchers to delineate biological signal from complex data
and to rationally design possible manipulation strategies that
will induce optimized function. Predictions-based design
of agricultural practice can include (i) the identification of
microorganisms carrying desired or undesired functions and
(ii) the characterization of the effect of the introduction of
environmental treatments (that is, adding/depleting specific
compounds) (Mazzola and Freilich, 2017). In the absence of
appropriate analysis tools and considering the volume of data
produced in metagenomics studies, identification of meaningful
associations resembles finding a needle in a haystack. Hence,
despite limitations, metabolic models can serve as a starting point
for generating experimentally testable hypotheses (Magnusdottir
et al., 2017).

In summary, this work contributes to the current efforts
in the field of Systems Biology for developing new conceptual
approaches for the analyses of metagenomic data allowing
delineating biological processes and integrating testable
predictions. More generally, the framework addresses key
ecological challenges regarding the intricate associations between
community structure, community function and metabolic inputs
and is applicable to a wide array of systems including the human
gut, biofilms biotechnological production and bioremediation.
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FIGURE S1 | Venn diagrams showing the distribution of differentially abundant

enzymes (A), source-metabolites (B) and predicted network metabolites (C), in

cucumber versus wheat environments.

FIGURE S2 | Schematic illustration of the process of source metabolite selection

and network reconstruction. The networks are comprised from metabolites

denoted by circles that are connected by reactions (edges). A metabolite that is

considered as a seed is colored black. (A) Identification of source-metabolites in

the meta-network, containing all cross-sample reactions. (B) Network

reconstruction and seed discovery for four networks describing the root and soil

environments of each crop. Each network contains all the differentially abundant

enzymes in the corresponding environment. Common seeds between a specific

environments and the initial meta-network are denoted black with a colored rim.

Green shades represent root environments, brown/orange shades represent soil

environments. Colored circles are source-metabolites identified only for the

network of differentially abundant enzymes and not for the meta-network and are

likely to represent biases formed from the gapped nature of a network which relies

solely on differentially abundant enzymes. (C) The common seeds between the

meta-network and each environment represents the predicted specific

environment and was further used for the meta-network expansion.

FIGURE S3 | Simpson and Shannon index values distribution across

environments. (A) Spearman correlation matrix (p < 0.05) between the Simpson

and Shannon indices, showing similarity between replicas and negative

correlations between diversity and dominance values. For each index, soil and

root samples are co-clustered together. (B) Scatter plots of data per sample. The

colored areas represent the cut-off chosen for high dominance and low diversity

data taken into further analysis. Green hues represent the root data and brown the

soil data.

FIGURE S4 | A schematic illustration of the possibility of complementary

metabolites per a combination of key taxonomic groups. Nodes represent

metabolites and edges represent reactions. (A) A network constructed from a

core enzyme set, existing in all key taxonomic groups. (B) Network constructions

of the core enzyme set augmented with enzymes unique to taxonomic groups A

or B, added metabolites are colored green or blue respectively. (C) A network

construction of the core enzyme set with the addition of unique enzymes from

both taxonomic groups A and B at once. Green or blue metabolites represent

metabolites specific to either taxonomic group (A or B). Red metabolites are

complementary (new) metabolites, present only for the combination of taxonomic

groups A and B.

FIGURE S5 | General pathway category distribution of enzymes dominated by

specific taxonomic groups.

FIGURE S6 | Distribution of enzymes dominated by taxonomic groups across

environments. The top five taxonomic groups in each environment were defined

as the key taxonomic groups (per environment).

TABLE S1 | Differential abundance analysis of cucumber root and soil samples.
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TABLE S2 | Differential abundance analysis of wheat root and soil samples.

TABLE S3 | Metabolites predicted as describing the environments of cucumber.

TABLE S4 | Metabolites predicted as describing the environments of wheat.

TABLE S5 | Count of network metabolites and reactions in the four

environment-specific networks.

TABLE S6 | Simpson and Shannon indices calculations per enzyme per

environment.

TABLE S7 | Environment level associations between enzyme and taxonomy.

TABLE S8 | Key taxonomic groups combinations taken for synergistic

complementation calculations. Six total key taxonomic groups were taken into

account for investigation. Core metabolites common to every group were included

in every combination.

TABLE S9 | Complementary (synergistic) metabolites mapping to pathways.

TABLE S10 | Pathway distribution of differential abundant enzymes (Figure 1A,

top). Pathway enrichment analysis by the Hypergeometric distribution test and

goodness of fit chi square test (p-value < 0.05 highlighted in green and yellow

respectively).

TABLE S11 | Pathway distribution of source metabolites (Figure 1A, middle).

Pathway enrichment analysis by the Hypergeometric distribution test and

goodness of fit chi square test (p-value < 0.05 highlighted in green and yellow

respectively).

TABLE S12 | Pathway distribution of network metabolites (Figure 1A, bottom).

Pathway enrichment analysis by the Hypergeometric distribution test and

goodness of fit chi square test (p-value < 0.05 highlighted in green and yellow

respectively).

TABLE S13 | Taxonomic mapping of dominated enzymes. Distribution of

dominated enzymes between taxonomic groups in different environments.

TABLE S14 | Impact of dynamic removal of key taxonomic groups, one by one

and all at once, from the meta-network. The impact is calculated as the metabolite

number difference between the original and removed network. Enzymes specific

to a key taxonomic group were removed from the general metagenomic enzyme

set dynamically. Next, the reduced enzyme set was expanded into four networks,

one per environment.

TABLE S15 | Effect of the removal of key taxonomic groups in the wheat root

environment. The effect score is calculated as the pathway coverage difference

between the removed network and the original.

TABLE S16 | Effect of the removal of key taxonomic groups in the cucumber root

environment. The effect score is calculated as the pathway coverage difference

between the removed network and the original.

TABLE S17 | Effect of the removal of key taxonomic groups in the wheat soil

environment. The effect score is calculated as the pathway coverage difference

between the removed network and the original.

TABLE S18 | Effect of the removal of key taxonomic groups in the cucumber soil

environment. The effect score is calculated as the pathway coverage difference

between the removed network and the original.

TABLE S19 | Number of complementary (synergistic) metabolites per combination

per environment. Shade intensity increases with metabolite number.
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